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Abstract. This paper proposes a new algorithm for fast matrix-free evaluation of
linear operators based on hybridizable discontinuous Galerkin discretizations with
sum factorization, exemplified for the convection-diffusion equation on quadrilateral
and hexahedral elements. The matrix-free scheme is based on a formulation of the
method in terms of the primal variable and the trace. The proposed method is
shown to be up to an order of magnitude faster than the traditionally considered
matrix-based formulation in terms of the trace only, despite using more degrees
of freedom. The impact of the choice of basis on the evaluation cost is discussed,
showing that Lagrange polynomials with nodes co-located with the quadrature
points are particularly efficient.

1 Introduction

Discontinuous Galerkin methods are highly attractive discretization schemes
for a wide variety of problems, in particular for problems with strong trans-
port character as they allow for upwinding and are amenable to efficient ex-
plicit time stepping. They are also increasingly used in problems dominated
by elliptic terms where linear systems need to be solved. Whereas classical
discontinuous schemes have often been criticized as being less efficient than
continuous ones due to more degrees of freedom and a wider stencil for de-
livering the same accuracy, the hybridizable discontinuous Galerkin (HDG)
method developed by Cockburn and co-workers [3,10] has addressed this defi-
ciency by expressing the connectivity in the final system matrix only through
a variable for the trace of the solution on the mesh skeleton, into which all
volume terms are absorbed by a static-condensation-like technique. This re-
duced number of unknowns has been shown to render the method highly
efficient when compared to continuous and other discontinuous Galerkin dis-
cretizations, in particular for higher polynomial degrees [4,12].

When using modern iterative solvers with matrix-free implementations,
however, matrix-based HDG is still lagging behind formulations in the primal
variable amenable to matrix-free operator evaluation [7,8]. This work closes
this gap by developing a new matrix-free scheme for a particular HDG vari-
ant in the primal variable u and the trace û that was recently proposed by
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Cockburn [2], relying on the algorithms from the generic finite element library
deal.II [5,6]. We show that operator evaluation is more than an order of
magnitude faster with the proposed implementation than matrix-based HDG
for moderate polynomial degrees of four to five in three spatial dimensions.
The beneficial properties of the new method motivate future work on efficient
preconditioners for iterative solvers with this scheme.

This article is structured as follows. Sect. 2 introduces the HDG dis-
cretization and details the two possible matrix formulations. In Sect. 3 the
sum factorization ingredients and efficient bases are presented. Sect. 4 shows
our computational results and gives an outlook to future work.

2 Hybridizable discontinuous Galerkin discretization

We consider the linear convection-diffusion equation on a bounded computa-
tional domain Ω ⊂ Rd in d space dimensions,

∇ · (cu)−∇ · (κ∇u) = f in Ω,

u = gD on ∂ΩD, (−k∇u+ cu) · n = gN on ∂ΩN,
(1)

where c is the direction of transport, κ > 0 is the diffusivity, and f is a given
forcing. The solution u is found subject to a Dirichlet value gD on ∂ΩD ⊂ ∂Ω
and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD.

We assume a tesselation Th that partitions the computational domain
Ω into ne elements Ωe of characteristic size h. We specialize algorithms for
quadrilateral or hexahedral elements on which sum factorization is straight-
forwardly implemented. An element Ωe is the image of the reference domain
[−1, 1]d under a polynomial mapping of degree k. We denote by Vh,k the
space of admissible solutions that are polynomials of tensor degree k. The
HDG method [10], which rewrites the convection-diffusion equation (1) into
a system in the primal variable u and the flux q = −κ∇u, uses this space
for both u and each component of q. A third variable û is introduced on the
mesh skeleton, the faces Fh of the triangulation, with the associated solution
space Mh,k as the (d − 1)-dimensional tensor product polynomials on the
faces Fh that are zero on the Dirichlet boundaries ∂ΩD. The resulting weak
form is to find a triple (q, u, û) ∈ V dh,k × Vh,k ×Mh,k such that it holds

(w, κ−1q)Th − (∇ ·w, u)Th + 〈w · n, û〉∂Th = −〈w · n, gD〉∂ΩD
∀w ∈ V dh,k,

− (∇v, cu+ q)Th + 〈v, (cû+ q) · n+ τ(u− û)〉∂Th = (v, f)Th ∀v ∈ Vh,k,
〈µ, (cû+ q) · n+ τ(u− û)〉∂Th = 〈µ, gN〉∂ΩN

∀µ ∈Mh,k.

(2)
We denote by (·, ·)Th the bilinear form associated with cell integrals in the
usual finite element fashion and by 〈·, ·〉∂Th

the bilinear form for face inte-
grals, where each interior face is visited twice, involving different fields u
and q but the same û on the two sides. The stabilization parameter τ can
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come in various flavors adapted to the problem nature [10]. We exemplify the
implementation with a centered scheme as τ = |c · n|+ κ

` with ` = 5.
The weak forms in (2) give rise to the following matrices, see also [10],

Aij = (ϕi, κ
−1ϕj)Th , Bij = −(∇ϕi,ϕj)Th + 〈ϕi,ϕj · n〉∂Th ,

Cij = 〈ψi,ϕj · n〉∂Th , Dij = −(∇ϕi, cϕj)∂Th
+ 〈ϕi, τϕj〉∂Th ,

Eij = 〈ϕi, (c · n− τ)ψj〉∂Th , Gij = 〈ψi, τϕj〉∂Th ,
Hij = 〈ψi, (c · n− τ)ψj〉∂Th ,

(3)

where ϕi denotes vector-valued shape functions spanning V dh,k, ϕi are basis
functions spanning Vh,k, and ψi are the basis functions of Mh,k. The right
hand side of (2) gives rise to the three vectors

Ri = 〈ϕi · n, gD〉∂ΩD
, Fi = (ϕi, f)Th , Li = 〈ψi, gN〉∂Th . (4)

With these ingredients, the discrete HDG method seeks for the coefficient
vectors (Q,U , Û) through the linear systemA −BT CT

B D E
C G H

QU
Û

 =

−RF
L

 . (5)

Formulation in terms of the trace û An attractive feature of the HDG
method is the possibility to statically condense out some of the degrees of
freedom before solving the linear system [3]. This can significantly speed
up the solution of the final linear system in implicit methods, besides the
beneficial convergence properties of HDG fluxes [3,10]. In equation (5), the
matrices A, B, D are block-diagonal over elements because the coupling is
expressed solely in terms of the trace variable û. Thus, they can be inverted
element by element through a Schur complement, eliminating q and u from
the system. This reduces the matrix-vector product complexity per element
from O(k2d) to O(k2d−2). The resulting linear system in the trace reads

KÛ = T , (6)

where the matrix K and right hand side vector T are given by

K = H−
(
C G

)(A −BT

B D

)−1(
CT

E

)
, T = L−

(
C G

)(A −BT

B D

)−1(−R
F

)
.

The trace formulation has been used in a large number of works on HDG,
including the performance comparisons [4,12]. The static condensation with
inverse matrices, however, mandates to resort to an explicit sparse matrix
storage.1

1 Note that we do not consider the narrow case where the mesh is Cartesian, c is
axis-aligned and element-wise constant, and κ is constant, when the matrix for
(q, u) is separable and can be expressed as a Kronecker product of 1D matrices
with the inverse given by the fast diagonalization method [9].
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Formulation in terms of u and û An alternative formulation of HDG
proposed recently [2] is to express the final linear system in the two variables
u and û, rather than the trace only,[(

D E
G H

)
−
(
B
C

)
A−1

(
−BT CT

)](U
Û

)
=

(
F
L

)
+

(
B
C

)
A−1R. (7)

The advantage of this compact form is that only an inverse of a vector mass
matrix A weighted by the diffusion coefficient appears, for which fast matrix-
free inversion methods with lower complexity than the 2d(k+1)2d arithmetic
operations in the polynomial degree k of the full matrix inversion are available
as detailed in the next section.

3 Sum factorization algorithms for HDG

We exemplify the structure of a matrix-free evaluation kernel on the mul-
tiplication by the cell integral contribution to the matrix BT in 3D, i.e.,
the integral −(ϕi,∇ϕj)Th . The shape functions are assumed to be the prod-
uct of three one-dimensional shape functions ϕi(ξ) = ϕ1D

i1
(ξ1)ϕ1D

i2
(ξ2)ϕ1D

i3
(ξ3)

for i = 1, . . . , (k + 1)3. Integrals are evaluated with Gaussian quadrature in
the points (ξq1 , ξ

q
2 , ξ

q
3), q = 1, . . . , nq. Here, we choose nq = (k + 1)3 points

which ensures exact integration of constant-coefficient weak forms on affine
geometries. While this is usually enough also for representing integrals for
curved geometries accurately, variable coefficients or nonlinearities often re-
quire more points to avoid aliasing effects. Our methods also apply to those
cases, albeit at slightly reduced efficiency.

For matrix-free evaluation, we associate the input vector U with the rep-

resentation u
(e)
h (x) =

∑(k+1)3

j=1 ϕj(x)U
(e)
j on a cell Ωe. This quantity is then

tested by all functions ϕi. The integral is computed by a loop over all cells
Ωe. On each cell, the approximation reads

∫
Ωe

ϕi(x) · ∇uh(x)dx ≈
n3
q∑

q=1

ϕi(ξq) · J−Tq

(k+1)3∑
j=1

∇ξϕj(ξq)U
(e)
j

det(Jq)wq,

where J = J(ξ) is the Jacobian of the transformation from the reference
to the real cell and ∇ξ denotes the gradient with respect to the reference
coordinates. Moreover, wq and ξq denote the quadrature weights and points,
respectively. The three steps to evaluate the integrals for all test functions on
an element are (a) the evaluation of the solution gradient in all quadrature
points, (b) the multiplication by the inverse Jacobian J−Tq = J−T(ξq) and the
factor det(Jq)wq, and (c) the multiplication by the values ϕi and summation
of quadrature points for all i. Steps (a) and (c) can be recast as matrix-vector
products of size 3nq × (k + 1)3 and 3(k + 1)× nq, respectively. However, the
potential cost of (k + 1)6 can be reduced to (k + 1)4 (or to d(k + 1)d+1
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in space dimension d) by sum factorization, an algorithm that transforms
the summations into one-dimensional kernels along all spatial directions by
using the tensor product structure in the shape functions. Sum factorization
has its origin in spectral elements [11] and has found widespread use in both
continuous and discontinuous Galerkin implementations. The matrix defining

the interpolation of ∇ξu
(e)
h in the quadrature points readsDco

1 ⊗ I2 ⊗ I3
I1 ⊗Dco

2 ⊗ I3
I1 ⊗ I2 ⊗Dco

3

(S1 ⊗ S2 ⊗ S3

)
U (e). (8)

In this formula, the product by the first matrix
(
S1 ⊗ S2 ⊗ S3

)
—with (S∗)ij =

ϕ1D
j (ξi) the matrix of 1D shape functions evaluated in the 1D quadrature

points—is a basis change [6] into the Lagrange basis defined in the points of
Gaussian quadrature. This basis with collocated node and quadrature points
reduces evaluation costs because it only involves 2d tensor product kernels
to get all components of the gradient, as opposed to d2 tensor product ker-
nels in a naive implementation. The matrices Dco

∗ are the derivatives of the
Lagrange polynomials in the Gauss points, i.e., in the collocation basis.

Matrix-vector product for general bases Using algorithms in the lines
of (8) for both cell and face integrals as appropriate (e.g., using a matrix

S1 ⊗ S2 ⊗ Sf3 for an interpolation of values onto the face f with normal in

ξ3 direction with a 1× (k + 1) matrix Sf3 ), all integrals appearing in Eq. (7)
can be evaluated with complexity O(kd) operations for face integrals and
O(kd+1) operations for the cell integrals. The computations are done by the
following algorithmic steps in a loop over all cells (see also [7, Sec. 4.1] for a
partly matrix-free variant):

1. Compute cell integral P = −(Bc)TU (e), with Bc the cell integral part of
B = Bc +Bf in Eq. (3).

2. Loop over all faces of cell e and add the face contribution,

P = P +
(
−(Bf)T CT

)(U (e)

Û
(e)

)
.

3. Compute Q(e) = A−1P by using the tensor product inverse matrix algo-
rithm from [6, Sec. 4.4.1] (change to diagonal basis).

4. Compute cell integral contribution in V (e) = DcU (e) −BcQ(e).
5. Loop over all faces of cell e

(a) Add face integral V (e) = V (e) +DfU (e) + EÛ
(e)
− (Bf)Q(e).

(b) Compute face integral V̂
(e)

= GU (e) +HÛ
(e)
−CQ(e) and add into

the respective position in the global result vector V̂ .

When the loop over faces is completed, the cell contribution of V (e)

contains the result for the primal variable V .
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Table 1. Number of tensor product kernel calls for evaluation of HDG in (u, û) for
3D convection-diffusion operator of cost (k + 1)4 (cells) and (k + 1)3 (faces)

cell terms face terms
BT A−1 B,D BT, CT second face loop

generic basis 15 18 18 6 × 14 6 × 24
collocation basis 3 — 3 6 × 4 6 × 4

Matrix-vector product for collocation basis The algorithm for generic
basis contains a large number of multiplications by matrices of the form
S1 ⊗ S2 ⊗ S3, their transpose, and the respective face versions. In essence,
these steps interpolate from the coefficients in the chosen basis to the values
in the points of Gaussian quadrature. For the HDG method in (u, û) format,
a basis with collocated node and quadrature points where S1, S2, S3 are unit
matrices is very beneficial because a large number of interpolations turn into
the identity operation. In particular, the collocation basis is orthogonal with
respect to the L2 inner product and thus results in a diagonal mass matrix,
considerably simplifying the multiplication by A−1, in contrast to a generic
tensor product basis with algorithm according to [7, Sec. 4.4.1].

Table 1 lists the number of tensor product calls for the collocation ba-
sis compared to a general basis. Both the number of cell sum factorization
kernels and face sum factorization kernels are significantly reduced, which
results in a significant saving also in our highly tuned implementation using
advanced SIMD (vectorized) instructions [6], see Fig. 1. In particular for the
face integrals, the only sum factorization calls are for the interpolation of
contributions onto the faces. Note that besides the operations listed in the
table, the algorithm also does O((k + 1)3) operations on quadrature points
of cells and O((k + 1)2) on quadrature points of faces.

4 Numerical experiments and outlook

We run experiments of an MPI-only parallelized code on all 28 cores of a
dual-socket Intel Xeon E5-2690 v4 (Broadwell) system running at 2.6 GHz to
present the memory bound sparse matrix kernels in a fair way as compared to
the more compute-heavy algorithms developed in this contribution. The im-
plementation makes use of the optimized sum factorization kernels available
in the deal.II library [5,6] and uses the Trilinos Epetra library for the sparse
matrix-vector products with the trace matrix. Our test problem is equation
(1) with solution u(x, y, z) = sin(10x) sin(12y) cos(10z), diffusion κ = 1, and
convection c(x, y, z) = (−y, x, 0). The right hand side function f is set such
that the given analytical solution is obtained. We solve the problem on half
a spherical ball of radius 1 in the positive hemisphere z ≥ 0 with Dirichlet
conditions set on {z = 0} and Neumann conditions on the spherical surface.
We also run a 2D experiment with the z component ignored on a half circle.
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Fig. 1. Performance of one matrix-vector product: Number of degrees of freedom
processed per second on 28 Broadwell cores.

Fig. 1 displays the computational throughput on experiments recorded at
around 10 million unknowns with varying k. The throughput is measured as
the number of primal degrees of freedom, (k+1)dnelements, per second (primal
DoFs/s) to make the HDG matrix system (6) in the trace comparable to
the larger (u, û) system. The 2D results show a similar performance in the
matrix-free implementation as compared to the sparse matrix for the trace.
In 3D, however, the matrix-free implementation is more than an order of
magnitude faster already for k = 5. The gap in performance is explained by
computer architectural properties: the matrix-free implementation replaces
the memory-bound sparse matrix-vector product by a less memory-intensive
algorithm and achieves a higher arithmetic intensity [6]. The fact that the gap
widens as k is increased might seem surprising since both the trace matrix and
the matrix-free implementation have a complexity of O((k + 1)4) per cell or
O(k+1) per primal degree of freedom. The explanation is that the matrix-free
implementation is dominated by (face) terms of cost O(k3) for the considered
range of polynomial degrees, see the cost estimates in Table 1, a fact also
observed in matrix-free implementations for continuous and discontinuous
elements [5,6]. Fig. 1 also shows that the matrix-free formulation in a generic
basis is 15–40% slower than the specialized version for collocated node and
quadrature points. Furthermore, our experiments illustrate that a matrix
formulation for (u, û) instead of the matrix-free kernels is significantly slower
than the trace matrix. In other words, the (u, û) formulation demands a
matrix-free implementation. Finally, the throughput at up to 5 · 108 primal
DoFs/s with the 3D matrix-free implementation on a general mesh is similar
to the performance recorded for the symmetric interior penalty method [8].

The significant potential of matrix-free HDG implementations revealed
by the experiments in this work motivate the development of iterative solver
schemes that can utilize the vastly faster matrix-vector products for the (u, û)
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formulation. Novel developments are necessary because multigrid techniques
established for other formulations [8] are not directly applicable.
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