
Predicting and containing epidemic risk using
friendship networks

Lorenzo Coviello, Massimo Franceschetti, Manuel Garcı́a-Herranz, Iyad Rahwan

Abstract—Physical encounter is the most common vehicle
for the spread of infectious diseases, but detailed information
about said encounters is often unavailable because expensive,
unpractical to collect or privacy sensitive. The present work
asks whether the friendship ties between the individuals in a
social network can be used to successfully predict and contain
epidemic risk. Using a dataset from a popular online review
service, we build a time-varying network that is a proxy of
physical encounter between users and a static network based
on their reported friendship – the encounter network and the
friendship network. Through computer simulation, we compare
infection processes on the resulting networks and show that
friendship provides a poor identification of the individuals at
risk if the infection is driven by physical encounter. This result
is not driven by the static nature of the friendship network
opposed to the time-varying nature of the encounter network,
as a static version of the encounter network provides more
accurate prediction of risk than the friendship network. Despite
this limit, the information enclosed in the friendship network
can be leveraged for monitoring and containment of epidemics.
In particular, we show that periodical and relatively infrequent
monitoring of the infection on the encounter network allows
to correct the predicted infection on the friendship network
and to achieve satisfactory prediction accuracy. In addition, the
friendship network contains valuable information to effectively
contain epidemic outbreaks when a limited budget is available
for immunization.

I. INTRODUCTION

The forecast and mitigation of epidemics is a central theme

in public health [17], [25], [26], [27], [34], [42], [56]. Events

such as the recent ebola epidemic constantly drive the attention

and resources of governments, institutions such as the World

Health Organization, and the research community [31], [35],

[51], [55], [58], [71]. The study of infectious processes on

real-world networks is of interests to diverse disciplines, and

similar models have been proposed to characterize the spread

of information, behaviors, cultural norms, innovation, as well

as the diffusion of computer viruses [30], [54], [69], [72], [84].

Therefore, epidemiologists, computer scientists and social

scientist have joint forces in the study of these phenomena.

Due to the impossibility to study the spread of infectious

diseases through controlled experiments, modeling efforts have

prevailed [36], [47], [50], [68], [69]. Recently, advancements

in computation tools determined the emergence of data-driven

simulations in the study of dynamical processes [86].

The spread of an infection over a real-world network is

determined by the interplay of two processes: the dynamics

of the network, whose edges change over time according to

the encounters between individuals; and the dynamics on the

network, whose nodes can infect each other after an encounter.

When the two dynamics operate at comparable time scales,

the time-varying nature of the network cannot be ignored [33],

[41], [48], [70], [76] and specifically devised control strategies

are necessary [53]. Aggregating the dynamics of the edges into

a static version of the network can provide useful insights [21]

but can introduce bias [39], [70]. Empirical work suggests that

bursty activity patterns slow down spreading [46], [80], [85],

but temporal correlations seem to accelerate the early phase

of an epidemic [45], [74]

Physical encounter is the most common vehicle for the

spread of infectious diseases (as in the case of airborne dis-

eases), and detailed information about said encounters is fun-

damental to monitor and contain outbreaks. Various sources of

data can serve as a proxy of physical encounter – checkins on

social networking platforms [14], [63], [64], traffic records [5],

[82], [83], phone call records [32], [38], [65], wearable sensor

data [12], [37], [43], [66], [75], [80], geographical and non-

geographical information shared online [4], [13], surveys

and diaries of daily contact [20], [59], [60], and multiplex

data [81]. However, pervasive and detailed information is

rarely available and might be expensive and unpractical to

collect (as in the case of sensor technologies [12], [75], [80]),

prone to errors (as in the case of survey data [19], [73]),

and privacy-sensitive [2], [7], [8], [18], [49], [52], [77], [88].

Researchers have to rely on the information in their possession,

and in this paper we consider friendship ties between the

users of an online social network. Location data from cell

phone records and online social networks has shown that

social relationships can partially explain the patterns of human

mobility [15]. Contact tracing based on phone communication

activity has been proposed as a method to reduce the final size

of epidemic outbreaks [23]. Networks generated from wear-

able sensor measurements, diaries of daily contacts, online

links and self-reported friendship present similar structural

properties [57], but contacts of short duration recorded by

wearable sensors might not be reported in surveys [78]. In

general, it is not clear whether and within which limits friend-

ship can be considered a reliable proxy of physical encounter,

as a process spreading from an initial seed, or “patient zero”,

can only reach the nodes within its set of influence through

paths that respect time ordering [40].

Given an infection spreading over a social network via

physical encounter, the present work asks whether the friend-

ship ties between the same individuals successfully predict

who is at risk, and how this information can be leveraged

to monitor and contain epidemic outbreaks. Using the Yelp



Dataset Challenge dataset1, we build a time-varying network

that is a proxy of physical encounter between users and a static

network based on their reported friendship – the encounter

network and the friendship network. For comparison, we

also consider a static version of the encounter network, in

which temporal information is ignored. Through computer

simulation, we compare the evolution of Susceptible-Infected

(SI) processes [3] on the different networks, in terms of the

sets of infected individuals. First, given epidemic processes

spreading independently on the two networks but initiated

at the same seed, we analyze infections from a microscopic

point of view. Despite distance on the friendship network is

correlated to risk of infection on the encounter network, the

set of nodes infected on the friendship network is not a good

approximation of those infected in the encounter network.

Then, we consider how this limit can be overcome. On the

one hand, we show that periodical yet relatively infrequent

observation of the real infection allows to reach and maintain

high prediction accuracy using the friendship network. On the

other hand, we show that friendship ties allow to effectively

allocate a limited immunization budget, in order to reduce the

risk of an outbreak.

II. DATASET

The Yelp Dataset Challenge dataset (Round 5) consists in

1,569,264 reviews and 495,107 tips to 61,184 businesses (in

10 cities around the world) posted by 366,715 users over

more than 10 years. Within this period, we consider 1,469

consecutive days ranging from 1/1/2011 to 1/8/2015 (period

of observation T ), as reviews and tips before year 2011 are

less numerous. Each review and tip includes the user who

posted it, the reviewed business, and the date it was posted.

Yelp users can form friendship ties between each other, and

the list of friends of each user is included in the dataset. The

encounter network (SI Section 2 for details) is a sequence

of networks {NE(t), t ∈ T}, where NE(t) is the undirected

network of encounters on day t. We assume that two users

x, y, encountered on day t, and (x, y) ∈ NE(t), if they posted

reviews or tips to the same business on the same day (133,038

users had at least one encounter during T ). For node s, let

t0(s) be the smallest t such that s is connected in NE(t)
(first encounter). The static version of the encounter network

NS ignores the temporal information and (x, y) ∈ NS if

(x, y) ∈ NE(t) for some t (we consider the 113,187 nodes

in the largest connected component). The friendship network

NF is the undirected, static network of friendship ties (168,923

nodes in the largest connected component).

III. INFECTION DYNAMICS

We consider Susceptible-Infected processes [3], in which

nodes do not recover (SI Section 3 for details). Given a

temporal network {N(t), t ∈ T}, let I(t) be the set of infected

nodes at time t. Each simulation is initiated at a single seed

I(0) = {s}, selected uniformly at random from the nodes

1The dataset for “Round 5” of the challenge is considered: www.yelp.com/
dataset challenge.

in NS ∩ NF such that t0(s) ≤ 500, unless differently stated

(to allow the infection to start early enough on the encounter

network). At time t, each node x not in I(t − 1) becomes

infected with probability max{βdx(t), 1}, where 0 ≤ β ≤ 1
is the infection rate and dx(t) is the number of neighbors of

x in N(t) that are in I(t − 1). For the encounter network,

N(t) = NE(t) and the infection spreads from time t0(s) until

maxT . For the static (resp. friendship) network N(t) = NS

(resp. NF ) for all t, and the infection spreads from time zero

until all nodes are infected. We consider different values of β
for the different networks, due to their different connectivity

(usually β = 0.5 on the encounter network, and β = 0.01 on

the other networks).

IV. RESULTS

Throughout, we assume that real infections spread on

the encounter network. Infection spreading on the friendship

network and the static version of the encounter network are

predicted infections. Given an infection spreading on the

encounter network, a node’s risk of becoming infected is

correlated to its distance on the friendship network from the

infected seed. Figure 1 plots the probability of nodes’ infection

as a function of this distance, for different values of the

infection rate β (10,000 simulations for each β). In order

to evaluate how accurately the friendship network predicts

epidemic risk at a microscopic level, we consider infection

processes initiated at seeds present in both networks and

spreading independently of each other, and compare the sets of

infected nodes (SI Section 5 for details). The unpredictability

of epidemic risk is due to the structural properties of the

different networks as well as to the randomness of the infection

processes. Therefore, for each of 5, 000 seeds, we consider

two independent infection processes on the encounter network,

one on the friendship network and one on the static version

of the encounter network (indexed by E1, E2, F and S,

respectively). For target size m and infection A initiated at

seed s, let tA(m; s) be the first time at which at least m nodes

are infected (the quantity might be undefined). Let IA(m; s) be

the corresponding infected set, whose size is at least m when

defined. Consider two infections A and B initiated at the same

seed s and possibly spreading on two different networks. If

IA(m; s) and IB(m; s) are defined, their Jaccard similarity is

given by

JA,B(m; s) =
|IA(m; s) ∩ IB(m; s)|
|IA(m; s) ∪ IB(m; s)| ,

These measures allow to characterize how accurately the

friendship network and the static network predict epidemic

risk on the encounter network (see SI for details and analyses

involving different metrics). For each of 5000 selections of a

random single seed, two simulations on the encounter network,

one on the static network and one on the friendship network

are run independently. Results are shown in Figure 2 and SI

Section 5. The left panel shows the metrics JE1,E2
(m; s),

the baseline unpredictability due solely to the randomness of

independent processes initiated at the same seed and spreading



Fig. 1. Risk of infection on the encounter network versus distance from the
seed on the friendship network. For each value of the infection rate β, 10,000
simulations on the encounter network initiated at random single seeds are run.
The x-axis plots the distance d from the seed on the friendship network, the
y-axis plots the empirical probability that nodes at distance d become infected
on the encounter network.

on the encounter network . The middle panel shows the

metrics JE1,S(m; s), which includes the unpredictability due

to the loss of temporal information in the static version of

the encounter network. The right panel shows the metrics

JE1,F (m; s), which represents the unpredictability of using the

friendship network to predict risk on the encounter network.

For all values of the target m, two-sample paired t-tests

support the hypotheses that JE1,E2(m; s) has larger average

than both JE1,S(m; s) and JE1,F (m; s), and that JE1,S(m; s)
has larger average than JE1,F (m; s) (SI Section 5-B). Notably,

the intersections of the infected sets on the friendship and

encounter network are substantially and significantly larger

than the intersection of random sets (SI Section 5-C and Figure

S8). A tight bound on JE1,F (m; s) is not available for general

m and s as individuals might be connected in one network and

not in the other (there are nI =76,933 nodes in the intersection

of the friendship and encounter network and nU =225,028

in their union), while JE1,E2
(m; s) can be as large as one.

Therefore, we also consider a rescaled version of JE1,F (m; s)
that highlights how the observed unpredictability results from

structural differences of the networks (see SI Section 5-A). To-

gether, the similarity measures J·,·(m; s) allow to characterize

how the randomness of the infection process and the structural

differences between the networks affect the unpredictability

of epidemic risk. Our analyses show that, despite friendship

networks produce similar epidemic dynamics at the macro

level (SI Section 10 and 11), friendship provides a poor

identification of the individuals at risk if the infection is driven

by physical encounter. Despite the randomness of the infection

determines unpredictability of the set of infected individuals

(even between independent processes initiated at the same seed

on the encounter network), topological characteristics amplify

such unpredictability when comparing two different networks.

In addition, our results are not driven by the static nature of

the friendship network opposed to the time-varying nature of

the encounter network, as the static version of the encounter

network provides more accurate prediction of risk than the

friendship network.

The analyses reported thus far might erroneously lead to

negative conclusions about the possibility of using the friend-

ship network for prediction and containment of epidemic risk.

From the point of view of risk prediction, we show that period-

ical and relatively infrequent monitoring of the real infection

on the encounter network allows to correct the predicted

infection on the friendship network, maintaining high levels of

accuracy. This corresponds to a less extreme scenario in which

the researcher has knowledge of the friendship network but,

in addition, is able to monitor the infected population at given

times. After each observation, the estimated set of infected

individuals (on the friendship network) is updated to the real

set of infected individuals (on the encounter network). Given a

seed s present on both networks (and such that t0(s) ≤ 900),

we consider two infections spreading on the encounter network

and the friendship network for 500 time steps (denoted by F
and E). Given an observation window W , every W time steps

the predicted infected set IF (kW ) on the friendship network

is corrected to equal the real infected set IE(kW ) on the

encounter network. Figure 3 plots the Jaccard similarity of the

sets of infected individuals on the two networks right before

each correction, for window length W ∈ {10, 20, 50} (6000

simulations for each W ). A high level of prediction accuracy is

established early in the process (after the first correction) and

maintained over time (see SI Section 8 for detailed analyses

and different measures). The accuracy decreases with larger

window size, but even W = 50 guarantees good accuracy.

Our results suggest that the ability to periodically monitor the

infection on the encounter network is key to overcome the

limits of the friendship network in predicting epidemic risk.

From the point of view of outbreak containment, we con-

sider a scenario in which a fixed budget is available for

immunization (e.g., limited amount of vaccine) and must be

effectively allocated in order to contain an epidemic on the en-

counter network. In contrast to purely random immunization,

we consider a strategy that selects random friends of randomly

chosen individuals for immunization (friend immunization).

Name-a-friend methods have already been proposed to predict

the peak of an epidemic outbreak [16] and the spread of

information online [28], and are motivated by the “friendship

paradox” – the average friend of an individual is more con-

nected than the average individual [24]. The method results in

a more effective use of the immunization budget, substantially

increasing the probability that an infection dies out in its early

stage (Figure 4) and strongly reducing the final infection size

(Figures 5 and S18-S20) with respect to random immunization.

Moreover, it only requires a small additional cost to obtain the

same effect as an ideal strategy that targets future encounters

rather than friends (encounter immunization, see SI Section 9



Fig. 2. Predictability of nodes’ epidemic risk. For each of 5000 selections of a random single seed, two simulations on the encounter network, one on the static
network and one on the friendship network are run independently. The similarities J·,·(m; s) of the infected sets are shown for different pairs of networks
and different target infection size m. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position
is irrelevant). Black points represent the averages of the metrics over all observations such that the metrics are defined, and bars represent standard deviations.

Fig. 3. Periodical correction of risk prediction using the friendship network.
Shown here is the Jaccard similarity between the predicted infected set on the
friendship network and the real infected set on the encounter network before
each correction, for different values of the observation window W . For each
W ∈ {10, 20, 50}, 6000 single seeds are selected at random, and for each
seed one simulation on the encounter network and one (with correction) on
the friendship network are run.

for details). Immunization budget is expressed as a fraction

b of the entire population. For b ∈ {1%, 2%, 5%, 10%, 15%},
Figure 4 shows the fraction of infections above 0.1% of the

entire population as a function of b for all considered im-

munization methods (5000 simulations for each immunization

method and b). The 0.1% target infection size is an indicator

that the infection did not die out. The trend in Figure 4 is

captured by a linear model with interactions between immu-

nization type and immunization budget (R2 = 0.98). Each

1% increase of the immunization budget determines: a 0.5%

Fig. 4. Fraction of infections that do not die out in the early stage as a function
of immunization budget b and immunization method. For each immunization
type and b ∈ {1%, 2%, 5%, 10%, 15%}, 5000 simulations on the encounter
network initiated at random single seeds are run. The x-axis shows b, the
y-axis shows the fraction of infections whose final size is above 0.1% of the
entire population (taken as an indicator that the infection did not die out).

decrease in the fraction of infections above the 0.1% target

for random immunization (p-value= 0.0299); an additional

2.36% decrease for friend immunization (p-value= 2.77 ·106);

and an additional 3.5% decrease for encounter immunization

(p-value= 4.03 · 108). Regarding the size of the infected

population, Figure 5 shows (for b = 5%) the fraction of

infections with final rate above given targets (5%, 10%, 15%
of the entire population in the three panels) as a function of

the infection start time t0(s) for all immunization methods.

Friend immunization provides a large advantage with respect



to random immunization and, despite its simplicity, requires a

relatively small additional cost to reach the same effectiveness

as the benchmark of encounter immunization.

V. DISCUSSION

Since seminal work on the structure and growth of complex

networks [6], [22], [87], interdisciplinary research has shown

that biological networks, social networks and the Internet are

governed by similar rules [1], [9], [44], [61] and share similar

structure [29], [62], [67]. Very similar models have been pro-

posed to characterize the spread of epidemics, information, be-

haviors, and cultural norms. Despite the macroscopic similarity

between processes spreading on different networks, our work

shows that the differences in local connectivity determined

by the two definitions of edges result in striking differences

between the dynamics at a microscopic level, that prevent the

identification of the nodes at risk using a friendship network.

However, this limitation can be overcome by periodical yet

infrequent monitoring of the real infection on the encounter

network. In addition, in the context of immunization with

limited budget, simply asking individuals to name a friend

enables the effective use of the available resources, increasing

the probability that the infection dies out in its early stage and

reducing the final size of the infected population.

We considered reviews as a proxy of physical encounter –

an edge is active between two users on day t if they posted

a review to the same business on day t. This constitutes an

approximation to real physical encounter, that would requires

users to visit (rather than review) a business at about the same

time. This approximation is justified as the time of a review is

a proxy of the time of the visit to a business, and infections do

not necessarily require direct physical contact. For example,

in the case of airborne transmission, particles can remain

suspended in the air for hours after an infected individuals

has occupied a room [10]. In the context of our dataset, after

an infected user visits a business, the infection might spread

to customers who visit the business later in the day. Also,

the virus can infect customers which are not included in the

dataset, and from them can infect another user who visits the

business in a later moment.

When it is known who is infected or likely to become

infected (e.g., individuals traveling to certain countries who

might have come in contact with a pathogen), accurate pre-

diction of the individuals at risk of contagion would allow

targeted monitoring and immunization. Despite friendship and

other social relationships might be informative about the

encounters between individuals, our work suggests that they

do not always give a complete picture of the paths a pathogen

might take. Information to predict future encounters between

individuals is likely to be unavailable, at least at a detailed

level. However, a feasible approach could use past encounter

as a proxy of future encounter. In fact, it is known that human

mobility and encounter present high spatial and temporal regu-

larity and predictability [11], [32], [79], [83]. From a practical

perspective, networks based on social relationships (such as a

friendship network) might be complemented by information

about past encounter. Our simulations are based on a large

dataset that allowed us to build a static friendship network and

a time-varying encounter network that is a candidate vehicle

for the spread of a pathogen. The dataset considers a large

number of individuals and spans several years of activity. In

general, other datasets might be available and allow similar

analyses. Friendship networks whose edges have a different

semantic than that considered in the present work might lead

to different observations.
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[48] Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész, Jari
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