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Abstract: Injection of electromagnetic waves in the electron-cyclotron (EC) frequency
range is one of the most promising schemes to drive part of the plasma current in a
tokamak fusion reactor. The theoretical calculation of the driven current, as usually
performed by ray/beam tracing codes, relies on the knowledge of the magnetic equilibrium,
the electron density and temperature profiles on the one hand and of the wave injection
parameters on the other. If the optimum current drive efficiency for a given scenario is
sought, extensive parameter scans are usually performed to determine the best injection
conditions. This is however not a viable approach in typical systems-code applications,
where the plasma configuration is not provided in sufficient detail and parameter scans
would be anyway too demanding from the computational point of view. In this case,
a different approach is required. In this paper, a procedure for the evaluation of the
optimum current driven by EC waves for given global parameters is proposed, which
relies on a single numerical calculation of the current drive efficiency, based on the adjoint
method (including momentum-conserving corrections). The results are shown to be in
good agreement with the full numerical optimization of the EC current drive efficiency
for a variety of reactor relevant scenarios. This simplified approach also helps clarify
the physics underlying the optimum current-drive conditions and the limitations to the
achievable current-drive efficiency in reactor-grade plasmas.

Keywords: Plasma physics, magnetic confinement, wave-plasma interactions, electron
cyclotron waves, current drive.

1 Introduction

A current produced by the injection of electromagnetic waves in the electron cyclotron
(EC) frequency range will likely be essential in tokamak fusion reactors as an actuator for
the control of magnetohydrodynamic instabilities (sawteeth and neoclassical tearing modes
in particular, see e.g. [1]) and is a strong candidate to support steady state operation [2],
considering that the EC current-drive (CD) efficiency can reach values close to those of
neutral-beam current drive, at least on-axis, and that the wall-plug efficiency might be
higher [3].

The impact of a current driven by auxiliary heating systems on the overall perfor-
mance of a reactor can be evaluated employing reactor systems codes like PROCESS [4, 5].
Such codes aim to assess the engineering and economic viability of a hypothetical fusion
power station using simple models of all parts of the reactor system. One element of the
physical model is thus the calculation of the ECCD efficiency. This implies some essential
differences with respect to the way ECCD calculations are mostly performed. The deter-
mination of EC driven current is usually achieved through tracing the path of one or more
EC beams through the plasma using a ray or beam tracing code and evaluating the current
drive efficiency along the beam path [6]. This requires the knowledge of the corresponding
tokamak configuration (magnetic equilibrium, electron temperature and density profiles,



effective charge) and launch parameters (antenna position, wave frequency, injection an-
gles). The maximum current achievable through the EC waves for a given plasma scenario
can be determined in this case e.g. by scanning the five-dimensional parameter space
given by the poloidal and toroidal injection angles, the wave frequency w/27 and antenna
coordinates (R, Z), as described in [3]. This strategy is not suitable for the exploration
of the ECCD parameter space of a possible fusion reactor, as required for systems codes,
for two basic reasons. First of all, scanning the injection angles in the relevant range with
sufficient resolution for a reasonable set of frequencies and antenna positions would be too
time-consuming, even if a single beam trace, entailing the calculation of the corresponding
current-drive profile, can be performed on a time scale below one second [7]. This approach
would be prohibitive for a systems code, in which the evaluation of the ECCD efficiency
is just a small step in a much more extended optimization loop. The second reason is
that in scoping studies several standard input elements for ray/beam tracing codes are
not, available. In particular, a consistent magnetic equilibrium is usually not computed
and the profiles are known only through suitable analytic parameterizations.

The goal of the present paper is to describe a way to obtain a reliable estimate of the
maximum ECCD efficiency achievable for given global tokamak parameters, to be included
within the optimization procedure implemented in systems codes. A new module, called
HARE (for: Hare Analyzes Reactor Eccd), has been developed and tested against full ECCD
optimizations performed for existing reactor-relevant scenarios with the code TORBEAM
[8, 7]. The calculation of the ECCD efficiency itself is based on the so-called adjoint method
[9]. This involves basically the numerical evaluation of two one-dimensional integrals, in
which he integrand itself might be known in integral form (see the brief overview in Sec. 2
below). This approach is, therefore, already very efficient numerically. Further ways to
make it even faster with a limited loss of physics accuracy are known, as discussed later.
The emphasis of this study is rather on the procedure followed to determine the parameters
(in particular those related to the wave beam, like the frequency and the injection angle
relative to the magnetic field) needed to calculate the maximum total current through the
computation of the current drive efficiency for a single representative point in parameter
space.

The paper is structured as follows. Sec. 2 is devoted to a summary of the theoretical
background needed to follow the derivations presented later. Sec. 3 discusses the strategy
usually employed to determine the optimum ECCD efficiency when a given scenario is
available (in terms of magnetic configuration and kinetic profiles) and highlights some
common features of different optimum-ECCD scenarios. The various steps leading to the
development of the HARE module are detailed in Sec. 4, which also presents a comparison
between the results of HARE and those from full TORBEAM optimization for a number of
possible reactor scenarios. Discussion and conclusions follow in Sec. 5.

2 Theoretical background

In order to keep the paper self-contained, a brief overview of the basic theoretical results
which underlie the calculation of the ECCD efficiency as performed routinely by ray/beam
tracing codes is presented. Only the elements needed to follow the developments of our
new approach presented later in this paper are discussed.

2.1 Adjoint method

A quantitative prediction of the current drive efficiency is based on the solution of the
steady-state quasilinear kinetic equation for the distribution function f in the presence of
collisions and heating. The basic ideas can be understood without involving the details
related to the toroidal geometry. The relevant equation takes the symbolic form

C(f)+Q(f) =0, (1)



which represents the balance between the heating term (), which acts to increase the
energy of the particles (forcing the particles in the direction v = v/v in velocity space)
and the collision operator C', which forces the distribution function towards isotropization
and thermalization. The heating operator can be written as the velocity-space divergence
of the phase-space flux S;¢ induced by the radio-frequency waves [10] and the previous
equation becomes

C(f1) =~ Sul ) @)

where f; is the perturbed electron distribution function, which is needed for the calculation
of the current density

j= fe/vnfldgv (3)

(the symbols || and L refer to the projections along and perpendicular to the direction
of the confinement magnetic field, respectively).In the quasi-linear approximation, @ =
Q(far) holds, where fyr is the Maxwell distribution function. Given the form of Eq. (3),
it is convenient to look for the solution of an auxiliary equation for the so-called response
function x

~Cl(x) =y, (4)

where the adjoint operator O satisfies

/ﬁ@um%zjkmﬁm%. (5)

Substituting Eq. (4) for v into Eq. (3) and using Eq. (5) one has

j:e/xaﬁm% (6)

Upon inserting Eq.(2) and integrating by parts (assuming as usual vanishing boundaries at
infinity), one can relate the current to the wave-induced flux S, and the response function

X:
= —e/srf de (7)

The main task is thus to find the response function x as a solution of Eq. (4). This is
usually done considering the so-called high-speed limit of the collision operator and gives
the result [11]
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where Zqg is the effective charge. The last step makes explicit use of the asymptotic
scaling of the electron-electron collision frequency v(v) = uevfh o/ v3, where Uth e is the

X = (8)

electron thermal speed and v, = e*n.In A/27r6(2)m2v§’h . (with the elementary charge e,
the electron density n., the Coulomb logarithm In A and the electron rest mass m).The
absorbed power density is by definition

muv? mv 8 m
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(last step after integration by parts). For a cyclotron resonance one can write Sy =
S(fa)0resVi, where dres denotes symbolically the resonance condition discussed in Sec. 2.2.
The current drive efficiency is thus
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In the integrals above, the variables v and v, are not independent, since the integration
has to be performed on the curve in velocity space on which the resonance condition
is satisfied. This reduces them actually to one-dimensional integrals. With y given by
Eq. (8), and replacing the resonance curve with a single point for the sake of simplicity,

one has 3 .
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Since v, is proportional to the electron density n., Eq.(11) yields the approximate depen-
dence 1 < v?/n,. (with v =~ v). Assuming that the energy of the resonant electrons scales
with the electron temperature T, (an assumption which will be discussed in Sec. 4.4), one

gets the basic scaling -
e
o< (12)
which is widely used for the interpretation of experimental results and extrapolation to
reactors.
Eq. (8) was derived ignoring effects related to special relativity and toroidal geometry.
If these are included, the determination of the response function x becomes more involved,
but the basic physics picture remains the same. The function y can be written as the
product of a part dependent on the magnitude of the normalized momentum v = |u| =
~yv/e (v being the Lorentz factor) and a part which depends on the pitch-angle variable
A = (Byaz/B)(u? /u?), where By,q, is the maximum of the magnetic field B on a given
flux surface. Following the notation of Ref. [12], this can be written as

X = F(u)H(N). (13)

Interestingly, the most complete model available to date for F'(u), which includes momen-

tum conservation in electron-electron collisions [13, 14], is based on a simple (fourth-order

polynomial) formula and thus lends itself to straightforward evaluation. This is the model

used in all the TORBEAM calculations presented in this paper as well as in the HARE module.
The pitch-angle part of the response function H(\) is given by

_e1-n ! dx
HO) =25 [ 14

(angular brackets denote flux-surface average and © is the Heaviside function). A useful
interpolation formula for the integrand is available [12], so that the evaluation of H reduces
to the computation of a 1D integral. The velocity-space integrals defining 1 contain hence
a function which is defined itself through an integral. A simplified expression for H can
be obtained in the frame of the so-called square-well model employed by Cohen [15],
according to which this function can be expressed in terms of Legendre functions. Even
more drastically, one could neglect the effect of trapped particles altogether.

The expression S(fys) appearing in the expression of j and p contains in general Bessel
functions, which however can be Taylor-expanded exploiting the fact that the electron
gyroradius is in the applications usually much smaller than the wavelength of the EC
beam. Further simplifications of the quasi-linear diffusion coefficient (e.g. considering
only one wave-field polarization) are in principle possible.

2.2 The resonance condition

Along the beam path, the energy carried by the wave is transferred to the electrons in the
plasma satisfying the relativistic resonance condition [16]

Q
W — nf - kHUH =0, (15)
v



where w is the frequency of the injected wave, n is the harmonic number and k| is the
component of the wave vector parallel to the magnetic field (satisfying the local dispersion
relation). The last term represents the Doppler shift of the resonance with respect to
the electron cyclotron frequency 2 = eB/m which is a function of position through the
magnetic field B. Introducing N = ckj/w, referred to as the parallel refractive index,
and Q = Q/w, the resonance condition can also be written as

Using v = /1 + uﬁ +u? one finds that the resonance curve in momentum space is repre-

sented by a half-ellipse (only values u; > 0 are considered):

2 =2
N _ n2Q
(1 — NHQ) (U| — 1_ l}\[?ﬂ@) —+ ui = 1_7]\[”2 — 1. (17)

The intersection with the u-axis is found for

nN”ﬁ:F n2§2 — (1 — N”2)
. (18)

ujF = N7

For each harmonic, resonance is possible only if

nl>,/1- N2, (19)

For low-field side injection, this defines the first point in resonance (the so-called pinch
point)

U|pp = 1— N”Q = m (20)
which can be seen as a degenerate case of the ellipse given by Eq. (17).
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1 U Uy Uy Iu 2 3 U
- Y- Y I1bp
Figure 1: Relativistic resonance curves for Ny = 0.7, harmonic number n = 1 and different

values of Q (red: Q = 0.8; blue: Q = 1; black: Q = 1.2). The intersection uj— of the resonance
curves with the w-awis is also shown, together with the pinch-point position ), ~ 0.98, magenta
circle. Mazwellian isocontours centred at (u),ur) = (0,0) are also shown.

Fig. 1 shows the resonance ellipses for three different values of Q. Note that u|— = 0 for
n) = 1. In usual high-ECCD scenarios relying on the Fisch-Boozer effect [17], the power
carried by the wave is absorbed before u_ crosses the origin. The strongest wave-particle
interaction occurs around w_, since this is the point on the resonance curve closest to the



Maxwellian bulk, where most electrons are available (in situations with N < 0, the role
of uj_ and w1 is reversed).

The determination of the optimum current drive conditions is intimately related to
finding a compromise between high CD efficiency, which favours high-energy (low-collisio-
nality) electrons, and complete absorption within (a reasonably narrow region of) the
plasma, which requires a sufficient number of resonant electrons and hence favours the
region of velocity space close to the thermal bulk. This is the basic point of the analysis
presented in Sec. 4.

3 ECCD optimization for a specific reactor scenario

If a tokamak scenario is available in terms of magnetic equilibrium and kinetic profiles, the
maximum amount of current which can be driven through EC waves can be determined by
exploring the parameter space defined by the injection angles, the wave frequency w/27m and
the antenna position (R, Z) in the poloidal plane.For the magnetic field strength usually
considered for a reactor, the envisaged heating scheme is O-mode at the fundamental
(n = 1) harmonic. In reactor-grade plasmas, where the core temperature is in the range
T. 2 30 keV (the Boltzmann constant is set to one in this paper for simplicity and the
temperature is treated as an energy), the beam can be prone to parasitic absorption
from the second harmonic, which reduces the power available for current drive at the
fundamental harmonic. In this respect, an elevated antenna position turns out to be
more favourable than an outboard-midplane injection, since it allows the “major-radius”
coordinate R of the antenna to be reduced, thus shortening the path between the launcher
and the n = 1 resonance [3].

In this work, we considered a set of reactor-relevant scenarios, corresponding to dif-
ferent EU-DEMO design options.

y | Ro [em] | a [em] | By [T] | neo [10" m™3] [ Tog [keV] | Zeg |

ITER 620 201 5.3 10.56 24.49 | 1.76
DEMOL1 907 292 5.66 10.50 33.25 | 2.0
DEMO?2 nflat 749.9 | 288.5 | 5.627 9.94 31.17 | 4.18
DEMO?2 npeak 749.9 | 288.5 | 5.627 17.99 23.50 | 4.13
flexi-DEMO 840 270 0.8 10.6 41.19 | 1.13

Table 1: Global parameters for the investigated scenarios.

The fundamental parameters of these scenarios (respectively, the major radius Ry,
the minor radius a, the nominal magnetic field By, the central electron densities and
temperatures n.o and T, and the effective charge) are summarized in Table 1. In addition,
a half-temperature DEMO1 scenario (where all parameters are taken as in the DEMO1-
case, but the temperature is divided by two) has been added in order to enlarge the dataset
to lower temperatures.

The typical result of an ECCD scan over a range of launch angles using TORBEAM
for given frequency and antenna position is shown in Fig. 2 for DEMO1 parameters. In
this case, the maximum current drive is found for a poloidal injection angle a = 46°
and a toroidal injection angle 8 = 38°.The calculation retains the contribution to the
current drive efficiency of each harmonic separately, as described in [7]. The absorption
is calculated using the routine originally developed for the GRAY code [18, 19]. It can
be seen that the maximum current drive is practically on axis (p < 0.1, where p is a
normalized radial coordinate varying between 0 on the magnetic axis and 1 at the last
closed flux surface).The radial extent of the region where significant absorption takes place,
highlighted in black in the right panel of Fig. 2, is fairly large. This is a consequence of the
non-negligible second-harmonic absorption in the region 0.2 $ p < 0.6 and of the fact that
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Figure 2: Left: Driven current per unit of absorbed power (colour scale) with overlaid contours
of the radial position p of mazimum absorption (black contour lines) as a function of the poloidal
and toroidal injection angles (a and B, respectively) for injection from (R,Z) = (12.23,4.17) m
and wave frequency w/2m = 225 GHz and DEMO1 parameters. Right: Poloidal projection of the
beam path for the (a, B) = (46°,38°), corresponding to the mazimum current drive shown in the
left plot. The region where non-negligible absorption takes place is highlighted through the black
thicker line along the central ray and is obtained by selecting the points for which the power dP
absorbed in an integration step exceeds 101 times the injected power.

the absorption at the n = 1 harmonic is not very strong, since the resonance condition is
satisfied by electrons on the tail of the distribution function. Being more energetic, these
electrons are less collisional and yield hence a higher current drive efficiency, as discussed
above.

It is instructive to have a closer look at the quantities which determine the current
drive efficiency according to the discussion in Sec. 2. In Fig. 3 (left), the values of u_
and N (left) along the central ray for the beam path shown in Fig. 2 are reported. While
the parallel refractive index remains nearly constant, the minimum intercept u_ of the
resonance condition with the wj-axis, cf. Sec. 2.2, is negative where the absorption takes
place on the second harmonic only, while it jumps to large positive values as soon as the
pinch point for n = 1, given by Eq. (20), is reached around p = 0.22. Correspondingly, the
energy £ = mc?(y — 1) (with ¢ the speed of light) of the resonant electrons calculated for
uy = 0 and u| = u_, reported in the right panel, jumps first to high values (eight times
T.) and then quickly decreases until it attains a value £ ~ 4T, at the point of strongest
absorption (denoted by a black cross). This is defined as the point corresponding to the
largest value of the absorbed power dP in a single integration step along the central ray.
Following the power delivered to the plasma in the right panel, it can be seen that less
than 10% of the power is absorbed in the region of second-harmonic interaction. Soon
after the first harmonic becomes accessible, the absorption becomes much stronger until
eventually the whole power is transferred to the plasma.
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Figure 3: The values of uj—, N (left) and mc?(, /uﬁ7 +1—1)/T. and power absorbed by the

plasma Paps as a function of the normalized minor radius p for the optimum-ECCD case shown
in Fig. 2. The black cross shows the point of mazimum absorption.

4 Evaluation of ECCD from global tokamak parame-
ters

As already stated above, the calculation of the ECCD efficiency based on the adjoint
method is computationally straightforward. Possible ways to speed up this step have been
discussed shortly at the end of Sec. 2.1. The goal of this section is to present a reliable
procedure for the evaluation of the total current which can be driven by EC waves for given
global tokamak parameters, based on a single numerical evaluation of the CD efficiency
7. This is assumed to be an affordable computational endeavour in the frame of systems
code applications.

The quantities required for the numerical determination of the CD efficiency at a
given point in the plasma are the parallel and perpendicular components of the wave
refractive index, the components of the unit wave electric field, the electron temperature,
the ratios w? /w?® and Q2 /w? (w, being the electron plasma frequency) at a given location,
the minimum and maximum magnetic field on the corresponding flux surface, the poloidal
angle 6 at which the absorption takes place, the vacuum wavevector kg = w/c and the
effective charge. Some of the plasma parameters needed to compute these input values,
like density, temperature, magnetic field and effective charge at the position of interest can
be assumed to be known (in systems codes, density and temperature profiles are usually
parametrized as analytic functions of p [4]. Extensions to include profiles originating
from physics-based transport and equilibrium modelling are under way [20, 21]). The
same is true for the minimum and maximum magnetic field on a given flux surface. The
poloidal angle at which the beam crosses the flux surface can also be inferred (optimum
current drive is usually achieved for injection from an elevated position, as discussed in the
previous section). In the following, we will set this angle to 60°. It has been verified that
this parameter does not influence the current drive efficiency significantly, its variation
being below 4.1% for a variation of 8 by F10° for the results presented in Sec. 4.5.

The challenging point is the selection of the injection angle (hence N|) and the wave
frequency (once w and N have been fixed, the dispersion relation determines N, and the
wave polarization). The fundamental relation between w and N is given by the resonance
condition (15), which further involves the particle energy through the Lorentz factor ~.
As discussed in Sec. 2, the condition of optimum current drive corresponds to resonant
(current-carrying) electrons with the highest possible energy which still ensures sufficient
absorption. In Sec. 4.1, a constraint on the energy of the resonant electrons £/T, is
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Figure 4: Value of the energy of resonant electrons (normalized to the electron temperature) as
obtained from Eq. (24) for different machine parameters (blue squares). The red triangles show
the corresponding values from ECCD optimization for the same scenarios. The cyan circle for
the DEMO1 half-temperature case shows the ratio £/T. for a nearly-optimum case (for which the
total driven current is ca. 4% lower than for the optimum case).

derived. We assume that the interaction between wave and particles is strongest around
the lower edge of the resonant range defined by Eq. (18), i.e. around u|_ (see discussion
in Sec. 2.2), which allows us to set u; ~ 0. Then, the condition £/T., = fr fixes also

u)— through & ~ me?(, /uﬁ7 +1—1), so that the resonance condition effectively defines

a relation between N| and w. In order to determine both quantities separately, a further
constraint is needed, as discussed in Sec. 4.2 and 4.3.

4.1 Enmergy of resonant electrons

In order to derive a (temperature-dependent) constraint for the energy of the resonant
electrons at maximum current drive, we adapt the approach of Smith et al. [22] and
require that the EC power is completely absorbed within a fraction fups of the minor
radius a. Defining an “absorption length” as the inverse of the absorption coefficient «,
this condition reads

é = fabsa. (21)

A formula for the absorption coefficient of ordinary waves satisfying the n = 1 reso-
nance for oblique propagation can be found in [23] and reads

2 (0) 0 1
©) _ o g g | Te Qo 1
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where Z is the plasma dispersion function of argument
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and the factor R(?) of [23] has been written as in [22] isolating the factor w?/Q? and
dividing by 47 in order to have g(©) (factor depending mainly on injection geometry) of

G (23)




order unity. With this expressions, Eq. (21) can be cast in the form of a condition for

fr = &/T., namely
favs [27T. veaw?
[Z]2V mc? ¢ @g( | (24)

where v, = /27. In TORBEAM optimizations it is often found that optimum ECCD profiles
have a width of the order of Ap ~ 0.2, see e.g. Fig. 3b, so we set fus = 1/5. A brief
discussion about this choice should be added here. Although the dependence of fr on
fabs is only logarithmic, this choice also influences the constraint on the width of the
absorption profile introduced in Sec. 4.3 and it has thus a noticeable influence on the
final results. The fact that optimum ECCD conditions are often found for Ap ~ 0.2
has its physical explanation in the fact that larger profiles (which might be thought to
be preferable because of the relation between weaker absorption and higher current drive
discussed before) start feeling the change in temperature and hence in ECCD efficiency
far from the optimum point (typically the centre of the plasma column). In our model, a
variation of Ap by F0.1 leads to a change of the current-drive efficiency in the range of
ca. F15%, whereas the best matching of the full TORBEAM results, reported in Sec. 4.5, is
achieved for the value Ap = 0.2 selected here. This choice of Ap (or equivalently fups)
is basically the main “tuning parameter” employed in this model and can be justified as
discussed above.

Approximating |Z|? ~ ¢(©) ~ 1, one finds values for fr in the range between 3.8 and
4.2 for typical ITER [24] and DEMO parameters, see Fig. 4. These match closely the
values of £/T, at maximum absorption found in TORBEAM runs corresponding to maximum
ECCD for each scenario.

&
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4.2 Frequency shift

A first consequence of imposing a given ratio between the energy of the resonant electrons
and thermal energy can be appreciated if we fix the value of N as well (taking e.g. as a
reference the typical values of IV} found in the TORBEAM optimizations described in Sec. 3).
With the previous approximations, from & = mc?(y — 1) one can derive

o fTTe
7=
mc

u|=\/({;§2 +1>2—1. (26)

Calculating Q with the nominal (on-axis) magnetic field, the resonance condition, Eq.(15),
can be used to express the shift of the wave frequency w needed to have on-axis resonance
for a given value of N) as a function of the electron temperature

+1 (25)

and

-1

2
= — fTT€+1N|\/<fTTe+1> -1 . (27)

n§ me? me?

Fig. 5 (left panel, dotted green curve) shows that for typical central temperatures en-
visaged for a fusion reactor (20-40 keV) and Ny = 0.75 (as typically found in ECCD
optimization for DEMO parameters, cf. Fig. 3), the wave frequency needed to satisfy the
resonance condition exceeds by a factor around 1.4 the cold-resonance cyclotron frequency,
in agreement with previous studies [25, 3].

Eq.(27) has a maximum value w/nQ =1/,/1 — NH27 which corresponds to the accessi-

bility condition of the n-th resonance (19), at a temperature T, = (mc?/fr)(1/,/1 = Nj —

10
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Figure 5: Frequency shift (with respect to the cyclotron frequency on azis, left) and parallel
refractive index N| (right) as a function of the electron temperature. The yellow dashed lines are
obtained by imposing fr = 4.26 at the pinch point, Eq. (28) and Eq. (29) respectively, while the
blue solid lines are obtained by imposing fr = 4.26 at the position of mazimum absorption and
AR = Rpp — Ra = fapsacosb, see Eq. (33) and Eq. (32) below. The dotted green line in the left
panel shows Eq. (27) with N\ = 0.75 and fr = 4.26. The blue points in both panels represent the
value of w/nQ resp. Ny found from TORBEAM ECCD optimization for DEMO1. The value fr is
also extracted from the TORBEAM optimization, cf. Fig. 4.

1). This means that, for fixed N, there is only one temperature for which the energy of
the resonant electrons is £ = frT, at the pinch point.

On the other hand, one could note at this point that it is possible to select N} such that
the condition & = frT¢ is always satisfied at the pinch point. Once N is determined in

this way, the resonance condition determines the wave frequency w. Equating 1/,/1 — N, ﬁ
to the right-hand side of Eq.(27), one finds

1
Ny=,/1- 28
: \/ UrTofm + 12 (28)
which leads to the simple expression for the frequency shift
w fTTe
— = 1. 29
nQ  mc? + (29)

Both w/nf2 and N as expressed by Eq.(29) and Eq. (28) exhibit a physically reasonable
qualitative dependence on temperature, see the dashed yellow lines in Fig. 5. In particular,
higher temperatures allow the resonance to shift to the tail of the distribution function
still maintaining appreciable absorption and hence allow larger values of N)|. Their values,
however, are lower than those found in numerical optimizations (blue points in Fig. 5,
where DEMO1 parameters have been taken as a reference). As a matter of fact, for
typical cases of maximum ECCD, as shown for instance in Fig. 3, the condition & =
frT. as determined in Sec. 4.1 is not met at the pinch point (first point in resonance)
but rather at the point of maximum absorption. At the pinch point, the energy of the
resonant electrons is usually much higher, which ensures higher current drive efficiency,
although at a relatively low absorption rate. In other words, imposing & = f7T, ~ 4T, at
the pinch point misses the contribution of the velocity-space region located in the range
4 5 E/T. 5 6, which exhibits a high current-drive efficiency in conjunction with a non-
negligible absorption.This suggests a different procedure for the determination of N and
w, introduced in the next section.

4.3 Constraint on the width of the absorption profile

We impose now the constraint & = frT, at the position of maximum absorption. This
is the “representative point” selected for the single evaluation of the ECCD efficiency
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as envisaged in the method proposed here, i.e. the plasma parameters are evaluated at
the point where the peak absorption (which is usually very close to the peak current
drive) is required to be. The ECCD efficiency is typically higher on the low-field side of
this point, i.e. moving towards the pinch point, while it is typically lower as the beam
penetrates towards the high-field side and the resonance moves to less energetic electrons.
The ECCD efficiency calculated at the point of maximum absorption can be thought to
represents thus a sort of average value across the absorption profile. This approach is
tested in the following.

Besides the resonance condition, a further constraint that allows the determination of
w and N separately is still needed. Such a constraint is imposed by selecting the distance
between pinch point and position of maximum absorption such that it coincides with the
“absorption length” defined as fupsa, see Eq.(21). This represents an approximation, as
the particle energy at pinch point is usually very high (in the range of 8-9 T, for typical
optimum conditions) and correspondingly the absorption is still quite weak. However,
given the fast decrease of £/T. from the pinch point inwards, this approximation is well
justified. This is clearly illustrated in Fig. 3 (right panel), which reports also the steep
rise of the power delivered to the plasma once the energy of the resonant electrons drops
below £/T. < 6. The major radius of the pinch point, R,,, can be found from the

relation n,,/w = ,/1 — N, ”2, where €, is the cyclotron frequency evaluated at R = R,,,,

cf. Eq. (19), and reads
nfl,

wy/1 —N”2

The subscript a denotes the position of peak absorption (e.g. the magnetic axis), where
the constraint £ = frT, is enforced. Consistently with the numerical simulations and with
the fact that the absorption is assumed to be relatively well localized, the variation of N
between the positions R, and R, is assumed to be negligible.

Imposing AR = R,, — Ry = fabsacos @ one obtains

Rpp == Ra . (30)

Rpp fabsa
=1
R, + R,

cos @, (31)

which fixes the value of R, for given fus, R, and 6. The resonance condition can now
be used to express N as a function of w and u_ (fixed through fr):

M=o (ot vi-1). (3)

Inserting Eq. (32) into Eq. (30) then determines uniquely the wave frequency w as

w 5 5 3 R2
Fo N +1+ ujj (1 R?,p)’ (33)

where now all the quantities on the right-hand side are known. N is then computed
from Eq. (32). The dependence of N and w on the electron temperature is obtained
inserting Eq. (26) into the previous expressions. Recalling v = frT./mc?+1, the previous
equations lead to a nearly linear dependence of the frequency shift with T¢, while N
scales approximately with the square root of T.. The previous expressions are evaluated
explicitly in Fig. 5 (solid blue lines). These values are much closer to the results found
in numerical ECCD optimizations than those obtained in the previous section, where the
condition on the energy of the resonant electrons was imposed at the pinch point. The HARE
module implements Egs. (32-33) as part of the procedure needed for the determination of
the ECCD efficiency.
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Figure 6: Mazimum driven current (left) and corresponding normalized deposition radius (Tight),
for the three scenarios reported in the legend, as obtained from TORBEAM optimization. The tem-
perature profile in the respective scenarios is rescaled by the factor indicated on the x-axis.

4.4 Saturation of the ECCD efficiency for 7T, > 30 keV

The equations derived in Sec. 4.3 suggest that a reactor could take advantage from higher
and higher temperatures to push the resonance towards more and more energetic electrons
and increase the CD efficiency indefinitely. Indeed, as discussed in Sec. 2.1, the “standard”
scaling n o« T,/n. relies on the assumption that the energy of the resonant electrons
available for current drive can be increased proportionally to 7.

It has been shown by Smith et al. [22], however, that the current drive efficiency
cannot be increased above a given limit, dictated by the condition that the absorption
at the desired harmonic (in our case n = 1) exceeds the absorption due to the next
harmonic. The influence of the next harmonic, called harmonic overlap, can be understood
intuitively from the fact that increasing the wave frequency proportionally to the electron
temperature, as suggested by Eq. (33), leads to a shift of the lower harmonic away from
the plasma centre towards the high-field side, while the next harmonic is moved closer to
the centre from the low-field side. Quantitatively, referring to Fig. 1 and the discussion
in Sec. 2.2, it can be assumed that the next harmonic dominates the absorption process
when the corresponding value of |u_| is lower (i.e. closer to the Maxwellian bulk) than
the value of |u)_| for the desired harmonic. For the n = I-resonance, such a limit is found
to occur [22] when the energy of the electrons resonating with the lower harmonic reaches
a value of mc?(1/3/2—1) ~ 115 keV. Assuming that this energy corresponds to a multiple
fr =~ 4 of the electron temperature implies that there is no advantage in increasing the
energy of the resonant electrons with the electron temperature if T, exceeds a value around
30 keV. It should be noted that an implicit assumption in the analysis of Smith et al. is
that the region around the pinch point contributes significantly to the absorption, while
this turns out not to be strictly the case under ECCD-optimized conditions, cf. Fig. 3
and the discussion in Sec. 4.3, so that the T.-threshold is somewhat higher. However,
even for T, just above 30 keV, the achievable current drive is often found to be limited by
second-harmonic absorption before the pinch point. For this reason, in HARE the ECCD
efficiency is calculated limiting the input temperature to 30 keV whenever the scenario
exhibits a temperature above that value.

This approach has been tested by increasing the electron temperature for three selected
scenarios (in each case by a factor 1.5 and 2) and optimizing the ECCD as outlined in
Sec. 3. Whereas the DEMO1-baseline and the DEMO2-nflat scenarios have a nominal T,
slightly above 30 keV, for DEMO2-npeak the nominal electron temperature is 23.5 keV, so
the ECDD efficiency is expected to be close to saturation in the first two cases and to reach
saturation with increasing temperature in the last one. Fig. 6 confirms these expectations:
the rise in I¢p is below 15% in the first two cases and about 35% in the last case; it is
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recalled that according to the scaling n < T /n. the driven current should double across
the range considered in Fig. 6 in all cases. These results show that capping the ECCD
efficiency at temperatures above 30 keV leads to a good estimate of the saturation level.
As it can be observed in the right panel, increasing the temperature shifts the position
of the peak deposition under conditions of maximum current drive to larger radii. This
is due to the fact that the region of plasma with T, > 30 keV becomes larger and larger
with increasing temperature, while a shorter path through the plasma reduces the second-
harmonic absorption before the pinch point is reached. The issue of the radial distribution
of the driven current is discussed in Sec. 4.6.

4.5 Comparison of the HARE model to ECCD optimization for se-
lected scenarios

The approach described in Sections 4.3, 4.4 is now tested against results from scenario
optimization to assess its reliability and accuracy. The input parameters for HARE are the
p value at which the current should be estimated, the corresponding values of n., T, and
Zoft, the magnetic field on axis and the values of minor and major radius of the machine.
All these quantities are available in the frame of systems-code applications. For central
ECCD, the value of p is set to 0.1 to allow for the spread of ECCD profile. The total
driven current is calculated as

_ P
N 27TRO ’

where the efficiency 7 is the output of the ECCD routine and P is the injected power.
In this formula, the ratio between the flux-surface averages (B:/R)/{(B) which should
appear [12] as a prefactor on the right-hand side (B; being the toroidal magnetic field), is
approximated as 1/Ry.

In Fig. 7, the values of the total driven current, optimum wave frequency, parallel
refractive index, u;_ at maximum absorption and at pinch point returned by the HARE
module are compared to those corresponding to the maximum current drive in TORBEAM
scans. As explained in the previous section, the input electron temperature in HARE is set to
30 keV whenever the corresponding scenario exceeds this value. Although the parameters
of the various scenarios (particularly density and temperature) differ significantly from
each other, the HARE predictions are in good agreement with the reference values from
TORBEAM optimizations in all cases. The largest differences can be observed for the value
of u_ at the pinch point. This is related to the fact that u_ at the pinch point can
vary significantly for relatively small changes of the radial extent of the region exhibiting
first-harmonic absorption. As discussed above, the exact value of u,, does not influence
significantly the total driven current.

Fig. 8 reports the percentage deviation of the HARE values from the reference values,
calculated as 100 X (Iyare — Itorseam)/Itoreram. The deviation is below 10% for all
the scenarios explored.

It should be stressed that a scenario optimization is usually performed scanning 15 x 15
values of the poloidal and toroidal angles (cf. Fig. 2) for a number (usually 2 10) of launcher
positions and frequencies, resulting in a few thousand TORBEAM runs, each requiring a
couple of seconds. In contrast, the HARE module performs a single call to the ECCD
routine, which has an execution time below 0.1 ms.

Simple scaling formulas for the ratio between the total EC current Iop and the ab-
sorbed power P (for EC waves, this is usually assumed to coincide with the injected
power), which would offer of course the advantage of a much faster execution time, have
been found to be much less reliable than the model implemented in HARE. A figure of merit
often employed in this respect is given by [26]

Icp (34)

e’ nellg Icp N0 RmIa
= — — x3R2.7T 35
con eg T. P Tiev Py’ (35)
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Figure 7: Comparison between HARE results and full TORBEAM optimization for driven current,
optimum beam frequency, parallel refractive index, w)— at position of marimum absorption and
u|— at pinch point. The global parameters of the corresponding scenarios are reported in Table 1.

where the numerical constant follows from expressing the various quantities in the units
shown as a subscript (the density is in units of 10*°* m=3). A similar formula is also
available in PROCESS [4].

In Table 2 a large variation of {(¢p (of the order of £30%) can be observed across
the scenarios discussed in this paper. Introducing a simple correction in the form C~c D=
Cop(5+ Ze), in order to incorporate the Zyg-scaling predicted by Eq.(11), reduces some-
what the relative variation, which remains however large as compared to the (more physics-
based) estimates of the HARE module. Moreover, Eq.(35) does not include in any form the
saturation of the ECCD current at high temperature discussed in Sec. 4.4.

4.6 Radial variation

In the previous sections it was discussed how to obtain a fast but reliable estimate of the
maximum driven current achievable through ECCD for given reactor parameters. Apart
from high-temperature scenarios, where T, exceeds 30 keV in a large portion of the plasma
column, the maximum value of I¢p is achieved close to the plasma centre, p £ 0.2. It is
to be expected that I~p drops with radius, due to the fact that the temperature decreases
with p faster than the density. For consistent predictions, a systems code needs to know,
if not a detailed driven-current profile, at least an estimate of the average current which
can be driven across the plasma radius.

Fig. 9 presents a comparison of the current driven at different radial positions for two
scenarios (DEMO1 and DEMO2-nflat), as obtained through different methods. The black
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Figure 8: Deviation of the HARE prediction for the total driven current with respect to the full
TORBEAM optimization.
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Figure 9: Radial variation of the driven EC current Icp as obtained by (a) varying the injection
angles keeping the optimum antenna position and frequency fized (ICD,ref, black circles); (b)
rescaling of the mazimum value Icp,o with the local temperature-to-density ratio (red crosses);
(c) from the HARE module (blue squares), for DEMO1 (left) and DEMO2-nflat (right) parameters.
Also shown in the right panel is the profile obtained by varying also frequency and launch position
to obtain higher Icp values (magenta diamonds).
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| {cp/¢cp,pEmor | Cep/lep,pEMOr

ITER 1.22 1.18
DEMO1 1.00 1.00
DEMO1-half T, 1.33 1.33
DEMO2 nflat 0.72 0.94
DEMO2 npeak 0.86 1.12
flexi-DEMO 1.13 0.99

Table 2: Values of Ccp and ECD =Ccp X (b+ Zeﬁc), divided by the respective values found for

DEMO1 parameters (Ccp = 0.38, Cep = 2.7), for the different scenarios discussed in the paper.
A large variation, in particular of (cp, can be observed.

circles show the TORBEAM results obtained by keeping frequency and launch position as in
the best (central) case and varying the launch angles («, 8) following the path of maximum
current as a function of p suggested by the contour levels of the current optimization, as
shown e.g. in Fig. 2 (left), for the two scenarios considered here. The red crosses show
the results of a simple rescaling of the peak current value of the driven current /¢ p o with
the local density and temperature. The blue squares correspond to the HARE predictions
taking the values of n. and T, at the selected radial location. It can be seen that the three
methods lead to similar estimates. In the DEMO2-nflat scenario (Fig. 9, right panel), a
further TORBEAM profile (magenta diamonds), showing an “optimized” scenario obtained
by varying also antenna position and frequency to increase the driven current, is added
in order to estimate the range of variability of the “reference” solution. Based on these
results, it is concluded that a reasonable estimate of the radial variation of the EC driven
current can be obtained by calculating the optimum (central) driven current Icp,o and

rescaling it as
Te(p)ne(0)
Te(0)ne(p)

For core temperatures 2 60 keV, the central region of the plasma might exhibit a depletion
of the achievable ECCD efficiency due to the strong absorption at outer radii. These
temperatures, however, are far from optimum both because of the departure of the fusion
cross section from a quadratic scaling and the high level of radiation (mostly synchrotron)
predicted at these temperatures [27].

As it is in general the case for reactor configurations emerging from systems-code
optimizations, which need to be verified through more comprehensive scenario develop-
ment employing e.g. 1.5-dimensional transport simulations, also the best-ECCD scenarios
predicted through simplified approaches, like that employed in HARE, need to be checked
through explicit ray /beam tracing calculations once the corresponding magnetic equilibria
and kinetic profiles have been determined.

Icp(p) =Icpo (36)

5 Discussion and conclusions

In this paper, the basic features of ECCD as described by the adjoint method for linear
wave-particle interaction have been analyzed in order to infer under which conditions
optimum current drive can be expected. The goal was the development of a fast but
accurate estimate of the ECCD efficiency to be employed, for example, in systems codes
where the calculation of the current driven by auxiliary heating systems is but a small
part of the code operation. The approach followed here is to carry out the evaluation of
ECCD efficiency numerically (judged as a feasible burden for the targeted applications)
instead of looking for ways to simplify the response function. The latter is still a feasible
option which could be explored if needed. A single evaluation of the ECCD efficiency is
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performed employing parameters that should correspond to “optimum” ECCD conditions.
The main physics assumption of the present model is that optimum ECCD conditions
correspond to the maximum energy of the resonant electrons which can be reached being
still consistent with the requirement of sufficient absorption. This implies that the energy
of the resonant electrons can be increased with the temperature by increasing both the
injected frequency and the parallel wave vector. To avoid the problem of harmonic overlap
(parasitic absorption by the next harmonic with poor current drive), the increase of w and
N with the temperature is capped at 30 keV. For typical parameters envisaged in a
tokamak reactor, the frequency for optimum current drive is found to be approximately
by a factor 1.4 higher than the cyclotron frequency computed at nominal magnetic field
on axis, in agreement with previous studies [25, 3] and the present results.

As presented here, the proposed method focuses on ECCD scenarios employing ordinary-
mode heating at the fundamental cyclotron resonance, which is the scheme of choice given
the high values of B envisaged in a reactor and the technological difficulties related to the
development of high-power gyrotrons in the frequency range above 200 GHz. Although
an extension of the method to different ECCD schemes (e.g. n = 2 X-mode) has not been
explored yet, no difficulty in principle is expected.

These ideas have been implemented in a new module called HARE, which determines,
starting from global reactor parameters, the input values to be supplied to the current
drive routine developed by Lin-Liu [12], modified such as to take into account momentum
conservation in electron-electron collisions. For the scenarios analyzed in this paper, the
deviation of the HARE predictions for the driven current with respect to the reference
solutions obtained from an extensive scan of the input parameters (antenna position,
frequency, launch angles) is below 10%. The computational effort for a run of HARE is
below 0.1 ms. An optimization loop with TORBEAM usually needs several thousands of
runs, each requiring a couple of seconds, i.e. an effort which is seven orders of magnitude
higher. It should be stressed that even if the numerical burden were manageable, a systems
code does not usually provide the input required by ray/beam tracing codes like TORBEAM.

It has been shown that the dependence of the total driven current on the radial position
can be calculated by different calls of the HARE module for different values of p (and
correspondingly of n. and T¢), or simply by rescaling the central value of I-p according
to the ratio T./n.. This approach might become inaccurate at very high temperatures
(above 50 — 60 keV), where the off-axis absorption reduces the power available for central
ECCD. An estimate of this effect would require a fast and efficient evaluation of the first
and second-harmonic absorption coefficients. This extension is left for future work. It is
remarked that such high temperatures are unlikely to represent an attractive scenario for
a tokamak fusion reactor due to the expected strong radiation losses (which increase with
temperature faster than the fusion power) [27].
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