Virtual Enterprise Design — BDI Agentsvs. Objects

lyad Rahwan', Ryszard Kowalczyl, Yun Yang'

1 School of Information Technology, Swinburne University of Technology
P.O.Box 218, Hawthorn, VIC 3122, Australia
{iyad, yun}@t.swin.edu.au
2 CSIRO Mathematical and Information Sciences
723 Swanston S, Carlton, VIC 3054, Austrdia
Ryszar d. Kowal czyk@m s. csiro. au

Abstract. Current research identifying architectures for a virtual enterprise has
moved from information modelling to role modelling. Thus, a high level of
autonomy results from the distribution of responsibilities, capabilities, and
knowledge among different business units in the virtual enterprise at the design
stage. Current trends tend towards using object-oriented technology as an
effective abstract system design and implementation methodology. We argue
that applying the software agent paradigm to the virtual enterprise provides
various advantages on both the design and operationa levels. We further show
that the Belief Desire Intention agent architecture has additiond abilities of
mapping real world business unit autonomy and interaction. We aso introduce
the Belief Desire Intention agent paradigm capability of facilitating highly
flexible (agile) enterprise design and implementation.

1 Introduction

A dgnificant enhancement of inter-enterprise transactions has been provided by the
emerging information technologies (IT). This hes rased a need for establishing a new
paradigm defining architectures, dandards, and design and implementation policies
for inter-enterprise systems, which redize the capabilities of IT and maximize their
utilization in al possble ways. The Virtud Enterprise (VE) paradigm emerged in
order to address this need and produce efficient procedures for deding with the above
requirements. Although there is no dear sandardized definition of the VE, there is a
generd agreement between currently proposed definitions. For example, the NIIIP
project [1] defines the VE to be "a temporary consortium or dliance of companies
formed to share cods and skills and exploit fest-changing market opportunities'.
While for Welton and Whicker [2] "the Virtuad Enterprise condsts of a series of co-
operating 'nodes of core competence, which form into a supply chain in order to
address a specific opportunity in the market place'. In other words, the virtua
enterprise is an organization of enterprises shaing resources and working
cooperatively towards the achievement of mutual benefits Terms such as e
commerce, supply chain management, and virtud corporation correspond to closay
rdlated concepts. In a VE, there is no centrdized control, neither is there a hierarchy

of enterprise management levels. Ingteed, the cooperation of independent, sdf-
interested units results in convergence towards an overd| welfare,

In the next section, we outline the problem with current virtua enterprise design,
and hence implementation approaches. Then, in section 3, we present an overview of
agent technology and different agent architectures. Section 4 discusss the problem
with current approaches towards designing the virtua enterprise, particularly the
object-oriented gpproach. Section 5 outlines the mgor advantages of the agent
goproach. In Section 6, we introduce the specific capabilities of Bdief Desre
Intention (BDI) agents in modeling and implementing virtuad enterprises. Next, we
show how the BDI approach corresponds well to a set of well-known agile (flexible)
enterprise design guiddines in section 7. Findly, a number of conclusons are drawn,
and future research is outlined.

2 Virtual Enterprise Problems

There is a great diversty in the way different organizations do business. Different
companies have different priorities, business process definitions, ontologies
representing business documents and procedures, and different tools for modelling
their overdl draegies and plans. Aspects such as the explicit representation of
coordingtion srategies (by adoption of workflow technologies), the execution of the
coordination drategies (workflow engine), and cooperative system organization
(negotiation, codition formation) represent mgor issues to be resolved [3]. The
behaviour of each company regarding its paticipation in a VE can be explicitly
configured and sated through a plan and other generd profile characterigtics [3]. The
Workflow Process Definition Language following the workflow reference
architecture proposed by the Workflow Management Codlition [4] is one gpproach to
represent dynamic behaviour. It is based on explicit representation of the workflow of
business processes as well as dl possble exceptions and the way each one of them
should be handled. Another method to represent the dynamic behaviour of each VE
nodeisthe use of Petri Nets[3].

The problem with usng such approaches down to the dealed levd is that an
explicit representation covering al possble cases introduces a scdability problem.
This makes exception handling module design an extremely complex task, especidly
within the VE context. In this paper, we propose the incorporaion of agent
technology in order to create dynamic VE systems while reducing the complexity of
the configuration process. Instead of explicitly specifying how each Stuation must be
handled a the dementary design stage, an overdl process design is implemented, and
responshilities are given to different autonomous units which are capable of solving
their own interna problems. The different units are then provided with a coordination
mechanism, dlowing for the dynamic nature of the system to emege during the
system implementation, deployment and operation phases. We do not assume ddtic,
pre-negotiated intrac and inter-organizationd workflow. In contrast, as proposed in
[5], we view the establishment of a VE as a problem of dynamicaly expanding and
integrating workflows in decentrdized, austonomous and interacting workflow
systems. Workflow techniques are best suited for implementing an abstract business

process model which describes the overdl process steps that have to be performed to
athieve a specific busness god according to wel defined busness rules and the
respective responsibilities of process participants [6]. The various process steps can
then be redized by intdligent business components (implemented by intelligent
software agents) that perform specific business transactions.

3 SoftwareAgentsfor Modelling

Agent-based computing has been considered ‘the new revolution in software [7]. The

following definition is adapted from a definition proposed by [8]: “an agent is a

software system (or system component) that is dtuated in an environment, which it

can perceve and that is cgpable of autonomous action in this environment in order to
meet itsdesign objectives.”

Jennings and Wooldridge [9] proposed that an intdligent agat is an agent that is
cgpable of flexible autonomous behaviour, where flexible means:

? Responsve: ableto perceive the environment and respond in atimely fashion.

? Proactive exhibit god-directed behaviour and take initiative when gppropriate.

? Socia: dle to interact/communicate when appropriate with humans and other
agents.

From this point and on, we will use the term agent to refer to intelligent agent.

One of the interesting and most important aspects of agents is that they facilitate
cognitive modelling (based on behavioura aspects fulfilling the purposs), as opposed
to role modelling (based solely on purpose). If we are able to define a framework that
best describes an agent, and how it interacts with its environment and with other
agents, we will have achieved a dgnificant contribution towards the abdraction of
system design, and gain better mapping of red world problem solving into our
computer systems. Moreover, the autonomy and pro-activity of agents facilitate a
system in which entities take action without the need for centrdized control. More
advantages of using the agent gpproach are discussed in section 3.

A number of proposds have been made describing different internd architectures
of agents and their implications on the performance of agent systems.

? Reactive Agents. In a reactive agent, the behaviour modules are finite dHate
machines. Behaviours are implemented as rules of theform: Stuation ® action [§].

? Ddiberative Agents. A ddiberative agent has explicit gods It reasons about
which, when, and how to achieve them [8]. A ddiberaive agent has an internd
dtate, dlowing flexible, history -sensitive, non-deterministic behaviour.

? Hybrid Agents. Hybrid agents combine the best of reactive and ddiberative
features. BDI Agents, discussed next, are one example of Hybrid Agents.

The Bdief Desre Intention (BDI) mode combines reactive and ddiberative
gpproaches in a uniform way. BDI agents have internd mental states [10]. A menta
stateis comprised of three concepts:

? Beliefs: The information the agent currently believes true. This information could
be about the agent internal dete or about the environment. We should emphasize
the difference between knowledge and bdief. While knowledge is assumed to be

aways true beiefs are consdered to be true but possibly false This captures the

dynamic nature of the agent’ sinformation about itsdlf and the environment.

? Desires(goals): Desired future states.

? Intentions: Commitments to action. The notion of intentions is closdy related, but
not identicd, to the notion of plans. In a cetain Stuaion an agent might have a
number of possble plans. The sdected plan, and the commitment to taking action
become an intention. In other words, an intention is an instance of aplan.

The control cycle of BDI agents is described in Figure 1 First an event or god is
sdected for processing. The agent then finds plans that are applicable to the current
Stuation. Appropriate plans are chosen, resulting in the creation of intentions. The
agent then executes the enabled intention, starting with the first step. This may result
in an action being executed, or an event being posted, hence invoking sub-plans, etc.

Post metdevel events

Externd events
Unprocessed Maiching Plan Library
Event Ligt
. Postnew Intenda
internal events plan

Intention
Structure

Intention
Execution

Figure 1. BDI Control Cycle

Modify intention structure

Due to its highly abgtract philosophical origins, the BDI approach has proved
vauable for the design of agents that operae in a dynamic environment, and that
respond flexibly to changing circumstances despite incomplete information about the
date of the world and other agents in it [11]. The BDI reasoning modd resembles the
kind of reasoning that we appear to use in our everyday lives [8]. Ancther mgor
atraction of this modd is that it provides a clear functiond decompostion, similar to,
but more uniform than that provided by hybrid layered architectures.

There is an ongoing argument around the best way to represent and generate plans
in different agent models. For example, some ague that rather than explicitly
providing a library of plans and choosing from it, a rulebased agent has an implicit
representation of different plans, and plans emerge a run time through following
those rules. The BDI cycle “provides for a spectrum of behaviours ranging from
purely deiberative, to highly reective, depending on the dructure of the plans
provided and on decisons such as how often to take account of changes in the
environment while executing plans’ [11]. In other words, the BDI modd provides an
effective, highly flexible paradigm for deveoping intdligent software agents that cen
be configured on vaiaus levels of inteligence and ddiberation to accommodate the
nature of the problem.

Since this paper is in the context of facilitating VE, there is an inherent necessity
for having multiple agents in the sysems. Agents, in this case, will not only be aleto
reeson autonomoudy and effectively about achieving loca objectives, but they will
adso be dle to gain the benefits of interacting with other agents in the VE. Interaction
protocols ae “recipes’ for dructured communication between agents [12).
Ultimatdly, an interaction protocol conssts of: 1) a set of messages encoded in an
Agent Communication Language ACL; and 2) a st of rules governing conversations
(sequences of messages).

4 Approaching the Virtual Enterprise Problem

Enabling the VE requires the adoption of a new technicd infrastructure, as well as an
effective desgn methodology. As systems scde up, and the complexity increases,
there is a need for a design methodology, which is highly abstract yet, has the ability
to be directly implementel. The most dominant methodologies currently used adapt
the object-oriented (OO) system design principles. These methodologies provide a
higher level of abstraction of the problem. In the object-oriented paradigm, the system
is comprised of severa, possbly digributed, objects interacting with each other
through predefined interfaces. The inteface describes the object’'s services which can
be invoked by other objects. In other words, an object is a passive system component
which is able to respond to predefined requests and react accordingly. An object
sysem is usudly govened by a centrd processobject responshble for the
coordination between objects and the flow of control between them towards the
achievement of the desired result.

The first drawback of objects is reaed to the levd of abstraction they provide.
Busness objets meke a mgor contribution to modeling information in the
enterprise. While business agents extend this capability to mode behaviour in the
enterprise. This fact means that he behaviour of agents can be modified dynamically,
due to learning or influence of other agents or the environment. Moreover, agents can
dynamically cooperate to solve problems.

Another important difference between the object and agent paradigms is relaed to
the levd of autonomy. The object paradigm uses the notion of encapsulation to give
objects control over their own interna dates. An object can declare that a certain
ingance variable (or method) is privaie (only interndly accessble) or public
(eccessble both interndly and by other objects). While an object may exhibit
autonomy over its date, by making ingance variables accessble only via cetan
methods (controlled channdls); it does not exhibit autonomy over its behaviour [8].
That is because once a method has been declared public (at design time), the object
has no control over whether that method is executed. Any other object could invoke
this method if it wants to. In a multi-agent system, an agent requests an action to be
performed by another agent rather than invoking this action. And this request could be
accepted or refused by the serving agent (i.e. the decison lies in the hands of the
serving agent rather than the dlient. Decison could depend on various factors such as
the current domain date or the identity of the client). Objects are considered to
provide good mapping of red-world problem solving. But that limitation affects this

mapping capability dramdically, snce the actud problem description needs to be
conceptudly modified to accommodate the limited capabilities objects offer.

The major reason for the apparent failure of object orientation to ddiver on reuse is
insufficient attention to the issue of domain understanding and the representation of
this underdanding in an unambiguous and precise way [13]. The OO paradigm is
intended towards the implementation of software systems rather than rich business
concept representation (such as rules, congdraints, gods and responghilities). God
seeking behaviour, policies and trust are dl enterprise concepts which do not naturdly
fit into a computational object modd. Based on this argument, A. Wood et a [14]
showed that conventiona object modelling congtructs are not sufficient for modelling
enterprises.

As mentioned in the previous section, the passveness of objects requires the
availability of “controller objects’ which ae responsble for the coordination of
control among other objects. As the size of an OO system grows, “the number of
messages between objects grows nonlinearly and controller objects themsdves need
to be coordinated or they can become performance bottlenecks’ [13].

It is important to dencte that many of the advantages of agents mentioned above
could indeed be implemented using object tools. But our argument is based on the fact
that those attributes are not components of the basic object -oriented modd.

5 TheGeneral Agent Approach

Following the definition of the VE mentioned ealier, the VE creation could be
viewed as a Cooperative System design problem. A Cooperative System is “a system
in which a st of autonomous agents (computational and human) interact with each
other through shaing their informetion, decison making cgpabiliies and other
resources, and digtributing the corresponding workload among themsdves, in order to
achieve common or complementary gods’ [3]. There is an agpparent similarity
between the definition of the VE and that of a Cooperative Agent System from two
perspectives: the problem addressed, and the approach adopted towards solving it.

Both object and agent paradigms address change and complexity but to different
levels. We ae not proposng the disposd of the widely used distributed object
foundation. Instead, agent technology can be built on top of the digtributed object
infrastructure to provide a naturd merging of object orientation and knowledge-besed
technologies [13]. Agents ability to provide reasoning capability within the primitive
gpplication component logic facilitates direct mapping and encapsulaion of business
rueswithin the organization.

The motivations behind the agent solution could be summarized by the following
points adapted from [15]:

1. The need for a higher-levd design approach, which is capable of mapping
effectivdly to red world problem solving capabilities as opposed to approaches
where the actud problem description might need to be conceptudly modified to
accommodate the limited capabilities of the gpproach.

2. The domain involves an inherent digtribution of data, problem solving capabilities,
and responghilities.

3. The need to maintain the autonomy of organizationd business units and sub-
components.

4. The need for accommodating complex interactions, such as negotiion,
coordination, cooperation, and information shaing. This cdls for more
sophisticatedsocial skills provided by agents.

5. The fact that a detailed solution to a problem cannot be designed from dart to
finish, as the busness environment is highly unpredictable and a rigid one-time
design does not accommodate such changes. Indead, a generd workflow definition
of business processes could be implemented, while autonomous, adaptive
components deal with specific business transactions and their interna problems.

6 Advantagesof The BDI Agent Approach

In addition to the advantages of usng the agent paradigm mentioned in the previous
section, there are BDI Agent-specific features that are centrd to our argument. We
will show that each eement of the BDI modd offers an advantage in the scope of
capturing significant aspects of virtua enterprises.

Beliefs: Going back to the object-oriented modd, there is an overdl agreement
concerning the benefits of the encapsulation of information within enterprise objects.
This advantage is dill redized by the BDI Agent modd through the agent's beliefs
(its current knowledge about itsdlf, its environment, and other agents). Furthermore,
the BDI architecture offers a higher level of abdraction by explicitly adlowing beliefs
to have a direct impact upon the agent's behaviour. This dlows for the agent's
benaviour to be dynamicaly modified as its knowledge about the doman changes.
For example, one of the enterprise concepts that do not naurdly fit into a
computetional object modd is the specification of polices that govern the behaviour
of enterprise objects [14]. An agent's set of bdiefs on the other hand, could include
specifications of these policies, as well as having the ability to accommodate changes
in such policies as part of its nature.

Desires. There is a risng need for capturing the god directed behaviour in
enterprise busness units. For example, if the coordinating process in an enterprise
were based on precise specifications of subjprocess activities, sub-processes would
not be dlowed to dynamicaly change their activities, as this will cause coordingion
failure. Cepture of intentiona information concerning higher level business
objectives of processes and the megpping of specific activities to those objectives
dlows dynamicaly changing systems to maintan coordination across a useful range
of dtuaions [16]. This way, activities and drategies that congtitute the business unit
task are dlowed to autonomoudy evolve as required by changesin their loca domain.

Intentions: Intentions reflect the reasoning ability which an agent pursues before it
takes decisons about its actions (i.e. about what plan to commit next). The ability to
choose from different possble plans maps well to a business unit's different strategies
for achieving its task. If one plan fails, another could be tried until no other plans are
avalable This way, no eror reporting to the higherlevd coordination process or
sarvice requestor is required until al possble drategies ae consumed without
SUCCESS.

7 Agile Enterprise Design

In the previous sections, we showed that the BDI agent architecture has interesting
cgpabilities of modelling the behaviour of business units. In this section, we will take
a further step into showing how the BDI agent paradigm may provide powerful
facilitation of highly adaptable (agle) enterprise design. We will use a st of agile
enterprise system design principles in order to show how the BDI agent paradigm
could support such an enterprise through attributes central to its description.

An agile enterprise is one that is broadly change-proficient [17]. In other words, an
agile enterprise manages and gpplies knowledge in order to accommodate and cause
change to its own advantage Regardless of the draegies chosen, effective
implementations of such an enterprise employ a common set of principles that
promote proficiency a change. Designing agile sysems, be they entire enterprises or
any of their criticd eements like business practices, operating procedures, supply-
chan drategies and production processes, require desgning a sudainable proficiency
at change into the very nature of the system [18].

R. Dove [18] identified ten key design principles which are responsble for the high
adaptability in a number of industria applications. These principles have emerged
from observations of both naturd and man-made systems. Table 1 shows these
principles and the corresponding BDI agent architecture features which facilitate the
design and gpplication of each principle.

Table 1. Correspondence between the BDI agent model and agile enterprise design principles

Design Principles

Corresponding BDI Agent Model Features

Self Contained Units:
System of separable self-
sufficient units not
intimately integrated.
Internal workings not
important externally.

An agent is an autonomous, sdf-sufficient unit capable of
performing atask proactively and independently. It can
interact with other agents without central control. An agent
encapsulates capability implementations resulting in service
abstraction.

Plug Compatibility:
System units share common
interaction and interface
standards, and are easily
inserted or removed.

Agents use an interaction protocol implemented using an
agent communication language (ACL) such as KQML to
enforce message syntax. Message semantics could be
redlized by ad-hoc or industry standards such as EDIFACT.

Facilitated Re-use: Unit
inventory management,
modification tools, and
designated maintenance
responsibilities.

Agents are modular, and belong to classes from which any
number of agents could be instantiated. Modification could
be done by either changing the agent’ s state (beliefs) or by
replacing the agent by another with more sophisticated
model to support extra or more efficient functionality.

Non-Hierar chical
Interaction: Non-

hierarchica direct
negptiation, communication,
and interfacing among
system units.

Agents interact with each other without centralized control
through direct messaging and negotiation. Bidding for
internal jobs could be done among groups of agents,
providing granularity of interactions. Because BDI agents
introduce the notion of planning, sophisticated negotiation
and collaboration techniques could be incorporated within
the business unit itself.

Deferred Commitment:
Relationships are transient
when possible; fixed
binding is postponed until
immediately necessary.

Individua business unit agents are assigned job fulfilment

in real time rather than pre-specifying a complete detailed
workflow of system processes. This could be done through
interaction with other agentsasimposed by the situation.
Since there is no heavily centralized control, new agents can
be easily added to the system to facilitate unsupported
functionalities, allowing the system to grow dynamicaly.
Another level of deferred commitment is present in the fact
that agents perform online planning according to situations.

Distributed Control and
Information: Unitsrespond
to objectives, decisons
made at point of knowledge;
data retained locally but
accessible globaly.

Each agent has a private representation of it sown objectives
(desires), which are directed towards the overall system
performance. This enables agentsto decide localy and in
real time, what to do next. Information distribution
advantages are similar to those proposed by object models
(encapsulation), but the beliefs notion of BDI agents dlows
for more flexible knowledge representation (for example,
alowing for true and false beliefs to be included).

Self-Organizing
Relationships: Dynamic
unit dliances and
scheduling; open bidding;
and other self-adapting
behaviours

SinceaBDI agent hasits own cognitive model,
modificationsin its beliefs can cause change in behaviour.
Plan generation, and hence decision-making, are dependant
on the agents own dynamic model of the environment.
Automated coali tion formation [19] allows both static and
dynamic formation of BDI teams. Coalition formation could
be done in many different ways to enable the achievement
of mutua goals or the exchange of benefits.

Flexible Capacity:
Unrestricted unit
populations that alow large
increases and decreasesiin
total unit population.

Aningantiation of any number of agentsis possble as
needed. Agents could be added to perform new business
functionalities or represent business units. Agents could
reside on different machines or be mobilein order to
achieve scalahility.

Unit Redundancy:
Duplicate unit types or
capabilitiesto provide
capacity fluctuation options
and fault tolerance.

Agent systems allow easy recovery. If after consuming dll
possible strategies, an agent failsto achieveitstask, it could
report this to another agent which is capable of dealing with
such situation by either finding another way of performing
the task or choosing an alternative task.

Evolving Standards:
Evolving, open system
framework, capable of
accommodating legacy,
common, and completely
new units.

Agents could be designed so that they interact with legacy
systems by using technologies such as those used to
integrate object systems (eg. CORBA). Moreover, it is
possible to upgrade an agent to a version with more
functionality, enabling the system to evolve.

8 Conclusions and Further Research

Automating the virtual enterprise is the next step beyond today’s ecommerce. The
most effective way of designing and implementing the virtua enterprise is that which
offers capabilities for direct mapping to the behaviourd nature of various busness
units. This is not currently fulfilled by exiging paradigms, such as the object-oriented
paradigm, which impose a need for mutating the problem in order to fit into the
limited design cgpabilities the paradigm offers. Software agents can offer a significant
advantage to the design and implementation of flexible, adaptive, and scdable virtud
enterprises. Furthermore, Belief Desire Intention agent architectures can naturdly
accommodate a rich representation of various business units knowledge, gods, and
drategic plans. They can facilitate a highly adaptive (agile) enterprise design through
attributes that are central to this particular agent architecture.

This paper is a dtep towards incorporating agent technologies into dectronic
commerce and virtua enterprises. There is a need for further invedtigation of agents
capability to offer additional festures from the functiond point of view, such as
negotiation and dynamic planning capabilities. Among different proposed planning,
negotigtion and collaboration modes, effective choices must be made which
effectivdly model red world business practices More work adso needs to be done
towards methodol ogies for the design and analysis of agent systems.

Acknowledgement: Special thanks to David Kinny for his valuable contributions
made in various discussions surrounding software agents and to referees for ther
comments.

References

1. The NIIIP Reference Architecture, 1996, www. niiip.org.

2. Walton, J,, Whicker, L.: Virtual Enterprise: Myth & Redlity. J. Control (1996).

3. CamarinhaMatos, L.M., Afsarmanesh, H.: Cooperative Systems Challenges in Virtual

Enterprises. Proceedings of the 2nd IMACS Internationa Multiconference on
Computationd Engineering in Systems Applications (in CD), CESA'98, Nabeul-
Hammamet, Tunisia, April (1998).

4. Workflow Management Codlition: Workflow Management Codlition, The Workflow
Reference Modd - Document Number TCOO - 1003, Issue 1.1, Brussels, Nov (1994).

5. Chrysanthis, PK., Znati, T., Banerjee, S., Chang, SKK.: Establishing Virtua Enterprises by
means of Mobile Agents. RIDE99, Sydney, Australia, (1999) 116-123.

6. Schmidt, M.T.: Building Workflow Business Objects. Proceedings of the OOPSLA 98
Workshop on Business Object Component Design and Implementation. Vancouver,
(1998).

7. Ovum Report. Intelligent agents: the new revolution in software (1994).

8. Wooldridge, M.: Intelligent Agents. In: Grehard Weiss (ed.): Multiagent Systems. MIT
Press (1999).

9. Jennings, N.R., Wooldridge, M.: Applications of Intelligent Agents. In: Jennings, N.R.,
Wooldridge (eds.): Agent Technology: Foundations, Applications, and Markets (1998) 3
28.

10.

11

13.

14.

15.

16.

17.

18.

19.

Rao, A., Georgeff, M.: BDI Agents. From Theory to Practice. Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS95), San Fransisco, USA,
June, (1995).

Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards socially sophisticated
BDI agents. (To appear) In Proceedings of the Fourth International Conference on
MultiAgent Systems, Boston, USA (ICMAS 2000).

d'Inverno, M., Kinny, D., Luck, M.: Interaction Protocols in Boa. Proceedings of ICMAS
(1998).

Farhoodi, F., Fingar, P.. Competing for the Future with Intelligent Agents. Distributed
Object Computing “DOC” Magazine, Part 1: Oct 1997, Part 2: Nov (1997).

Wood, A., Milosevic, Z., Aagedd, J.O.: Describing Virtua Enterprises. the Object of
Roles and the Role of Objects. Proceedings of the OOPSLA 98. Workshop on Objects,
Components and the Virtual Enterprise. Vancouver (1998).

Jennings, N.R., Norman, T.J,, Faratin, P.. ADEPT: An Agent-Based Approach to Business
Process Management. SIGMOND Record 27(4), (1998) 32-39.

Burg, B.K.B.: Using Intentiona Information to Coordinate Interoperating Workflows.
Proceedings of the OOPSLA 98. Workshop on Business Object Component Design and
Implementation. Vancouver, (1998).

Dove, R., Hartman, S., Benson, S.: An Agile Enterprise Reference Model with a Case
Study of Remmele Engineering. Agiligy Forum, December (1996), Report AR96-04.

Dove, R.: Design Principles for Highly Adaptable Business Systems, With Tangible
Manufacturing Examples. Maryland's Industrial Handbook. McGraw Hill, (1999).

Sandholm, T., Lesser, V.. Codition Formation Among Bounded Rationa Agents. 14th
International Joint Conference on Artificia Intelligence (IJCAI-95), Montrea, Canada,
(1995) pp. 662-669.

