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ABSTRACT
Autonomous agents transcend their individual capabilities
by cooperating towards achieving shared goals. The differ-
ent viewpoints agents have on the environment cause dis-
agreements about the anticipated effects of plans. Reaching
agreement requires the resolution of such inconsistencies and
the alignment of the agents’ viewpoints.

We present a dialogue protocol that enables agents to dis-
cuss candidate plans and reach agreements. The dialogue is
based on an argumentation process in the language of sit-
uation calculus. Agreement is reached through persuasion,
thereby aligning the planning beliefs of the agents.

We describe our abstract iterated dialogue protocol, and
extend it for the specific problem of arguing about plans.
We show that our method always terminates and produces
sound results. Furthermore, we detail a set of extensions to
simplify reasoning and reduce the exchanged information.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory

Keywords
Argumentation, Planning, Communication protocols, Dis-
tributed problem solving

1. INTRODUCTION
In many collaborative practical decision-making settings it

is necessary for cooperating agents to come up with propos-
als for joint action in order to achieve goals that transcend
their individual capabilities. Reaching agreement on plans
for action may be hindered if different agents anticipate a
plan to affect the environment in different ways. Such dis-
agreements can be the result of the locality of sensing, out-
dated information, contradicting domain beliefs encoded by
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different agent designers, or simply because different agents
have conducted different inferences and therefore their be-
liefs are not aligned. Since cautious autonomous agents will
not subscribe to plans that they consider to be harmful, in-
effective or questionable, methods for reaching agreement in
a collaborative planning environment are needed, and these
will involve a mechanism that enables the agents to discuss
and identify plans that the agents will follow.

In this paper we deal with the problem of identifying and
agreeing on a plan that satisfies all agents. We extend the
dialogue protocol presented in [2], providing a framework
that allows cooperative agents to search the space of poten-
tial plan proposals, resolve contradictory beliefs and reach
agreement while aligning their knowledge.

Our system is based on the combination of argumentation
theory and the language of situation calculus in a distributed
setting. The dialogue-based approach enables the distri-
bution of the argumentation process, and allows all agents
to initiate discussion about the candidate plans they have
generated. The resolution of contradictions is restricted to
beliefs that are relevant to concrete plans. Avoiding the
merging of all beliefs and the resolution of all inconsistencies
is particularly significant for agents with extensive domain
knowledge or privacy concerns.

We present an abstract argument-based protocol that en-
ables discussion of candidate proposals and extend it for the
specific problem of arguing about plans. The dialogue is
broken down into sub-dialogues, which discuss alternative
proposals. If a sub-dialogue fails, the protocol ensures that
the source of the disagreement is discovered and resolved,
and that the knowledge of the agents is gradually aligned as
participants’ local misconceptions are uncovered. We pro-
vide termination and soundness results for the suggested
protocol and discuss extensions that may support the early
identification of mutually acceptable plan proposals.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces our abstract dialogue protocol and dis-
cusses its important properties. Section 3 extends the proto-
col for the specific problem of arguing about plans. Section 4
details extensions that can be employed to guide reasoning
or reduce the size of the arguments about plans. Section 5
overviews related work and concludes.

2. ARGUMENTATION MODEL
Argumentation theory provides strong theoretical founda-

tions for formally defining the notion of acceptability, and
mechanisms for the identification and resolution of contra-
dictions in the agents’ knowledge. We start by describing



our two-agent1 dialogue framework at the level of abstract
argumentation [3], together with a protocol for iterated ar-
gumentation that is suitable for arguing over plan proposals
as we will later show.

2.1 Abstract Argumentation
Our basic argumentation framework follows [3]:

Definition 1. An argumentation framework is a pair
AF = 〈A ,R〉 where A is a set of arguments and R ⊆
A × A is the binary defeats relation between arguments.
We say that A→B iff (A,B) ∈ R.

For AF = 〈A ,R〉, a set S ⊆ A is said to be conflict-
free if there are no arguments A,B ∈ S s.t . B→A. We
will consider a preference ordering over A . For A,B ∈ A ,
pLevel(A) > pLevel(B) will denote that A has a higher pref-
erence than B. The preference level resolves ties between
arguments with contradictory claims. Let AF = 〈A ,R〉
be an argumentation framework. An argument A ∈ A is
acceptable with respect to a set of arguments S iff for all ar-
guments B in A , where B→A, there exists an argument
C ∈ S s.t . C→B. Grounded (sceptical) semantics are de-
fined using the characteristic function.

Definition 2. The characteristic function of an argu-
mentation framework AF = 〈A ,R〉, is the function FAF :
2A → 2A , which is defined as follows: FAF (S) =
{A | A is acceptable w .r .t . S}.

Definition 3. The grounded extension of an argumenta-
tion framework AF, denoted by GEAF is the least fixed point
of FAF .

Consider the sequence: F 0
AF = ∅, F i+1

AF = {A ∈
A | A is acceptable w.r.t. F i

AF}. According to [3], it holds
that: all arguments in ∪∞i=0(F i

AF ) are in GEAF , and if each
argument is defeated by at most a finite number of argu-
ments, then an argument is in GEAF iff it is in ∪∞i=0(F i

AF ).
We employ grounded semantics in order to shift the bur-

den of proof for plans to the agent that proposed them and
assert that a plan will be accepted iff its proponent can de-
fend it against all possible attacks.

2.2 Dialogue Protocol
In this section we describe the iterated disputes protocol,

which involves sequences of disputes [4], with each dispute
discussing an alternative proposal. Every iteration is fol-
lowed by an argument revision step which aligns the argu-
ment sets of the agents. We consider the agents to have
distinct argument sets, instead of sharing the same pool of
arguments, which is usually the case in disputes.

2.2.1 Iterated Disputes
The agents evaluate the acceptability of a proposal

through a dispute [4]. The agent that made the proposal
plays the role of the proponent PRO , leaving the role of
opponent OPP to the other party. The proponent is re-
sponsible for constructing arguments in favour of the pro-
posal, while the opponent’s role is to show that the proposal
should not be accepted. The game progresses with agents
presenting arguments defeating the arguments of their rival.

1This paper assumes two-player situations; in case of more
than two agents, our results carry over assuming pairwise di-
alogues are conducted between all agents to reach agreement
among the full set of agents.

Iterated disputes facilitate the discussion of different pro-
posals in sequence. This protocol extends argument games
enabling discussion about different proposals in a dialogue.

Let AF = 〈A ,R〉 be an argumentation system, with A =
APRO ∪AOPP the union of the arguments that are available
to the proponent and the opponent respectively. A dispute
tree for some argument P in A , denoted by T , is a tree with
root P whose vertices and edges are subsets of A and R,
respectively. The edges in a dispute tree are directed from
vertices to their parent node. Depth(T , A) for an argument
A in a dispute tree T denotes the number of edges in the
dispute line from A to the root of the tree. Children(T , V, δ)
represents all arguments in T that have V , which is located
in depth δ, as their parent node.

A dispute line is a path in the dispute tree: T = Vk →
. . . → V1 → V0 = P . A dispute line is called open/closed if
the agent who has to make the following move is able/unable
to attack the other party’s most recent move. A closed dis-
pute line for some argument P is a failing defence/attack
of P if the leaf node argument move has been made by the
opponent/proponent.

A dispute for some argument P is a sequence of moves:
d = 〈µ1, µ2, . . . , µk, . . .〉 affecting a dispute tree that has
P as its root. Every dispute evaluates the acceptability
of a candidate proposal. Dispute d after k moves will be
denoted as dk. The state of the dispute dk is a tuple
State(dk) = 〈Tk, Vk,CSPRO

k ,Lk,Qk,Ak〉. Tk is the dispute
tree after the most recent argument move Vk. CSPRO

k con-
tains arguments that have been presented by the proponent
in the current dispute line providing defence on P . Lk is the
set of arguments the proponent has presented in the current
dispute tree. Qk contains sets of arguments presented by
the proponent that failed to defend P . Ak represents the
arguments that have been exchanged in the dispute by both
agents, excluding the proposal argument. We will refer to
a dispute as being closed if the agent who has to make the
following move is unable to make a move affecting the tree of
the dispute. A closed dispute line for some argument P is a
failing defence/attack if the final move affecting the dispute
tree was made by the opponent/proponent.

An iterated dispute is a sequence of disputes D =
〈d1, d2, . . . , dl, . . .〉. An iterated dispute can be rewrtitten
as a sequence of legal moves D = 〈µ1,0, µ1,1, . . . , µl,k, . . .〉,
where µl,k denotes the kth move of the lth dispute. The
boolean function Legal(µ,D) succeeds if all the condi-
tions specified by the move hold before the move is ap-
plied. CurrentDispute(D) returns the most recent dispute,
PreviousMoveType(D) denotes the type of the most recent
move, and Proposal(d) is d’s root argument.

2.2.2 Moves
The applicability of dialogue moves is specified by sets

of conditions and effects. The propose move initiates a new
dispute. The agents are restricted to propose new arguments
from P, which is the set of all possible proposals.

µl,0 = 〈propose, i, P 〉
Conditions: Effects:

PreviousMoveType(D) ∈ {close, Roles are switched
no-proposal}, or D = 〈〉 Tl,0 := 〈P 〉

∀d in D , Proposal(d) 6= P Vl,0 := P
P ∈ GE 〈A i

l−1∪{P},R〉
CSPRO

l,0 := {P}
P ∈ P Ll,0 := {P}

Ql,0 := ∅
Al,0 := ∅



The no-proposal move is made when an agent is un-
able to present a new proposal. Its conditions are:
PreviousMoveType(D) = close or D = 〈〉 and
@P s.t . Legal(µ,D), for µ = 〈propose, i, P 〉.

The terminate move can be used after a no-proposal
move, in order to terminate the discussion when no alterna-
tive proposal can be presented by either one of the agents.
The conditions for this move are: PreviousMoveType(D) =
no-proposal and @P s.t . Legal(µ,D), for µ = 〈propose, i, P 〉.

Counter moves respond to the other party’s most recent
argument in a dispute. The proponent cannot present con-
flicting arguments in the same dispute line.

µl,k = 〈counter ,OPP, Y 〉
Conditions: Effects:

PreviousMoveType(D) ∈ Tl,k := Tk−1 + 〈Y, Vk−1〉
{propose, counter , retract} Vl,k := Y

Y ∈ A OPP
l−1 ∪ CSPRO

l,k−1 CSPRO
l,k := CSPRO

l,k−1
Y → Vl,k−1 Ll,k := Ll,k−1

Ql,k := Ql,k−1

Al,k := Al,k−1 ∪ Y

µl,k = 〈counter ,PRO, Y 〉
Conditions: Effects:

PreviousMoveType(D) ∈ Tl,k := Tk−1 + 〈Y, Vk−1〉
{counter , backup} Vl,k := Y

Y ∈ A PRO
l−1 CSPRO

l,k := CSPRO
l,k−1 ∪ {Y }

Y → Vl,k−1 Ll,k := Ll,k−1 ∪ {Y }
Y 6∈ CSPRO

l,k−1 Ql,k := Ql,k−1

CSPRO
l,k−1 ∪ {Y } is conflict-free Al,k := Al,k−1 ∪ Y

∀R ∈ Ql,k, R 6⊆ Ll,k−1 ∪ {Y }

OPP may use the backup move to backtrack and provide an
alternative defeat if she cannot counter PRO ’s latest argu-
ment.

µl,k = 〈backup,OPP, Y,X, δ〉
Conditions:

PreviousMoveType(D) ∈ {counter}
Y ∈ A OPP

l−1 ∪ CSPRO
l,k−1

X = Vb is the most recent argument in the dispute
line Vn→ . . .→Vb→ . . .→P for which:
− δ = Depth(X) + 1 is odd
− Y → X
− B 6∈ Children(Tl,k, X,Depth(X)).

Effects:
Tl,k+1 := Tk + 〈Y,X〉
Vl,k+1 := Y
CSPRO

l,k+1 := CSPRO
l,k−1 \ {Vn, Vn−2, . . . , Vb+1}

Ll,k := Ll,k−1

Ql,k := Ql,k−1

Al,0 := ∅

The retract move can be used by the proponent in order to
attempt to provide an alternative line of defence if it is not
possible to counter an argument presented by OPP .

µl,k = 〈retract,PRO〉
Conditions: Effects:

PreviousMoveType(D) Tl,k+1 := 〈P 〉
∈ {counter , backup} Vl,k+1 := P

@X s.t . Legal(µ,D) for CSPRO
l,k+1 := CSPRO

l,0
µ = 〈counter ,PRO , X〉 Ll,k := Ll,0

Ql,k := Ql,k−1 ∪ {Ll,k−1}
Al,k := Al,k−1

The accept proposal move is preformed by the opponent,
closing the most recent dispute as a failing attack and ter-
minate the dialogue in favour of the most recent proposal.

µl,k+1 = 〈accept,OPP〉
Conditions:

PreviousMoveType(D) ∈ {propose, counter}
@Y s.t . Legal(µ,D), for µ = 〈counter ,OPP , Y 〉
@Y,X, δ s.t . Legal(µ,D) for µ = 〈backup,OPP , Y,X, δ〉

Effects:
A PRO
l := A PRO

l−1 ∪Al,k
A OPP
l := A OPP

l−1 ∪Al,k
Proposal(dl) is accepted

The close dispute move is available to the proponent and
closes the most recent dispute as a failing defence.

µl,k+1 = 〈close,PRO〉
Conditions:

PreviousMoveType(D) ∈ {counter , backup}
@Y s.t . Legal(µ,D), for µ = 〈counter ,PRO , Y 〉
@Legal(µ,D), for µ = 〈retract ,PRO , Y,X, δ〉

Effects:
A PRO
l := A PRO

l−1 ∪Al,k
A OPP
l := A OPP

l−1 ∪Al,k

We consider a strategy to be a set of rules that select exactly
one move from the set of all legal moves. The confident
strategy constructs a move based on a complete ordering
over all possible legal options. Preference over moves is cal-
culated according to: (i) the following ordering over move
types: l = 〈counter , backup, retract , close, accept , propose,
no-proposal, terminate〉, (ii) the preference level of the argu-
ment presented by the move, for moves of the same type. If
the preference ordering over arguments is partial, the agent
constructs a complete ordering by randomly ordering the
equally prefered moves.

2.3 Properties
In this section we will present important properties of the

protocol. The following proofs assume that the dialogue
is conducted between two agents with initially consistent,
finite argument sets, following confident strategies.

Proposition 1. (Termination) An iterated dispute for
agents with finite argument sets always terminates.

Proof. The proponent cannot repeat the same argu-
ments in the same dispute line, and cannot repeat infinite
backup moves as each one represents an alternative line of
defence. The agents’ arguments are finite. Therefore, dis-
pute will always terminate. If there exists a dispute that
is a failing attack of the proposal, the iterated dispute will
terminate. We show that there can be no infinite sequence
of disputes that are all failing defences. For proposal P
and dispute l + 1, if dl+1 is a failing defence of P , there
exists a set of arguments OPP against which P cannot be
defended. PRO can only present proposals that are part
of GE 〈A PRO

l
∪{P},R〉, which are defended against all defeats

from A PRO
l . Since P is not defended against all defeats in

the dispute, there exists at least one argument B that was
presented by OPP and is not part of A PRO

l . The agents
have finite argument sets and after every dispute they learn
the arguments presented by the other party. So there cannot
be an infinite sequence of disputes that are failing attacks.
Therefore, an iterated dispute always terminates.

In order to prove soundness, we introduce two key lemmas.
The following lemma shows that, if a dispute dl is a failing
attack of a proposal P , then P will be in the grounded ex-
tension of the argumentation framework 〈A OPP

l ∪ {P},R〉,
where A OPP

l are the arguments that the opponent will know
after the the dispute terminates.



Lemma 1. Let dl be a closed dispute about P between
agents PRO and OPP, with initially consistent finite argu-
ment sets A PRO

0 = A and A OPP
0 = B that follow a confident

strategy. If dl is a failing attack of P then P ∈ GEAFOPP
l

, for

the argumentation framework AFOPP
l = 〈A OPP

l ∪ {P},R〉,
where A OPP

l denotes the arguments known to OPP after the
dispute dl.

Proof. All nodes presented by OPP in the dispute tree
T = Tl,k have one child node presented by PRO , since the
proponent can only add a new argument to the dispute tree
using the counter move. A dispute closes as a failing attack
if the proponent counters every counter and backup move
made by the opponent. Therefore, all leaf nodes are pre-
sented by PRO . We will show that all arguments of even
depth in T are part of the grounded extension of AFOPP

l

by induction over the distance between them and the leaf
nodes in the tree.

(Base Case) For distance = 0, let V0 be the leaf node argu-
ments of depth n. These arguments were presented by PRO .
Also, ∀An ∈ V0, @Bn−1 ∈ AOPP ∪ CSPRO s.t . Bn−1→An,
because if such an argument existed OPP would have pre-
sented it, due to the specification of the confident strategy
and the counter and backup moves. Let F i

OPP be the char-
acteristic function of AFOPP

l . All leaf node arguments in V0

are part of F 1
OPP , since there are no arguments in A OPP

l

defeating them. So V0 ∈ GEAFOPP
l

.

(Induction Step) We assume that the property holds for
arguments of distance k from the leaf nodes, Vk ⊆ GEAFOPP

l
.

We will show that the property holds for arguments of dis-
tance k + 2. All arguments of distance k + 2 from the leaf
node Vk+2 are defeated by an argument in Vk+1, which are
in turn defeated by arguments in Vk. Also, there is no other
B′k+1 ∈ A OPP

l that defeats any argument in Vk+2 that has
not been presented, because of OPP ’s strategy. According
to the induction step Vk ⊆ GEAFOPP , so Vk+2 ⊆ GEAFOPP

l
.

Therefore, all arguments of even distance from the leaf
nodes will be part of GEAFOPP

l
, including P .

The following lemma shows that for agents with finite
and conflict-free initial argument sets, which have exchanged
subsets of their arguments, if a proposal is acceptable with
respect to the arguments both agents know, then it will be
also acceptable with respect to both agents’ arguments.

Lemma 2. Let AF 1 = 〈{P} ∪A∪B′,R〉, AF 2 = 〈{P} ∪
A′ ∪ B,R〉 and AF = 〈{P} ∪ A ∪ B,R〉, with A, B finite,
conflict-free argument sets, A′ ⊆ A and B′ ⊆ B. If P ∈
GEAF1 ∩GEAF2 then P ∈ GEAF .

Proof. We will first show by induction on the charac-
teristic function FAF1 that ∀B ∈ B′ s.t . B ∈ GEAF1 it
holds that B ∈ GEAF . It holds that B is conflict-free, and
B,P ∈ GEAF1 , therefore all arguments defeating B will be
in A. (Base case) ∀B ∈ F 1

AF1 , there exists no argument
defeating B in {P} ∪ A ∪ B′. There will be no argument
defeating B in {P} ∪ A ∪ B, so B ∈ GEAF . (Induction
step) We assume that ∀B ∈ FAFk , B ∈ GEAF , and we
show that is holds for ∀B ∈ FAFk+1 . All arguments at-
tacking B in {P} ∪ A ∪ B′ are also part of {P} ∪ A ∪ B.
Since B ∈ FAFk+1 it is defended against these attacks by
arguments in FAFk . These arguments are part of GEAF

according to the induction step. Therefore, B will also be
in GEAF .

P ∈ GEAF1 , therefore for all A in A defeating P , there is
some B ∈ GEAF1 s.t. B defeats A. B will also be in GEAF .
Therefore, for any argument A ∈ A defeating P , there will
exist B ∈ GEAF defeating A.

Accordingly, we can show that for any B ∈ B defeating
P , there exists an argument A ∈ GEAF defeating B. There-
fore, B is defended against all defeats from {P} ∪ A ∪ B by
arguments in GEAF . So P ∈ GEAF .

The following proposition asserts that for agents follow-
ing confident strategies, with initially conflict-free argument
sets, if a proposal is accepted by the dialogue, then it is
acceptable with respect to the union of their arguments.

Proposition 2. (Soundness) If an iterated dispute be-
tween two agents i, j following confident strategies, termi-
nates accepting a proposal argument P , then P is in the
grounded extension of the argumentation framework AF =
〈A1∪A2∪{P},R〉, where A and B are the initial, finite and
conflict-free argument sets for agent i and j respectively.

Proof. Let i be the agent that made the accepted pro-
posal. Consider the following argumentation frameworks:
AFPRO = 〈A∪B′∪{P},R〉 and AFOPP = 〈B∪A′∪{P},R〉.
A ∪ B′ denotes the arguments PRO knew before initiating
the final dispute and B ∪ A′ is the set of all the arguments
OPP knows after the dispute has terminated. A′ ⊆ A and
B′ ⊆ B. The agents follow confident strategies, so the pro-
ponent will propose arguments that are in the grounded
extension of AFPRO . According to Lemma 1 the pro-
posal argument will be in the grounded extension of the
opponent GEAFOPP if a dispute terminates as a failing at-
tack. According to Lemma 2 if the proposed argument is in
GEAFPRO ∩GEAFOPP then it is part of GEAF .

3. ARGUMENTS ABOUT PLANS
Given that we now have a working protocol for iterated

dispute dialogues, we can now introduce a logic for argu-
ments about plans that is suitable for combination with con-
temporary AI planning systems.

3.1 Situation Calculus
Situation calculus is a language for the representation

of dynamic domains [8]. It supports three disjoint sorts.
The sort action represents actions, the sort situation rep-
resents situations (i.e. histories of action sequences) and
the sort object all the rest. S0 is a constant symbol rep-
resenting the initial situation. The binary function symbol
do : action×situation → situation denotes the successor sit-
uation after performing an action. Poss : action × situation
is a binary predicate symbol representing whether an action
is applicable in a situation. The binary predicate symbol
<: situation×situation defines an ordering relation over sit-
uations, where s < s′ denotes that s is a proper subsequence
of s′. Symbols whose value change in different situations are
called fluents (relational or functional), and they have an ar-
gument of sort situation as their final argument.

Reasoning about dynamic domains can be performed in
structured situation calculus theories called basic action the-
ories in a way that overcomes the frame problem [11]. A
basic action theory D has the following form:

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0

Σ is a set of fundamental domain-independent axioms pro-
viding the basic properties for situations. Dss contains



a successor state axiom for each relational fluent in the
domain, which specifies all the conditions that govern its
value. The conditions under which an action can be per-
formed are specified by the action precondition axioms Dap.
Duna contains the unique names axioms for actions. DS0

is a set of first-order sentences that represent the initial
state of the world. Action Precondition axioms specify
the preconditions of an action in a first-order statement:
∀~x, s . Poss(A(~x), s) ≡ ΠA(~x, s). Each Successor State ax-
iom describes the conditions that should hold in a situation,
in order for a fluent to take on a specific value after per-
forming an action. Axioms for relational fluents have the
following form: ∀~x, a, s . F (~x, do(a, s)) ≡ ΦF (~x, a, s) (where
ΦF (~x, a, s) describes the necessary previous situation condi-
tions). Let Fluents/NonFluents be the set of all fluent/non-
fluent symbols in the domain and Actions the set of all ac-
tions available to the agents. G(s) denotes a shared goal.
We assume that the sets Fluents, NonFluents and Actions
are shared among the agents. Also, we assume that agents
share the planning goal, knowledge about the fundamental
axioms, unique names axioms for actions and the names of
the objects in the domain.

3.2 Arguments
The arguments held by the agents contain statements in

the language of situation calculus. We will define arguments
based on an inference procedure ` in a knowledge base, and
reinterpret the defeat relation using logical contradiction:

Definition 4. Arguments for agent i ∈ {1, 2} are pairs
A = 〈H,h〉, where H ⊆ 2LSitCal , where LSitCal is the set of
all well-formed situation calculus sentences.

i. H is consistent (i.e. H 0 ⊥),

ii. H ` h,

iii. H is minimal (no subset of H satisfies both i. and ii.).

H is called the support of the argument and h its conclusion.
We will also use the following notation: Support(A) = H,
and Claim(A) = h. The preference level of an argument
A is denoted by pLevel(A), and is the minimum preference
level of a statement in Support(A).

Definition 5. An argument A1 = 〈H1, h1〉 defeats an
argument A2 = 〈H2, h2〉, denoted A1 → A2, if pLevel(A1) ≥
pLevel(A2) and, either there ∃φ in H2∪{h2} such that h1 ≡
¬φ or h1 = (F ≡ Ψ), φ = (F ≡ Φ) and Φ 6= Ψ, where F is
a predicate symbol.

The defeats relation considers contradictory beliefs and for-
mulas providing different definitions of the same symbol.
Reasoning about actions is based on the axioms represent-
ing the domain. It is essential that the domain theory does
not include different axioms regarding the same predicate.

3.3 Planning Knowledge
The domain knowledge for agent i after dispute k, is a

set of beliefs Bik, generated using the arguments in the
grounded extension of AF i

k, GEAFi
k
, as illustrated below:

Compute GEAFi
k

, for AF ik := 〈A i
k ,R〉;

Bik := {φ | V ∈ GEAFi
k
∧ Claim(V ) = φ};

forall φ ∈ Bik do pLevel(φ) := maxV ∈GE
AFi

k

pLevel(V );

return Bik;

We consider the initial argument sets of the agents to be
conflict-free. If all of their claims are basic action theory
statements, all future domain beliefs constructed by this al-
gorithm will be basic action theories.

3.4 Proposals
A plan for a goal G is represented in situation cal-

culus by the statement: executable(Sπ) ∧ G(Sπ). Sπ is
a variable-free situation term representing the history for
the execution of the actions of the plan in sequence, and

executable(sπ)
def
= (∀a, s∗).do(a, s∗) v sπ ⊃ Poss(a, s∗). A

consequence of the definition of a plan and the foundational
axioms for situations is that ∀a, s . executable(do(a, s)) ≡
executable(s) ∧ Poss(a, s).

Definition 6. Plan proposal arguments for agent i af-
ter dispute k for a shared goal G, are all arguments P s.t.
i) Claim(P ) = G(Sπ) ∧ executable(Sπ), with S0 < Sπ, ii)
Support(P ) is the minimal subset of Bik s.t. Support(P ) `
Claim(P ).

If P is a plan proposal argument then P ∈ P. The prefer-
ence level of a plan proposal argument is equal to the lowest
preference level of the claims in its support.

The agents can obtain the support set of a plan proposal
argument using Reiter’s regression operator R. The regres-
sion operator eliminates statements with complex situation
terms by replacing them with logically equivalent statements
that refer to situations closer to the initial state. The pro-
cess is repeated until all fluents in the statement refer to the
initial situation. The logical equivalence follows from the rel-
evant action preconditions and the successor state axioms.
A detailed analysis of the regression operator can be found
in [11].

The support of a proposal argument contains the mini-
mal subset of domain beliefs and unique names assumptions
sufficient to infer R[Claim(A)], as well as the equivalencies
that were employed by the regression operator.

Example 1. Using the axiom ∀a, s . f(do(a, s)) ≡ (a =
A1) ∨ (a = A2) ∨ (f(s) ∧ a 6= A3), R[f(do(A4, S0))] returns
A4 = A1 ∨ A4 = A2 ∨ f(S0) ∧ A4 6= A3, which can be
simplified to f(S0).

The following proposition asserts that for all plans that
can be constructed from an agent’s planning knowledge, the
plan proposal arguments for these plans will be part of the
grounded extension of 〈A i

l ∪ {P},R〉, where A i
l are the

arguments known to agent i after dispute dl.

Proposition 3. If P is a plan proposal argument with
Claim(P ) = G(Sπ)∧executable(Sπ), constructed in iteration
k by agent i, then P ∈ GE 〈A i

l
∪{P},R〉.

Proof. P does not defeat any argument in GE 〈A ,R〉,
since Claim(P ) refers to a future situation Sπ with S0 < Sπ,
whereas all statements in the claim or support of argu-
ments in GE 〈A ,R〉 are initial situation statements, non-
fluent statements and domain axioms. Therefore, ∀V ∈
GE 〈A i

l
,R〉, it will be the case that V ∈ GE 〈A i

l
∪{P},R〉.

All statements in the support of P are claims of argu-
ments in GE 〈A i

l
∪{P},R〉, therefore any defeats against P

will be defended by arguments in the grounded extension.
So P ∈ GE 〈A i

l
∪{P},R〉.

Proposition 4 extends the result of Proposition 2 to dia-
logues about plans.



Proposition 4. If an iterated dispute terminates with
both agents accepting a plan proposal P , then P ∈
GE 〈A∪P,R〉, for agents with initially conflict-free argument
sets following confident strategies.

Proof follows from propositions 2 and 3. This proposition
asserts that under the aforementioned assumptions, if a plan
is proposed by the proponent and accepted by the opponent
though the dialogue, then this plan is acceptable with re-
spect to the union of the arguments of all agents.

Plan generation is conducted as planning. Planning can
be performed in situation calculus [11], or by an equivalent
PDDL representation [12] using a standard planner.

3.5 Example
An informal example of a run of an iterated dispute about

plans is depicted in Figure 1. Two cooperative agents i and

〈propose, i, P1〉 for plan π1 = 〈a1, a2〉

〈propose, j, P2〉 for plan π2 = 〈a1, a4, a5〉

〈propose, i, P3〉 for plan π3 = 〈a1, a7, a5〉

〈counter , j, V1〉 with Claim(V1) = ¬φ(S0)

〈close, i〉

...

〈counter , i, V4〉 with Claim(V4) = axioma5

〈close, j〉

〈accept , j〉

〈counter , i, V2〉
〈counter , j, V3〉

d1

d2

supported by ¬φ(S0) d3

DisputeMove

Figure 1: Example of an iterated dispute

j share the goal G. The agents need a plan that achieves G.
They will accept only plans that follow their beliefs.

Agent i initiates the iterated dispute with the dispute
d1, proposing P1 for the plan π1 = 〈a1, a2〉, with φ ∈
Support(P1). Agent j counters the proposal using V1 claim-
ing ¬φ(S0). A sequence of arguments is presented by both
agents. Eventually, agent i is unable to defend the plan
against a defeat, and the dispute closes as a failing defence.

Dispute d2 is then initiated by j playing the role of the
proponent. Agent j proposes P2 presenting an alternative
plan π2 = 〈a1, a4, a5〉. Agent i counters the proposal using
argument V4, claiming axioma5 . The formula axioma5 is a
different action precondition axiom from the one used by j.
The proponent cannot defend P2 and closes the dispute.

Agents i continues the dialogue by initiating the dispute
d3, which proposes P3 for π3 = 〈a1, a7, a5〉. This plan is
accepted by j. One of the beliefs that support P3 is ¬φ(S0).
Agent i did not initially believe ¬φ(S0), but its compliment.
The belief was updated when i learned the argument V1

claiming ¬φ(S0) from j.

4. EXTENSIONS
Since plans have a much more restricted structure than

general logical theories, we can design algorithms for argu-
ment and proposal generation specialised for disputes about
plans. Some general extensions for guiding overall agent rea-
soning and reducing the size of plan proposal arguments are
presented in the following sections.

4.1 Completing Domain Knowledge
Our assumptions do not guarantee that the domain knowl-

edge of the agents is complete. Consider the following:

Example 2. Let A i
0 = {A0 : 〈{b, b → a}, a〉, A2 :

〈{b}, b〉}, the argument B1 : 〈{¬b},¬b〉 used by agent
j during first dispute, with pLevel(B1) > pLevel(A1)
and pLevel(B1) > pLevel(A2). A j

1 = {A0, A1, B1},
GE i

〈A j
1 ,R〉

= {B1} and Bi1 = {¬b}. The knowledge for agent

i is not complete after one dispute, since he does not believe
neither a or ¬a.

Incomplete information about the domain knowledge com-
plicates the reasoning process as plans must achieve the goal
in every domain that follows the incomplete specification.
Planning with incomplete information can be performed as
open world planning [5], or conformant planning [13]. In this
section, we will describe an algorithm for the construction
of complete knowledge bases, which enables plan proposal
generation through planning with complete information.

We assume that the claims of the agents’ arguments have
one of the following restricted forms:

i. F (~x) or ¬F (~x) with F (~x) ∈ NonFluents

ii. F (~x, S0) or ¬F (~x, S0) with F ∈ Fluents

iii. ∀~x, s . Poss(A(~x), s) ≡ Π(~x, s)

iv. ∀~x, a, s . F (~x, do(a, s)) ≡ Φ(~x, s)

The domain knowledge is complete if for every non-fluent
symbol f ∈ NonFluents there is a statement of the form (i),
for every fluent symbol F ∈ Fluents there is a statement of
the form (ii) and a definition of the form (iv), and for every
action A ∈ Actions, there is a definition of the form (iii).

The following algorithm constructs the complete domain
knowledge for agent i after dialogue l:

Construct GE := GE 〈A i
l
,R〉;

Construct Bil ;
B̄il := Bil ;
forall φ ∈ Bi0 do

if φ is a successor state axiom for the fluent symbol F
and there is no successor state axiom for F in B̄il then
B̄il := B̄il ∪ {φ};

if φ is an action precondition axiom for action A and
there is no successor state axiom for A in B̄il then
B̄il := B̄il ∪ {φ};

else if φ 6∈ B̄ik and φ̂ 6∈ B̄il then
B̄il := B̄il ∪ {φ};

return B̄ik;

Proposition 5. If the claims of the argument sets of both
agents follow the restricted forms, and the initial domain
knowledge is complete, then for any l B̄il will be complete.

Proof follows from the above algorithm as for any piece of
missing knowledge the related piece of information is added
from initial domain knowledge, asserting that if Bi0 is com-
plete, then B̄ik will be complete for any k.

The above algorithm does not assert that P ∈
GE 〈A i

l
∪{P},R〉 before presenting the plan proposal argu-

ment. If P 6∈ GE 〈A i
l
∪{P},R〉, then the agent must re-plan

in order to find an alternative plan.
The following proposition asserts that if the grounded ex-

tension of the argumentation framework 〈A i
l ,R〉 is a sta-

ble extension, then any proposal arguments for plans con-
structed using B̄il will be in the grounded extension of



〈A i
l ∪ {P},R〉. Stable extensions are conflict-free sets that

defeat2 every argument that does not belong to it.

Proposition 6. Assuming that for all agents i, A i
0 is

conflict-free, and GE 〈A i
l
,R〉 is a stable extension, if B̄il `

G(s) ∧ executable(s), then the proposal argument P for the
related plan will be in GE 〈A i

l
∪{P},R〉.

Proof. For any φ ∈ Bil , there will be an argument V ,
with Claim(V ) = φ which is part of GE 〈A i

l
,R〉 (see proof

of Proposition 3). For any φ ∈ B̄il \ Bil @V ∈ GE 〈A i
l
,R〉

s.t. Claim(A i
l ) is the compliment of φ (if φ is a fluent

or non-fluent statement), or an axiom about the same flu-
ent/action (if φ is a successor state axiom/ action pre-
condition axiom), and since GE 〈A i

l
,R〉 is a stable exten-

sion, there will be some V ′ ∈ GE 〈A i
l
,R〉 s.t. V ′→V .

P does not attack any argument in A i
l , therefore ∀V ∈

GE 〈A i
l
,R〉, it holds that V ∈ GE 〈A i

l
∪{P},R〉. Therefore,

∀V s.t . V→P, ∃V ′ ∈ GE 〈A i
l
∪{P},R〉 s.t. V ′→V . There-

fore, P ∈ GE 〈A i
l
∪{P},R〉.

This provides us with clear criteria for cases in which all
plans constructed through planning with complete informa-
tion are acceptable to the proponent and can be directly
proposed in the dialogue.

4.2 Minimal Plan Proposals
The support of a plan proposal argument is the minimal

set of domain beliefs from which the claim of the proposal
argument can be deduced. Depending on the length of the
plan and the form of the axioms, the size of the support set
can be extensive. In the worst case it can be comparable in
size to the entire domain knowledge. In this section we will
present an alternative form of plan proposal arguments and
discuss the advantages and drawbacks of such an approach.

Let a minimal plan proposal argument P be an argument
with Claim(P ) = G(Sπ)∧executable(Sπ) and Support(P ) =
{G(Sπ), executable(Sπ)}. If BPRO

l are the beliefs for agent i
after iteration l, then ∀φ ∈ Support(P ), BPRO

l ` φ.
Minimal plan proposal arguments cannot be defeated by

any argument in A , as their support contains only state-
ments about a future situation. We extend our protocol,
enabling the opponent to challenge the support of minimal
proposal arguments, and the proponent to expand them ac-
cordingly. The challenge move challenges a future situation
statement in the support of a plan proposal argument.

µl,k = 〈challenge,OPP, φ〉
Conditions: Effects:

PreviousMoveType(D) ∈ Tl,k := Tl,k−1

{proposal , expand , counter} Vl,k := null
Tk = 〈P 〉 CSPRO

l,k := CSPRO
l,k−1

∃φ ∈ Support(P ), which mentions Pl,k := Pl,k−1

S, with S0 < S and BOPP
l 0 φ Ql,k := Ql,k−1

Al,k := Al,k−1

The expand move can be used after a challenge move, ex-
tending the proposal argument and justifying the challenged
support. This move works as one-step regression.

The confident strategy is extended accordingly with l =
〈counter , backup, retract , challenge, expand , close, accept ,
propose, no-proposal , terminate〉.
2A set defeats an argument if there is an argument in the
set that defeats this argument.

µl,k = 〈expand ,PRO,Φ〉
Conditions: Effects:

µk = 〈challenge,OPP , φ〉 Tl,k := Tl,k−1 with P
Φ is consistent replaced by P ′

Φ ` φ Vl,k := P ′

CSPRO
l,k := (CSPRO

l,k−1 \ {P}) ∪ {P ′}
Pl,k := (Pl,k−1 \ {P}) ∪ {P ′}
Ql,k := ∅
Al,k := ∅
Where:
− Claim(P ′) := Claim(P )
− Support(P ′) :=

(Support(P ) \ {φ}) ∪ Φ

Figure 2 illustrates an example of how these moves affect
the support of a plan proposal argument. The different rows
in the trapezoid illustrate different depths of support for the
proposal. The minimal proposal argument is only supported
by φ(S2), whereas the complete support for the proposal
argument is the set {axiomφ, φ(S0), ψ(S0), χ(S0), axiomψ}.
V1 and V2 are the opponent’s argument defeating the pro-
posal argument. The first defeat against the plan can be
presented by the opponent, after the minimal proposal ar-
gument has been expanded to include a belief which can
be defeated by arguments V1 or V2. If φ(S2) is challenged,
the proponent expands the proposal by replacing it with the
formulas {axiomφ, φ(S1), ψ(S1)}, which are formulas suffi-
cient to prove φ(S2). The opponent can defeat P using
V1. If the proponent cannot defend the proposal against
this attack, then the dispute closes as a failing defence. In
this case the formulas that were communicated by PRO are
{φ(S2), axiomφ, φ(S1), ψ(S1)}.

φ(S2)

ψ(S1)φ(S1)

χ(S0)φ(S0) ψ(S0)

axiomφ

axiomψaxiomφ

V1

Minimal

V2

Complete

(expand φ(S2))

(expand φ(S1)) (expand ψ(S1))

Support

Support

Figure 2: Example of the expansion of the support
of a plan proposal argument

A line of consecutive challenges and expansions can be
continued until the support of the proposal includes state-
ments about the initial state. Each expansion replaces a
sentence with a set of axioms and sentences of the previ-
ous situation that are sufficient to derive it. The number
of consecutive challenges and expansions is bounded by the
number of actions in the plan. The opponent can terminate
a line of challenges and expansions using a counter move. If
the proponent does not defend the plan against all defeats,
then the dispute terminates, and there is no need for the
proponent to communicate the remaining support of P .

Continuing the previous example, let us assume that the
agents have equal probabilities for winning sub-disputes V1

and V2. OPP has double the chance of successfully defeating
P using V1 and V2 than PRO to defend all defeats, thus
making more probable the case that PRO will not have to
communicate χ(S0) and axiom(ψ).

This extension is useful for proposals with extensive sup-



port. The benefit is that the proponent will need to expand
the support of P only for the statements for which the agents
disagree. An extreme case in which this extension minimises
the required communication is when the opponent immedi-
ately agrees with the claim of the plan proposal argument,
without making any challenges or counter moves.

The modified protocol does not always produce sound re-
sults with respect to the union of both agents’ arguments.
The following propositional example illustrates this issue:

Example 3. Let Bi = {b, b→a,¬c} and Bj =
{¬b, c→a, c}, with pLevel(〈{¬c},¬c〉) > pLevel(〈{c}, c〉) and
pLevel(〈{¬b},¬b〉) > pLevel(〈{b}, b〉). Both agents will not
challenge and cannot counter the minimal proposal argu-
ment 〈a, {a}〉, since a can be derived from both agents’ be-
liefs. However, both related complete proposal arguments
〈a, {b, b→a}〉 and 〈a, {c, c→a}〉, are not acceptable w.r.t. the
union of both agents’ argument sets.

The modified version can substantially reduce the size of
the proposal arguments, when agents disagree about a small
subset of their knowledge. This protocol produces sound
results w.r.t. both argumentation frameworks 〈A PRO

l−1 ∪
{P},R〉, and 〈A OPP

l ∪ {P},R〉, for a minimal proposal P .

5. CONCLUSION AND RELATED WORK
In this paper we define an abstract argumentation-based

dialogue protocol that enables agents to discuss different
proposals and agree on options that are acceptable w.r.t.
their collective knowledge. The protocol searches the space
of proposals iteratively. As the discussion progresses, the in-
dividual argument sets of the agents gradually converge. We
extend the protocol for the specific problem of arguing about
plans, and suggest extensions that guide agent reasoning and
reduce the size of the proposal arguments. Analytical proofs
are provided for important properties of our methods.

Our approach is influenced by recent work on argumen-
tation for practical reasoning and deliberation [1, 10, 14]
and planning over defeasible knowledge [6]. We maintain
a closer relation to classical AI planning, instead of allow-
ing very expressive dialogues about goals and intentions of
agents. We employ a standard formalism for the represen-
tation of the planning domain which can be transformed to
the ADL fragment of PDDL [12].

Our methods are related to multiagent planning [9], but
solve a different problem. Multiagent planning usually refers
to distributed planning, distributed execution, or both.
Multiagent planning problems include distributing the plan-
ning process in order to improve efficiency, or coordinating
plans constructed by different agents to avoid unwanted in-
terference among their actions. On the other hand, our
framework utilises the agents’ domain knowledge in order
to align inconsistent beliefs and identify plans that will be
accepted by all agents. Our system treats plans as fully or-
dered sequences of actions. Plans can be joint or single agent
plans. Multiagent dialogue searches the plan space for an ac-
ceptable plan. The actual planning process is single-agent.

Our work is also related to planning under uncertainty and
to conformant planning, as for instance [13], although the
problem in this case is different. Conformant plans achieve
the goal in all worlds that result from the combination of
the uncertain pieces of information about the planning do-
main. Instead, our system deals with plans that need to
satisfy n different world views (one view for each planning

agent). In addition, our system allows persuasion, enabling
the acceptance of plans that initially seemed unacceptable.

Other relevant approaches with different focus include
frameworks that employ argumentation to reason about dy-
namic domains [7, 15]. Our system uses argumentation-
based dialogue for resolving conflicting beliefs of different
planning agents. Reasoning about change is treated in a
monotonic manner in our framework.

In the future we would like to look into restricted versions
of the language for which we can guarantee complete results
for a computationally tractable protocol. In addition, we
would like to work on heuristics guiding the search based on
specific attributes of the planning problem.
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