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Transport of α particles due to trapped electron mode (TEM) turbulence is inves-

tigated from nonlinear and quasilinear gyrokinetic simulations. We consider both

slowing-down and Maxwellian distribution functions for α particles, and identify and

compare diffusive and convective parts of α particle transport as a function of the

α particle’s energy normalized to the background plasma temperature. We find that

TEM induces much lower transport of energetic α particles such as fusion products

than that of thermal Helium ions in the trace limit. This disparity from our study is

found to be even greater than that reported previously for ion temperature gradient

(ITG) mode [C. Angioni and A.G. Peeters, Phys.Plasmas. 15, 052307 (2008)].
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I. INTRODUCTION

Transport of energetic particles (EPs) by turbulence is a subject of both magnetic fusion

relevance such as a successful operation of ITER1 and scientific interest. Excitation of

various Alfvénic instabilities by EPs and their impact on EPs transport have been extensively

studied in the past and recently reviewed, for instance, in Ref. 2. Even in the absence of EP-

driven Alfvénic instabilities and of large scale magnetohydrodynamic (MHD) instabilities,

tokamak plasma confinement has been limited by the anomalous transport due to turbulence

developed from various microinstabilities.3,4

In this paper, we investigate transport of α particles in the presence of collisionless

trapped electron mode (TEM) turbulence in tokamak plasmas. Linear properties of col-

lisionless trapped electron mode can be found in Ref. 5. We consider α particles with a

slowing-down distribution function6 and background ions and electrons with Maxwellian dis-

tribution functions. Their dynamics is described by the electrostatic nonlinear gyrokinetic

equation in toroidal geometry7,8 and simulated using the GKW code.9 Previous gyrokinetic

studies on slowing-down α particles transport due to electrostatic turbulence have con-

sidered ion temperature gradient (ITG) mode turbulence.10–13 Prior to that study, there

have been numerous publications on EP transport due to ITG turbulence using Maxwellian

distribution function for α particles.14 We note that TEM is a prime contributor to core

microturbulence and anomalous transport of tokamak plasmas alongside ITG. Depending

on plasma parameters, either one can be dominant or two can coexist with a comparable

strength. In this paper, we consider fusion product α particles continuously born at 3.5
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MeV and being slowed down due to Coulomb collisions with electrons. We also consider

α-particles with Maxwellian distribution with the same average energy for elucidation of

physical trends. In addition, we investigate the dependence of α particles transport on their

energy Eα normalized to Te. In most cases, α particles can be treated as tracers due to their

small effect on TEM turbulence for nα/ne up to 10 %.

Principal results of this paper are as follows.

i) Transport of α particles with high energy is significantly smaller than the thermal He

transport. This reduction is even stronger than that for ITG,10 due to shorter size of TEM

in the direction perpendicular to the magnetic field.

ii) Pure convection of α particles from nonlinear simulation is outward, with the convec-

tion to diffusion ratio RVpk/Dα decreasing with Eα/Te.

iii) kθ spectrum of
∣∣∣ δnn0

∣∣∣2 at nonlinear saturation exhibits a peak at kθρi ≃ 0.4 and a decay

for shorter wavelengths. These are similar to results from measurement on Tore Supra Ohmic

plasmas15 and from a weak turbulence theory based on nonlinear gyrokinetic equation.16

The rest of this paper is organized as follows. In Sec. II, we briefly introduce the theoret-

ical model and its implementation for GKW simulation. In Sec III, diffusive and convective

components computed with the linear TEM GKW calculations are shown. Nonlinear GKW

calculations are presented in Sec IV. In particular, k-spectrum and saturated amplitude

are compared to the theory predictions. Conclusions are drawn in Sec V. Finally, a short

derivation of the nonlinear gyrokinetic Vlasov equation for arbitrary isotropic equilibrium

distribution function used in simulations from the modern gyrokinetic equation8 is presented

in the Appendix.
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II. THEORETICAL MODEL

Our theoretical model consists of the electrostatic nonlinear gyrokinetic description of α

particles, working gas ions, and electrons in toroidal geometry. A slowing-down equilibrium

distribution function is considered for α particles and the E × B nonlinearity is kept for

all species. We perform gyrokinetic simulations using the GKW code.9 The code solves the

electromagnetic gyrokinetic equation. In the electrostatic limit, its updated version10 solves

the following nonlinear toroidal gyrokinetic Vlasov equations in the electrostatic limit,

∂δf

∂t
+

cb×∇ (⟨δϕ⟩)
B

·∇δf +
(
v∥b+ vD

)
·∇δf − b

m
· (µ∇B0)

∂δf

∂v∥
= S, (1)

where S is given by

S = −
(
cb×∇ (⟨δϕ⟩)

B
+ vD

)
·∇pF0 +

(
v∥b+ vD

)
· (Zq∇ ⟨δϕ⟩) ∂F0

∂E
. (2)

In (1) and (2), Z and q are the particle charge number and the elementary charge, v∥ is the

parallel velocity, T is the temperature, b is the unit vector aligned with equilibrium magnetic

field Bb, m is the mass, µ is the magnetic moment, and δϕ is the perturbed potential. The

bracket ⟨⟩ indicates the gyro-phase average and ∇p means that only ∇n0, ∇T0 terms of

∇F0 are considered. This can be derived from the modern conservative nonlinear gyrokinetic

equation8 using justifiable simplifications as detailed in the Appendix. We note that there

is an independent derivation of the electromagnetic nonlinear gyrokinetic equation using a

different method and different variables13 starting from Ref. 17. The second term on the

LHS represents the dominant E×B nonlinearity. The terms related to the parallel velocity

space nonlinearity, the equilibrium E ×B shear18 and plasma rotation19,20 are not included
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in equations (1), (2) which are beyond the scope of this study. Equation (1) is solved with

the corresponding gyrokinetic Poisson equation in Fourier space.

For background main ions and electrons, a Maxwellian distribution F0 = FM can be used

for the equilibrium distribution given as,

FM =
n0

π3/2v3th
e−v2/v2th (3)

where v2th = 2T/m, following normalization of Ref. 10 and n0 is the equilibrium density. For

energetic α particles with Eα/Te >> 1, equilibrium distribution can be approximated by a

slowing-down distribution function F0 = Fs
14, rather than Maxwellian distribution, namely

F0 =
3n0

4πln (v3α/v
3
c + 1)

H (vα − v)

v3c + v3
. (4)

In Eq. (4), vα is the maximum fast particle velocity at birth given by Eα = mαv
2
α/2 =

3.5MeV , and vc is the slowing down critical velocity given by

v3c =
3
√
π

4

me

mα

ZIv
3
the, (5)

where effective charge ZI = mα

∑
i ni(Z

2
i /mi)/ne is weighted over the ion mass. ZI = 5/3,

for 50% D and 50% T mixture considered in this work. Analytic progress and description for

slowing-down distribution function F0 in Eqs. (1) and (2) become feasible with a gyrokinetic

formulation with E = mv2/2 and µ as independent velocity space variables rather than v∥

and µ is useful. Then, the linearized gyro-kinetic equation21 can be written in the simplified

form for a single toroidal mode in the ballooning representation for an s − α equilibrium22

as in Ref. 10.

∂ĝα
∂t

+
v∥
qsR

∂ĝα
∂θ

+ iωdαĝα =
eα
Eα

FsαJ0

[
Hs

(
Ė
) ∂ϕ̂ (θ)

∂t
+ iωS∗ϕ̂ (θ)

]
, (6)
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where qs is the safety factor, R is the major radius, θ is the extended poloidal angle and

Ė = E/Eα. ωdα can be given as

ωdα =
kθEα

eαBR

(
E

Tα

)(
1 +

v2∥
v2

)
(cosθ + [ŝθ − αsinθ] sinθ) (7)

and slowing-down diamagnetic frequency is defined as

ωS∗ =
kθEα

eαBR

[
R

Lnα

+Ks

(
Ė
) R

LEc

]
. (8)

With this normalization, real frequency of the most unstable mode ωr becomes positive for

ITG modes and negative for TEM23, which is opposite to more traditional definition.4

A non-adiabatic part of the perturbed distribution function ĝα is related to the perturbed

distribution function f̂α by

ĝα = f̂α + eαFsαHs

(
Ė
)
ϕ̂ (θ) . (9)

The derivatives of the distribution function are given as following form for the slowing down

distribution function

Hs

(
Ė
)
= −dln (Fs)

dĖ
=

3

2

Ė0.5

Ė1.5 + Ė0.5
c

, (10)

and

Ks

(
Ė
)
= −3

2

 1

ln
(
1/Ė1.5

c + 1
)
+
(
1 + Ė1.5

c

) − Ė0.5
c

Ė1.5 + Ė0.5
c

 . (11)

The gyrokinetic equation with an equivalent Maxwellian distribution can be obtained by

replacing Eα with Tα, HS with HM and KS with KM in Eq. (6), where HM and KM can be

written as,

HM

(
Ė
)
= −dln (FM)

dĖ
= 1, (12)
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and

KM

(
Ė
)
=

(
Ė − 3

2

)
dlnTα

dlnEc

. (13)

The GKW code has been modified to include the slowing down distribution for energetic

particle transport.10 A detailed benchmarking between GKW and GS2 has also been carried

out in Ref. 10. In addition, a benchmarking between GKW, GS2 and GENE has been

performed in Ref. 13.

The linearized equation Eq. (6) for α particles can be expressed in terms of Fourier

representation ei(kx−ωt) where ω = ωr + iγ is the complex eigenfrequency,

−iωĝα +
v∥
qR

∂ĝα
∂θ

+ iωdαĝα =
eαωDα

Eα

FαJ0ϕ̂

[
R

Lnα

+Ks

(
Ė
) R

LEc

− ω

ωDα

Hs

(
Ė
)]

. (14)

The solution of ĝα can be expressed in the form

ĝα =
eα
Eα

FαJ0ϕ̂
−ωDα

ω − k∥v∥ − ωdα

[
R

Lnα

+Ks

(
Ė
) R

LEc

− ω

ωDα

Hs

(
Ė
)]

, (15)

where we define the energy dependent drift frequency ωDα = (kθEα) / (eαBR) for the nor-

malization purposes. By integrating ĝα over the velocity space, the non-adiabatic part of

the density perturbation ñn.a. can be obtained as

ñn.a. =
eα
Eα

[{∫ (
−FαJ

2
0

ω − k∥v∥ − ωdα

d3v

)
ωDαϕ̂

}
R

Lnα

+


∫ −Ks

(
Ė
)
FαJ

2
0

ω − k∥ − ωdα

d3v

ωDαϕ̂

 R

LEc

−


∫ −Hs

(
Ė
)
FαJ

2
0

ω − k∥ − ωdα

d3v

ωDαϕ̂

 ω

ωDα

 . (16)

The quasilinear radial particle flux, which is proportional to the cross-correlation be-

tween density and radial component of E × B velocity fluctuation can be given as Γk =

7



⟨δvEδn⟩FSA =
⟨
Im
(
kθδϕ

†δn/B
)⟩

FSA
where the symbol † indicates the complex conjugate

and the bracket ⟨⟩FSA indicates the flux surface average. By Eq. (16), quasilinear particle

flux for a given wave number kθ can be written in the form,

RΓk

nα

= Dk
R

Lnα

+DEk
R

LEc

+RVpk, (17)

where

Dk =

⟨
Rkθ
nαB

eα
Eα

Im

{∫ (
−FαJ

2
0

ω − k∥v∥ − ωdα

d3v

)
ωDαϕ̂ϕ̂

†
}⟩

FSA

, (18)

DEk =

⟨
Rkθ
nαB

eα
Eα

Im

{∫ (
−Ks (dotE)FαJ

2
0

ω − k∥v∥ − ωdα

d3v

)
ωDαϕ̂ϕ̂

†
}⟩

FSA

, (19)

RVpk =

⟨
Rkθ
nαB

eα
Eα

1

ωDα

Im

{
ω

∫ (
−Hs (dotE)FαJ

2
0

ω − k∥v∥ − ωdα

d3v

)
ωDαϕ̂ϕ̂

†
}⟩

FSA

. (20)

It is useful to define the following coefficients CEα = DEK/Dk and Cpk = RVpk/Dk, which

are convective contributions that determine the α particle flux. We shall call CEα the

thermodiffusion coefficient, and Cpk the pure convection coefficient. These derivations follow

Ref. 10 and Eqs. (18) and (19) appear also in the Ref. 10. However, an error in Eq. (25) of

Ref. 10 has been corrected in Eq. (20). This correction is not important to ITG dominant

case with ωr > 0 considered in Ref. 10. On the other hand, for the TEM dominant case with

ωr < 0, this correction is important in determining the sign of the pinch term. Accordingly,

Eq. (29) in the Ref. 10 should read

RVpk = − 1

nα

1

ωDα

∫
GV pk (E)FαH

(
Ė
)(

2π
√
E
)
dE, (21)

with

GV pk =

⟨
Rkθ
nαB

eαωDα

Eα

Im

{
ω

∫
1

Bdλ√
2 (1− λB)

J0hDϕ̂
†

}⟩
FSA

. (22)
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III. RESULTS FROM LINEAR SIMULATIONS

The main parameters used in the simulations are chosen for TEM dominant case: r/a =

0.5, R/a = 3, q = 1.4, s = 0.8, Te = Ti, R/LTi = 2.2, R/LTe = 6.9 and R/Ln = 2.2.

We consider a collisionless plasma in s − α geometry. The parameters are based on the

CYCLONE case,24 except for the fact that a weaker ion temperature gradient is chosen

to focus on TEM rather than ITG.25 Several studies have shown that those parameters

can present TEM modes well at wavelength, kθρi . 1.25,26 ETG modes can also be linearly

unstable for these parameters at shorter wavelengths, with poloidal wave number kθρi & 1.26

Although their existence can influence the electron heat flux significantly, their impact on

α particle transport is expected to be negligible due to the following reasons. With large

spatial scale separation between α particle orbit and ETG wavelength, even stronger orbit-

averaging and the frequency detuning10,11 would occur compared to those for TEM. So, we

focus our studies on TEM modes with Te = Ti in the wavelength regime, kθρi . 1. We use

a poloidal wave number kθρi = 0.34 in the linear simulations, which is around the spectral

peak of nonlinear simulation result. In addition, we use 32 grid points in one turn along

the field line, and velocity space is discretized over 64 points in the parallel velocity and

magnetic moment is discretized over 16 points in all simulations. The linear growth rates

and real frequencies from GKW simulations are presented in Fig. 1. The real frequencies

show mode propagation in the electron diamagnetic direction for all kθρi. This shows that

input parameters can well present TEM mode relevant case. The TEM mode linear growth

rate γ has a maximum around kθρi = 0.8.
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FIG. 1: Linear GKW calculations of the normalized real mode frequency and

growth rate as functions of poloidal wavelength kθρi for TEM CYLONE case.

Once the α particle concentrations are increased, two effects are expected in the linear

simulations. First, α particles can contribute to the Poisson equation and affect to the

growth rate. In order to investigate this effect, we set R/LTα = 6.9, R/Lnα = 2.2 with

fixed R/Lni. The growth rate of the mode is rather insensitive to the variation of the α

charge concentration up to 10% as shown in Fig. 2. This implies that we can treat alpha

particle as passive tracer as explained in the previous section. This also implies that the

stabilization of TEM by fast particles can be less important than that in ITG case in the

electrostatic limit. Second, a presence of α particle can also lead to a change in R/Lni due

to the radial quasi-neutrality constraint. For example, alpha particle profiles based on the

nominal ITER-FEAT parameters27 are expected to have more peaked density profiles than

main ion at r/a=0.5, R/Lnα = 20.14 So, R/Lni should be changed consistently according
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FIG. 2: Linear GKW calculations of normalized growth rate as a function of

charge concentration with fixed R/Lni (circles, red) and with changing R/Lni

(squares, black) due to dilution effect.

to the radial quasi-neutrality condition, R/Lne =
∑

s ZsnsR/Lns. In this case, a reduction

of R/Lni by increased α particle concentration would change the growth rate as shown in

the Fig. 2. By comparing the result with fixed R/Lni, we conclude that the change of the

growth rate is dominated by the dilution effect. Note that the dilution effect is shown to be

relatively small for 1% α-particle concentration in ITER, expected for standard scenarios

based on Ref. 10 and 14.

We have computed the particle diffusion coefficient Dα in the quasilinear particle flux

given in Eq. (17) and (18), as a function of Eα/Te in Fig. 3. In Fig. 3, a reduction

of the α particle transport as a function of Eα/Te is demonstrated. This reduction could

be understood with two effects according to the Eq. (18). One is the orbit-averaging

effect, which is represented as the decrease of J0 with increasing finite orbit width. And

another is the frequency detuning effect, because only the relatively slow particles in the
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FIG. 3: The normalized diffusivity Dα/DHe of the α particles from linear GKW

calculations for (a) the TEM (circles, red) and ITG (triangles, green) case and (b)

the equivalent Maxwellian (squares, black) and the slowing down (circles, red)

distribution as a function Eα/Te .

velocity distribution function would satisfy the resonance conditions in the denominator,

ω − k∥v∥ − ωdα. A similar trend has been reported for ITG case.10,11 This reduction is even

stronger than that for ITG, due to shorter size of TEM as shown in Fig. 3 (a), where

following parameters are chosen for ITG dominant case: R/LTi = R/LTe = 6.9, R/Ln = 3,

kθρi = 0.34.

A difference of Dα between the slowing-down and Maxwellian distribution case can be

understood by comparing the population of slow particles which are transported more effi-

ciently in the distribution function. In particular, the change of the 1D equilibrium distri-

bution function (i.e. weighted by v2) as a function of Eα/Te is more appreciable for slowing

down distribution function than for Maxwellian distribution function. Fig. 4 shows one

example at two different Eα/Te. For Eα/Te = 350, the slowing down distribution has more
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FIG. 4: A comparison of 1d slowing down Fs (red) and 1d Maxwellian FM (black)

distributions (weighted by (v/vα)
2) for Eα/Te = 350 (solid) and Eα/Te = 87.5

(short dash).

particles in the slow energy range than Maxwellian distribution. On the other hand, for

Eα/Te = 87.5, the Maxwellian distribution has more particles in the slow energy range than

the slowing down distribution. Therefore, for sufficiently high Eα/Te, Eα/Te > 300, slowing

down distribution has higher Dα than Maxwellian distribution while this trend would be

reversed at lower Eα/Te, Eα/Te < 100.

We also investigate thermodiffusion coefficients CEα = DEα/Dα given in Eq. (17) and

(19) with respect to Eα/Te in Fig. 5. A differences in CEα between two different distribution

function can be understood with the Eq. (19) where K
(
Ė
)

is given in Eqs. (11) and (13),

respectively. For Maxwellian distribution, CEα asymptotes to -3/2 in the limit of Te << Eα,

while CEα approaches to zero as Ė cancels out -3/2 in the opposite limit Te >> Eα in

Eq. (11). Then, a factor dlnTα/dlnTe has been multiplied for the equivalent Maxwellian

distribution, where dlnTα/dlnTe approaches approximately to 0.2 for Te << Eα. For slowing

down distribution, the level of CEα is higher for the slowing down distribution function than
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FIG. 5: The thermodiffusion coefficients CEα = DEα/Dα of the α particles from

linear GKW simulations for the equivalent Maxwellian (squares, black) and the

slowing down (circles, red) distribution as a function Eα/Te.

for the equivalent Maxwellian. This is because CEα in slowing down distribution strongly

depends on the shape of the Ks

(
Ė
)

, as already explained in Ref. 10.

Cpα = RVpα/Dα is estimated to be small as shown in Fig. 6. This can be interpreted by

Eq. (17) and (20) with the expressions of H
(
Ė
)

in Eqs. (10) and (12). For the Maxwellian

distribution with HM

(
Ė
)
= 1, both outward and inward convection can occur depending

on the value of Eα/Te. An outward convection can be inferred as the contribution of Re (ω),

while an inward convection can be understood as a contribution from Im (ω) related term

in Eq. (20). This sign change of the Cpα = RVpα/Dα with respect to Eα/Te also happens

for the slowing down distribution. However, an outward convection level around Te ≈ Eα is

much lower than that for the Maxwellian distribution. This is because Hs

(
Ė
)

in Eq. (10)

goes to zero as Eα/Te approaches to 1.

A positive Cpα around Te ≈ Eα can be a consequence of the contribution of resonance
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FIG. 6: The pure convection coefficients Cpα = RVpα/Dα of the α particles from

linear GKW simulations for the equivalent Maxwellian (squares, black) and the

slowing down (circles, red) distribution as a function Eα/Te at kθρi ≃ 0.34.

integral. Previous study considered the resonance condition in phase space for toroidal ITG

in detail but without k∥ related term.28 In order to estimate the resonance condition, we

have calculated Cpα and k∥vα/ |ωr − ωDα| at two different kθρi as functions of Eα/Te for

Maxwellian distribution. Here, we have estimated ωdα ≈ ωDα, ρα is estimated using vα and

k∥ is approximated as kRMS
∥ from the linear mode structure in the ballooning space. Note

that the number of particles which can contribute to resonance integral is related to the ratio

k∥v∥/ |ωr − ωdα| because ωr ∝ ω∗e. Around Te ≈ Eα, k∥vα > |ωr| > ωDα is satisfied for the

simulation results. For simplicity, we investigate a condition where the Landau resonances

are dominant, then Cpα can be approximated as

Cpα ≈ −ωr/ωDα. (23)

An outward Cpα in a wider range of Eα/Te at kθρi = 0.2 compared to the case at

kθρi = 0.34 can be understood from the contribution of the resonance integral. As shown
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FIG. 7: The pure convection coefficients Cpα = RVpα/Dα of the α particles from

linear GKW simulations for the equivalent Maxwellian (squares, black) and the

slowing down (circles, red) distribution as a function Eα/Te.

in Fig. 7, at kθρi = 0.2, resonant integral can be more considerable than at kθρi = 0.34.

On the other hand, for Eα >> Te, resonance integral becomes negligible and Cpα may be

written as

Cpα ≈ −ωDα

∫ FαJ2
0γ

ω2
dα

d3v∫ FαJ2
0γ

ωdα
d3v

. (24)

Here, only Im (ω) = γ related term remains in Cpα, and this explains the inward convection

around Te << Eα at both kθρi.
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IV. RESULTS FROM NONLINEAR SIMULATIONS

We have also performed a nonlinear simulation using the GKW code. The simulation

parameters are the same as those of linear simulations. (i.e., r/a = 0.5, R/a = 3, q = 1.4,

s = 0.8, Te = Ti, R/LTi = 2.2, R/LTe = 6.9 and R/Ln = 2.2) We consider a collisionless

plasma in circular29 geometry. Velocity space is discretized over 64 points in the parallel

velocity and magnetic moment is discretized over 16 points in all simulations. The nonlinear

simulations have been performed with 32 toroidal modes and 169 radial modes with a box

size in the binormal and radial directions given by Ly = 96.8ρi and Lx = 65.6ρi. In order to

test the convergence of the simulation, we also carried out simulation with different radial

box sizes and wavenumbers in the radial and binormal directions with two different cases in

Table I. Figure 8 shows the results of convergence test with three different grid resolution.

From figure 8 (a), we found that particle flux Γe is rather insensitive to grid resolution.

However, electron heat diffusivity χe seems to be underestimated in case 1 as shown in

figure 8 (b). On the other hand, case 2 and case 3 yield well converged results. We note that

the case 3 has been used in previous studies with an acceptable convergence.30 Therefore,

we consider the grid resolution in case 2 to be adequate and use in the following sections for

nonlinear runs.

The simulation exhibits a nonlinear saturation of fluctuation amplitude and fluxes after

a brief linear growth phase as shown in Fig. 8. The expression for the α-particle flux in

Eq. (17) is still valid in the nonlinearly saturated phase except for the fact that “ω” should

now be interpreted as that in the nonlinear regime which includes possible broadening and
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TABLE I: Radial box sizes and wavenumbers used for the convergence test of

nonlinear simulations

Lx Ly No. of toroidal mode No. of radial mode (kyρi)max (kxρi)min

Case 1 42.3ρi 62.4ρi 21 169 2.52 15.60

Case 2 65.6ρi 96.8ρi 32 169 2.52 7.11

Case 3 88.8ρi 131.1ρi 43 339 2.52 14.94

FIG. 8: The time evolution of electron particle flux, Γe, (a) and the normalized

electron thermal diffusivity, χe, (b) from nonlinear GKW simulations with

different grid resolutions with χGB = (ρ2scs) /a with cs = (Te/mi) and ρs =
mics
eB

shift. In addition. δf and δϕ in that expression should exhibit values which are statistically

constant in amplitudes.

While the main subject of this paper is α-particle transport, it is worthwhile to examine

the fluctuation spectra at nonlinear saturation and discuss their relations to the expectations

from the previous works. From the simulation data in the nonlinearly saturated phase, we
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have obtained kθ - spectrum of density fluctuation intensity |δn/n0|2. Although we don’t

purse a detailed nonlinear theory to be compared to that result, we compare the spectrum

with an existing weak turbulence theory of CTEM which is based on the nonlinear gy-

rokinetic and bounce-kinetic equations16 and the saturated amplitude with “mixing length”

ansatz.

A formula from the mixing length ansatz can be obtained by arguing that a nonlinear

saturation occurs when the linear drive is balanced by the nonlinear mode coupling. Usually

a density evolution equation is used for drift wave turbulence drive by ∇n0, this corresponds

to balancing the linear drive term, δuE ·∇n0 to the nonlinear mode coupling term δuE ·∇δn.

If one ignores the difference between various k’s appearing in the mode summation for the

nonlinear mode coupling term in k-space, it leads to a familiar expression of

δn

n0

≃ 1

krLn

. (25)

However, in our studies, CTEM is mainly driven by ∇Te rather than ∇n0, although

a small contribution of ∇n0 exists which can be inferred from the dilution effect in Fig.

2. Therefore, we find Eq.(25) to be inapplicable to our case, and instead consider the

trapped electron temperature evolution equation31 which can be obtained by taking an

energy moment of the bounce-kinetic equation.32–34 Once again, by balancing the linear

drive term δuE ·∇Te to the E×B nonlinear mode coupling term δuE ·∇δTe, one can obtain

an expression

δTe

Te

≃ 1

krLTe

. (26)

19



Associated density fluctuation level δn/n0 can be estimated by balancing the E×B nonlinear

coupling term in the trapped electron density evolution equation with the toroidal mode

coupling term vde ·∇δTe due to the energy-dependence of the trapped precession drift, we

can get

|e| δϕ
Te

·
(
δn

n0

)
≃ 1

krR

δTe

Te

≃ 1

k2
rLTeR

. (27)

Further assuming δn/n0 ≃ |e| δϕ/Te, we obtain

δn

n0

≃ 1

kr
√
LTeR

. (28)

This hybrid macroscopic length scale (LTeR)1/2 often appears in trapped particle driven

turbulence.34 Mixing length estimations in Eqs. (25), (26) and (28) are compared to the

nonlinear result in Fig. 9. From these comparisons, we conclude a mixing length estimate

using the trapped electron temperature evolution equation compares more favorably than

the usual one from the density evolution equation. However, both are just useful rules of

thumb and should not be considered as a substitute for a nonlinear theoretical estimation. In

particular, the spectral transfer in k-space due to nonlinear mode coupling is not addressed

in mixing length arguments.

There has been more detailed weak turbulence theory of CTEM16 based on nonlinear

gyrokinetic equations in which a saturated spectrum has been approximately calculated

from the wave-kinetic equation. Here, we repeat the relevant formula from Eq. (27) of Ref.

16,
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FIG. 9: δn/n0 (a) and δTe/Te (b) from nonlinear GKW simulations (solid, black)

and its comparison to mixing length estimates ansatz, 1/kr
√
LTe (short dash, red)

and 1/krLn (dash dot, green) with ITER relevant gyro-radius, ρi/a = 2.01× 10−3.

FIG. 10: |δn/n0|2 spectrum from nonlinear GKW simulations (solid, black) and

its comparison to k−3
θ (short dash, red) from weak turbulence theory with ITER

relevant gyro-radius, ρi/a = 2.01× 10−3.
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∣∣∣∣eδϕTe

∣∣∣∣2 ∝ k−3
θ , (29)

for kθ ≥ kL.
∣∣∣ eδϕTe

∣∣∣ is a rapidly increasing function of kθ for kθ ≤ kL, and peaks at kL.

Here, k2
Lρ

2
s ≈ 3(1+ηe)G

(1+ 1+ηi
τ )

Ln

R
. This formula is compared to the nonlinear simulation results

in Fig. 10. Note that only the k-spectra shapes not the magnitudes of fluctuations are

meaningful for comparison. We note that a prediction from Ref. 16 compares with the

simulation result favorably for kθρi & 0.4 with a caveat that a spectrum in Ref. 16 is

for
∣∣∣ |e|δϕTe

∣∣∣2, not for |δn/n0|2. Peak at kθρi . 0.4 results from a competition between the

ion nonlinear damping (Compton scattering) and the trapped electron nonlinear damping

(Compton scattering) according to Ref. 16. Notably, the density fluctuation spectra of

Ohmic plasma in Tore Supra can be fitted by |δn/n0|2 ∝ k−α
⊥ , with 3 ≤ α ≤ 3.5 in the

wavelength range, 0.5 . k⊥ρi . 1.15 In the absence of the trapped electron nonlinearity,

the spectrum would peak at a lower value of kθρi as a result of inverse-cascade due to ion

nonlinearity.33,35 The trapped electron nonlinearity is kept in simulations and seems to play

an important role in determining the spectral shape.

Now, we present the α-particle flux results from nonlinear simulation and compare with

those from linear simulations. To isolate the pinch contribution to the α-particle transport,

we have also performed nonlinear simulations with R/Lnα = 0 and compared to a case

with non-zero value of R/Lnα. Here, Maxwellian distribution is used for α-particles. Fig.

11 (a) shows that the pinch part of energetic α particle flux is essentially zero. This is

in contrast to the linear simulation results in which very small, but non-zero inward pinch
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FIG. 11: The time evolution of normalized alpha particle flux, Γα, for energetic

alpha (Eα/Te = 175) (a) and thermal Helium (b)

has been observed. Net energetic α-particle flux is outward and its corresponding effective

diffusion coefficient is very small compared to that of the thermal He particles. This is

consistent with the quasi-linear results shown in Fig. 3. On the other hand, the thermal He

particle transport in Fig. 11 (b) exhibits a definite outward pinch, with a considerable net

outward flux result for R/Lnα = 3 (approximately 3 times the R/Lnα = 0 result). We can

speculate that a considerable He-ash accumulation at core will be unlikely in ITER due to

this self-regulation of He ash profile.
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FIG. 12: α particle flux spectrum from nonlinear GKW simulations. Green line is

obtained for parameters used in Ref. 14

Fig. 12 shows Γα from various modes at different logarithmic gradients. The contribution

to Γα from various modes with different kθ values are outward for all cases. A case with

R/Lnα = 0 and R/LTα = 0 clearly shows that the pure convection is outward for all kθ values.

This is somewhat different from the linear simulation result, where the inward convection

was observed for Eα >> Te. However, the inward convection at Eα >> Te is very small in

the linear result, so the contribution from the resonant integral can change the result with

nonlinear interaction with low kθ. Also, Γα with R/Lnα = 0 is much smaller than those

from other cases with finite R/Lnα. This clearly shows that contribution of pure convection

is relatively smaller than diffusion for energetic alpha particles. Even larger Γα (green curve

in Fig. 12) can be achieved with parameters considered in Ref. 14, while the increase

of R/Lnα and R/LTα is compensated by the increase of Eα/Te which is closely related to

orbit-averaging effect and the frequency detuning effect as already illustrated in the linear

simulations. For all cases, a dominant contribution is from the modes with kθρi ≃ 0.4 where
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FIG. 13: The pure convection coefficients Cpα = RVpα/Dα of the α particles from

linear and nonlinear (blue, triangle) GKW simulations for the Maxwellian as a

function Eα/Te.

the spectral intensity in Fig. 12 also peaks.

Pure convection to diffusion ratio Cpα = RVpα/Dα is shown in Fig. 13. Linear results

from Fig. 7 (a) are repeated to facilitate a comparison. It shows that the pure convection

is outward. The ratio is closer to that from a long wavelength (kθρi ∼ 0.2) in the linear

simulation, rather than that near the spectrum peak (kθρi ∼ 0.34).

V. CONCLUSIONS

In this work, we have investigated transport of α particles due to TEM turbulence from

nonlinear and quasilinear gyrokinetic simulations. We find that transport of α particles with

high energy is significantly smaller than the thermal He transport and this this reduction is

even stronger than that for ITG.10 Pure convection of α particles from nonlinear simulation is

outward and the convection to diffusion ratio decreases with Eα/Te. In addition, kθ spectrum
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of |δn/n0|2 from nonlinear simulation shows a similar feature as those from experiments15

and weak turbulence theory.16

In conclusion, we expect that α particles at high energy will be better confined than those

at lower energy such as He-ash at core of ITER in the presence of TEM turbulence.

26



ACKNOWLEDGMENTS

This work was supported by the Ministry of Science, ICT and Future Planning of the

Republic of Korea under the Korean ITER project contract. One of the Authors (S.M.Y.)

would like to thank G.J. Choi for the fruitful discussions.

Appendix A

Reduced nonlinear toroidal electrostatic gyrokinetic equation used in this work can be

obtained from the modern nonlinear gyrokinetic equation8 as described below. The nonlinear

gyrokinetic Vlasov equation for the total distribution function F of the guiding centers is

given in Eq. (22a) with Eqs. (20) and (21) of Ref. 8. Note that the independent guiding

center phase-space variables used in that formulation are (R, µ, v∥, θ). After splitting F into

F0+δf where F0 is the equilibrium distribution function which needs not to be a Maxwellian

and δf is the perturbed part of the guiding center distribution function, we obtain

{ ∂

∂t
+

(
v∥b+ vD +

cb

B∗ ×∇ ⟨δϕ⟩
)
·∇− 1

m

B∗

B∗ · (µ∇B + q∇ ⟨δϕ⟩) ∂

∂v∥
}δf

= −
(
cb

B∗ ×∇ ⟨δϕ⟩+ vD

)
·∇F0 +

B∗

mB∗ · (µ∇B + q∇ ⟨δϕ⟩) ∂

∂v∥
F0. (A1)

where vD = cb
B∗×

(
µ
q
∇B +

mcv2∥
q

b ·∇b

)
, B∗ = B+mc

q
v∥∇×b, B∗ = B∗b+

mcv∥
q

b×(b ·∇)b,

with B∗ = B+ mc
q
v∥b ·∇×b. B∗ in the denominators of various expressions is related to the

phase-space volume conservation and can be approximated by B in most cases including our

studies with gradient-driven simulations, unless a long term simulation exceeding far beyond

the nonlinear saturation phase is pursed. The last term on the LHS is the parallel velocity
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space nonlinear term which is formally a higher order in nonlinear gyrokinetic ordering and

also can be neglected in the same usual situations.

Note that in this representation, ∇F0 has a contribution not only from ∇n0 and ∇T0,

but also from ∇B even for a Maxwellian F0. Since most literature used the formulations

where the free energy related ∇n0 and ∇T0 contributions to ∇F0 eventually appear, it is

useful to separate their contributions from that coming from ∇B. Using the chain rules

for ∂F0

∂v∥
with E = 1

2
mv2∥ + µB, one can show that − c

B
b ×∇ ⟨δϕ⟩ ·∇F0 = − c

B
b ×∇ ⟨δϕ⟩ ·

∇pF0 − c
B
b × ∇ ⟨δϕ⟩ · µ∇B ∂F0

∂E
. Then, the 2nd term from above, combined with the

cv∥b× (b ·∇)b ·∇ ⟨δϕ⟩ ∂F0

∂v∥
term contained in the last term on the RHS of Eq. (A1) yields

vD · q∇ ⟨δϕ⟩ ∂F0

∂E
. Finally, we obtain the following reduced equation for an arbitrary F0 (E)

which is isotropic in velocity space,

{ ∂

∂t
+

(
v∥b+ vD +

cb

B∗ ×∇ ⟨δϕ⟩
)
·∇− b

m
· µ∇B

∂

∂v∥
}δf

= −
(
vD +

c

B
b×∇ ⟨δϕ⟩

)
·∇pF0 +

(
v∥b+ vD

)
· q∇ ⟨δϕ⟩ ∂F0

∂E
. (A2)

Here, ∇p refers to the gradient of F0 only in terms of ∇n0 and ∇T0, not ∇B. Eq. (A2)

of course reduces to the form which explicitly appears in an early version of GKW manual

with Maxwellian F0.9

In addition, by further splitting δf into the adiabatic part and non-adiabatic part, via

δf = δh − q ⟨δϕ⟩ ∂F0

∂E
, one can also obtain Eq. (1) of Ref. 10. Note that in conventional

gyrokinetic formulations7,21 δh is defined in a particle phase space before transforming to the

guiding center coordinates and performing gyrophase average. In modern gyrokinetics8,17
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the order is reversed, and the “δf” in the Eqs. (A1), (A2) are defined in the guiding-center

phase space. Therefore, ⟨δϕ⟩ rather than δϕ appears in the definition of δh.
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