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ABSTRACT
The taxi dispatch problem involves assigning taxis to callers
waiting at different locations. A dispatch system currently
in use by a major taxi company divides the city (in which
the system operates) into regional dispatch areas. Each area
has fixed designated adjacent areas hand-coded by human
experts. When a local area does not have vacant cabs, the
system chooses an adjacent area to search. However, such
fixed, hand-coded adjacency of areas is not always a good
indicator because it does not take into consideration fre-
quent changes in traffic patterns and road structure. This
causes dispatch officials to override the system by manually
enforcing movement on taxis. In this dissertation, I apply a
multiagent self-organization technique to this problem, dy-
namically modifying the adjacency of dispatch areas. We
compare performance with actual data from, and a simula-
tion of, an operational dispatch system. The proposed tech-
nique decreases the total waiting time by up to 25% in com-
parison with the real system and increases taxi utilization
by 20% in comparison with results of the simulation without
self-organization. Interestingly, we also discover that human
intervention (by either the taxi-dispatch officials or the taxi
drivers) to manually overcome the limitations of the existing
dispatch system can be counterproductive when used with
a self-organizing system.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Experimentation

Keywords
Multiagent Systems, Reoganization, Network

1. INTRODUCTION
The taxi dispatch problem is the problem of assigning

taxis to callers waiting at different locations. A good taxi
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dispatch system satisfies all dispatch parties: the potential
passenger and the taxi driver. From the passenger’s per-
spective, the waiting time should be minimal. From the taxi
driver’s perspective, the travel time of the taxi to pick up
the customer (empty cruise time) and the idle time should
be minimal as well. There are other goals that need to be
taken into consideration such as maximizing the number of
dispatched calls and maximizing the total number of served
calls per taxi. One of the approaches to solve this problem
is to use fixed regional dispatch areas. These regional areas
are identified by their Global Positioning System (GPS) lo-
cations and obtained by taking into account traffic, street
structures and population density. The location of each in-
coming call or taxi is identified by its corresponding dispatch
area. This approach can be mapped to a multiagent system
as follows. Each area is an agent; each call is a task; and
each taxi is a resource. The network of the areas interacts
to run the dispatch process.

The majority of the previous studies in the taxi dispatch
problem did not utilize multiagent systems. They focused
on the assignment method aiming at making an assigned
taxi reach the customer in the shortest time possible using
different parameters such as road networks and real time
traffic [2] [5]. Other studies incorporated the satisfaction of
drivers in the assignment method [11].

Our work uses a self-organization technique to optimize
the performance in a taxi dispatch system. We develop a
computer simulation of a real taxi dispatch system (initial-
ized using actual data obtained from a major taxi operator)
to demonstrate that our proposed approach outperforms the
conventional existing system in terms of customer waiting
time (respecting customer satisfaction) and outperforms the
simulation of the existing system in terms of the number of
dispatched calls per taxi (directly proportional to fleet uti-
lization).

This work advances the state of the art in taxi dispatch
systems by making three main contributions. First, we de-
velop a realistic simulator of the taxi dispatch problem that
is based on real data acquired from a taxi dispatch com-
pany in the middle east. The simulator does not only follow
that same dispatch process, but also simulates some human
behaviors of the dispatch parties such as taxi drivers and
dispatch officials. Second, to our knowledge this is the first
work to apply a self-organization technique on a taxi dis-
patch problem and benchmark it against the performance
of an existing operational system showing superior perfor-
mance. Third, we list a number of lessons about modeling



the taxi dispatch domain in order to provide key foundation
for further researches. In particular, by comparing the per-
formance of the simulation with real-world data, we high-
light some key human factors that need to be taken into
account when modelling this domain.

The rest of the paper is organized as follows. Section 2
describes the existing taxi dispatch system that we simu-
lated. Section 3 describes our simulator and how it mimics
the existing system. Section 4 describes our self-organization
technique. Section 5 presents and discusses our experimen-
tal results. Section 6 reviews the previous work. At the end,
Section 7 concludes and suggests possible future extensions.

2. THE EXISTING TAXI DISPATCH SYS-
TEM

This work relies on the existing dispatch system of a com-
pany that is operational in a city with high population den-
sity in the Middle East.1 The existing taxi dispatch system
uses fixed ragional areas to dispatch calls. The main city is
partitioned into 131 areas besides 10 more areas of surround-
ing cities. The classification of areas depends on population
density, traffic, customer demand and other factors related
to the dispatch process. Boundaries of areas are identified
by GPS coordinates and each area has its own cab queue and
call queue. The cab queue contains a list of vacant cabs that
are located within an area in a descending order according
to the vacancy period and it keeps track of availability of
those cabs. It is updated whenever a cab enters the area or
leaves it or the availability status changes from “vacant”to
“occupied”or“on call”or vice versa. The call queue of an area
contains a list of waiting calls that originate in that area in
a descending order according to the call’s waiting time.

2.1 Dispatch Policy
The system uses the following dispatch policy (based on

interviews with officials from the taxi company). Whenever
a customer calls the dispatch center, his/her credentials, lo-
cation, time, the number of passengers and preferences are
entered into the system. Based on the address provided, the
call operator tries to identify the customer’s suburb location.
Then, the call is placed in the area that contains the defined
suburb given that each area contains a number of suburbs.
Based on that, the system automatically starts looking for
a vacant cab within the selected area. If there are vacant
cabs within the selected area, the system assigns the call
to the cab that has been vacant the longest. If the call is
placed in an area with no vacant cabs available, the system
starts looking, after one minute, for the cab that has been
vacant the longest within a predefined list of adjacent areas.
If there are no vacant cabs in the main area and the adja-
cent areas, the system waits for a cab to become available
in either the main area or the adjacent areas. If the waiting
time for any call has exceeded 1 hour, the call is cancelled.

2.2 Adjacency Schedule
The adjacency of areas is defined in a schedule based

on the experience of the dispatch center officials and some
statistics of high-demand areas. The schedule is updated
regularly (e.g. every few months) manually to take into

1For confidentiality reasons, we are unable to disclose the
name of the company at this stage.

consideration changes in traffic patterns, so high-traffic ar-
eas need adjacent areas. The adjacency of areas neither
necessarily reflects physical adjacency nor implies symmet-
ric adjacency of areas in the schedule.

2.3 General Statistics
Table 1 displays important statistics during the period

6/8/2007 - 11/9/2007, from 9:00 am to 3:00 pm (in order to
avoid rush hours). 2

These statistics are used to benchmark our simulator against
the existing system and later to evaluate our proposed ap-
proach against the existing system.

Parameter Average in min-
utes

Standard
Deviation

Dispatch Time 5.45 9.8
Pickup Time 14.5 17.2
Total Waiting Time 20 20.3

Table 1: General Statitisics

2.4 Limitations of the existing dispatch sys-
tem

The existing system has a number of limitations that are
described in this section. We later show how our approach
addresses these limitations.

2.4.1 Customer Satisfaction and Total Income
The system uses a dispatch policy that is biased in favor

of the driver’s interest rather than the customer’s interest.
More importantly, the current system does not take into
account the profit of the taxi company as a whole: priority
is set to cabs that have been vacant the longest rather than
minimizing the total waiting time of the customer.

2.4.2 Adjacency of Dispatch Areas
The existing system defines the adjacency of areas man-

ually every few months. This manual adjustment can be
suboptimal because it relies on human judgment and only
occurs at rather long intervals.

3. SIMULATING EXISTING SYSTEM
It is impractical to deploy a new approach immediately in

the real world without carefully studying the new approach
in a simulated environment. The purpose of this study is
to make a case for incorporating the multi-agent approach
by showing its potential benefit in a simulated environment
based on real data.

This section describes our simulator. Table 2 lists impor-
tant terms that are used in this section and the rest of the
paper.

Our simulator uses the same dispatch policy used by the
current system and also uses real data in generating calls
and computing travel delay. The simulator takes into con-
sideration uncontrollable factors such as the number of in-
coming calls, traffic, and availability of cabs in an abstract
manner that is reasonably accurate yet tractable (more de-
tails later). The simulator starts with a number of cabs
distributed among areas. Then, at each time unit (minute),
it checks for incoming calls, attempts to dispatch them along

2Fridays and Saturdays which are weekend days in the city
are excluded. Also, Thursdays are excluded.



Term Description
Cab or Car Taxi
Dispatch Time How long the system takes to dispatch an

incoming call (in minutes)
Pick up Time how long an assigned cab takes to pickup

a customer since the call is dispatched (in
minutes)

Total Waiting
Time

Pick up time + Dispatch Time

Job or task Call
Search Areas or
Dispatch Areas

Areas predefined by the existing system

Customer or
Caller

Potential Passenger

Main Area Caller’s Area
Utilization of a
neighbor area

The usefulness of an adjacent area mea-
sured by the number of times an area as-
signs a call to a vacant cab in this neigh-
bor area

Table 2: Terms used in the document

with the waiting calls according to the dispatch policy and
availability of cabs and moves cabs to their destinations. At
the end of a simulation run, various statistics are collected,
including taxi utilization and average total waiting time.

3.1 Real Data
Average and standard deviation are calculated on some

key data obtained from the real system. The period of time
whereby data is obtained is identified to ensure accuracy
since traffic differs at peak hours versus other remaining
hours and differs also in working days versus weekends. The
period is defined to be from 6/8/2007 till 11/9/2007, where
Thursdays, Fridays and Saturdays are excluded and time is
limited to be from 9:00 am till 3:00 pm.

Fleet Distribution.
The taxi dispatch database contains the number of cabs

in each area at each hour of the day. Thus, different dis-
tributions are obtained from the database and fed into the
simulator. To run the simulator, a number of cabs are ini-
tially distributed among areas by identifying the number of
cabs at each area. At time 0 of the simulation, all cabs are
vacant.

Call Distribution.
A call log was taken from the dispatch database. We

have only used data about successful calls in our simulator,
because unsuccessful calls lacked some details. The log con-
tains the following attributes for each call: call time, location
(area) and destination (area). This is used to generate tasks
in various simulation runs.

Trip Duration.
It is difficult to calculate the duration of trips in the simu-

lator because many parameters are needed to be taken into
account such as traffic, road structures and GPS locations.
Instead, our simulator assumes the duration between any
pair of areas follows a normal distribution. The average
and standard deviation of the duration between each pair
of areas is calculated from the real-data. This captures (ap-
proximately) many factors that are very difficult to simulate
such as traffic and street structures.

Area Adjacency Schedule.
The latest schedule of area adjacency is used which lists

all areas and their corresponding adjacent areas if available.

Dispatch Policy.
The policy is described earlier in Section 2.1. To run the

simulator, one should select a predefined time/day period.
Based on the obtained data on the selected period, a number
of cabs are distributed among the areas. Then each minute,
the simulator checks for incoming calls based on the obtained
call log at the predefined period. Meanwhile, the simula-
tor dispatches calls according to the defined dispatch policy,
moves cabs toward their destination, keeps track of cabs and
calls details and moves some vacant cabs to congested areas
if needed. At periodic intervals of the simulation (e.g. 300
time units) and at the end a the simulator run, statistics are
displayed showing the following:

1. The total number of completed calls, dispatched calls,
cancelled calls and waiting calls.

2. The maximum, minimum, average and standard devi-
ation of number of calls served by a taxi.

3. The maximum, minimum, average and standard devi-
ation of calls’ dispatch time.

4. The maximum, minimum, average and standard devi-
ation of calls’ pick up time.

5. The maximum, minimum, average and standard devi-
ation of calls’ total waiting time.

3.2 System Behavior
The existing dispatch process is summarized in algorithm

.1.

Algorithm .1: Dispatch Algorithm

Input: Calls and Cabs
Output: Dispatching calls to cabs
foreach incoming call or waiting call i with waiting
time ≤ 60 minutes do

if there is a vacant cab j in the call’s area then
Call i is dispatched to cab j;

else if waiting time >1 minute then
if there are vacant cabs l in the adjacent areas of
call’s i area then

Call i is dispatched to the cab s that has
been vacant the longest among cabs l;

else
Call i is added to the end of the waiting list

end

end

The dispatch algorithm above does not account for all
actual behavior in practice. This is because drivers some-
times work autonomously, driving around and picking up
passengers from the street, etc. Also, drivers get ad hoc in-
structions from the dispatch center or the operation section.
We simulate the behavior of drivers in moving toward con-
gested areas by using four strategies to move cabs that stay
vacant to areas that have shortage in vacant taxis. This
applies only to movements not controlled by the dispatch
center. The strategies have been set according to interviews



presented with dispatch officials since the dispatch process
is affected by human interference. We tried to simulate the
following main dispatch parties’ behaviors: the movement
of drivers to congested areas regardless of their current lo-
cation, instructions provided by some operation officials to
send taxis to areas that are expected to have high demand,
and instructions provided by some dispatch officials to send
nearest taxis to areas with high demand. Moreover, differ-
ent sets of strategies have been used to test the simulator as
shown below.

Strategy1 Vacant cabs in other cities moves to predefined
destinations;

Strategy2 The cab that is vacant the longest moves to the
area with maximum number of waiting calls;

Strategy3 Vacant cabs in other cities moves to areas with
maximum number of waiting calls;

Strategy4 Nearest vacant cab moves to area with calls that
have being waiting the longest;

The strategies are grouped as follows for testing purpose:

The strict strategy (Combination 1) consists of strate-
gies 1 and 3. Thus, each vacant cab outside the main
city moves to the area with maximum number of wait-
ing calls. Otherwise, the cab moves to the predefined
destination according to the cab’s location.

The flexible strategy (Combination 2) consists of strate-
gies 1, 2, 3, and 4

4. SELF-ORGANIZATION
The existing dispatch system uses a hard-coded schedule

of adjacency for the dispatch purpose. Each area uses its
neighbor(s), if it has shortage in taxis while receiving a call,
and assigns the call to the cab that has been vacant longest
among the adjacent areas (For more details, please refer to
Section 2). Some areas have no adjacent areas, and others
have more than one adjacent area.

Since the adjacency schedule is hand coded and has been
set by dispatch experts, it doesn’t take into consideration
frequent changes in street structures or traffic. We propose
in this section a self-organizing approach that automatically
adapts the areas’ adjacency (starting from the hand-coded
adjacency schedule).

Algorithm .2 shows our proposed self-organizing mecha-
nism, which works as follows. Each area j that has waiting
calls more than a threshold Tw (we use Tw = 10 in our ex-
periments) checks its neighborhood. If area j has a neighbor
i whose utilization (number of times that the main area j
assign its calls to area i) is greater than threshold Tu (our
experiments use Tu = 10), it checks area i’s neighborhood.
The algorithm uses parameter po to control the frequency of
self-organization: with probability po self-organization oc-
curs. If area i has neighbor z that has the maximum uti-
lization (among neighbors of area i) that is greater than
threshold Ti (our experiments use Ti = 10), then area z is
added as a neighbor of area j (if it is not already a neighbor
of area j). Furthermore, the area with the maximum num-
ber of vacant cabs (the maximum number of vacant cabs
should be at least 5 in our experiments) offers to be added to
the neighborhood of area j with a certain probability. This

strategy is necessary to connect areas that are fully isolated
(the hand-coded adjacency schedule contains areas with no
neighbors). To avoid excess in number of neighbors of an
area, the neighbor with minimum utilization is removed un-
til the number of neighbors reaches threshold Nmax(we use
Nmax = 5 in our experiments).

Algorithm .2: Strategy 1 for self-organization

Input: Current Adjacency Schedule
Output: Adjacency Schedule is self-organized
foreach area i at time n with pending calls >=Tw do

with probability po= n, if area i has a neighbor j
with utilization >= Tu and area j has at least one
neighbor z that has the max utilization among
neighbors of area j that is >= Ti ;
then

add area z as a neighbor of area i;
end
with probability po, let area y be the area with the
max number of vacant cabs among all the areas.;
add area y as a neighbor of area i;
while the number of i’s neighbors >Nmax do

remove the neighbor with minimum utilization;
end

end

5. EXPERIMENTAL RESULTS
We have conducted experiments for the simulation of the

existing system and the simulation with self-organization
technique. We have used different settings such as distri-
bution of cabs among areas at the first run of the simulator
and different movements of vacant cabs. The purpose of the
experiments is to compare the performance of the simula-
tion to the existing system and to compare the simulation
with self-organization to the existing system and to the sim-
ulation of the existing system. The evaluation includes the
following measurements desribed in Table 3.

Measurement Abbrev.
Averaged dispatch time ADT
Averaged pick up time APT
Averaged total waiting time ATWT
Percentage of cancelled calls (Cancellation Rate) CT
Percentage of waiting calls at a given run (Waiting
Rate)

WT

Percentage of served calls (Success Rate) ST
Average total number of calls served by each cab
(Fleet Utilization)

FU

Averaged degree distribution ADD

Table 3: Terms used in the experiments

The total number of cabs during any time of day or night
is approximately 2400 cabs. We selected a fleet distribution
with a total of 1622 cabs to all of the conducted experiments.
This distribution is captured on 12/08/07 at 9:00 am. We
tried also distributions with lower total number of taxis such
as 793 (the total number of vacant cabs on the same day and
hour) which shows roughly the same performance. However,
for brevity we display only the distribution with total of
1622 cabs. Note that not all the trips in the real system are
obtained via calls. Some cabs pick up passengers from the
street which is not covered by the simulation but implicitly
it is taken in to consideration. The simulation is not utilizing



the whole fleet, so that some of the cabs do not receive any
call during the total runs of the simulation. This, mimics the
real scenario when some cabs get busy picking up passengers
from the street all the time and receive few or no calls.

5.1 The simulation of the existing system
To ensure that the developed dispatch simulation uses the

exact dispatch policy used by the existing system, we have
conducted two experiments using the two different combi-
nations of strategies of moving vacant cabs as described in
Section 2.1.

Table 4 illustrates the obtained accumulated results after
the last run along with the statistics of the real taxi dispatch
system.

The two expirements use the following parameters:

• Total number of cabs: 1622

• Total number of calls: 43348 (Actual Data)

• Total number of runs: 4504

• Periodic statistics at each: 300 runs

The results of the simulation using the strict strategy (Com-
bination 1) are unsatisfactory when compared to the real
data. This is expected since in reality vacant taxis attempt
to move looking for potential passengers unlike the move-
ment in the simulation using the strict strategy (Combina-
tion 1), which allows the return of vacant cabs to the main
city only. Thus, the averaged dispatch time and the total
waiting time increases significantly. As a result, the cancel-
lation rate increases and the success rate drops. Note that
the log that we used contains only successful calls. There-
fore, the real system has success rate of 100% for the data
we have used.

When the flexible strategy (Combination 2) is used to
move vacant cabs in the simulation, the results improve sig-
nificantly. The number of dispatched calls increases to reach
82.2%. Consequently, the cancellation rate declines sharply
to reach 17% of the total calls. Also, the number of waiting
calls in the queue at the last run has been reduced. In addi-
tion, the fleet utilization is enhanced as a result of applying
the flexible strategy (Combination 2) in the simulation.

The average dispatch time and the average total waiting
time drop by around 6 minutes, but they are still higher than
the real system (by 15 minutes approximately for the dis-
patch time and 9 minutes for the total waiting time). While
surprising at first, it is actually justified because the flex-
ible strategy (Combination 2) of movement of vacant cabs
toward congested areas does not take place frequently and
is triggered only when the number of waiting calls is above
a threshold so the travel time of the vacant cabs affects the
dispatch time of waiting calls. Although we tried to sim-
ulate the behavior of the involved parties in the dispatch
process, there are still other human factors that are diffi-
cult to simulate and predict. In general, the pick up time
in the simulation is lower than the existing one. This might
be because the simulation is restricted to assign calls to va-
cant cabs within the main area or the adjacent areas of the
main area of the call. While in the real system, officials
may force-assign calls to vacant cabs in other areas which
increases the travel time of the assigned cab to reach the cus-
tomer. We will use the simulation with the flexible strategy

(Combination 2) to simulate the existing system in the sub-
sequent sections because it captures (to an extent) the hu-
man behavior. The following section compares our proposed
self-organizing approach to two benchmarks: the simulated
existing system, which provides a fair comparison in terms
of modeling human behavior, and the existing system itself,
which provides a rough estimate of how our proposed archi-
tecture would perform in practice. It should be noted that
at the end our results here are based on simulation. While
the results as we show are quite promising, a fair comparison
to the existing system is only possible through incorporating
our approach into the real live system.

Rule ADT APT ATWT CR SR WR FU
Real 5.45

±9.8
14.5
±17.2

20
±20.3

0 100 N/A N/A

Comb.
1

26.45
±25.8

9
±6.58

35.4
±26.3

47.9 50.8 1.26 13.55
±13.2

Comb.
2

20.57
±21

8.5
±5.79

29
±22

17 82.2 0.7 21.9
±8.47

Table 4: Simulation of existing system with different
strategies of vacant cab movements

5.2 The simulation with self-organization
We have tried different values of of self-organization prob-

ability po = (0.001, 0.1, 0.4, 0.8). The obtained results are
compared to the existing system and the simulating of the
existing system. We calculate the averaged degree distri-
bution ADD of the network of areas to verify the stability
(convergence) of our approach. The degree of a node in a
network is the total number of connections it has to other
nodes and the degree distribution is the total distribution of
degrees in the whole network [7].

The following experiments use the flexible strategy (Com-
bination 2) to move vacant cabs. Table 5 illustrates the
obtained results. The table also contains the statistics of
the existing system for reference given the first two rows
here are basically row 1 and 3 in Table 4.

Po ADT APT ATWT CR SR WR FU ADD
Real 5.45

±9.8
14.5
±17.2

20
±20.3

0 100 N/A N/A 1.33
±1.06

0 20.57
±21

8.5
±5.79

29
±22

17 82.2 0.7 21.9
±8.4

1.33
±1.06

0.001 20.22
±20.7

8.5
±5.7

28.73
±21.5

14.9 84.3 0.6 22.49
±8.4

1.44
±1.12

0.1 18.56
±20.7

8.76
±6.1

27.33
±21.7

17.9 81.2 0.7 21.68
±8

1.8
±1.33

0.4 18.47
±20.4

8.86
±6.4

27.33
±21.3

14.8 84.3 0.7 22.51
±8.6

1.91
±1.37

0.8 19.57
±20.7

8.72
±6.1

28.29
±21.8

15.5 83.7 0.7 22.32
±8.4

1.87
±1.28

Table 5: Accumulated statistics with different prob-
abilities of self-organization using the flexible strat-
egy (Combination2)

Overall, the self-organization is not effective while us-
ing the flexible strategy (Combination 2) for moving vacant
cabs. There is no enhancement in the results when self-
organization is incorporated in the simulation. The average
degree distribution has still increased which means the self-
organization is taking place but there is no noticeable im-
provement. This was surprising at first, because one would



expect self-organization to improve performance over a fixed
organization even by a small margin. Upon careful inspec-
tion, we have found that the flexible strategy (Combination
2 ) causes excessive movement of vacant cabs, which in turn
reduces the frequency of assigning calls to vacant cabs in
adjacent areas. Although self-organization process is taking
place and adding new neighbors, the process has no effect
because areas do not utilize their neighbors. This obser-
vation has lead us to step back and try the strict strategy
(Combination 1) of moving vacant cabs in the following ex-
periments.

5.2.1 The strict strategy (Combination 1) for Move-
ment of vacant cabs

Table 6 compares our self-organizing approach using the
strict movement strategy (and under different values of po)
to of the existing system.

Po ADT APT ATWT CR SR WR FU ADD
Real 5.45

±9.8
14.5
±17.2

20
±20.3

0 100 N/A N/A 1.33
±1.06

0 20.5
±21

8.5
±5.7

29
±22

17 82.2 0.7 21.9
±8.4

1.33
±1.06

0.001 11.5
±17.9

11.25
±9.1

22.82
±19.5

8.2 91.5 0.16 24.38
±16.9

1.54
±1.19

0.1 2.8
±7.8

12.53
±10.9

15.39
±13.5

0.6 99.1 0.16 26.41
±15

1.69
±1.24

0.4 2.9
±8.1

12.23
±10.5

15.16
±13.2

0.6 99.1 0.13 26.42
±14.4

1.7
±1.31

0.8 2.7
±8.1

12.3
±11.1

15.14
±13.8

0.6 99.2 0.07 26.45
±15.1

1.7
±1.31

Table 6: Accumulated statistics with different prob-
abilities of self-organization using the strict strategy
(Combination1)

In comparison with the simulation without self-organization,
when po = 0.001 the average dispatch time is reduced by
around 9 minutes which causes a decline in the total wait-
ing time by 8 minutes on average. However, the pick up
time rises slightly because the self-organization technique
doesn’t take into consideration the duration of among areas
when adding new neighbors which yields in higher travel
time of taxis to pick up customers. With po = 0.001, the
results are still not better than the real system because us-
ing a relatively low probability of self-organization, delays
the results to converge. Moreover, the averaged degree dis-
tribution increases slightly by 0.2. On the other hand, when
po = 0.1 or greater, the system’s performance significantly
improves across all measures in comparison with both the
real system data and the simulation of the real system with-
out organization. Increasing po beyond 0.1 does not improve
performance tangibly, suggesting the convergence of our self-
organizing mechanism. Figure 1 plots the averaged dispatch
time that is computed every 300 time steps (=300 minutes)
for each simulation run to measure performance improve-
ment of self-organization. Initially, the averaged dispatch
time starts low then it starts to raise. The reason is that all
cabs are vacant at the beginning then, they get busy serv-
ing calls which causes the gradual increase of the dispatch
time. Without self organization, the averaged dispatch time
increases over time. When po of 0.001 is used, the averaged
dispatch time reduces gradually after a peak at time 900 to
reach the minimum at the last run but results take longer
time to converge since self-organization doesn’t take place

frequently. While for po of 0.1 or greater, the averaged dis-
patch time starts to decline after a slight increase at the
beginning. Then, it increases again a bit with some fluctua-
tions due to changes in the availability of cabs and the need
to self-organize the network to tackle for new needs.

Figure 1: Average Dispatch Time for different values
of po plus the existing system

Figure 2 plots the average pick up time computed for
each 300 time steps of each simulation run. When self-
organization has been incorporated in the simulation, the
pick up time increases slightly. When po = 0.001, the in-
crease is slower in comparison with higher values of po since
the self-organization does not take place frequently. Note
that po = 0 has the minimum pickup time because it only
assigns cabs to local available cabs or immediately adjacent
areas.

Figure 2: Average Pick up Time for different values
of po plus the existing system

The average total waiting time computed for each 300
time step (Figure 3) is very similar to Figure 1 since it is
dependent on the dispatch time.

One might wonder if the system achieves better perfor-
mance by simply overconnecting the areas. To investigate
this further, we plotted the average degree distribution and
standard deviation for each 300 time step for the simula-
tion using 0.1 po of self-organization in Figure 4 to show
the changes in the degree distribution. We can see that the
degree distribution remains relatively stable, which suggests
that the system is not overconnecting areas, but rather im-
proving the quality of the adjacency schedule.

Finally, Figure 5 plots the number of agents which have
a number of neighbors: 0, 1, 2, 3, 4, 5 respectively at both
the first time step and the last one for the simulation using
po of 0.1. The overall degree distribution has not changed



Figure 3: Average Total Waiting Time for different
values of po plus the existing system’s one

Figure 4: Average Degree Distribution for po 0.1

significantly. There is a small drop in isolated areas (with
0 neighbors) at the expense of slight increase in areas with
3,4, and 5 neighbors.

Figure 5: Number of agents having 0,1,2,3,4,5 neig-
bors for po 0.1

6. RELATED WORK
The related works to this work focus on one of the follow-

ing methods to solve the taxi dispatch problem: (1) assign-
ment method (2) Multiagent Systems. This section briefly
describes the used methods and eventually addresses the dif-
ference of our work in comparison with the related work and
how it overcomes the limitations. Also, the section presents
some works that addressed the freight transportation prob-
lem in general.

6.1 Assignment Optimisation Approaches

Most approaches that have been presented on the prob-
lem of establishing a flexible taxi dispatch system focused
on the assignment method as the assigned taxi should reach
the customer in the shortest time possible. For example,
Chung [2] proposed to use the A* search algorithm to cal-
culate the shortest path by adjusting it to accommodate
the road network’s conditions. Also, Der-Horng et al [5]
proposed a dispatch system whereby the dispatch of taxis
is determined by real-time traffic instead of just using the
shortest line path to the customer. Another approach pro-
posed by Shrivastra et al [11] uses a fuzzy rule combination
approach to solve taxi dispatch problems. Two contradicting
rules are satisfied by the proposed approach simultaneously
which are “nearest vehicle first”and “the least utilized vehi-
cle first”. More importantly, these approaches require the
availability of supplementary data such as road structures,
or real time traffic information which might be unavailable
or up-to-date. Another aspect that is not covered by the
mentioned solutions is how to enhance the structure of the
taxi network and manage it automatically.

6.2 Multi-Agent Approaches
Some other researches use Multiagent communication to

dispatch taxis to customers. Seow et al [10] proposed a
multiagent architecture, whereby taxis are represented by
collaborative agents that in turn negotiate on behalf of taxi
drivers for incoming calls. The proposed solution aims at in-
creasing customer satisfaction as well as driver satisfaction.
In comparison with an existing systems in Singapore, the
proposed system reduced passenger pick-up time and empty
taxi cruise time. The proposed architecture shares the lim-
itation of the solutions mentioned in Section 6.1 in terms
of its data requirements (e.g. real time GPS locations of
taxis). Moreover, unlike our work, it focuses on the assign-
ment method only rather than the structure of the network
and it is based on de-centralized networks.

Another interesting approach to the taxi dispatch prob-
lem is highlighted by de Weerdt et al [4]. A resource-based
planning framework is presented where agents can merge
plans by exchanging their resources. They proposed a plan-
merging algorithm that is evaluated on a taxi domain. Em-
pirical results showed a decrease of the total distance driven
by all taxis if passengers are allowed to share rides. Of
course, this approach requires customers to be willing to
share rides, and hence has a different focus to our work.

Some researchers have realized that enhancing assignment
methods alone does not necessarily make dispatch systems
efficient. This is because, the way the network of taxis and
tasks is structured affects the assignment method as well.
The better the network is organized and structured, the less
time is needed for call assignment, passenger pick up time
and average travel distance. Sander et al [9] presented a
novel algorithm for efficient task allocation that uses com-
putational geometry techniques to determine adjacency in-
formation for the agents. The adjacency information helps
agents to determine which neighboring nodes should be con-
sidered in the decision making process as they look for a
nearby task to accomplish. Neverthless, it is stated in the
work that the algorithm doesn’t consider some costs associ-
ated with the agents such as distance traveled which is di-
rectly relevant to the customer satistfaction. The main goal
of the solution is to maximize the number of dispatched jobs.

Freight transportation is a slightly different problem from



taxi dispatch. This is mainly because freight transportation
can allow multiple shipments to be bundled together to op-
timize the utilization of container space. This is equivalent
to taxi sharing among passengers, which is not yet practical.
Davidsson et al [3] surveyed some agent-based approaches to
freight transportation and traffic management and prsented
a framework for assesing such approaches. Other studies ad-
dressed the problem of global transportation scheduling such
as the work of Perugini et al [8] which requires many trans-
port organization to co-operate and coordinate to transport
partial requests along partial routes to accomplish transport
requests. Another related area is the optimization of flexible
multi-vehicle pick-up and delivery problems within defined
time frame, such as the work of Dorer and Calisti [6].

7. CONCLUSION AND FUTURE WORK
The paper proposes a multiagent self-organization tech-

nique to a taxi dispatch system. The effeciency of the tech-
nique has been demonstrated by simulating an existing taxi
dispatch system and incorporating the self-organization tech-
nique. The self-organization technique allows agent to add
or remove other agents from their neighborhood where agents
are dispatch areas, tasks are calls and resources that fulfill
tasks are taxis. Expiremental results show that the proposed
self-organization technique decreased the total waiting time
by up to 25% in comparison with the real system and in-
creased taxi utilization by 20% in comparison with results
of the simulation without self-organization.

We are currently working on (gradually) implementing our
proposed approach in the real live taxi dispatch system. We
are also investigating the use of multiagent reinforcement
learning in combination with our self-organizing technique,
following the work of Abdallah and Lesser [1] to decrease
the total waiting time further. Another interesting point is
investigating driver fairness, so that drivers roughly receive
the same number of calls.
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