
Virtual Enterprise Design – BDI Agents vs. Objects

Iyad Rahwan1, Ryszard Kowalczyk2, Yun Yang1

1 School of Information Technology, Swinburne University of Technology
P.O.Box 218, Hawthorn, VIC 3122, Australia

{iyad, yun}@it.swin.edu.au
2 CSIRO Mathematical and Information Sciences

723 Swanston St, Carlton, VIC 3054, Australia
Ryszard.Kowalczyk@cmis.csiro.au

Abstract. Current research identifying architectures for a virtual enterprise has
moved from information modelling to role modelling. Thus, a high level of
autonomy results from the distribution of responsibilities, capabilities, and
knowledge among different business units in the virtual enterprise at the design
stage. Current trends tend towards using object-oriented technology as an
effective abstract system design and implementation methodology. We argue
that applying the software agent paradigm to the virtual enterprise provides
various advantages on both the design and operational levels. We further show
that the Belief Desire Intention agent architecture has additional abilities of
mapping real world business unit autonomy and interaction. We also introduce
the Belief Desire Intention agent paradigm capability of facilitating highly
flexible (agile) enterprise design and implementation.

1 Introduction

A significant enhancement of inter-enterprise transactions has been provided by the
emerging information technologies (IT). This has raised a need for establishing a new
paradigm defining architectures, standards, and design and implementation policies
for inter-enterprise systems, which realize the capabilities of IT and maximize their
utilization in all possible ways. The Virtual Enterprise (VE) paradigm emerged in
order to address this need and produce efficient procedures for dealing with the above
requirements. Although there is no clear standardized definition of the VE, there is a
general agreement between currently proposed definitions. For example, the NIIIP
project [1] defines the VE to be "a temporary consortium or alliance of companies
formed to share costs and skills and exploit fast-changing market opportunities".
While for Walton and Whicker [2] "the Virtual Enterprise consists of a series of co-
operating 'nodes' of core competence, which form into a supply chain in order to
address a specific opportunity in the market place". In other words, the virtual
enterprise is an organization of enterprises sharing resources and working
cooperatively towards the achievement of mutual benefits. Terms such as e-
commerce, supply chain management, and virtual corporation correspond to closely
related concepts. In a VE, there is no centralized control, neither is there a hierarchy

of enterprise management levels. Instead, the cooperation of independent, self-
interested units results in convergence towards an overall welfare.

In the next section, we outline the problem with current virtual enterprise design,
and hence implementation approaches. Then, in section 3, we present an overview of
agent technology and different agent architectures. Section 4 discusses the problem
with current approaches towards designing the virtual enterprise, particularly the
object-oriented approach. Section 5 outlines the major advantages of the agent
approach. In Section 6, we introduce the specific capabilities of Belief Desire
Intention (BDI) agents in modelling and implementing virtual enterprises. Next, we
show how the BDI approach corresponds well to a set of well-known agile (flexible)
enterprise design guidelines in section 7. Finally, a number of conclusions are drawn,
and future research is outlined.

2 Virtual Enterprise Problems

There is a great diversity in the way different organizations do business. Different
companies have different priorities, business process definitions, ontologies
representing business documents and procedures, and different tools for modelling
their overall strategies and plans. Aspects such as the explicit representation of
coordination strategies (by adoption of workflow technologies), the execution of the
coordination strategies (workflow engine), and cooperative system organization
(negotiation, coalition formation) represent major issues to be resolved [3]. The
behaviour of each company regarding its participation in a VE can be explicitly
configured and stated through a plan and other general profile characteristics [3]. The
Workflow Process Definition Language following the workflow reference
architecture proposed by the Workflow Management Coalition [4] is one approach to
represent dynamic behaviour. It is based on explicit representation of the workflow of
business processes as well as all possible exceptions and the way each one of them
should be handled. Another method to represent the dynamic behaviour of each VE
node is the use of Petri Nets [3].

The problem with using such approaches down to the detailed level is that an
explicit representation covering all possible cases introduces a scalability problem.
This makes exception handling module design an extremely complex task, especially
within the VE context. In this paper, we propose the incorporation of agent
technology in order to create dynamic VE systems while reducing the complexity of
the configuration process. Instead of explicitly specifying how each situation must be
handled at the elementary design stage, an overall process design is implemented, and
responsibilities are given to different autonomous units which are capable of solving
their own internal problems. The different units are then provided with a coordination
mechanism, allowing for the dynamic nature of the system to emerge during the
system implementation, deployment and operation phases. We do not assume static,
pre-negotiated intra- and inter-organizational workflow. In contrast, as proposed in
[5], we view the establishment of a VE as a problem of dynamically expanding and
integrating workflows in decentralized, autonomous and interacting workflow
systems. Workflow techniques are best suited for implementing an abstract business

process model which describes the overall process steps that have to be performed to
achieve a specific business goal according to well defined business rules and the
respective responsibilities of process participants [6]. The various process steps can
then be realized by intelligent business components (implemented by intelligent
software agents) that perform specific business transactions.

3 Software Agents for Modelling

Agent-based computing has been considered ‘the new revolution in software’ [7]. The
following definition is adapted from a definition proposed by [8]: “an agent is a
software system (or system component) that is situated in an environment, which it
can perceive, and that is capable of autonomous action in this environment in order to
meet its design objectives.”

Jennings and Wooldridge [9] proposed that an intelligent agent is an agent that is
capable of flexible autonomous behaviour, where flexible means:
? Responsive: able to perceive the environment and respond in a timely fashion.
? Proactive: exhibit goal-directed behaviour and take initiative when appropriate.
? Social : able to interact/communicate when appropriate with humans and other

agents.
From this point and on, we will use the term agent to refer to intelligent agent.
One of the interesting and most important aspects of agents is that they facilitate

cognitive modelling (based on behavioural aspects fulfilling the purpose), as opposed
to role modelling (based solely on purpose). If we are able to define a framework that
best describes an agent, and how it interacts with its environment and with other
agents, we will have achieved a significant contribution towards the abstraction of
system design, and gain better mapping of real world problem solving into our
computer systems. Moreover, the autonomy and pro-activity of agents facilitate a
system in which entities take action without the need for centralized control. More
advantages of using the agent approach are discussed in section 3.

A number of proposals have been made describing different internal architectures
of agents and their implications on the performance of agent systems.
? Reactive Agents. In a reactive agent, the behaviour modules are finite state

machines. Behaviours are implemented as rules of the form: situation → action [8].
? Deliberative Agents. A deliberative agent has explicit goals. It reasons about

which, when, and how to achieve them [8]. A deliberative agent has an internal
state, allowing flexible, history -sensitive, non-deterministic behaviour.

? Hybrid Agents. Hybrid agents combine the best of reactive and deliberative
features. BDI Agents, discussed next, are one example of Hybrid Agents.
The Belief Desire Intention (BDI) model combines reactive and deliberative

approaches in a uniform way. BDI agents have internal mental states [10]. A mental
state is comprised of three concepts:
? Beliefs: The information the agent currently believes true. This information could

be about the agent internal state or about the environment. We should emphasize
the difference between knowledge and belief. While knowledge is assumed to be

always true, beliefs are considered to be true but possibly false. This captures the
dynamic nature of the agent’s information about itself and the environment.

? Desires (goals): Desired future states.
? Intentions: Commitments to action. The notion of intentions is closely related, but

not identical, to the notion of plans. In a certain situation an agent might have a
number of possible plans. The selected plan, and the commitment to taking action
become an intention. In other words, an intention is an instance of a plan.
The control cycle of BDI agents is described in Figure 1. First an event or goal is

selected for processing. The agent then finds plans that are applicable to the current
situation. Appropriate plans are chosen, resulting in the creation of intentions. The
agent then executes the enabled intention, starting with the first step. This may result
in an action being executed, or an event being posted, hence invoking sub-plans, etc.

Figure 1. BDI Control Cycle

Due to its highly abstract philosophical origins, the BDI approach has proved
valuable for the design of agents that operate in a dynamic environment, and that
respond flexibly to changing circumstances despite incomplete information about the
state of the world and other agents in it [11]. The BDI reasoning model resembles the
kind of reasoning that we appear to use in our everyday lives [8]. Another major
attraction of this model is that it provides a clear functional decomposition, similar to,
but more uniform than that provided by hybrid layered architectures.

There is an ongoing argument around the best way to represent and generate plans
in different agent models. For example, some argue that rather than explicitly
providing a library of plans and choosing from it, a rule-based agent has an implicit
representation of different plans, and plans emerge at run time through following
those rules. The BDI cycle “provides for a spectrum of behaviours ranging from
purely deliberative, to highly reactive, depending on the structure of the plans
provided and on decisions such as how often to take account of changes in the
environment while executing plans” [11]. In other words, the BDI model provides an
effective, highly flexible paradigm for developing intelligent software agents that can
be configured on various levels of intelligence and deliberation to accommodate the
nature of the problem.

Unprocessed
Event List

Intention
Execution

Intention
Structure

Plan Library Matching

Execute

Post metalevel events

Modify intention structure

Intend a
plan

Post new
internal events

External events

Actions

Since this paper is in the context of facilitating VE, there is an inherent necessity
for having multiple agents in the systems. Agents, in this case, will not only be able to
reason autonomously and effectively about achieving local objectives, but they will
also be able to gain the benefits of interacting with other agents in the VE. Interaction
protocols are “recipes” for structured communication between agents [12].
Ultimately, an interaction protocol consists of: 1) a set of messages encoded in an
Agent Communication Language ACL; and 2) a set of rules governing conversations
(sequences of messages).

4 Approaching the Virtual Enterprise Problem

Enabling the VE requires the adoption of a new technical infrastructure, as well as an
effective design methodology. As systems scale up, and the complexity increases,
there is a need for a design methodology, which is highly abstract yet, has the ability
to be directly implemented. The most dominant methodologies currently used adapt
the object-oriented (OO) system design principles. These methodologies provide a
higher level of abstraction of the problem. In the object-oriented paradigm, the system
is comprised of several, possibly distributed, objects interacting with each other
through predefined interfaces. The interface describes the object’s services which can
be invoked by other objects. In other words, an object is a passive system component
which is able to respond to predefined requests and react accordingly. An object
system is usually governed by a central process/object responsible for the
coordination between objects and the flow of control between them towards the
achievement of the desired result.

The first drawback of objects is related to the level of abstraction they provide.
Business objects make a major contribution to modelling information in the
enterprise. While business agents extend this capability to model behaviour in the
enterprise. This fact means that the behaviour of agents can be modified dynamically,
due to learning or influence of other agents or the environment. Moreover, agents can
dynamically cooperate to solve problems.

Another important difference between the object and agent paradigms is related to
the level of autonomy. The object paradigm uses the notion of encapsulation to give
objects control over their own internal states. An object can declare that a certain
instance variable (or method) is private (only internally accessible) or public
(accessible both internally and by other objects). While an object may exhibit
autonomy over its state, by making instance variables accessible only via certain
methods (controlled channels); it does not exhibit autonomy over its behaviour [8].
That is because once a method has been declared public (at design time), the object
has no control over whether that method is executed. Any other object could invoke
this method if it wants to. In a multi-agent system, an agent requests an action to be
performed by another agent rather than invoking this action. And this request could be
accepted or refused by the serving agent (i.e. the decision lies in the hands of the
serving agent rather than the client. Decision could depend on various factors such as
the current domain state or the identity of the client). Objects are considered to
provide good mapping of real-world problem solving. But that limitation affects this

mapping capability dramatically, since the actual problem description needs to be
conceptually modified to accommodate the limited capabilities objects offer.

The major reason for the apparent failure of object orientation to deliver on reuse is
insufficient attention to the issue of domain understanding and the representation of
this understanding in an unambiguous and precise way [13]. The OO paradigm is
intended towards the implementation of software systems rather than rich business
concept representation (such as rules, constraints, goals and responsibilities). Goal
seeking behaviour, policies and trust are all enterprise concepts which do not naturally
fit into a computational object model. Based on this argument, A. Wood et al [14]
showed that conventional object modelling constructs are not sufficient for modelling
enterprises.

As mentioned in the previous section, the passiveness of objects requires the
availability of “controller objects” which are responsible for the coordination of
control among other objects. As the size of an OO system grows, “the number of
messages between objects grows non-linearly and controller objects themselves need
to be coordinated or they can become performance bottlenecks” [13].

It is important to denote that many of the advantages of agents mentioned above
could indeed be implemented using object tools. But our argument is based on the fact
that those attributes are not components of the basic object -oriented model.

5 The General Agent Approach

Following the definition of the VE mentioned earlier, the VE creation could be
viewed as a Cooperative System design problem. A Cooperative System is “a system
in which a set of autonomous agents (computational and human) interact with each
other through sharing their information, decision making capabilities and other
resources, and distributing the corresponding workload among themselves, in order to
achieve common or complementary goals” [3]. There is an apparent similarity
between the definition of the VE and that of a Cooperative Agent System from two
perspectives: the problem addressed, and the approach adopted towards solving it.

Both object and agent paradigms address change and complexity but to different
levels. We are not proposing the disposal of the widely used distributed object
foundation. Instead, agent technology can be built on top of the distributed object
infrastructure to provide a natural merging of object orientation and knowledge-based
technologies [13]. Agents’ ability to provide reasoning capability within the primitive
application component logic facilitates direct mapping and encapsulation of business
rules within the organization.

The motivations behind the agent solution could be summarized by the following
points adapted from [15]:
1. The need for a higher-level design approach, which is capable of mapping

effectively to real world problem solving capabilities as opposed to approaches
where the actual problem description might need to be conceptually modified to
accommodate the limited capabilities of the approach.

2. The domain involves an inherent distribution of data, problem solving capabilities,
and responsibilities.

3. The need to maintain the autonomy of organizational business units and sub-
components.

4. The need for accommodating complex interactions, such as negotiation,
coordination, cooperation, and information sharing. This calls for more
sophisticated social skills provided by agents.

5. The fact that a detailed solution to a problem cannot be designed from start to
finish, as the business environment is highly unpredictable and a rigid one-time
design does not accommodate such changes. Instead, a general workflow definition
of business processes could be implemented, while autonomous, adaptive
components deal with specific business transactions and their internal problems.

6 Advantages of The BDI Agent Approach

In addition to the advantages of using the agent paradigm mentioned in the previous
section, there are BDI Agent -specific features that are central to our argument. We
will show that each element of the BDI model offers an advantage in the scope of
capturing significant aspects of virtual enterprises.

Beliefs: Going back to the object -oriented model, there is an overall agreement
concerning the benefits of the encapsulation of information within enterprise objects.
This advantage is still realized by the BDI Agent model through the agent’s beliefs
(its current knowledge about itself, its environment, and other agents). Furthermore,
the BDI architecture offers a higher level of abstraction by explicitly allowing beliefs
to have a direct impact upon the agent’s behaviour. This allows for the agent’s
behaviour to be dynamically modified as its knowledge about the domain changes.
For example, one of the enterprise concepts that do not naturally fit into a
computational object model is the specification of policies that govern the behaviour
of enterprise objects [14]. An agent’s set of beliefs, on the other hand, could include
specifications of these policies, as well as having the ability to accommodate changes
in such policies as part of its nature.

Desires: There is a rising need for capturing the goal directed behaviour in
enterprise business units. For example, if the coordinating process in an enterprise
were based on precise specifications of sub-process activities, sub-processes would
not be allowed to dynamically change their activities, as this will cause coordination
failure. Capture of intentional information concerning higher level business
objectives of processes and the mapping of specific activities to those objectives
allows dynamically changing systems to maintain coordination across a useful range
of situations [16]. This way, activities and strategies that constitute the business unit
task are allowed to autonomously evolve as required by changes in their local domain.

Intentions: Intentions reflect the reasoning ability which an agent pursues before it
takes decisions about its actions (i.e. about what plan to commit next). The ability to
choose from different possible plans maps well to a business unit’s different strategies
for achieving its task. If one plan fails, another could be tried until no other plans are
available. This way, no error reporting to the higher-level coordination process or
service requestor is required until all possible strategies are consumed without
success.

7 Agile Enterprise Design

In the previous sections, we showed that the BDI agent architecture has interesting
capabilities of modelling the behaviour of business units. In this section, we will take
a further step into showing how the BDI agent paradigm may provide powerful
facilitation of highly adaptable (agile) enterprise design. We will use a set of agile
enterprise system design principles in order to show how the BDI agent paradigm
could support such an enterprise through attributes central to its description.

An agile enterprise is one that is broadly change-proficient [17]. In other words, an
agile enterprise manages and applies knowledge in order to accommodate and cause
change to its own advantage. Regardless of the strategies chosen, effective
implementations of such an enterprise employ a common set of principles that
promote proficiency at change. Designing agile systems, be they entire enterprises or
any of their critical elements like business practices, operating procedures, supply-
chain strategies, and production processes, require designing a sustainable proficiency
at change into the very nature of the system [18].

R. Dove [18] identified ten key design principles which are responsible for the high
adaptability in a number of industrial applications. These principles have emerged
from observations of both natural and man-made systems. Table 1 shows these
principles and the corresponding BDI agent architecture features which facilitate the
design and application of each principle.

Table 1. Correspondence between the BDI agent mode l and agile enterprise design principles

Design Principles Corresponding BDI Agent Model Features

Self Contained Units:
System of separable self-
sufficient units not
intimately integrated.
Internal workings not
important externally.

An agent is an autonomous, self-sufficient unit capable of
performing a task proactively and independently. It can
interact with other agents without central control. An agent
encapsulates capability implementations resulting in service
abstraction.

Plug Compatibility:
System units share common
interaction and interface
standards, and are easily
inserted or removed.

Agents use an interaction protocol implemented using an
agent communication language (ACL) such as KQML to
enforce message syntax. Message semantics could be
realized by ad-hoc or industry standards such as EDIFACT.

Facilitated Re-use: Unit
inventory management,
modification tools, and
designated maintenance
responsibilities.

Agents are modular, and belong to classes from which any
number of agents could be instantiated. Modification could
be done by either changing the agent’s state (beliefs) or by
replacing the agent by another with more sophisticated
model to support extra or more efficient functionality.

Non-Hierarchical
Interaction: Non-
hierarchical direct
negotiation, communication,
and interfacing among
system units.

Agents interact with each other without centralized control
through direct messaging and negotiation. Bidding for
internal jobs could be done among groups of agents,
providing granularity of interactions. Because BDI agents
introduce the notion of planning, sophisticated negotiation
and collaboration techniques could be incorporated within
the business unit itself.

Deferred Commitment:
Relationships are transient
when possible; fixed
binding is postponed until
immediately necessary.

Individual business unit agents are assigned job fulfilment
in real time rather than pre-specifying a complete detailed
workflow of system processes. This could be done through
interaction with other agents as imposed by the situation.
Since there is no heavily centralized control, new agents can
be easily added to the system to facilitate unsupported
functionalities, allowing the system to grow dynamically.
Another level of deferred commitment is present in the fact
that agents perform online planning according to situations.

Distributed Control and
Information: Units respond
to objectives; decisions
made at point of knowledge;
data retained locally but
accessible globally.

Each agent has a private representation of it s own objectives
(desires), which are directed towards the overall system
performance. This enables agents to decide, locally and in
real time, what to do next. Information distribution
advantages are similar to those proposed by object models
(encapsulation), but the beliefs notion of BDI agents allows
for more flexible knowledge representation (for example,
allowing for true and false beliefs to be included).

Self-Organizing
Relationships: Dynamic
unit alliances and
scheduling; open bidding;
and other self-adapting
behaviours.

Since a BDI agent has its own cognitive model,
modifications in its beliefs can cause change in behaviour.
Plan generation, and hence decision-making, are dependant
on the agents own dynamic model of the environment.
Automated coalition formation [19] allows both static and
dynamic formation of BDI teams. Coalition formation could
be done in many different ways to enable the achievement
of mutual goals or the exchange of benefits.

Flexible Capacity:
Unrestricted unit
populations that allow large
increases and decreases in
total unit population.

An instantiation of any number of agents is possible as
needed. Agents could be added to perform new business
functionalities or represent business units. Agents could
reside on different machines or be mobile in order to
achieve scalability.

Unit Redundancy:
Duplicate unit types or
capabilities to provide
capacity fluctuation options
and fault tolerance.

Agent systems allow easy recovery. If after consuming all
possible strategies, an agent fails to achieve its task, it could
report this to another agent which is capable of dealing with
such situation by either finding another way of performing
the task or choosing an alternative task.

Evolving Standards:
Evolving, open system
framework, capable of
accommodating legacy,
common, and completely
new units.

Agents could be designed so that they interact with legacy
systems by using technologies such as those used to
integrate object systems (eg. CORBA). Moreover, it is
possible to upgrade an agent to a version with more
functionality, enabling the system to evolve.

8 Conclusions and Further Research

Automating the virtual enterprise is the next step beyond today’s e-commerce. The
most effective way of designing and implementing the virtual enterprise is that which
offers capabilities for direct mapping to the behavioural nature of various business
units. This is not currently fulfilled by existing paradigms, such as the object -oriented
paradigm, which impose a need for mutating the problem in order to fit into the
limited design capabilities the paradigm offers. Software agents can offer a significant
advantage to the design and implementation of flexible, adaptive, and scalable virtual
enterprises. Furthermore, Belief Desire Intention agent architectures can naturally
accommodate a rich representation of various business units’ knowledge, goals, and
strategic plans. They can facilitate a highly adaptive (agile) enterprise design through
attributes that are central to this particular agent architecture.

This paper is a step towards incorporating agent technologies into electronic
commerce and virtual enterprises. There is a need for further investigation of agents’
capability to offer additional features from the functional point of view, such as
negotiation and dynamic planning capabilities. Among different proposed planning,
negotiation and collaboration models, effective choices must be made which
effectively model real world business practices. More work also needs to be done
towards methodologies for the design and analysis of agent systems.

Acknowledgement: Special thanks to David Kinny for his valuable contributions
made in various discussions surrounding software agents and to referees for their
comments.

References

1. The NIIIP Reference Architecture, 1996, www. niiip.org.
2. Walton, J., Whicker, L.: Virtual Enterprise: Myth & Reality. J. Control (1996).
3. Camarinha-Matos, L.M., Afsarmanesh, H.: Cooperative Systems Challenges in Virtual

Enterprises. Proceedings of the 2nd IMACS International Multiconference on
Computational Engineering in Systems Applications (in CD), CESA'98, Nabeul-
Hammamet, Tunisia, April (1998).

4. Workflow Management Coalition: Workflow Management Coalition, The Workflow
Reference Model - Document Number TC00 - 1003, Issue 1.1, Brussels, Nov (1994).

5. Chrysanthis, P.K., Znati, T., Banerjee, S., Chang, S.K.: Establishing Virtual Enterprises by
means of Mobile Agents. RIDE99, Sydney, Australia, (1999) 116-123.

6. Schmidt, M.T.: Building Workflow Business Objects. Proceedings of the OOPSLA 98.
Workshop on Business Object Component Design and Implementation. Vancouver,
(1998).

7. Ovum Report. Intelligent agents: the new revolution in software (1994).
8. Wooldridge, M.: Intelligent Agents. In: Grehard Weiss (ed.): Multiagent Systems. MIT

Press (1999).
9. Jennings, N.R., Wooldridge, M.: Applications of Intelligent Agents. In: Jennings, N.R.,

Wooldridge (eds.): Agent Technology: Foundations, Applications, and Markets (1998) 3-
28.

10. Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice. Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), San Fransisco, USA,
June, (1995).

11. Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards socially sophisticated
BDI agents. (To appear) In Proceedings of the Fourth International Conference on
MultiAgent Systems, Boston, USA (ICMAS 2000).

12. d’Inverno, M., Kinny, D., Luck, M.: Interaction Protocols in Boa. Proceedings of ICMAS
(1998).

13. Farhoodi, F., Fingar, P.: Competing for the Future with Intelligent Agents. Distributed
Object Computing, “DOC” Magazine, Part 1: Oct 1997, Part 2: Nov (1997).

14. Wood, A., Milosevic, Z., Aagedal, J.O.: Describing Virtual Enterprises: the Object of
Roles and the Role of Objects. Proceedings of the OOPSLA 98. Workshop on Objects,
Components and the Virtual Enterprise. Vancouver (1998).

15. Jennings, N.R., Norman, T.J., Faratin, P.: ADEPT: An Agent-Based Approach to Business
Process Management. SIGMOND Record 27(4), (1998) 32-39.

16. Burg, B.K.B.: Using Intentional Information to Coordinate Interoperating Workflows.
Proceedings of the OOPSLA 98. Workshop on Business Object Component Design and
Implementation. Vancouver, (1998).

17. Dove, R., Hartman, S., Benson, S.: An Agile Enterprise Reference Model with a Case
Study of Remmele Engineering. Agiligy Forum, December (1996), Report AR96-04.

18. Dove, R.: Design Principles for Highly Adaptable Business Systems, With Tangible
Manufacturing Examples. Maryland’s Industrial Handbook. McGraw Hill, (1999).

19. Sandholm, T., Lesser, V.: Coalition Formation Among Bounded Rational Agents. 14th
International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada,
(1995) pp. 662-669.

