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Abstract. Power exhaust is one of the critical issues for tokamak edge plasma

research. Electron kinetic effects may play an important role in future fusion devices.

The KIPP code was coupled to a 1D version of SOLPS with an iterative algorithm [1, 2]

to study the kinetic effects in a systematic way. The KIPP-SOLPS coupling algorithm

allows us to incorporate kinetic electrons into the already sophisticated fluid model (B2)

self-consistently. The KIPP-SOLPS coupling simulation results with pure deuterium

and with carbon impurity in 1D geometry with stagnation point upstream and

target downstream are presented. These results are then compared to the results

of SOLPS simulations with different flux limiters. It shows that non-local electron

parallel transport contributes to the non-Maxwellian tails of electrons near the target

which reduces the electron target temperature. However, the non-Maxwellian tail has

negligible impacts on deuterium ionization.

1. Introduction

SOLPS [3] is the popular code package to simulate edge plasmas in present day

tokamaks. The 2D Braginskii fluid model [4] is implemented in this code. The Braginskii

model is only valid in the collisional limit where distribution functions of the plasma

are close to the Maxwellian. However, due to the mobility and hence long mean free

path of super-thermal electrons along magnetic field lines, electron parallel transport

is typically non-local [5, 6, 7]. In the Scrape-off Layer (SOL) non-Maxwellian tails of

the electron distribution function can be easily formed due to the non-local transport,

especially downstream near the target where electron kinetic effects play an important

role due to the fact that the electron mean free path is comparable to the electron

temperature scale length [8].

Within the framework of the fluid model, earlier efforts were made both analytically

and numerically to include electron kinetic effects. An analytical expression for parallel

conductive heat flux formula was obtained with self-similar solutions [6, 9, 10] for

the kinetic equation with a simplified collision operator. The work [11, 7, 12, 13]
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attempted to obtain a parallel heat transport equation with non-local terms by solving

the simplified kinetic equation in the super-thermal limit numerically. However, these

analytical formulas are not quite valid for tokamak edge plasmas where a complex

geometry and strong sources are present. Some other non-local expressions were also

proposed in various kinetic simulations [14, 15, 16, 17]. In refs. [18, 19, 20, 21, 22,

23, 24, 25, 26] it was proposed to close fluid equations in a higher moment where

a higher order macroscopic parameter 〈v4〉 appeared by assuming a bi-Maxwellian

distribution function [8]. However, the studies mentioned above were all carried out

under the fluid model assumptions and therefore showed many limitations. Previous

kinetic simulations [27, 28, 29, 30, 31, 32] showed that full kinetic treatment of electron

parallel transport is necessary to elucidate electron kinetic effects.

The Kinetic Code for Plasma Periphery (KIPP) [33, 34, 35, 36] was developed

with an aim of being coupled with SOLPS. It solves the Vlasov-Fokker-Planck equation

with high accuracy of collision terms for electron parallel transport. At the same time,

SOLPS is a highly sophisticated code with self-consistent recycling and physical and

chemical sputtering as well as atomic physics [37]. An iterative coupling algorithm was

then developed to couple KIPP with SOLPS [2], which is briefly described in section 2.

The KIPP-SOLPS coupling algorithm enables one to treat electron parallel transport

fully kinetically while still keeping all the physics that SOLPS has. Section 3 describes

the results of simulations performed based on the coupling algorithm and comparisons

of these results with those obtained with only running SOLPS.

As default, neutrals are treated kinetically with Eirene. Nevertheless, in this paper,

neutrals are treated as a fluid since they are not directly involved in electron kinetic

effects, and the fluid treatment of neutrals are computationally fast.

2. Coupling kinetic electrons into SOLPS

2.1. Kinetic factors

Kinetic effects mainly appear in the electron parallel transport due to high mobility

of electrons along magnetic field lines. The following discussions will only be about

kinetic effects in electron parallel transport. This section describes four electron related

kinetic factors: electron heat conduction coefficient ce, thermal force coefficient k‖,

sheath potential drop coefficient ∆φ and electron sheath heat transmission coefficient

γe. Similar to definitions given in [31, 32], we classify the four kinetic factors into two

groups: flux factors (ce and k‖) and boundary factors (γe and ∆φ).

2.1.1. Flux factors. A 1D version of SOLPS was created for a number of

applications [38, 39]. Periodic boundary conditions are implemented for the radial

boundaries, forcing radial gradients to 0, to remove the radial transport (e.g. ion and

electron radial particle flux densities or radial heat flux densities). Then it becomes

essentially a 1D code in the poloidal direction. However, the transport in the poloidal
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direction in SOLPS is the sum of projections of parallel transport along the magnetic

field line and the transport in the perpendicular direction (’⊥’, was called diamagnetic

direction in [3]) in the magnetic flux surface on the poloidal direction. The following

equations are solved for electron parallel transport in this 1D version of SOLPS:

∂ne
∂t

+∇‖
(
Γe‖

)
= Sp −∇⊥Γe⊥ (1)

eneE‖ = RT‖ −∇‖pe (2)

∂

∂t

(
3

2
neTe

)
+∇‖

(
3

2
neTeue‖ + qcond

e‖

)
= − neTe∇‖ue‖ −Q∆ + SEe −∇⊥qe⊥ (3)

where ne, ue‖, Te, pe are electron density, parallel velocity, temperature, pressure and

Γe‖, Γe⊥ are electron parallel and perpendicular particle flux densities and qe⊥ is electron

perpendicular heat flux density. Q∆ is the electron-ion energy exchange term. E‖ is the

electric field along ~B. Perpendicular particle and heat flux densities are:

Γe⊥ = −D⊥∇⊥ne (4)

qe⊥ = − χe⊥ne∇⊥Te (5)

where D⊥ and χe⊥ are the anomalous diffusivity and thermal conductivity. D⊥ = 1.0

and χe⊥ = 1.0 are used in the following simulations. The second equation is the

electron parallel momentum conservation equation which assumes ambipolarity of

parallel plasma transport. Therefore parallel current is not considered in this work.

For simplicity, later discussions are based on this assumption. The electron parallel

conductive heat flux density and thermal force are given by the closure equations:

qcond
e‖ = − ceneτe

Te
me

∇‖Te (6)

RT‖ = − k‖ne∇‖Te (7)

where ce = 3.16, k‖ = 0.71 for singly charged ions. These closure equations are only

valid in the collisional limit [4]. From previous kinetic simulations [40, 41, 42, 5, 35],

kinetic effects appear in these two terms for arbitrary collisionality due to electron non-

local transport [5, 6, 7]. A flux limiter is often applied to roughly capture the kinetic

effects, which modifies the electron parallel heat flux density in the following way:

qcond
e‖ = − 1

1 + ceλe
αeLTe

ce
neTeτe
me

∇‖Te (8)

where λe is electron mean free path and LTe is electron temperature scale length.

2.1.2. Boundary factors. Another two kinetic factors: sheath potential drop ∆φ and

electron sheath heat transmission coefficient γe appear in the boundary conditions for

electron equations. The Debye sheath [43] is formed where the plasma interacts with

the target. Since the sheath is very thin, it is usually collisionless and requires kinetic

analysis. Hence the Debye sheath is not included in the SOLPS simulation domain.
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The simulation boundary is technically the sheath edge. Two boundary conditions for

Eqs. (2) and (3) are required:

φt = ∆φ
Te
e

(9)

qte‖ = γeTeΓt‖ (10)

where φt and qte‖ are the potential and electron parallel flux density at the boundary.

We assume that the potential at the target is 0. In the collisional limit, these two

coefficients are typically:

∆φ ≈ 3 (11)

γe = 2 + ∆φ− 1 ≈ 4 (12)

The presence of ’-1’ in Eq. 12 is due to the so-called ”internal” energy conservation

equation (Eq. (3)) implemented in SOLPS (details can be found in [1, 2]). However,

kinetic simulations [31, 32] showed that electron non-local transport significantly

influence these two coefficients.

2.2. Iterative coupling algorithm

2.2.1. KIPP. The main equation to be solved in KIPP [33, 34, 35] is the Vlasov-

Fokker-Planck equation:

∂f̃e
∂t̃

+ ṽ‖∇‖f̃e − Ẽ‖
∂f̃e
∂ṽ‖

=

(
∂f̃

∂t̃

)
coll.

+ S̃E + S̃p (13)

KIPP is currently focused on electron parallel transport. ”∼” denotes dimensionless

variables, normalized by reference parameters: density n0, temperature T0, velocity v0

and collision logarithm Λ0. T0 = mev
2
0. The electron distribution function fe is 3D in

phase space: two dimensions in velocity space (parallel and gyro-averaged perpendicular

velocity) and one dimension in physical space along the magnetic field ~B. SE and Sp

are electron energy and particle sources respectively. The collision term
(
∂f̃
∂t̃

)
coll.

is

described by the Fokker-Planck collision operator. It is linear for e-i collisions with

the assumption of Maxwellian ions, but non-linear for e-e self-collisions. This code is

parallelized with MPI with one processor in charge of common jobs and others dealing

with free-streaming between neighbour cells and collisions in each cell.

Eq. (13) is solved by using an operator splitting scheme [33], with parallel free-

streaming for 1/2 time step followed by Coulomb collision and the electric field force

over one time step, followed again by the other 1/2 time step free-streaming [33, 44, 45].

2.2.2. Effective factors defined in KIPP. With KIPP, the two effective flux factors can

be easily obtained based on the calculated fe:

ceff =
(

1

2
me

∫
fev

2v‖d~v −
5

2
neTeue‖

)
/
(
−neτe

Te
me

∇‖Te
)

(14)

keff =
∫
mev

′
(
∂f

∂t

)
coll.

d~v/
(
−ne∇‖Te

)
(15)
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The calculation of the other two effective boundary factors is related to the boundary

condition implemented in KIPP, which is clarified below.

The logical sheath boundary condition [46] is implemented, of which the main idea

is to give a reasonable electron distribution function at the sheath edge without having

to resolve the sheath region of inherently small space and time scales. A critical velocity

vc (vc > 0) is determined by the assumption of the ambipolar flow through the final

boundary:

Γit‖ =
∫ ∞
vc

fev‖d~v (16)

where Γit‖ is ion particle flux density at the boundary where the down-streaming

electrons with parallel velocity larger than the critical velocity are removed from the

simulation, while others are reflected back into the simulation domain and assumed to

have the same velocities but in the opposite direction. With the critical velocity vc, the

two effective boundary factors can be obtained:

∆φeff =
mev

2
c

2Tet
(17)

γeff =
1

2
me

∫ ∞
vc

ftv
2v‖d~v/(Γt‖Tet) (18)

where ft, Tet, Γt‖ are electron distribution function, temperature, particle flux density

at the boundary, respectively.

2.2.3. Coupling scheme. Due to very different time scales between the kinetic and fluid

models, an iterative coupling algorithm was developed to couple KIPP with SOLPS [2].

SOLPS passes converged profiles of macroscopic plasma profiles (ne, Te, Ti, Γe‖, etc.)

to KIPP, while KIPP passes effective kinetic factors, calculated by Eqs. (14), (15), (17)

and (18), back to SOLPS. The four kinetic factors in SOLPS are then replaced by the

effective values:

ce = ceff (19)

k‖ = keff (20)

∆φ = ∆φeff (21)

γe = γeff − 1 (22)

This process is repeated until coupling convergence is reached. As discussed above, the

’-1’ difference in Eq. (22) is due to the ’internal’ electron energy conservation where

the coefficient ’3
2
’ is used for the convective heat flux (details can be found in [2]). To

simplify later discussions, we introduce the parameter γe‖, defined as:

γe‖ = γe + 1 (23)

Instead of γe, γe‖ is the electron sheath heat transmission coefficient specified for the

total electron energy conservation equation, and is replaced with γeff in the coupling

scheme. Later discussions are based on γe‖.
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Figure 1: The grids generated in KIPP (red lines) and SOLPS (blue boxes). x and y are poloidal

and radial directions respectively. The KIPP grid cells are generated along the direction parallel to the

magnetic field with the center of cell 0 being the stagnation point and the right face of cell smax being

the target, while the SOLPS grid cells are generated along the poloidal direction with two guard cells

attached to the two ends. nx = smax+ 1. The KIPP simulation domain is from the stagnation point

(black solid line at the left end) to the target (black solid line at the right end).

3. Simulations and discussions

3.1. Simulation setup

3.1.1. The simulation geometry. The simulation geometry is taken from [2], as shown in

Fig. 1, according to ASDEX-Upgrade parameters. The poloidal length is Lpol = 2.5m.

The magnetic field has two components: poloidal Bpol = 1.05 × 10−1T and toroidal

Btor = 9.95 × 10−1T. The left end is the stagnation point while the right end is the

target. The blue boxes are SOLPS cells and the red line is the KIPP grid generated

along ~B. The widths of cells decrease linearly from the stagnation point to the target.

Cell face positions in KIPP and SOLPS are consistent with eath other. The parallel

length of the KIPP simulation domain is:

Lpar = Lpol ×

√
B2
pol +B2

tor

Bpol

≈ 25m (24)

There are also two small guard cells attached to the two ends in SOLPS, numbered −1

and nx, which are created only for implementing boundary conditions.

3.1.2. Coupling setup. The work [1] showed that the iterative coupling algorithm is

quite efficient to achieve coupling steady states. The density scan studies with pure

deuterium plasmas were performed to justify the independence of the coupling steady

state on the specific forms of coupling schemes. Carbon was added as impurity to achieve

a steeper electron temperature porfile but with a medium upstream collisionality. In this
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work, the coupling simulations are performed again and then compared with SOLPS

only simulations with different flux limiters and separate effective kinetic factors from

the coupling steady states.

The power input is evenly distributed upstream from x = 0m to x ≈ 0.83m.

A pure deuterium plasma is used for density scan studies, and carbon is introduced

as an impurity to study the case with the large temperature drop but comparatively

low upstream collisionality. The recycling coefficient is at 0.999 for deuterium and

0 for carbon. The Bohm condition is assumed for ion species. For all simulations,

ambipolarity of the plasma flow is assumed. The coupling scheme only allows electrons

to be treated kinetically, hence ions and neutrals are still treated as fluids with default

boundary conditions in SOLPS. The coupling results were shown to be independent on

inital conditions [2], therefore, specifications of initial conditions for electrons are not

important.

3.2. Nomenclature

The following nomenclature will be adopted in later discussions. For the two groups of

kinetic factors, each one is given two sets of values. The values achieved in a coupling

steady state are indicated as γss
e‖, ∆φss, css

e , kss
‖ , while those derived from the Braginskii

theory are indicated as γc
e‖, ∆φc, cc

e, k
c
‖. We will call γss

e‖ and ∆φss ”kinetic boundary

factors”, css
e and kss

‖ ”kinetic flux factors”, γc
e‖ and ∆φc ”classical boundary factors”, and

cc
e and kc

‖ ”fluid flux factors”.

Based on the coupling simulations of [2], we conclude that the so-called heat

flux enhancement downstream (css
e > cc

e) tends to flatten electron temperature rather

than enhancing the heat flux. Instead of influencing the target heat flux density, the

deviation of γss
e‖ from γc

e‖ causes the decrease of the target electron temperature. This

indicates, counter-intuitively, that, by flattening the electron temperature profile, non-

local transport tends to reduce the target electron temperature.

In order to explain the counter-intuitive phenomena and investigate the difference

between the contributions of the two groups of kinetic factors to the modification of the

plasma profiles, the kinetic boundary and flux factors are separately applied to SOLPS.

Then the results are compared with the coupling results which are equivalent to those

obtained by applying all four kinetic factors: γss
e‖, ∆φss, css

e , kss
‖ , to SOLPS.

3.3. Density scan cases: pure deuterium

The stagnation point density varies from nu = 0.5 × 1019m−3 to nu = 2.5 × 1019m−3.

Alongside the full coupling cases simulated with the iterative coupling algorithm, for

each stagnation point density, four SOLPS cases with and without applying kinetic

boundary factors and the heat flux limiter are run:

Case A running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), classical boundary

factors (γe‖ = γc
e‖, ∆φ = ∆φc) and without heat flux limiter (αe =∞).
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Figure 2: Profiles of qe‖, Te and ne with the stagnation point density nu = 0.5×1019m−3 are compared

for the 5 cases: cases A, B, C, D and the full coupling case (labeled ”Coupling”). See text for details.

Case B running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), classical boundary

factors (γe‖ = γc
e‖, ∆φ = ∆φc) and with heat flux limiter (αe = 0.3).

Case C running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), kinetic boundary

factors (γe‖ = γss
e‖, ∆φ = ∆φss) and without heat flux limiter (αe =∞).

Case D running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), kinetic boundary

factors (γe‖ = γss
e‖, ∆φ = ∆φss) and with heat flux limiter (αe = 0.3).

Full coupling case running SOLPS with kinetic flux factors (ce = css
e , k‖ = kss

‖ ) and

kinetic boundary factors (γe‖ = γss
e‖, ∆φ = ∆φss).

3.3.1. Low stagnation point density nu = 0.5 × 1019m−3. The comparison among

profiles of electron density ne, electron temperature Te, electron heat flux density qe‖
from the 5 cases: A, B, C, D and the full coupling case with nu = 0.5 × 1019m−3, is

shown in Fig. 2. The upstream collisionality ν∗ of these cases is quite low, ∼ 6. Here

ν∗ = L/λ0, where L is the parallel length of the simulation domain, and λ0 is the

electron mean free path at the stagnation point. Interestingly enough, profiles of qe‖
from all cases are the same. Even the target electron heat flux densities (qt‖) are the

same, although γe‖ for cases A and B is different from that for cases C, D and the full

coupling case. By comparing Te profiles from cases A, C and the full coupling case, it

can be inferred that the deviation of γss
e‖ from γc

e‖ is mainly responsible for the reduction

of the target electron temperature. The heat flux limiting upstream (css
e < cc

e) slightly

increases the stagnation point temperature, while the heat flux enhancement (css
e > cc

e)

downstream flattens the electron temperature profile.

3.3.2. Medium stagnation point densities. The comparison among profiles of ne, Te
and qe‖ for the 5 cases with nu = 1.0 × 1019m−3 and nu = 1.5 × 1019m−3 are shown
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Figure 3: Profiles of qe‖, Te and ne with the

stagnation point density nu = 1.0 × 1019m−3 are

compared for the 5 cases: cases A, B, C, D and the

full coupling case (labeled ”Coupling”). See text

for details.
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Figure 4: Profiles of qe‖, Te and ne with the

stagnation point density nu = 1.5 × 1019m−3 are

compared for the 5 cases: cases A, B, C, D and the

full coupling case (labeled ”Coupling”). See text

for details.

in Figs. 3 (a blow-up of the region x = 2.30m − 2.50m) and 4 (a blow-up of the

region x = 2.45m − 2.50m), respectively. As one can see by comparing the 5 cases for

nu = 1.0 × 1019m−3 and nu = 1.5 × 1019m−3, qe‖ is insensitive to the kinetic boundary

factors and heat flux limiter, however, target electron temperatures with the kinetic

boundary factors (cases C, D and the full coupling case) are almost half of those with

the classical boundary factors (cases A and B). This strengthens the argument that the

deviation of γss
e‖ from γc

e‖ tends to decrease the target electron temperature rather than

to modify the target heat flux. From Fig. 5, where the stagnation point and target

electron temperatures (Teu and Tet) with increasing nu are shown for the 5 cases, one

can conclude that the deviation of Tet in the full coupling case from that in case A is

mainly attributed to the deviation of γss
e‖ from γc

e‖. The reason for this is investigated

below.

3.3.3. Relation between γe‖ and Tet. To explain the relation between γe‖ and Tet, a

simple analysis is given here. The target electron heat flux density scales as:

qt‖ = γe‖ntTetCs ∝ γe‖ntT
3/2
et (25)

where ntCs is the target electron particle flux density. Upstream and downstream

pressures can be related to each other by the two-point model [47]:

nuTeu ≈ 2ntTet (26)

Hence the target electron heat flux density can be transformed as:

qt‖ ∝ γe‖nuTeuT
1/2
et (27)
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√
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√
TA
et for

various stagnation point densities. The horizontal

black dashed line corresponds to value 1.0. This

ratio is ∼ 1, as explained in section 3.3.3.

We compare case A and the full coupling case at a certain nu. As pointed out above (see

Figs. 2, 3 and 4), the target electron heat flux densities for case A and the full coupling

case:

qA
t‖ ∝ γA

e‖nuT
A
eu

√
TA
et (28)

qcpl
t‖ ∝ γcpl

e‖ nuT
cpl
eu

√
T cpl
et (29)

are more or less the same:

qA
t‖ ≈ qcpl

t‖ (30)

where the variables with the superscript ”A” are for the Case A and ”cpl” for the full

coupling case. So,

γA
e‖ = γc

e‖ (31)

γcpl
e‖ = γss

e‖ (32)

As can be seen in Fig. 5, TA
eu ≈ T cpl

eu , since the upstream electron temperature depends

mainly on the upstream power input. Therefore:

qA
t‖

qcpl
t‖

=
γA
e‖

√
TA
et

γcpl
e‖

√
T cpl
et

≈ 1 (33)

in agreement with the profile in Fig. 6. Hence

TA
et

T cpl
et

≈

γcpl
e‖

γA
e‖

2

(34)

By comparing profiles of ne among the 5 cases both in Figs. 3 and 4, one may

notice that the deviation of ne in the full coupling case from that in case A near
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Figure 7: Profiles of qe‖, Te and ne with the stagnation point density nu = 2.5×1019m−3 are compare

among the 5 cases: cases A, B, C, D and the full coupling case (details can be found in the text).

the target is mainly due to the fact that different flux factors, kinetic and fluid, are

implemented differently for the two cases (case A and full coupling case). This is clarified

in section 3.4.

3.3.4. High stagnation point density. Despite the difference between the target electron

temperature (∼ 1.6eV) for cases A, B and that (∼ 1.15eV) for cases C, D and the full

coupling case due to the fact explained in Eq. (34), the profiles of ne, Te and qe‖ in

the coupling case are similar to the ones with running only SOLPS (cases A and B) as

shown in Fig. 7 (a blow-up of the region x = 2.48m − 2.50m). This high collisionality

case has the weakest kinetic effects in the simulation cases and further collisionalities

are expected to decrease kinetic effects further.

3.4. Activating carbon impurities

3.4.1. Introducing C in SOLPS. The future fusion device ITER [48] is planned to be

run with the high confinement mode [49, 50] and highly radiative divertor regime [51],

where the upstream collisionality of the SOL plasma is ν∗ ≈ 15, corresponding to the

density scan case with nu = 1.0 × 1019m−3 above. However, the coupling simulation

with pure deuterium plasmas doesn’t result in a large temperature drop. Carbon, used

as a radiator, is introduced in the coupling simulation as an impurity [2].

Carbon impurities are activated by switching on chemical and physical impurity

sputtering models in SOLPS. The constant sputtering yield for the chemical sputtering
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model is 0.095. The physical sputtering model uses TRIM database. The recycling

coefficient of carbon particles (including all charged states and neutrals) is zero, while

the deuterium recycling coefficient is 0.999, the same as mentioned above. Kinetic

corrections to the thermal force coefficients between electrons and carbon ions are

included in the simulation.

One problem for the 1D geometry with carbon impurities, mentioned in [2], was

that highly charged impurities (mainly C4+) concentrated upstream due to the lack of

sinks. It is suggested that the artificial carbon ion particle sink should be introduced

along the simulation domain:

SCi+ = −rinCi+

√
Ti
mi

i = 0, 6 (35)

where Ci+ is the carbon impurity with charge i and ri is the poloidal (x) profile of the

loss rate coefficient for Ci+:

ri =
nCi+(x)Ti(x)Lpol∫
nCi+(x)Ti(x)dx

i = 3, 6 (36)

ri = 0 i = 0, 2 (37)

This sink is used for coupling and SOLPS only simulations discussed below.

3.4.2. Simulations with C impurities. The deuterium ion density at the stagnation

point is nu = 2.2 × 1019m−3, and power input is set to match the power flux through

the separatrix with constant flux density 0.132MW/m2 evenly distributed in the region

from x = 0m to x ≈ 0.68m.

Similar to density scan cases, the cases A, B, C, D discussed above are run

with carbon impurities and then compared with the full coupling results with carbon

impurities . However, instead of applying a flux limiter αe = 0.3, the case B (will be

referred to as case B* in this section in order to be distinguished from the case B with

only deuterium in the previous section) is run with implementing the kinetic flux factors

(ce = css
e ) in order to investigate their effect on the ne profile.

Fig. 8 shows the comparison of ne, Te and qe‖ profiles among the five cases (only

a blow-up of the region near the target x = 2.46 − 2.50m is shown). As mentioned

above, by comparing case A (or B*), case C (or D) and the full coupling case, it is clear

again that the deviation of γss
e‖ from γc

e‖ is mainly responsible for decreasing the target

electron temperature, however, the kinetic flux factors have little impact on Tet, as can

be concluded by comparing cases A and B*.

ne near the target in the coupling case can be matched by running SOLPS only

with the kinetic flux factors (case B*), as seen in Fig. 8.

Nevertheless, in difference to the results in section 3.3.2, the electron heat flux

densities near and at the target are distinctly different among the five cases. It can

be inferred from Fig. 9 that the discrepancy between the electron heat flux densities is

mainly attributed to differences in electron energy sinks due to differences in electron

temperatures and densities in this region, rather than to the influence of kinetic effects
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with the carbon impurity.

on the ionization rate coefficients, since kinetic atomic rates were not calculated here,

which will be discussed in the next section.

Both kinetic flux and boundary factors play an important role in determining

profiles of ne, Te and therefore qe‖. The significant deviation of css
e and kss

e from cc
e

and kc
e near the target (see Figs. 10 and 11), due to the extended non-Maxwellian tail

and the cut-off tail [1, 27], tend to increase ne, and, as discussed above, the deviation

of γss
e from γc

e tends to decrease the target electron temperature, which together results
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in the modification of the radiation density in the near target region.

3.5. Kinetic effects on deuterium ionization

As pointed out in section 3.4, the non-Maxwellian effects of electron distribution

functions on ionization and radiation due to non-local transport were not included in the

above simulations, instead, these processes were tackled by the default subroutines in

SOLPS which calculate ionization and radiation based on the ADAS database. The rate

coefficients for atomic physics from ADAS, calculated based on the collision-radiative

theory [52, 53] with assuming Maxwellian electrons, are tabulated and then read as

an input file in SOLPS. Previous studies [28, 54, 55] showed that the extended non-

Maxwellian tail downstream near the target had substantial effects on enhancing the

deuterium ionization rate coefficient. Particularly when electron temperature was lower

than 3eV , the presence of small amount (1%) of hot electrons (20eV ) could contribute

significantly to the local ionization rate coefficient [56]. Nevertheless, the hot electron

population in the previous investigations were not obtained self-consistently. With the

iterative coupling algorithm, effects of non-Maxwellian tails on ionization can be self-

consistently incorporated in coupling simulations. In this work, we only investigate

the influence of kinetic effects on deuterium ionization. Section 3.5.1 introduces the

approach of calculating deuterium ionization rate coefficient to include non-Maxwellian

effects. In section 3.5.3, the density scan cases and the case with carbon impurities are

rerun with calculating deuterium ionization using this approach.

3.5.1. Collisional radiative coefficients. The collisional radiative theory gives the

deuterium ionization rate coefficient [52, 53], as follows:

Scr = S1 − Sj(Cij
−1Ci1) (38)

where S1 is the rate coefficient for deuterium ionization directly from the ground state;

Sj, one element in the array Sj, is the rate coefficient for deuterium ionization directly

from the jth (j = 2, 3, · · · , lmax) excited state; Cij, one element in the matrix Cij is the

coefficient for transition from the jth (j = 2, 3, · · · , lmax) to ith (j = 2, 3, · · · , lmax)

excited states; Ci1, one element in the array Ci1, is the coefficient for transition from

the ground state to ith (j = 2, 3, · · · , lmax) excited state. lmax, which is referred to

as ’cut-off level’ in later discussions, is the highest excited state to be considered in the

calculation. The parameters appeared on the right side of Eq. (38) are indicated as

’direct rate coefficients’, which can be calculated by integrating feσv in velocity space.

σ is cross section data for a certain atomic process, which can be taken from [57, 58].

fe can be Maxwellian or calculated in KIPP.

3.5.2. Cut-off level specification. The rate coefficients in ADAS database were derived

by resolving low excited states and regarding all higher excited states as a bundled

state. A reasonable value for lmax can be given by comparison between the deuterium

ionization coefficients calculated by Eq. (38) with Maxwellian fe and those from the
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Figure 12: Deuterium ionization rate coefficients calculated from Eq. (38) with Maxwellian electrons

with assuming different cut-off levels: lmax = 1, lmax = 3, lmax = 10, lmax = 30, compared to ADAS

data for various electron densities. It seems that Eq. (38) with level lmax > 10 gives almost the same

results as ADAS. When the electron density is lower than ∼ 1 × 1018m−3, the coronal assumption is

valid where the ionizations are mainly from the gound state. When the electron density increases to

∼ 1× 1020m−3, the collisional radiative process becomes important.

ADAS database, as shown in Fig. 12 for different cut-off levels (lmax = 1, 3, 10, 30) and

various electron densities. As it can be seen, the cut-off level lmax = 10 is good enough

to be chosen for the following simulations.

3.5.3. Discussions. Rather than specifying deuterium ionization rate coefficients from

ADAS database, we rerun the density scan cases in section 3.3 and the case with carbon

impurities in section 3.4, instead, with deuterium ionization rate coefficients calculated

based on Eq. (38) in two approaches:

Approach A Calculating all involved direct rate coefficients with fe from KIPP:

Si =
∫
fkipp
e σivd~v/ne (39)
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Cij =


∫
fkipp
e σijvd~v if i > j∫
fkipp
e σijvd~v + Aij if i < j

−
(∑

k(k 6=i) Cki + neSi
)

if i = j

(40)

where fkipp
e is the electron distribution function calculated in KIPP; σi is cross

section for deuterium ionization from the ith excited state; σij is cross section for

deuterium neutral excited state transition from the jth to ith states; Aij is Einstein

coefficient; i, j = 1, 2, · · · lmax.

Approach B Calculating all involved direct rate coefficients with assuming Maxwellian

distributions for electrons fM
e (replacing fe in Eqs. (39) and (40) with fM

e ).

Profiles of ne, Te and qe‖ from Approaches A and B are compared for the density

scan cases. The differences between Approaches A and B are less than 0.5% for all

collisionalities except the case with nu = 2.5 × 1019m−3. The reason for cases with

low and medium collisionalities is straightforward: the electron target temperature,

which is the lowest in the Te profile, is not low enough so that the contribution of the

non-Maxwellian tail to deuterium ionization is negligible compared to that of thermal

electrons although the extended high energy tail is pronounced in the region near the

target when the stagnation point density is medium 1.0− 2.0× 1019m−3.

For the high collisionality case with nu = 2.5 × 1019m−3 where the target electron

temperature is ∼ 1.1eV , a significant difference between the rate coefficients from

Approaches A and B at the final two cells adjacent to the target is discerned. The

deuterium ionization coefficients in these two cells from Approach A are larger than

those from Approach B by ∼ 10% and ∼ 50%, respectively. However, the ionization rate

(see Fig. ??) in these two cells (x ≈ 2.5m), due to low electron temperature, is several

orders of magnitude lower than that in the region where ionization mostly concentrates

(x = 2.48 − 2.49m) with Te = 4 − 7eV. The difference between rate coefficients from

Approaches A and B in this region is < 0.2%.

We also rerun the case with carbon impurities with calculating deuterium ionization

in the two ways (A and B). The coefficients for carbon atomic physics are still taken

from ADAS database. The results show that the non-Maxwellian effect on deuterium

ionization has no observable impact on coupling steady state profiles although, as

described in section 3.4, ne, Te, qe‖ and hence ionization radiation profiles have been

largely influenced by electron non-local transport.

4. Summary

Coupling simulations successfully reproduce the expected effect of heat flux limiting

(css
e < cc

e) upstream and enhancement (css
e > cc

e) downstream [8]. For cases with pure

deuterium plasmas, based on our simulations, the heat flux limiting and enhancement

factors were found to have no impact on the profile of electron heat flux, although, in

the region near the target, the deviation of css
e from cc

e is significant (e.g. by factor

3 ∼ 4 for medium upstream collisionalities). The heat flux enhancement only tends
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to flatten the electron temperature profile without influencing the absolute value much

in the near target region. We conclude that the kinetic boundary factor γss
e is mainly

responsible for the electron target temperature decrease compared to a fluid simulation,

which leads to the change in the electron temperature profile. The SOLPS case with

fluid flux factors (ce = cc
e, k‖ = kc

‖) and kinetic boundary factors (γe‖ = γss
e‖, ∆φ = ∆φss)

is able to produce profiles close to those from the coupling simulation.

This, however, is not true for the case with carbon impurities. The combined

effect of a remarkable decrease of the downstream electron temperature, attributed

to the deviation of the kinetic boundary factors from the fluid boundary factors, and a

strong density increase, caused by the difference between the kinetic flux factors and the

fluid flux factors in the same region, strongly influence the ionization radiation power,

thus modifying the electron heat flux profile as a result. Nevertheless, non-Maxwellian

effects due to electron non-local transport on deuterium ionization and radiation can

be negligible for all cases we simulated in this work. It indicates that in the conditions

simulated above where the plasma profiles in density scan cases correspond to typical

ASDEX-Upgrade L-mode SOL plasmas and those in the case with carbon impurities

correspond to typical ASDEX-Upgrade H-mode SOL plasmas, deuterium ionization rate

is not directly sensitive to the non-Maxwellian tail due to non-local transport, but can

be indirectly influenced by modifications of ne and Te profiles due to the non-local

transport.

We would like to conclude that the inclusion of kinetic boundary factors is always

important for a fluid model to correctly predict the target electron temperature for all

collisionalities we have investigated in this work. Instead of influencing the boundary

heat flux, the kinetic sheath heat transmission coefficient γss
e rather modifies the target

electron temperature. The increase of the upstream electron temperature due to heat

flux limiting upstream is always small and hence can be neglected. The heat flux profile

is determined by the energy sources and sinks rather than being directly affected by

the heat flux limiting or enhancement. However, for cases with carbon impurities where

the radiation concentrates downstream, the electron heat flux profile near the target is

substantially modified by kinetic effects of electron parallel transport as a result of the

modification of the radiation power profile due to the change of electron density and

temperature in that region.

All effects investigated in this work are within the 1D geometry. Extrapolations

to a 2D geometry without including kinetic effects in radial transports, which however

may require gyro-kinetic codes, can be simply achieved by piling up the 1D flux tube in

the radial direction. Kinetic effects on carbon ionization rates are not included in this

work. However, the presence of impurities (e.g. impurity seeding) in the divertor region

enhance the non-Maxwellian tail of electrons which, in turn, may have high impacts on

the impurity ionization. This effect requires further studies in the future.
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