
Physics Letters B 786 (2018) 485–490
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

The g factor of the bound muon in medium-Z muonic atoms

Savely G. Karshenboim a,b,c,∗, Vladimir G. Ivanov c

a Ludwig-Maximilians-Universität, Fakultät für Physik, 80799 München, Germany
b Max-Planck-Institut für Quantenoptik, Garching, 85748, Germany
c Pulkovo Observatory, St. Petersburg, 196140, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 August 2018
Received in revised form 13 September 
2018
Accepted 30 September 2018
Available online 2 October 2018

We consider a theory of the g factor of a bound muon in a three-body atomic system, which consists 
of a spinless nucleus, a muon, and an electron in the medium range of Z = 10–30. We show that 
the calculation at the one-ppm level of accuracy can be separated into a consideration of an internal 
subsystem μ − N (with a muon at the ground state) and an external subsystem with an electron and a 
compound μ − N nucleus.
We discuss the most important contributions to the g factor of the bound muon in the μ − N system 
in the medium-Z approximation. In this range the list of relevant contributions contains kinematic pure 
Coulomb contributions, the finite-nuclear-size ones, and muonic-atom-specific contributions with closed 
electron loops. In the case of the medium Z one can apply a double limit Zα � 1 and Zαmμ/me �
1, at which a number of specific contributions is simplified. Special attention is paid to non-potential 
contributions, i.e., those which cannot be expressed in terms of an effective potential.
We also consider the electron shielding of the magnetic moment of the compound nucleus, focusing 
on the corrections which are enhanced or suppressed comparing to the shielding of ordinary nuclei. In 
conclusion we discuss a generalization of our result for muonic atoms with a few electrons.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Properties of bound muons have been studied for a number of 
cases. In particular, the g factor of a bound muon has been mea-
sured in medium- and high-Z atoms, which contain a nucleus, a 
muon, and electrons [1,2]. Here we consider various contributions 
to the g factor of a bound muon in two-body (μ − N) and three-
body (e − μ − N) systems. We calculate various contributions and 
express some of them in terms of the related contributions to the 
energy levels, which simplifies their evaluation.

Muon is a heavier edition of an electron and there is a cer-
tain similarity in characteristics of muonic and electronic atoms. 
A large portion of the theoretical contributions to the energy lev-
els and matrix elements has the same form for both types of the 
atoms. However, there are specific contributions. Those are closed-
fermion-loop ones. In principle, the diagrams for them are similar 
for both theories, however, the character of the contributions for a 
loop with particles lighter than the orbiting one and those, where 
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the orbiting particle and the particle in the loop are the same, is 
very different.

Such muonic-atom-specific contributions are the electron vac-
uum polarization (eVP) and electron light-by-light scattering block 
(eLbL) ones. The dynamic parameter which determines the magni-
tude of the contributions is Zαm/me . Here m is the mass of the 
orbiting particle (a muon in most of our considerations) and the 
parameter is a ratio of the characteristic atomic magnetic moment 
and the electron mass. (We apply here the units in which h̄ = c = 1
and therefore energy, momentum and mass are expressed in the 
same units.)

There is an additional difference of two theories. The finite-
nuclear-size (FNS) and recoil contributions are of the same form 
for ordinary and muonic atoms, however, they have different im-
portance. They are enhanced in the case of muonic atoms. A num-
ber of contributions of this type can be neglected in the case of 
ordinary atoms, but is relevant for the muonic ones.

In the case of ordinary atoms the state of the art in calcula-
tions of the g factor of a bound electron can be found, e.g., in [3]. 
The contributions presented there are universal for the g factor of 
an electron in an ordinary hydrogenlike atom and of a muon in a 
two-body muonic atom. Here we focus our attention on muonic-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Parameters for some medium-Z muonic atoms. The values of the rms charge radius 
(RN ) are taken from [10]. M stands for the nuclear mass.

Nucleus 20Ne 40Ca 66Zn

Z 10 20 30
Zα 0.07 0.15 0.22
(Zα)2 0.005 0.021 0.05
Zαm/me 15 30 45
RN [fm] 3.0055(21) 3.4776(19) 3.9491(14)
mRN 1.61 1.86 2.11
ZαmRN 0.12 0.27 0.46
m/M 0.006 0.003 0.002

atom-specific contributions. We consider both the contributions 
with closed electronic loops and the enhanced FNS and recoil con-
tributions.

Theory of muonic atoms is often presented in terms of numeri-
cal results. Sometimes analytic ones are possible, but they may be 
cumbersome [4–9]. However, there is a special limit where most 
of the theoretical expressions take a simple form and have a clear 
physical meaning. That is a medium-Z limit. In this limit we can 
enjoy advantages of a nonrelativistic consideration, since Zα � 1, 
but the eVP and eLbL contributions can be drastically simplified at 
the limit Zαm/me � 1.

For instance, the dominant contribution to the Lamb shift in a 
muonic atom, which is due to the Uehling (eVP) potential, takes 
the form [6–8]

�E L(nl) = −2

3

α(Zα)2mr

πn2

[
ln

2Zαmr

men
−

n+l∑
1

1

k
− 5

6

]
. (1)

This is a nonrelativistic contribution and all the recoil effects in 
this order in Zα are taken into account by the use of the reduced 
mass mr .

The most important muonic-atom parameters are summarized 
in Table 1. The value of Zα does not look very small, however, 
for many leading nonrelativistic terms the next-to-leading correc-
tion has an extra factor of (Zα)2 rather than of Zα. In such atoms 
the value of mR N > 1 plays a role of an enhancement factor which 
appears in the calculation of the higher-order FNS terms. Such an 
enhancement makes the results of the expansion in ZαmR N � 1
more important than the one in Zα. In other words, the details of 
the nuclear charge distribution are more important than the rela-
tivistic corrections. We also note that in the case when the leading 
relativistic correction to a certain contribution has an extra (Zα)2, 
it is compatible with the recoil correction to that contribution.

Here we are interested in a theory of the g factor of a muon 
and a nucleus, bound in two-body muonic atoms. Some of our cal-
culations are valid for an ns state, but we are mostly interested 
in the muon in the ground state, which reflects the experimen-
tal situation. At the first stage we consider a system of two par-
ticles bound by a potential. Such a consideration is possible in 
two cases. One of them is with the external-field approximation 
and a fully relativistic electron (described by a Dirac equation). 
The other possibility is with the leading nonrelativistic approxi-
mation for both particles, which eigenstates can be described by 
a one-body Schrödinger equation with the reduced mass mr . Both 
options have been explored for pure Coulomb systems. The rela-
tivistic result was obtained in [11]. The second option was studied 
in detail in [12–14]. The result reads
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where Z is the nuclear charge and M is the nuclear mass, g(0)
μ =

2(1 + aμ) and g(0)
N = 2(1 + κN ); aμ, κN are the anomalous mag-

netic moments of the muon and nucleus. Here we neglect the 
(m/M)2 terms, because the original evaluation in [12–14] has been 
performed for the nuclear spin 1/2. We are to generalize some in-
termediate results of [13,14] on the atomic systems bound by an 
arbitrary potential. While higher-order in m/M corrections in the 
pure Coulomb systems have been studied later in [15] (see also 
[16]), we rely on certain intermediate results in [13,14] and delib-
erately neglect here all the (m/M)2 terms.

Indeed, the atomic systems are basically bound by the Coulomb 
potential, however, there are numerous corrections to it. Some 
of them include the eVP effects, the other deal with the nuclear 
charge distribution etc.

Before starting a more general consideration, let us note that 
some eVP corrections to the pure Coulomb case can be found 
directly from (2) and (3) once we use the effective charge sub-
stitution

Zα → Zα

[
1 + 2α

3π
ln

(
Zαmr

nme

)]
, (4)

which is valid in the case of medium-Z muonic atoms.

2. Calculation of potential-type contributions to the g factors in 
two-body muonic atoms

The muonic-atom-specific contributions split in two parts. One 
has the eVP loops and can be expressed in terms of a certain bind-
ing potential, the others deal with the eLbL loop and cannot be 
expressed through such a modification. The former are considered 
in this section, while the latter are studied in the next one. We 
refer to the former as ‘potential-type’ contributions. Such contri-
butions have been studied in [17] and [18] for the muon g factor 
in the nonrecoil limit, while the recoil corrections and contribu-
tions to the nuclear g factor have been considered by us in [19].

Let us consider a two-body muonic atom bound by a central 
binding potential V (r). Calculation of the contributions to the g
factor of two particles bound by an arbitrary central potential can 
be performed starting with the identities [13] (cf. [14])
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Those identities can be further transformed to [19] (cf. [18])
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Here, E is the nonrelativistic energy in the center-of-mass system 
of the two-body atom and as such it can be expressed in terms 
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of the reduced mass mr . In nonrelativistic physics the use of the 
reduced mass allows us to take into account the recoil effects.

Until recently, only the terms, related to gbound
μ at the external-

field limit, have been known for an arbitrary potential [17,18].
The application of those identities is very straightforward. Let 

us consider some examples of the application of (7) and (8) to the 
medium-Z case. For instance, we know at medium Z the result 
for the eVP correction to the energy (see (1)), which immediately 
leads to the result (cf. [20,19])
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Let us now consider the FNS contributions. The leading one fol-
lows from the well-known identity for the FNS contribution to the 
energy levels

�E fns:lead(ns) = 2

3n3
(Zα)4m3

r R2
N . (11)

As mentioned above, the value of mR N serves as an enhancement 
parameter and therefore we should expect that a ZαmR N correc-
tion to the leading FNS term (9) is larger than a Zα one. Actually, 
the linear Zα correction is absent and the relativistic correction to 
the leading term has an extra factor of (Zα)2. To find the ZαmR N

correction to the leading FNS contribution to the bound g factors 
it is sufficient to consider the related ZαmR N correction to the en-
ergy. That is a so-called Friar term which reads [21,22]

�E fns:3(ns) = − (Zα)5 m4
r

3n3
〈r3〉2 , (12)

where

〈r3〉2 ≡
∫

d3r d3r′ρE(r)ρE(r′)|r − r′|3 (13)

and ρE (r) is the nuclear-charge distribution.
Combining (11) and (12), we obtain from (7) and (8) (cf. [23,18,

19])
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We discuss the numerical values of some contributions in 
Sect. 4.
Fig. 1. The contribution in order α(Zα)2 to the bound g factor of a nucleus with the 
nuclear charge Z . In the original paper [26] the nucleus was considered as a ‘true’ 
one. Here, we are interested in a consideration of an ‘effective’ nucleus N∗, which 
is a closely bound μ − N subsystem.

3. Specific non-potential contributions to the g factors in 
two-body muonic atoms

The muonic-atom-specific contributions involve closed electron 
loops. The eVP loops induce a correction to the Coulomb binding 
potential and the related effects have been considered above. In 
this section we consider the effects of the electron-loop light-by-
light scattering. Similar diagrams have been considered for ordi-
nary atoms in [24,25], however, the case of eLbL in muonic atoms 
has its specifics. Actually, there has been consideration which can 
be adjusted to medium-Z muonic atoms. Some time ago Milstein 
and Yelkhovsky [26] considered a contribution to the anomalous 
magnetic moment of a nucleus (as a compound particle) due to 
eLbL (see Fig. 1).

The result of [26] (cf. [27]), which reads

�g

g(0)
= 2

3

α(Zα)2

π

(
1 + 0.657(Zα)2

)
ln

1

me R N
, (16)

is present in terms of a regularized logarithmic divergence and a 
coefficient in front of it. The divergence there is cut by the nuclear 
size, which for ordinary nuclei with a logarithmic accuracy can be 
substituted by the rms charge radius R N . For the sake of simplicity 
we keep for further numerical estimations only the leading in Zα
term in (16).

To adjust the result of (16) to the μ − N subsystem as a com-
pound nucleus N∗ , one has to take into account a few differences 
between the ‘standard’ nucleus N and the effective one N∗ .

(i) The nuclear charge of the μ − N subsystem is equal to Z −1.
(ii) In the case of the μ − N system the ‘geometrical’ size and 

R N differ significantly because the distributed charge is a small 
portion of the total one. The size is Rgeom = √

3/(Zαmr), while the 
rms radius is R2

N ≈ −R2
geom/(Z − 1) (cf. [28,29]). Since we need a 

logarithmic accuracy, (Zαmr)
−1 is used as a logarithmic cut-off.

(iii) The compound-nuclear magnetic moment is composed of 
the muon magnetic moment and the nuclear one. The expression 
is linear in the nuclear magnetic moment and we can consider 
separately corrections to the muon and nuclear g factors.

(iv) The consideration in [26] deals with the situation when 
there is only one source of the logarithmic divergence in the ex-
ternal field approximation with point-like nuclei. The related result 
would be with a coefficient 2/3 (Z − 1)2α3/π . In our case the sit-
uation is somewhat different. In particular, there is a logarithmic 
divergence in the anomalous magnetic moment of muon [27] with 
a coefficient 2/3 α3/π . This cut off is not due to the nuclear size, 
but to the muon recoil and is already included into our calcula-
tion (since we consider in our equations a complete value of g(0)

μ ). 
Therefore we have to subtract 2/3 α3/π from 2/3 (Z − 1)2α3/π . 
The remaining logarithmic contribution reads (cf. [30])
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Table 2
Contributions to the bound gμ factor in the ppm units for gμ/g(0)

μ : the μ − N
subsystem with the muon in the ground state.

Contribution, Ref. 20Ne 40Ca 66Zn

Coulomb, (Zα)2, (2) −1775.0 −7100.2 −15 975.4
Coulomb, (Zα)2(m/M), (2) 15.1 30.2 41.2
Coulomb, aμ(Zα)2, (2) 3.1 12.4 27.9
Coulomb, (m/M)2, (20) −0.9 −1.8 −2.2
Coulomb, (Zα)4, (19) −2.4 −37.8 −191.4
Coulomb, (Zα)4+(m/M), [35] 0.04 0.5 1.7

FNS:lead, (14) 98 2.1 × 103 13.7 × 103

FNS:lead-recoil, (14) −1.9 −21 −82
aμ× FNS:lead, (14) −0.2 −3.7 −24
FNS:(mRN )3, (14) −25.1 −1.25 × 103 −13.9 × 103

eVP at m/M = 0, (9) −44.5 −226 −571
eVP-recoil, (9) 0.5 1.2 1.7
eLbL, (17) 18 1.0 × 102 2.6 × 102

One-loop SE, (21) 0.3 1.8 1.5

�gμ(1s)

g(0)
μ

= 2

3

Z(Z − 2)α3

π
ln

Zαmμ

me
. (17)

(v) The logarithmic correction to the free magnetic moment of the 
nucleus N with charge Z follows (16) and should also be sub-
tracted. The result for the bound nuclear g factor is therefore

�gN(1s)

g(0)
N

= −2

3

(2Z − 1)α3

π
ln

Zαmμ

me
. (18)

We discuss the numerical values of some contributions in 
Sect. 4.

4. Three-body muonic atoms

Let us consider now a three-body system e − μ − N with a 
spinless nucleus N , which is the simplest one to account for the 
most important corrections to the value of the g factor of a bound 
muon. The g factor of the muon, bound by the nucleus, has the 
standard corrections as in a two-body μ − N system. In the mean-
time, the magnetic moment of such a compact two-body system 
is shielded by an electron, bound by that ‘compound nucleus’. We 
consider the contributions as factorized ones and we discuss accu-
racy of such an hierarchy approach after the consideration of the 
numerical values of the contributions is done. In principle, such 
an approach is a ‘good’ one and has been successfully applied to 
the hyperfine e − μ interval [31–34] and to the Lamb shift of the 
electronic states [28] (both in the neutral muonic helium). The 
practical question is the accuracy of such an approach, which is 
better to discuss once we establish the magnitude of various cor-
rections.

Hence we consider the hierarchy three-body system through a 
subsequent consideration of two two-body subsystems. The inter-
nal one, N∗ = μ − N , plays a role of an effective nucleus for the 
external subsystem e − N∗ . We start our consideration with the in-
ternal subsystem. We are interested in contributions to the value 
of the bound muon g factor, which has been already studied in 
two previous sections. We summarize these results in Table 2 for 
three medium-Z muonic atoms, parameters of which are listed in 
Table 1.

We present there numerical results for various contributions. 
Some of them have been considered above in detail, while others 
have been known for a while, but have not been discussed above. 
Expressions for some of the contributions, such as the eVP ones, 
have been drastically simplified in the medium-Z limit. We have 
also found above a simple presentation for the eLbL contributions. 
The few first contributions follow from a consideration of a pure 
Coulomb system. Three of them are given in (2) following [12–14]. 
The higher-order external-field relativistic correction was found in 
[11]

gDirac
μ (1s) = 2

[
1 − 1

3
(Zα)2 − 1

12
(Zα)4 + . . .

]
. (19)

The approach in [12–14] allows to find the (Zα)2(m/M) recoil 
contribution. The higher order in the m/M recoil correction

gμ(1s) = −g(0)
μ × (Z + 1)(Zα)2

2

(mμ

M

)2
(20)

was obtained in [15] (cf. [16]), while a higher-order in the Zα
one was obtained in [35]. Note that the (Zα)4(m/M) coefficient 
is known analytically [36,37,35], however, it is small and the 
(Zα)5(m/M) [35] contribution is larger than the (Zα)4(m/M) one 
[36,37,35] for the atoms of interest. For this reason we refer to that 
correction as the (Zα)4+(m/M) one.

The other group of contributions is due to the nuclear-structure 
effects. Accuracy of two largest contributions is very limited and 
the result strongly depends on the details of the nuclear shape. 
The (mR N)3 term is due to the Friar contribution to the energy 
in (12), which for our estimation is calculated with the homo-
geneous-sphere nuclear-charge distribution, but may be evaluated 
with a more realistic model. We note that this contribution is com-
patible with the leading FNS term. That is because the parameter 
ZαmR N is somewhat below but comparable with unity (see Ta-
ble 1), which means that the atomic size is comparable with the 
nuclear size. In this case details of the charge distribution are very 
important. The calculation of the (mR N )3 term obviously depends 
on the model of the distribution. The leading FNS term is ex-
pressed directly through R N as in (14) in a model-independent 
way. However, to find an accurate value of the rms nuclear charge 
is possible only through an application of a certain model. While 
at the low end of medium Z the FNS terms are under control at 
the level of a few ppm, at the high end of that range (Z = 30) the 
systematic uncertainty due to the nuclear shape may exceed 100 
ppm. The nuclear-polarizability contribution is not included into 
our consideration. It strongly depends on the nucleus and does not 
allow us any general numerical estimations and in principle may 
exceed the level of 103 ppm.

The third group of the contributions is due to the eVP and 
eLbL ones. They are found for a pointlike nucleus (as found in (9)), 
which seems quite reasonable for Z = 10, but may be questioned 
for Z = 30.

The last line is due to a universal correction, which is not 
muonic-atom specific. That is a [muon] self-energy contribution 
[38]. The ‘kinematic’ part of the one-loop corrections of order 
α(Zα)2 which comes from the anomalous magnetic moment con-
tribution to (2) is excluded from the one-loop self-energy contri-
bution. The result with the aμ part subtracted is [38]

gμ(1s) = α

π
(Zα)4 g(0)

μ

[
16

9
ln

1

(Zα)2
− 5.118 . . .

]
. (21)

That concludes our consideration of the μ − N subsystem and now 
we turn to the external e − N∗ subsystem, considering shielding of 
the muon magnetic moment by the electron.

Some of the contributions of interest have been considered 
above, but we have to take into account that the effective com-
pound nucleus somewhat differs from a standard one. For instance, 
we have already discussed above the size and the value of the rms 
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Table 3
Contributions to the electron shielding of the muon magnetic moment in the ppm 
units for gμ/g(0)

μ for the electron and muon in their ground state. We remind that 
while using the standard equation (3) one has to recall that the nuclear charge is 
Z − 1 etc.

Contribution 20Ne 40Ca 66Zn

Coulomb, α(Zα), (3) −159.7 −337 −515
Coulomb, α(Zα)(m/M)

at κN∗ = ∞, (3) −0.9 × 10−2 −0.9 × 10−2 −0.9 × 10−2

Coulomb-κN∗ , (3) & (23) 1 × 10−3 1.2 × 10−3 1 × 10−3

Coulomb, α(Zα)3, (24) −1.9 −17.5 −62.1

FNS:lead, (22) −0.004 −0.004 −0.005

charge radius R N . Following [28,29] and (15), we find the leading 
FNS contribution for the e − N∗ system

�gμ(ns) = −4(Z − 1)2α2

Z 2n3

(
me

mμ

)2

g(0)
μ . (22)

The compound nucleus N∗ also possesses a large value of the 
anomalous magnetic moment, which enters (3). That is because 
the own magneton is ∼ (Z − 1)e/M ∼ Ze/Amp , while the mag-
netic moment is basically the muon one ∼ −e/2mμ (here A is the 
relative atomic weight). The factor in (3) related to the anomalous 
magnetic moment is [19]

(1 + κN∗)
(Z − 1) e

M + mμ
= − e

mμ
,

where e stands for the [positive] elementary charge. The required 
factor is

1

1 + κN∗
� − (Z − 1)mμ

M + mμ
. (23)

Related numerical results for the shielding factor are summa-
rized in Table 3. Four first are for a pure Coulomb shielding factor 
in (3). Shielding at κN∗ = ∞ is related to the atoms when the 
anomalous magnetic moment of the nucleus dominates over the 
Dirac’s value. That is the case when the relatively large value of 
the muon magnetic moment determines the magnetic moment of 
a particle which has a charge and mass as a standard nucleus. The 
correction with κN∗ is suppressed in contrast to that in an ordi-
nary atom, however, it is a recoil correction of order α(Zα)(m/M)

and its influence is marginal. The theory of shielding even in the 
case of a few electrons seems to be an external-field theory at the 
level of one ppm.

Among the terms discussed above we also listed there a higher-
order external-field shielding correction [39–41], which for the 1s
state takes the form

gbound
N (1s) = g(0)

N

[
1 − α(Zα)

3
− 97

108
α(Zα)3

]
. (24)

The results in Table 3 are given for the electron 1s state. As 
to an ns state of the electron, the leading Coulomb contributions 
(including the recoil) to the g factor of the bound nucleus scale 
as n−2 [12–14]. The FNS term scales as n−3 [19]. The Coulomb 
shielding α(Zα)3 contribution has an overall n−3 factor, but also a 
somewhat more complicated n dependence [39–41].

The equation (15) allows us to take into account the (me R N∗ )3

term. Comparing with the leading FNS correction it has an extra 
(me/mμ) factor (which comes as a ratio of atomic and compound-
nuclear sizes) and 1/(Z − 1) (since the distributed charge is the 
muon one). Such a correction is obviously much smaller than the 
FNS leading term. The compound-nuclear-polarizability contribu-
tion is smaller than the leading FNS terms and larger that the 
(me R N∗ )3 term (cf. [42]).
The specific values of the nuclear charge and anomalous mag-
netic moment present the leading three-body contributions, i.e., 
the contributions which simultaneously involve parameters of the 
internal and external subsystems. They are essentially below one-
ppm level. The compound-nuclear-polarizability contribution is a 
dynamic three-body contribution, which is subdominant, being 
smaller than two mentioned above contributions. Its smallness 
completely validates the hierarchy approach with a subsequent 
consideration of the internal and external two-body subsystems.

5. Conclusions

The purpose of the paper is to sort out which contributions to 
the g factor of a bound muon in a few-body muonic atomic sys-
tems (nucleus-muon-electrons) are the most important and to find 
an efficient way to estimate them. A number of the contributions 
have been discussed above for the simplistic case of a single elec-
tron and a spinless nucleus.

Some of them may be improved in a relatively easy way. How-
ever, before doing that one has to clearly understand the impor-
tance of various terms. The experimental data are available on a 
very few elements [1,2]. The accuracy is at the level of 10 ppm. 
We hope that the variety of the elements can be extended and 
possibly the accuracy can be somewhat improved. To improve the 
theory for a particular element we have to specify it first and next 
improve the accuracy.

One of the crucial problems is the improvement of the accuracy 
of the electron shielding in an actual experimental situation, where 
atoms have many electrons. An accurate theory of the shielding 
factor for the nuclear magnetic moment in an ordinary atom is re-
quired if one intends to use a value of this magnetic moment for 
other calculations, such as for the hyperfine interval in a hydrogen-
like ion. The verification of a theory for the shielding factor is 
a hard and complicated issue. A successful theory of the bound-
muon g factor opens an opportunity to use the muonic atoms to 
verify the theory of electron shielding. In the case of the com-
pound nucleus N∗ = μ − N , one meets an opportunity to measure 
the shielded magnetic moment of the ‘nucleus’, for which the free 
magnetic moment is known.

The isotopic effects in shielding for the true nucleus with the 
charge Z − 1 and the compound nucleus, built of a nucleus with 
the charge Z and a muon, seem negligible at the level of 10 ppm. 
The ratio of magnetic moments of the bound muon and the true 
Z − 1 nucleus is to a large extent free of multielectron atomic-
physics calculations. The situation with isotopic effects has a num-
ber of other options. One may consider several isotopes of the 
same element (both for muonic Z atoms and their pure electronic 
Z − 1 counterpart). It may be also possible to consider the muonic 
atoms with a nucleus with a spin and to compare the magnetic 
moment of a bound muon and a bound nucleus.

An important conclusion for the isotopic effects, which follows 
from the consideration of three-body systems, is that likely in 
muonic atoms with the large number of electrons, shielding of the 
muon magnetic moment is essentially the same as of a true Z − 1
nucleus. A part of the recoil contribution due to the [compound] 
nuclear anomalous magnetic moment is suppressed (comparing 
with an ordinary Z − 1 nucleus), while the finite-nuclear-size and 
the nuclear-polarizability ones are enhanced, but it seems that all 
of them are below a one-ppm level even in the case of many elec-
trons. Eventually at the one-ppm level one has to consider the 
shielding within the external field approximation and for a point-
like nucleus.

Such a situation validates a consideration of a two-body inter-
nal subsystem μ − N independently of the electrons. A good side 
of studies of the μ − N systems is that at the one-ppm level one 
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can ignore the effects, which are the most important for the the-
ory of the g factor or a bound electron in a hydrogenlike atom, 
which are due to the one-loop and two-loop QED radiative correc-
tions. The theory is completely based on the muonic-atom-specific 
contributions and on an accurate account of the recoil effects.

At the low end of the medium-Z interval (Z = 10) the situa-
tion with the theory at the ten-ppm level is rather an acceptable 
one and at the one-ppm level it seems promising. On the contrary, 
at the high end of the medium-Z interval (Z = 30) the situation is 
far from being perfect. The nuclear polarizability in the muonic 
atom is to be studied. Instead of a pure Coulomb contribution 
one has to deal with a nuclear-shape model and to perform a 
numerical solution of the bound equations. With the atomic size 
(for the electronic states) is comparable with the size of the com-
pound nucleus, the numerical model-dependent approaches seem 
unavoidable.

The authors are grateful to R. Szafron and T.N. Mamedov for 
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