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Following the analysis on linear spectra of shear Alfvén fluctuations excited by en-10

ergetic particles (EPs) in the Divertor Tokamak Test (DTT) facility plasmas [T.11

Wang et al., Phys. Plasmas 25, 062509 (2018)], in this work, nonlinear dynamics12

of the corresponding mode saturation and the fluctuation induced EP transport is13

studied by hybrid magnetohydrodynamic-gyrokinetic simulations. For the reversed14

shear Alfvén eigenmode driven by magnetically trapped EP precession resonance in15

the central core region of DTT plasmas, the saturation is mainly due to radial de-16

coupling of resonant trapped EPs. Consistent with the wave-EP resonance structure,17

EP transport occurs in a similar scale to the mode width. On the other hand, passing18

EP transport is analyzed in detail for toroidal Alfvén eigenmode in the outer core19

region, with mode drive from both passing and trapped EPs. It is shown that pass-20

ing EPs experience only weak redistributions in the weakly unstable case; and the21

transport extends to meso-scale diffusion in the strongly unstable case, due to orbit22

stochasticity induced by resonance overlap. Here, weakly/strongly unstable regime is23

determined by Chirikov condition for resonance overlap. This work then further illu-24

minates rich and diverse nonlinear EP dynamics related to burning plasma studies,25

and the capability of DTT to address these key physics.26
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I. INTRODUCTION27

In Ref. 1, we have investigated linear dynamics of shear Alfvén fluctuations excited by en-28

ergetic particles (EPs) in the recently proposed next generation tokamak device, the Divertor29

Tokamak Test (DTT) facility,2 which mainly aims at studying viable divertor configurations30

for the demonstration power plant (DEMO).3 Despite the practical objectives of DTT, we31

have shown that many substantial physics can be explored in DTT core plasmas,1 including32

fundamental issues related to burning plasma operations.4,5 In particular, the EPs produced33

by nuclear fusion reactions and/or auxiliary heating methods can drive Alfvénic fluctuations34

unstable via wave-particle resonant interactions, as their characteristic dynamic frequencies35

are in the magnetohydrodynamic (MHD) range. Depending on the intensity of EP drive and36

resonance condition, the collective fluctuations of shear Alfvén waves (SAWs) could exist as37

Alfvén eigenmodes (AEs)6 inside frequency gaps of SAW continuous spectrum (continuum),38

or as energetic particle continuum modes (EPMs).7 Following the linear analysis presented39

in Ref. 1, in this paper, we focus on the nonlinear saturation of the Alfvénic fluctuations and40

the fluctuation induced EP transport in DTT plasmas, as the assessment of EP confinement41

property is crucial in the next generation tokamak experiments. In fact, only a small frac-42

tion of EP loss could be tolerated in burning plasma devices without severely damaging the43

plasma facing components. Thus, a deeper comprehension of these key physics is not only44

important for the success of DTT, but also of practical interest for burning plasma studies,45

such as in the International Thermonuclear Experimental Reactor (ITER)8–10 and DEMO.346

Targeting self-sustained nuclear fusion in the next generation tokamaks, the physics un-47

derstanding of SAW-EP dynamics in toroidal plasmas has significantly improved in the last48

several decades, and is reviewed in a few recent publications5,9,11–15 from the perspective49

of theoretical and experimental research as well as numerical simulation. In general, the50

nonlinear saturation of SAW fluctuation may follow two routes, i.e., nonlinear wave-wave51

and wave-EP interactions.5,16 In this paper, we focus on the latter route by means of hybrid52

MHD-gyrokinetic code (HMGC)17,18 simulations, due to the crucial role played by EPs in the53

multi-scale dynamics of fusion plasmas.4 Adopting the theoretical framework of the general54

fishbone-like dispersion relation,5,19,20 nonlinear dynamics and saturation of a single toroidal55

mode number SAW fluctuation can be understood as two fundamental mechanisms, namely,56

resonance detuning and radial decoupling.5,21–24 Briefly speaking, resonance detuning is due57
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to the nonlinear shift in the wave-EP phase, and it is ubiquitous in wave-particle resonant in-58

teractions. On the other hand, radial decoupling is due to the finite nonlinear excursion of EP59

orbits with respect to the likewise finite localized mode structure in nonuniform plasmas.5,2460

Thus, in a realistic plasma, the complex behavior underlying the nonlinear interplay between61

SAW fluctuation and EPs depends on the relative importance of the two mechanisms. As62

shown theoretically5,24 and by recent numerical simulations,23,25–31 the saturation mechanism63

is determined by the relative ordering of nonlinear EP orbit excursion to the perpendicu-64

lar (with respect to equilibrium magnetic field) fluctuation wavelength and/or equilibrium65

nonuniformity; and it can be reflected by the relative scale lengths of wave-EP power trans-66

fer, mode structure and effective resonance condition.23,28,29,31 For two paradigmatic cases,67

typically in the marginally unstable limit, nonlinear EP orbit excursion is restricted by the68

effective resonance condition, and is much smaller than the perpendicular fluctuation wave-69

length; that is, the resonant EP response is similar to that of a uniform plasma. Hence,70

in this regime, resonance detuning outweighs radial decoupling and, when only resonance71

detuning is considered, the saturated fluctuation amplitude scales quadratically with respect72

to the linear growth rate of the mode,32,33 consistent with that predicted by wave-particle73

trapping mechanism typical of a 1-D beam-plasma system.34 Meanwhile, in the strongly74

unstable regime with non-perturbative EP response, the EP orbit excursion is compara-75

ble with the perpendicular fluctuation wavelength, radial nonuniformity becomes essential76

for the resonant EP response, and radial decoupling is therefore crucially important.5,24 As77

shown by previous numerical simulations and predicted by analytic models, the scaling of78

saturation amplitude versus mode linear growth rate could be linear in this regime.28,29,3179

In all cases, the non-perturbative EP response and plasma nonuniformity can introduce80

additional twists in the complex behaviors underlying wave-EP power exchange, and allow81

enhanced fluctuation levels with respect to the predicted quadratic and/or linear scaling.4,582

Thus, the proper description of saturation mechanism generally requires accounting for the83

self-consistent interplay of mode structures and EP transport, as extensively discussed in84

the recent comprehensive review paper by Chen and Zonca.585

In this work, some of the key integrated physics aspects of burning plasmas are addressed86

for the DTT reference scenario. DTT plasmas can be generally divided into a central core87

region, characterized by low magnetic shear and coherent fluctuation induced redistributions88

of magnetically trapped EPs; and an outer core region, with finite magnetic shear and89

3



predominant diffusive losses of passing EPs due to resonance overlap.90

Due to the similarity to ITER of DTT dimensionless parameters relative to both supra-91

thermal and core plasma components, the Alfvénic fluctuation spectrum resonantly excited92

by EPs is characterized by toroidal mode numbers n ∼ O(10)1 and, therefore, by micro-93

scales that are of the same order of the meso-scale structures spontaneously formed by drift94

wave turbulence. Thus, DTT core plasmas can access operation regimes where complex95

behavior will mimic those of reactor relevant fusion plasmas, with EPs acting as mediators96

of cross scale couplings.4,5 This work, in particular, will address and illuminate the rich97

variety of spatiotemporal scales self-consistently generated in DTT plasmas, and resulting98

from nonlinear interplay of Alfvénic fluctuations and EP sources of various strength.99

EP transport will be analyzed in phase space, since AEs excited in the central core region100

by magnetically trapped EPs are characterized by very different resonance structures and101

corresponding spatiotemporal scales than AEs due to both trapped and passing EPs in the102

outer core region.1 The different behaviors will be discussed by means of test particle Hamil-103

tonian mapping techniques23,27,31 to illuminate the nonlinear evolution of phase space zonal104

structures5,24 and, ultimately, its impact on EP transport, characterized by both coherent105

nonlinear redistributions as well as diffusive radial fluxes.106

This paper is organized as follows. The simulation model and main simulation parameters107

are presented in Sec. II. In Sec. III, we analyze the nonlinear dynamics of two types of SAW108

fluctuations interacting resonantly with EPs; namely, reversed shear Alfvén eigenmodes109

(RSAEs) resonantly excited by trapped EPs in the central core region, and toroidal Alfvén110

eigenmodes (TAEs) destabilized by both trapped as well as passing EPs in the DTT outer111

core. In this work, we focus on the initial mode saturation in order to illustrate and discuss112

the underlying physics, and to illuminate the richness of diverse nonlinear behaviors that113

can be expected in the DTT reference scenario. More complicated long time scale nonlinear114

evolutions are intentionally left to further and more detailed analyses to be carried out as115

future work. Section IV gives the final summary and discussion.116

II. NUMERICAL MODEL AND SIMULATION PARAMETERS117

In this paper, we recall the numerical model of the DTT reference scenario considered118

in Ref. 1. Here, we only summarize the most important numerical aspects, while a full119
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FIG. 1. Radial profiles of equilibrium safety factor q and magnetic shear s.

description and discussion of the adopted model are given in Ref. 1.120

The simulation code HMGC17,18 is based on the hybrid MHD-gyrokinetic model,35 and fo-121

cuses on the self-consistent interplay between thermal plasma components and fast/energetic122

particles in simplified tokamak geometry. In this study, the bulk plasma fluctuations are123

described by a set of O(ϵ3)-reduced MHD equations36 in the limit of zero pressure, where124

ϵ ≡ a/R0 is the inverse aspect ratio, with a and R0 the minor and major tokamak radii,125

respectively. The EP response is accounted for by solving nonlinear Vlasov equation in126

the drift-kinetic limit with particle-in-cell method, and enters in the MHD equations non-127

perturbatively via the pressure coupling formulation.35 Therefore, finite Larmor radius effect128

is neglected, but finite magnetic drift orbit width effect is fully taken into account.19,20,37,38129

Consistent with Ref. 1, in this work, we investigate a single toroidal mode number n in130

each simulation case, while multi-n simulations will be part of future work (see Ref. 39 for a131

recent publication on this subject). Thus, MHD nonlinear mode-mode coupling is neglected,132

but EP nonlinearities are self-consistently retained. We also emphasize, as anticipated in133

the Introduction, that single-n simulations do not necessarily imply studying the nonlinear134

dynamics of isolated resonances. Quite the contrary, we will be able to discuss various135

features of both isolated (Sec. III A) as well as overlapped (Sec. III B) resonances.136

A shifted circular equilibrium with ϵ = 0.18 is adopted in this paper, along with ITER-137

like EP parameters.1,40 Figure 1 shows the radial profiles of equilibrium safety factor q138139
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FIG. 2. Radial profiles of normalized EP density nH. The two profiles are used for, respectively,

(a) the central core region, and (b) the outer core region.

and the corresponding magnetic shear s ≡ rq′/q, where “prime” indicates derivative with140

respect to the minor radius coordinate r. As articulated in Ref. 1, the structure of the141

adopted equilibrium suggests a subdivision into a central core region with q marginally142

above unity and vanishing s, and an outer core region with larger q and finite s. The two143

regions are investigated separately in this paper, adopting EPs with different radial pressure144

profiles (cf. Fig. 2). EPs are assumed to be fusion born alpha particles characterized by145

an isotropic slowing-down distribution function. The pressure drive of EPs is controlled by146

the normalized radial profile of EP density nH/nH0, shown in Fig. 2 for, respectively, the147148

central and outer core region. Here, nH0 indicates the value of nH on the magnetic axis,149

and is normalized to on-axis bulk ion density ni0 to control the intensity of EP drive (cf.150

Ref. 1). Other important parameters are ρH/a = 0.01, vH/vA0 = 1.80, with ρH ≡ vH/ΩH the151

EP Larmor radius, vH ≡
√
E0/mH the characteristic EP birth speed, ΩH the EP cyclotron152

frequency, E0 the alpha particle birth energy, mH the EP mass, and vA0 the on-axis Alfvén153

speed. Note that ρH/a = 0.01 is significantly smaller than in present day tokamaks;5 and154

the smaller EP orbit width in DTT is crucial to determine the linear1 as well as nonlinear155

dynamics of resonantly excited Alfvénic fluctuations. In particular, the range of excited156

toroidal mode numbers is such that the peculiar role of EPs in cross-scale coupling becomes157

evident, as to be shown in Sec. III.158

In this paper, in order to illuminate the nonlinear physics anticipated in the Introduction,159

we focus on the two representative cases discussed in detail in Ref. 1, namely, n = 4 RSAE160

case in the central core region (Sec. III A), and n = 6 TAE case in the outer core region161

(Sec. III B). The selected two cases can well represent the peculiar features of each region,162
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while the nonlinear dynamics of other modes with different toroidal mode numbers can be163

predicted following their linear properties1 and the analysis in this paper. In all simulations,164

poloidal harmonic m is retained in the interval [3, 14] for n = 4, and in the interval [5, 21]165

for n = 6.166

III. NONLINEAR DYNAMICS167

In this section, after briefly reviewing the linear spectra reported in Ref. 1, the nonlinear168

saturation of SAW fluctuations and the associated EP transport in DTT plasmas are inves-169

tigated by HMGC simulations. As indicated above, we analyze n = 4 RSAE fluctuations170

for the central core region in Sec. III A, and n = 6 TAE fluctuations for the outer core re-171

gion in Sec. III B. Normalized EP pressure profiles with variable intensity assumed as initial172

conditions in the two cases are shown in Fig. 2(a) and (b), respectively. The two cases are173

characterized by very different wave-EP resonance structures.1 The dominant destabilization174

mechanism for the RSAE fluctuations is the precession resonance with magnetically trapped175

EPs; meanwhile, the wave-EP power transfer for the TAE fluctuations consists of compa-176

rable contributions from the precession resonance with trapped EPs, and several transit177

harmonic resonances with passing EPs. Different mechanisms of EP transport, suggested178

by the wave-EP resonance conditions and relevant spatial scales, are also investigated in179

detail in this section.180

A. RSAE nonlinear dynamics181

A series of n = 4 RSAE cases with nH0/ni0 in the interval [0.0004, 0.0030] are analyzed.182

The unstable fluctuations are characterized by very similar mode structures, but have dif-183

ferent spectral properties. The mode real frequencies ωr and linear growth rates γL are184

shown in Fig. 3, where the upward frequency shift due to the non-perturbative effect of EPs185186

is evident.1 Moreover, γL scales almost linearly with nH0, suggesting very low instability187

threshold of EP drive as a result of low background damping. For a reference case with188

nH0/ni0 = 1.5 × 10−3, several dominant poloidal harmonics of scalar potential fluctuation189

δφm,n in the linear growth stage are shown in Fig. 4, along with the corresponding power190191

spectrum in the (r, ω) plane. Consistent with the equilibrium q profile and the structure of192
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FIG. 3. RSAE real frequencies ωr (circles) and linear growth rates γL (squares) shown as functions

of EP on-axis density nH0. Here, on-axis Alfvén frequency ωA0 is used for normalization. In

addition, the RSAE accumulation point frequency ωap is indicated as a horizontal dash-dotted

line.
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FIG. 4. Radial structures of several dominant Fourier decomposed poloidal harmonics of scalar

potential fluctuation δφm,n [frame (a)], and the intensity contour plot of the corresponding power

spectrum in the (r, ω) plane [frame (b)] shown in arbitrary units for the RSAE case with nH0/ni0 =

1.5× 10−3 in the linear stage. The solid curves in frame (b) represent SAW continua.

8



0.1 0.3 0.5 0.7

0

0.1

0.2

0.3

0.4

0.5

FIG. 5. For the reference case in the linear stage, the test particle precession resonance frequency

ωres(r̄, ℓ = 0) (solid curve) [cf. Eq. (A3)] is shown with respect to the orbit averaged radial

coordinate r̄. ωr and ωr ± γL are indicated as, respectively, horizontal solid and dashed lines to

illustrate the resonance condition [cf. Eq. (A5)]. In addition, the integrated test particle power

transfer PTP(r̄) (dash-dotted curve), as well as the radial mode structure, denoted by δφ2(r) =∫
|δφm,n|2dθdϕ (dotted curve), are shown in arbitrary units.

SAW continuum, the m = 4 harmonic is dominant, and the mode is radially localized near193

the surface with minimum q value.194

As a useful tool in analyzing wave-EP resonant interactions, test particle method is195

extensively applied to illustrate the resonance condition as well as the nonlinear dynamics of196

mode saturation and EP transport. Test particles are chosen as “representative” of resonant197

EPs, which can be readily identified from wave-EP power transfer.23 Further details about198

test particle selection are given in Appendix A (interested readers may also refer to Ref. 23199

for an exhaustive description), while here we only emphasize that the test particle population200

is characterized by two constants of the perturbed motion, M and C, corresponding to a201

reduced phase space grid (of trapped particles) with significant wave-EP power transfer in202

the linear stage. Here, M is the magnetic moment and C, given by Eq. (A1), is an invariant203

constructed from the extended phase space Hamiltonian.5,24,41 For the reference case, the204

linear resonance structure is shown in Fig. 5, along with radial mode structure and flux205206
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surface integrated test particle power transfer. We can see that the effective wave-particle207

power transfer is limited by the resonance condition on the inner side, and by the radially208

localized mode structure on the outer side. The radial width of power transfer (denoted by209

∆rpower) is similar to that of the mode structure (denoted by ∆rmode); but it remains much210

smaller than the effective resonance width ∆rres [cf. Eq. (A5) and the discussion below] or211

equilibrium pressure gradient scale length [cf. Fig. 2(a)]. Furthermore, similar structures212

can also be found for the lower growth rate cases reported in Fig. 3 due to the flat ωres profile.213

Meanwhile, for higher growth rate cases, power transfer is entirely limited by the finite mode214

width as ∆rres becomes broader. In general, ∆rpower ≲ ∆rmode ≪ ∆rres for all considered215

cases, suggesting that radial decoupling is the dominant mechanism for mode saturation,216

consistent with the strongly non-perturbative EP response. In the weakly unstable limit217

where ∆rpower < ∆rmode, however, resonance detuning and radial decoupling may both play218

important roles and should be treated on the same footing.219

The nonlinear evolution of long-lived EP phase space zonal structures can be illustrated220

by test particle Hamiltonian mapping technique via kinetic Poincaré plots,23,27,31,41 which221

represent wave-particle phase shift (resonance detuning) and particle orbit excursion (ra-222

dial decoupling) on the same footing. In the kinetic Poincaré plot, each test particle’s last223

completed orbit (when the particle crosses the equatorial plane at the outmost radial co-224

ordinate, i.e., poloidal angle θ = 0) is represented by a marker in the (Θ, Pϕ) plane. Here,225

Θ = ωt0−nϕ0 is the wave-particle phase at θ = 0, where t0 and ϕ0 indicate the corresponding226

values of time and toroidal angle; Pϕ is the toroidal angular momentum given by Eq. (A2).227

Figure 6 shows the kinetic Poincaré plots for 3 successive time frames of the reference case,228229

corresponding to, respectively, the linear stage, early nonlinear stage and saturation, as indi-230

cated in the energy evolution plot Fig. 6(d). Here, note that Pϕ is used to represent the test231

particle radial distribution, with larger Pϕ corresponding to smaller r̄ (orbit averaged radial232

coordinate) and vice versa. In order to show more intuitively the mode width, the radial233

mode structure is shown in Fig. 6(a) by mapping the test particle r̄ into Pϕ coordinates. In234

the linear stage with negligible fluctuation amplitude, Pϕ is conserved and the particles with235

Pϕ = Pϕres (defined by ωres = ω) stay constant in phase. Other particles with Pϕ > Pϕres (red236

markers) and Pϕ < Pϕres (blue markers) get a finite phase change after each bounce orbit, and237

thus, these markers drift along Θ in negative and positive direction, respectively. When the238

fluctuation amplitude grows to a finite value, Pϕ varies due to wave-particle interaction, and239
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FIG. 6. Kinetic Poincaré plots of test particles shown in the (Θ, Pϕ) plane for three successive times

of the reference case [frames (a)-(c)]. Frame (d) indicates the three considered times in the time

evolution of the total (kinetic plus magnetic) perturbed field energy Wtot. In frames (a)-(c), Θ is

modulo 2π, and Pϕ is normalized to mHavH. The test particle marker is colored by the particle’s

initial Pϕ value: red for Pϕ > Pϕres and blue otherwise. In addition, radial mode structure δφ2(r),

given in Fig. 5, is also shown in frame (a) by mapping r̄ into Pϕ coordinates.

an island-like structure naturally forms around the Pϕres, with increasing island width as the240

fluctuation amplitude grows. The mode eventually saturates when the phase space structure241

extends over the region of effective linear wave-particle power transfer. As clearly shown in242

Fig. 6(c), the resonant particles sample nearly the whole mode structure during their nonlin-243

ear orbit excursion, suggesting that radial decoupling is a crucial element of the saturation244

mechanism. As a quantitative assessment of the saturation mechanism, Fig. 7 compares the245246

averaged resonant test particle orbit radial excursion, ∆rorbit, with ∆rmode and ∆rpower for247

the cases reported in Fig. 3. We can see that ∆rorbit is indeed similar to ∆rpower, and is248

comparable with ∆rmode for most of the cases. Furthermore, as shown in Fig. 6, the mixing249

of particles from Pϕ > Pϕres (smaller r̄) with Pϕ < Pϕres (larger r̄) suggests a net outward250

particle flux due to the radial inhomogeneity of the EP distribution function. The outward251

flux can also be shown from C conservation since, as the particles lose energy to the wave,252

Pϕ decreases (r increases) and more particles move outward than inward during the mode253

growth stage. Figure 8 shows the distortion of test particles density profile at saturation for254255

the reference case. Consistent with the previous analysis, mode saturation is reached when256

the width of particle redistribution is comparable with the radial region of power transfer,257

since the resonant EP drive is significantly reduced. Here, we emphasize that the fluctua-258
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FIG. 7. For the cases reported in Fig. 3, the averaged resonant test particle orbit radial excursion

∆rorbit at saturation is compared with mode radial width ∆rmode and power transfer radial width

∆rpower in the linear stage. Here, ∆rorbit is calculated as the largest variation of the particle’s

equatorial plane radial coordinate, and is averaged over the resonant test particle population.

∆rmode and ∆rpower are measured as the radial width of the region where the corresponding

quantity is larger than the 10% of the peak value (cf. Fig. 5).

tion induced EP transport indeed occurs on meso-spatial scales [∼ O(10−1a)], intermediate259

between macro-scales such as the equilibrium profiles [∼ O(100a)], and micro-scales of char-260

acteristic EP orbit width [∼ O(10−2a)]. As anticipated in Ref. 1, the meso-scales reflect261

the properties of the fluctuation spectrum and the relevant toroidal mode number.4,5 Note262

that the clear distortion of test particle density profile shown in Fig. 8 only reflects the263

considered (M,C) slice of EP distribution function, while the overall EP radial distribution,264

obtained by averaging the EP response over all the (M,C) slices representing the entire265

phase space, is almost unchanged, due to the fact that most of the EPs are not resonant266

and, thus, experience a much weaker effect of the fluctuations.267

Figure 9 shows the saturated fluctuation amplitude versus γL for all considered cases. We268269

can observe that the scaling is clearly different from quadratic and is close to linear, as ex-270

pected from radial decoupling being the dominant saturation mechanism. In the low growth271

rate limit, where resonance detuning may also become important, we find a slight deviation272

towards a steeper scaling. The approximately linear scaling is consistent with theoretical273
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FIG. 8. The distortion of test particle density radial profile ∆nTP (solid curve) shown in arbitrary

units for the reference case. ∆nTP is calculated as the difference of test particle density at saturation

with respect to the linear stage, and is normalized to the test particle density at mode peak. The

integrated wave-particle power transfer radial profile PTP (dash-dotted curve) in the linear stage,

reported in Fig. 5, is also shown in arbitrary units for comparison.

understanding5,24 and previous numerical simulations.28,29,31 In our simulations, however,274

the scaling deviates from linear in the high growth rate limit. This could be due to the fact275

that, in the strongly driven cases, the mode structures and frequencies are self-consistently276

modified with the non-perturbative EP redistribution.4,5,24 As an example, Fig. 10 shows277278

the time evolutions of mode frequency and fluctuation radial peak location (representative279

of the mode structure) of a strongly unstable case. The self-consistent modulation of mode280

frequency and mode structure becomes evident when the fluctuation grows to an appreciable281

amplitude approaching saturation. Simulation results suggest that fluctuations are further282

enhanced in this self-consistent non-perturbative process, and saturate at a higher amplitude283

than the predicted linear scaling, which assumes constant mode frequency and frequency-284

independent mode structure.28,29,31 From Fig. 10, it is also interesting to note that, on longer285

time scale of the strongly unstable case with clear non-perturbative wave-EP interactions,286

the frequency chirping shows non-adiabatic features, as the mode structure is strongly mod-287

ified. In such conditions, it is expected that the non-perturbative EP redistributions may288

become secular and characterized by avalanches,42,43 which are important issues in burning289
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FIG. 10. Time evolutions of RSAE real frequency (maximum power intensity in the frequency

spectrum) [frame (a)] and peak location of the radial mode structure [frame (b)] for a strongly

unstable case with nH0/ni0 = 3.0× 10−3. The saturation time (vertical dash-dotted line) and the

RSAE accumulation point frequency ωap (horizontal dashed line) are also indicated.
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FIG. 11. TAE real frequencies ωr [frame (a)] and linear growth rates γL [frame (b)] shown as

functions of EP on-axis density nH0. In addition, the upper and lower TAE accumulation point

frequencies ωap (closest to mode peak) are indicated as horizontal dash-dotted lines to illustrate

the importance of non-local coupling with SAW continuum.

plasma physics studies.4,5,24 Thus, a more detailed analysis of these behaviors is worthwhile290

being pursued and will be continued in future work, since it is beyond the intended scope of291

this paper, which mainly aims at illuminating the diverse and rich nonlinear physics that can292

be investigated in DTT. Here, we just note that the nonlinear dynamics of strongly unstable293

cases further addresses the importance of self-consistent treatment of mode structure and294

EP nonlinear evolutions, especially in the next generation tokamak relevant conditions.295

B. TAE nonlinear dynamics296

Contrary to the weakly damped RSAE fluctuations analyzed above, the TAE fluctuations297

in the outer core region experience heavy damping due to strong coupling with the SAW298

continuum.44–46 Therefore, larger values of EP density are applied to drive the TAE fluctua-299

tions unstable. Figure 11 shows ωr and γL of the n = 6 TAE fluctuations with nH0/ni0 in the300301

range of [0.0028, 0.0043], where the relatively high destabilization threshold (with respect302

to the RSAE fluctuations in the central core region) can be clearly observed from the trend303

of γL. First, we focus on a weakly unstable case with nH0/ni0 = 3.0 × 10−3 (we will refer304
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FIG. 12. Radial TAE mode structure for several Fourier decomposed poloidal harmonics of scalar

potential fluctuation δφm,n [frame (a)], and the intensity contour plot of the corresponding power

spectrum in the (r, ω) plane [frame (b)] for the “weak TAE case” with nH0/ni0 = 3.0× 10−3 in the

linear stage. The solid curves in frame (b) represent SAW continua.

to this case as “weak TAE case” in the following), whose mode structure in the linear stage305

is shown in Fig. 12. The mode structure appears as a broad radial envelope consisting of306307

a wide range of coupled poloidal harmonics, as expected from the equilibrium profiles and308

the structure of SAW continua. As discussed in Ref. 1 and introduced above, the peculiar309

interest for the TAE fluctuations is that different types of EPs in the velocity space distribu-310

tion provide finite mode drive via their respective resonances: precession/transit resonances311

for trapped/passing EPs. On account of the fact that the TAE fluctuations are typically312

localized in the outer core region, they may be more of a concern for EP confinement, due313

to their potential effect of causing significant outward EP flux and consequently, of dam-314

aging the plasma facing components. Furthermore, the radial structure of wave-passing EP315

power transfer appears as several isolated peaks, as shown in Fig. 13(a) by test particle316317

analysis. Here, for simplicity, only co-passing EPs are analyzed in detail, as the behaviors318
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FIG. 13. Linear structures of several transit harmonic resonances by co-passing particles [frame (a)]

and the precession resonance by trapped particles [frame (b)] for the weak TAE case. Analogous to

Fig. 5, the radial profiles of test particle power transfer PTP(r̄) in each analysis and the radial mode

structure δφ2(r) are also indicated. Note that, in frame (a), the transit resonances are identified

by the effective resonance harmonic m− ℓ.

of co- and counter-passing EPs are very similar due to similar resonance structures. Note319

that in Fig. 13(a), the transit resonances are identified by the effective resonance harmonic320

m − ℓ from the particle’s perspective, since both the poloidal harmonic m and “bounce”321

harmonic ℓ enter in the expression of transit resonance frequency as the combination m± ℓ322

[cf. Eq. (A4)], with minus/plus sign for co-/counter-passing particle, respectively. However,323

at each resonant radius characterized by m− ℓ in Fig. 13(a), multiple poloidal harmonics of324

the mode are excited via the corresponding transit harmonic resonances, which are weighted325

differently by finite orbit width bounce averaging, consistent with the mode structure shown326

in Fig. 12(a). Thus, toroidal mode number and finite normalized (with respect to plasma327

minor radius) EP orbit width play crucial roles. In addition, we note that the character-328

istic scale length of the radial separation of the transit harmonic resonances is 1/nq′; that329

is, the meso-scale of drift wave turbulence, typically characterized by much higher toroidal330

mode number.1,4,5,22,24 On the other hand, the resonance structure of trapped EPs, shown331

in Fig. 13(b), is similar to the RSAE case analyzed in Sec. III A. We can see that ∆rpower of332

passing particles is limited by the resonance condition, and is much narrower than ∆rmode.333

The situation is not as clear for trapped particles, however, it is still legitimate to expect334

that resonance detuning, more than radial decoupling, is a relevant saturation mechanism335
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FIG. 14. Time evolution of phase space integrated power transfer for the weak TAE case. The

power transfer is normalized to the sum of instantaneous kinetic and magnetic energy density. The

saturation time is indicated as a vertical dash-dotted line.

for the weak TAE case.31336

Due to the different resonance structures of trapped and passing EPs and, in particular,337

the resonant interaction length scales, they play different roles in the nonlinear saturation338

of TAE fluctuations. Figure 14 shows the time evolution of phase space integrated power339340

transfer for the weak TAE case. We can observe that, mode saturation is due to significant341

reduction of passing particle drive. Meanwhile, trapped particle drive is still kept in a342

significant level, suggesting that the strong damping also plays an important role in mode343

saturation, as the residual trapped particle drive approximately balances the dissipation.344

Thus, the passing particle resonance plays a more crucial role in mode saturation for the345

weak TAE case. Figure 15 shows the kinetic Poincaré plots of both passing and trapped346347

particles in the linear stage and at saturation, with different colors denoting the transition348

across the resonances shown in Fig. 13. We can observe that the mode saturates when349

the resonant passing EP orbit excursion matches the narrow radial width of linear power350

transfer. In fact, since ∆rpower(passing) is very small, the phase space structure of passing351

particles can be clearly seen on the zoomed scale in Fig. 15(c) only, which is shown as an352

expanded insert of the phase space region affected by one single resonance in Fig. 15(b).353

Moreover, the redistribution of resonant passing particles is very weak and localized around354
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(a) (b) (c) (d) (e)

FIG. 15. Kinetic Poincaré plots of co-passing [frames (a)-(c)] and trapped test particles [frames

(d)-(e)] for the weak TAE case, where frames (a) and (d) refer to the linear stage and frames (b)

and (e) to the saturation time (see Fig. 14). As labeled on the figure, frame (c) is a zoom of

frame (b) to more clearly visualize the region affected by one single resonance therein. Analogous

to Fig. 6, the test particle markers are colored by their initial values of Pϕ, with different colors

denoting the transition across the resonances shown in Fig. 13. In addition, radial mode structure

is shown in frames (a) and (d) by mapping r̄ into Pϕ coordinates.

Pϕres; no interaction of adjacent resonances takes place, since the perturbation of equilibrium355

particle orbits is exceedingly small. (Note that, this is the criterion of “weak drive”.) On the356

other hand, trapped particle nonlinear transport is intrinsically nonlocal [cf. Fig. 13(b)].5,24357

However, as a result of the low fluctuation amplitude, trapped particle transport also occurs358

on a much smaller scale compared to the mode width, similar to the case in Fig. 6(b). The359

fluctuation induced particle transport, thus, does not have significant impact on the power360

transfer by trapped EPs. The relative ordering of resonant particle response length scale361

and the mode width suggests that resonance detuning is indeed the dominant saturation362

mechanism for the weak TAE case, in contrast to the RSAE cases with similar growth363

rate that is regulated by radial decoupling mechanism. Therefore, our simulation results364

suggest that the underlying mechanism of mode saturation and EP nonlinear dynamics is365

not only determined by the linear growth rate but, more crucially, by the wave-EP resonance366

structures, where the saturation mechanism is reflected by the relative ordering of the scale367

lengths of mode structure, wave-EP resonant power transfer and nonlinear EP transport.4,5,23368

Furthermore, the clear diversity of RSAE fluctuations in the central core region and TAE369

fluctuations in the outer core region also illustrates the capability of DTT to address a370

variety of nonlinear EP physics related with burning plasma studies.371
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FIG. 16. For the cases reported in Fig. 11, the saturated fluctuation amplitude δφ is shown with

respect to γL in logarithmic scale. Quadratic and linear scalings in different regimes are indicated

by dashed lines.

Figure 16 shows the saturated fluctuation amplitude with respect to γL for all TAE cases372373

reported in Fig. 11. In the low growth rate limit, the scaling is close to quadratic, confirming374

that resonance detuning is indeed the main saturation mechanism. Moreover, in the higher375

growth rate cases, the scaling first becomes higher than quadratic, and reduces to approx-376

imately linear in the strongly unstable limit. It suggests that qualitative and quantitative377

differences of wave-EP nonlinear dynamics take place with increasing EP drive, due to equi-378

librium geometry, plasma nonuniformity and non-perturbative EP response.5,18,24,26 As an379

example of the strongly unstable regime, we look at the case with nH0/ni0 = 4.0 × 10−3380

(in the following, we refer to this case as “strong TAE case”). The strong TAE case shows381

similar linear mode and resonance structures compared to those of the weakly unstable case382

shown in Figs. 12 and 13. The power transfer widths of both passing and trapped particles383

are larger in the strong TAE case as ∆rpower(passing) ≪ ∆rpower(trapped) ≃ ∆rmode, due384

to increased γL. (Note that the several transit harmonic resonances are still well separated385

in the linear stage.) However, as shown in Fig. 17, the mode time evolution has different386387

features. We note that, after the linear growth stage, during t ∼ 240 − 280ω−1
A0 , the total388

power transfer decreases, mostly due to a rapid reduction of passing EP drive, since the389

trapped EP drive is not significantly impacted in this stage. Different from the weak TAE390
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FIG. 17. Time evolution of and integrated power transfer for the “strong TAE case”. The saturation

time is indicated as a vertical dash-dotted line.

case, the mode keeps growing due to less affected trapped EP drive and residual passing EP391

contribution. Then, a short second growth stage follows by an interestingly strengthened392

passing EP drive; meanwhile, trapped EP drive starts clearly decreasing. At t ∼ 350ω−1
A0 ,393

the mode eventually saturates with significant decrease of both passing and trapped EP394

drive.395

More details underlying this complicated time evolution can be illustrated by test particle396

analysis, where we focus on the novel nonlinear dynamics of passing EPs. Figure 18 shows397398

kinetic Poincaré plots of co-passing test particles at four times of the strong TAE case. Here,399

in order to see the nonlinear dynamics more clearly, the test particles are distributed around400

one single resonance with m− ℓ = 9 at Pϕres ≃ −17.10mHavH. In addition, linear Pϕres with401

m − ℓ = 8 ÷ 11 are also indicated in Pϕ coordinate. The dynamics in the early nonlinear402

stage [Fig. 18(b)] is similar to the weak TAE case analyzed above, that is, the passing403

particles are radially redistributed around Pϕres, and the power transfer by passing particles404

decreases correspondingly. However, since the fluctuation strength keeps increasing mostly405

due to magnetically trapped EP drive, the resonant island extends and passing particle406

transport becomes nonlocal, as the particles are distributed to an increasingly wider region.407

At t ∼ 300ω−1
A0 [Fig. 18(c)], we can observe that the particle distribution is strongly distorted,408

where a substantial part of particles are radially transported on a radial scale comparable409
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FIG. 18. Kinetic Poincaré plots of co-passing test particles at four times of the strong TAE case

with test particles initialized around the m − ℓ = 9 resonance. The four times refer to the linear

stage [frame (a)], two times of the nonlinear growth stage [frames (b) and (c)] and saturation time

[frame (d)]. The radial mode structures is shown in frame (a) by mapping r̄ into Pϕ coordinates.

In all frames, linear Pϕres with m− ℓ = 8÷ 11 are indicated by horizontal dotted lines.

with separation of adjacent resonances (1/nq′). Thus, the expanding resonant islands, whose410

characteristic widths scale as
√
δφ, are effectively overlapping. Since the wave-passing EP411

resonant interaction scale length is very narrow in the linear stage, the meso-scale transport412

and increasing resonant island width allow the wave to more effectively extract energy from413

particles, including the ones that are not resonant in the linear stage, as they still retain414

a significant amount of free energy.24 In fact, all particles with significantly modified phase415

space orbits [cf. Fig. 18(d)] are resonant in this stage, and their small but finite resonant416

drive contributes to the increase in the integrated power transfer of passing particles shown417

in Fig. 17. This enhanced mode drive is also responsible for the stronger (than quadratic)418

scaling of saturation amplitude with γL in Fig. 16.5,18,26 Eventually at mode saturation419

[Fig. 18(d)], we notice that the radially redistributed particles almost sample the whole420

mode structure, with the corresponding decrease of power transfer.421

It is also interesting to further address the mechanism of resonant passing particle trans-422

port at mode saturation. As shown in Fig. 18(d), the particle transport is significantly423

enhanced in this stage due to the high fluctuation amplitude, and it is difficult to identify424

any corresponding phase space structure. This happens because the particles are trans-425

ported on a spatial scale larger than or comparable with the radial resonance separation426

1/nq′, with the consequent overlap of adjacent resonances (Chirikov condition). Thus, as427
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FIG. 19. Time evolution of the mean squared displacement S2 for a group of resonant passing

particles initialized with Pϕ = Pϕres ≃ −17.10mHavH and evenly distributed on the flux surface.

particles receive random “kicks” from overlapping resonances, their nonlinear orbits become428

stochastic in this stage. As a result of orbit stochasticity, the nature of passing particle429

transport becomes diffusive. In order to illustrate the transition from localized redistribu-430

tion to meso-scale diffusive transport more clearly, Fig. 19 shows the time evolution of the431432

mean squared displacement S2 for a group of resonant passing test particles initialized with433

Pϕ = Pϕres and evenly distributed on the flux surface. Here, test particle’s outer equato-434

rial plane radial coordinate r0 is used to represent the particle’s radial position, and S2 is435

calculated as436

S2(t) =
⟨
(r0(t)− ⟨r0(t)⟩)2

⟩
,437

where ⟨. . . ⟩ stands for averaging over the test particle population. Thus, S2 is the char-438

acteristic relative radial separation of the test particles, and is representative of particle439

transport length scales. In the linear stage, S2 ≃ 0 since all particles have the same r0.440

In the early nonlinear stage, the particles are re-distributed around Pϕres, and the collective441

particle transport remains coherent with relatively low value of S2. When fluctuation ampli-442

tude reaches a threshold value, and the scale of particle transport increases to the resonance443

separation length scale, we notice that S2 increases significantly. When this occurs, S2444

scales roughly linearly with time, suggesting that the nature of particle transport is indeed445
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FIG. 20. The distortion of test particle density profile ∆nTP [frame (a)] shown in arbitrary unit for

the strong TAE case. The calculation and normalization of ∆nTP are analogous to Fig. 8. Frame

(b) shows the comparison of integrated EP density nH in the linear stage (dashed curve) and at

saturation (solid curve).

diffusive as anticipated above. The diffusion rate D can be estimated by the slope of S2(t)446

as447

D ≃ 1

2

dS2

dt
.448

After mode saturation, S2 also reaches a steady state value characterized by the mode449

envelope width, as the particles are roughly evenly distributed within the mode location:450

S2
sat ∼ 1/12(∆rmode)

2 ≃ 5.2 × 10−3a2. Thus, the finite mode width becomes effective in451

preventing the particles from being transported further out.452

The meso-scale EP transport and high saturation amplitude also result in significant EP453

redistribution in the strong TAE case. Figure 20(a) shows the distortion of test particle454455

density profile at saturation for both co-passing and trapped particles. We can see that456

at mode saturation, the outward particle fluxes of both types of particles occur on similar457

scales comparable with the mode width, consistent with the significant reduction of power458

transfer in both channels. Since a substantial portion of the EPs are resonant, the integrated459

EP density nH also exhibits a clear outward EP flux at saturation, as shown in Fig. 20(b).460

Thus, the TAE fluctuation induced EP loss could be more crucial for the assessment of461
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EP confinement, and such a problem is worthwhile being further analyzed in future works,462

taking into account the whole Alfvén fluctuation spectrum self-consistently. Furthermore,463

since the finite mode width is the more effective factor in regulating the nonlinear transport464

of both types of particles, radial decoupling is the dominant saturation mechanism for the465

strong TAE case, confirmed also by the approximately linear scaling of saturation amplitude466

in the high growth limit of Fig. 16.467

IV. SUMMARY AND DISCUSSION468

In this paper, following the previous work in Ref. 1, we have analyzed the nonlinear dy-469

namics of shear Alfvén fluctuation saturation and the corresponding fluctuation induced EP470

transport in DTT plasmas. The simulations address two particular cases, namely, n = 4471

RSAE fluctuations and n = 6 TAE fluctuations for the central and outer core regions of472

DTT plasmas, respectively. These cases can be considered as typical paradigms to illus-473

trate the rich and diverse physics due to resonant excitation of Alfvénic fluctuations by474

supra-thermal particles in DTT and, more generally, in reactor relevant fusion plasmas. In475

particular, we focus on the mode saturation mechanism and on the relative importance of476

resonance detuning versus radial decoupling, exploring the properties of EP transport as477

coherent redistribution and/or diffusive transport. Test particle method and Hamiltonian478

mapping technique are extensively used to illustrate the wave-EP resonant interactions and479

the nonlinear evolution of EP phase space zonal structures.480

The nonlinear saturation of RSAE fluctuations in the central core region, dominated by481

trapped particle precession resonance, is consistent with previous theoretical and numerical482

studies. By analyzing the linear mode and resonance structures, nonlinear EP orbit ex-483

cursion as well as saturation amplitude, we show that the prevalent saturation mechanism484

is radial decoupling, which plays an important role even when the fluctuation is close to485

marginal instability. This is consistent with theoretical understanding, where the effect of486

resonance detuning is expected to be much weaker for trapped than passing particles, due487

to the flatter radial profile of the resonance frequency. Moreover, the radial scale of res-488

onant EP re-distribution is generally comparable with the mode radial width. Thus, the489

fluctuation induced trapped EP transport expectedly occurs on meso-spatial scales for a490

wide range of reference equilibria and corresponding plasma stability. In fact, the relevant491
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spatio-temporal scales of nonlinear wave-EP dynamics are controlled by equilibrium geom-492

etry, plasma nonuniformity and perturbative versus non-perturbative EP response; and are493

ultimately reflected by the features of the fluctuation spectrum and the corresponding most494

unstable toroidal mode number. The scaling of saturated fluctuation amplitude with respect495

to the linear growth rate is, in general, approximately linear. Meanwhile, in high growth496

rate limit, self-consistent modulations of mode structure and frequency are observed, which497

maximize wave-EP power transfer and contribute to the enhanced saturation level in this498

regime. In addition, the longer time scale evolution with strong drive suggests non-adiabatic499

frequency sweeping and secular EP transport, similar to those of strongly unstable EPMs.500

A detailed investigation of longer time scale nonlinear dynamics is beyond the scope of this501

work, and will be the subject of a future publication. In fact, we note that the strongly502

unstable RSAEs discussed in this work are in the relevant parameter regime for burning503

plasma physics studies.1,40504

The nonlinear dynamics of TAE fluctuations in the outer core region can be quite different505

depending on the strength of mode drive. The TAE fluctuations are driven collectively by506

both magnetically trapped and passing EPs, which show very different resonant interaction507

length scales due to their resonance condition: wave-particle power transfer with passing508

EPs is characterized by much finer scale than trapped EPs. Thus, trapped and passing EPs509

exhibit different nonlinear transport length scales and play independent or synergetic roles510

in mode saturation under various stability regimes. For sufficiently low linear growth rate,511

low amplitude saturation is observed, mainly due to the nonlinear reduction of passing EP512

drive, while trapped EP drive is essentially unaltered. EP radial redistribution in this case513

is local in phase space; thus, transit resonances are radially well separated and transport514

effects on the EP density profile are negligible. Meanwhile, for stronger linear growth rate,515

with sufficiently high fluctuation level and corresponding enhanced EP radial excursion,516

transit resonances may overlap. Phase space orbits become stochastic and passing EP radial517

transport is diffusive over the length scale of the mode width. The fluctuation saturates with518

meso-scale redistributions over the whole radial mode structure for both resonant trapped519

and passing EPs; and the overall EP flux is reflected by a significant distortion of the EP520

density profile. This suggests that TAEs in the outer core region may be a more serious521

concern than RSAEs in the central core for the limits they may impose on plasma operations522

to avoid global EP losses. Furthermore, note that for single-n simulations reported in this523
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paper, large power input and the contribution of trapped EP drive are necessary to cause524

transit resonance overlap and diffusive transport of passing EPs. For realistic scenarios525

with multi-n modes excited simultaneously, the stochasticity threshold is much lower with526

much more resonances.47 Thus, EP diffusive transport by spontaneously excited multi-n527

TAEs could occur at much lower EP concentration, and will be further explored in future528

studies. The present work also suggests that transition to resonance overlap and diffusive529

EP transport is connected with equilibrium geometry and plasma nonuniformity as well530

as non-perturbative EP response. In fact, stronger EP drive causes the saturation level531

to be enhanced over the quadratic scaling with the linear growth rate to be expected for532

resonance detuning. The scaling finally reduces to approximately linear in the high growth533

rate limit with nonlinear EP transport comparable to the mode width, suggesting that radial534

decoupling should be expected for strongly driven TAEs in the outer core region.535

In summary, by further investigating the DTT reference scenario assumed in Ref. 1, the536

present work confirms the anticipations on the rich and diverse physics that is expected in537

DTT core plasmas. The characterizing element is the Larmor radius normalized to plasma538

minor radius, ρ∗ ≡ ρL/a, for both EPs as well as thermal plasmas. In particular, the ratio539

of these two fundamental parameters, which is controlled by the characteristic EP energy in540

units of the critical energy, plays a fundamental role. In DTT plasmas and, more generally,541

in reactor relevant conditions, the micro-scales of Alfvénic instabilities resonantly excited542

by EPs are of the same order of meso-scale structures due to drift wave turbulence. This543

is one crucial reason why EPs are considered mediators of cross scale couplings, with their544

predominant contribution to the local power balance further emphasizing their unique role.545

Another important physics process illuminated by the present work is the nonlocal trans-546

fer of energy and momentum in phase space, due to the peculiar role of magnetically trapped547

and passing EPs. This channeling in phase-space, which may involve different mode num-548

bers, and the general properties of the fluctuation spectrum discussed in this work, confirm549

the importance of looking at transport processes in phase space when dealing with collision-550

less fusion plasmas; that is, the importance of phase space zonal structures.551
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Appendix A: Test particle selection562

Following Ref. 23, the test particle selection is introduced in this appendix. In the563

equilibrium magnetic field, the particle toroidal angular momentum Pϕ and energy E are564

constants of motion. However, in the presence of a finite amplitude fluctuation, due to wave-565

particle interactions (e.g., E × B drift), the particle orbit is perturbed and conservations566

of Pϕ and E are broken. Following Refs. 5, 24, and 41, for a single-n mode with constant567

frequency, a new quantity can be constructed from the extended phase space Hamiltonian,568

C ≡ ωPϕ − nE, (A1)569

which is conserved in addition to the magnetic moment M . In the physics model of HMGC,570

Pϕ ≃ mHRU + eHR0(ψeq − ψeq0)/c (A2)571

at the leading order.23 Here, R is the major radius coordinate, U is the parallel (to the572

equilibrium magnetic field) velocity, eH is the EP charge, ψeq is the equilibrium magnetic flux573

function, and ψeq0 is the value of ψeq on the magnetic axis. Moreover, E = mHU
2/2+MΩH.574

Given the conservation properties ofM and C, we could then only look at a single resonant575

“slice” (M0, C0) of the EP distribution function, since linear and nonlinear evolution of the576

considered slice is independent of others. The selected slice is identified from a reduced577

phase space grid (r,M,U) with significant wave-EP power transfer in the linear stage, and578

is sampled by a group of test particles, which are initialized with M0, C0 and properly579
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(e.g., uniformly) distributed in r, θ, ϕ directions, where θ and ϕ are respectively, poloidal580

and toroidal angles. Test particles are evolved in the electromagnetic field stored from the581

self-consistent simulation and, thus, are representative of the dynamic behavior of physical582

particles with the same phase space coordinates. The test particle characteristic resonance583

frequency, ωres, can be computed as24584

ωres(r̄,M0, C0, ℓ) = nωd + ℓωb (A3)585

for magnetically trapped particles, and as586

ωres(r̄,M0, C0, ℓ) = nωd + ℓωb + (nq̄ −m)σωb (A4)587

for passing particles. Here, r̄ stands for the orbit averaged particle radial coordinate (playing588

the same role as Pϕ for fixed M0 and C0); ωd = (∆ϕ/2π − σq̄)ωb is the toroidal precession589

frequency, where ∆ϕ in the change of ϕ over the period of a bounce orbit, τb =
∮
dθ/θ̇,590

σ = sgn(U), q̄ is the weighted safety factor integrated along the particle orbit;24 ℓ is the591

bounce harmonic; and ωb = 2π/τb is bounce/transit frequency for trapped/passing particles.592

Furthermore, for a mode with finite linear growth rate γL, the condition for effective resonant593

power transfer could be given as594

|ω − ωres(r,M0, C0, ℓ)| ≲ γL. (A5)595

That is, significant wave-particle resonant interaction can take place when the frequency596

difference is of the order of γL. Eq. (A5) could be solved with respect to r or Pϕ, yielding597

the resonance width ∆rres(ω,M0, C0, ℓ) or ∆Pϕres(ω,M0, C0, ℓ).598
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