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Abstract:  38 

Genetic variation in the peptide-binding groove of the highly polymorphic human 39 

leukocyte antigen (HLA) class I molecules has repeatedly been associated with HIV-1 40 

control and progression to AIDS, accounting for up to 12% of the variation in HIV-1 set 41 

point viral load (spVL). This suggests a key role in disease control for HLA presentation 42 

of HIV-1 epitopes to cytotoxic T cells. However, a comprehensive understanding of the 43 

relevant HLA-bound HIV epitopes is still elusive. Here we describe a peptidome-wide 44 

association study (PepWAS) approach that integrates HLA genotypes and spVL data from 45 

6,311 HIV-infected patients to interrogate the entire HIV-1 proteome (3,252 unique 46 

peptides) for disease-relevant peptides. This PepWAS approach predicts a core set of 47 

epitopes associated with spVL, including previously characterized epitopes but also several 48 

novel disease-relevant peptides. More importantly, each patient presents only a small 49 

subset of these predicted core epitopes through their individual HLA-A and -B variants. 50 

Eventually, the individual differences in these patient-specific epitope repertoires account 51 

for the variation in spVL that was previously associated with HLA genetic variation. 52 

PepWAS thus enables a comprehensive functional interpretation of the robust but little 53 

understood association between HLA and HIV-1 control, prioritizing a short list of disease-54 

associated epitopes for the development of targeted therapy. 55 

  56 
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Significance Statement: 57 

Individual differences in HIV-1 control and progression to AIDS have been pinpointed to 58 

genetic variation in the Human Leukocyte Antigen (HLA), coding for antigen-presenting 59 

molecules. However, our understanding of the corresponding antigens is still incomplete. 60 

Here we developed a new approach that combines HLA genotypes and viral load data of 61 

HIV infected individuals to screen the entire HIV proteome for disease-relevant peptides. 62 

Our PepWAS approach identified a limited manageable core set of peptides, accounting 63 

for the entire variation in viral load previously associated with genetic variation in the 64 

HLA. This core set of disease-relevant antigens thus provides a functional link between 65 

HLA genetic variation and HIV-1 control, confirming several known antigens, but also 66 

prioritizing novel antigens as new therapeutic targets. 67 

  68 
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\body 69 

HLA class I proteins are thought to play a critical role in immune recognition of HIV-1 by 70 

presenting endogenously processed viral peptides at the surface of infected cells to 71 

cytotoxic T cells, in order to trigger destruction of the infected cells (1). Indeed, genetic 72 

variation in the HLA region has repeatedly been identified as the major genetic determinant 73 

of HIV-1 control in genome-wide association studies (2, 3). Most recently, McLaren et al. 74 

(4) fine-mapped the entire HLA’s association with HIV-1 control and disease progression 75 

to five independent amino acid residues in the peptide binding groove of the HLA-B and 76 

HLA-A molecules. These five residues alone accounted for 12.3% of the variation in viral 77 

load, suggesting a major role for specific HLA-presented viral epitopes in HIV-1 control. 78 

However, our understanding of the disease-relevant viral epitopes is still incomplete, 79 

hampered by the economically hardly feasible challenge of employing a full-factorial 80 

experimental assay to screen the entirety of the HIV-1 peptidome for binding by all relevant 81 

HLA alleles. Therefore, we developed a novel computational analysis approach that 82 

identifies and prioritizes disease-associated peptides based on individual HLA genotype 83 

and disease phenotype information. Our approach uses established computational 84 

algorithms to predict for each individual whether a given peptide is bound by the 85 

individual’s HLA variants, and then uses regression analysis on the disease phenotype 86 

(here HIV set point viral load) to estimate whether the ability to bind the peptide is non-87 

randomly associated with the disease phenotype. This approach is analogous to a genetic 88 

association study, except that it incorporates one additional layer by translating genetic 89 

variation into functional variation (HLA variant-specific peptide binding). Importantly, this 90 

approach does not simply define all peptides bound by a risk HLA variant as risk peptides. 91 

Instead, for each peptide it integrates the disease effect of all HLA variants that are able 92 

to bind the peptide and thus estimates a peptide-specific association with disease. Since 93 

most peptides are bound by several HLA variants, integrating the effect of all binding HLA 94 

variants is essential (Fig. 1). For instance, a peptide can have no association with disease, 95 

even if it is bound by the highest risk variant, simply because it is also bound by several 96 

other non-associated (or even protective) variants. Ultimately, our approach identifies a list 97 

of peptides with varying associations to disease, which can directly inform therapy 98 

development by prioritizing global as well as patient-specific candidate epitopes. As a 99 
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proof-of-concept, we analyze here a unique dataset of 6,311 individuals of European 100 

ancestry with chronic HIV-1 infection (SI Appendix, Table S1). Screening the entire HIV-101 

1 peptidome for candidate epitopes, we identify a comprehensive list of peptides that 102 

explain the well-established association between HLA genetic variation and HIV-1 control, 103 

including several previously uncharacterized epitopes as novel candidates for targeted 104 

therapy. 105 

 106 

Results and Discussion: 107 

Our analyses are based on a large dataset of HIV-infected individuals (4) that includes both 108 

pre-treatment level of set point viral load (spVL) as a correlate of disease progression (5) 109 

and imputed HLA genotypes (4-digit allele resolution). We focused on the two HLA loci 110 

(HLA-B and HLA-A) reported to have independent associations with HIV-1 control and 111 

disease progression (4). Potential HLA-bound peptides were identified using an established 112 

computational algorithm that is based on empirical training data (6) and integrates several 113 

complementary prediction methods in a consensus approach, outperforming comparable 114 

algorithms (6, 7). Such algorithms have been used in a wide spectrum of HLA-related 115 

studies ranging from vaccine design to cancer evolution and HIV disease genetics (8–10). 116 

Without a-priori selection, we screened all possible 9mer HIV-1 peptides (N = 3,252) in a 117 

sliding window across the entire HIV-1 M group subtype B reference proteome (11) against 118 

all represented HLA-B and HLA-A alleles (344,712 HLA:peptide complexes), and 119 

identified 214 and 173 distinct HIV-1 peptides predicted to be bound by one or more of the 120 

represented HLA-B and HLA-A alleles, respectively.  121 

In order to evaluate the significance of the predicted peptide repertoires, we interrogated 122 

several layers of empirical evidence (see SI Appendix, Supporting Text). We observed an 123 

enrichment for previously known HIV-1 epitopes (SI Appendix, Fig. S1A), a correlation 124 

between an HLA-B allele’s effect on viral load and the number of HIV-1 peptides it is 125 

predicted to bind (SI Appendix, Fig. S1B), and detected previously reported viral escape 126 

mutations (SI Appendix, Fig. S1C). Following these independent layers of evidence that 127 

our analysis pipeline predicts disease-relevant binding of HLA to HIV-1 peptides, we 128 

subsequently refer to the entire predicted set of HLA-bound peptides as predicted epitopes, 129 

highlighting the point that not all of them have been experimentally validated. 130 
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Next, we tested whether the patient-specific repertoire of predicted HIV-1 epitopes, defined 131 

by the number of peptides predicted to be bound by the specific HLA allele combination 132 

of the patient, was associated with spVL. For this, we ran a linear regression across the 133 

6,311 HIV-1 patients, with spVL as dependent variable and the patient-specific number of 134 

bound peptides as predicting variable, together with other covariates (see methods). We 135 

first focused on the effect of peptides bound by HLA-B, and used only the known CTL 136 

epitopes from the Los Alamos HIV Molecular Immunology Database (12), of which 80 137 

were represented among the 214 predicted HLA-B bound epitopes. The individual number 138 

of these known CTL epitopes bound by patient-specific HLA-B variants accounted for only 139 

1.8% of the individual variation in spVL (Fig. 2). In order to evaluate this association, we 140 

then included all predicted HLA-bound HIV-1 epitopes (N = 214) in the analysis, including 141 

the previously known CTL epitopes as well as any other HLA-B-bound peptide from the 142 

HIV-1 proteome. Interestingly, the total number of all predicted HLA-B-bound epitopes 143 

per patient accounted for 5.3% variation in spVL (Fig. 2), suggesting that the Los Alamos 144 

CTL epitope dataset is not yet fully saturated with regard to disease-relevant peptides. 145 

However, the accounted variation was still lower than the 11.4% variation associated with 146 

genetic variation at HLA-B in previous genotype-based studies, suggesting that the total 147 

predicted epitope repertoire still included peptides irrelevant for the association between 148 

HLA and HIV-1. This is supported by a previous study, which showed that not all HLA-149 

bound peptides are epitopes targeted by CD8+ T-cells (13). We thus aimed to refine the 150 

repertoire of predicted HLA-bound HIV-1 epitopes further to comprise only disease-151 

relevant epitopes. For this, we calculated the epitope-specific association with spVL by 152 

running a separate linear regression for each predicted epitope and recording R2 and β-153 

coefficient as measures of the epitope's effect on spVL. This is analogous to the approach 154 

of a genome-wide association study (GWAS), where each genetic variant is tested for its 155 

association with a given trait, except that here we focus on functional protein variation 156 

(peptide binding by a patient’s HLA molecules) rather than genetic variation. Following 157 

this analogy, we term our approach peptidome-wide association study (PepWAS). Of 214 158 

HIV-1 epitopes predicted to be bound by HLA-B, 132 accounted for nominal variation 159 

(adjusted R2 value > 0) in spVL, 74 of which were negatively and 58 positively associated 160 

with spVL (β-coefficients ranging from -0.1 to 0.77; SI Appendix, Table S2). Importantly, 161 
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we do not require statistical significance at this point as this is a candidate screen and we 162 

thus aim to minimize the number of false negatives. Subsequently, we designate the 163 

nominally associated epitopes as disease-associated predicted epitopes, even though their 164 

effects are not necessarily independent as they were tested with separate regression models. 165 

An analogous investigation of peptide binding by HLA-A alleles revealed an additional 74 166 

disease-associated epitopes (SI Appendix, Table S3). 167 

Having refined the predicted HIV-1 epitope repertoire to only disease-associated predicted 168 

epitopes, we then tested whether this subset accounted for a larger fraction of the variation 169 

in spVL than the total predicted HIV-1 epitope repertoire. Indeed, the patients’ ability to 170 

bind a smaller or larger fraction of the HLA-B-specific disease-associated predicted 171 

epitopes accounted for 11.4% of the variation in spVL (Fig. 2). Similarly, for HLA-A, the 172 

total number of predicted HIV-1 epitopes bound by individual HLA-A genotypes 173 

accounted for 0.3% of the variation, while disease-associated predicted epitopes accounted 174 

for 1.4% of the variation in spVL. On average, a patient’s HLA-B allele pair bound 16.2 175 

±7 (SD) disease-associated predicted HIV-1 epitopes, while its HLA-A alleles bound 176 

significantly less (6.6 ±6.5; Paired Wilcox rank sum test, P < 0.0001; SI Appendix, Fig. 177 

S6). This quantitative difference in peptide presentation might contribute to the stronger 178 

spVL-association of HLA-B compared to HLA-A, as a larger number of presented peptides 179 

should more likely lead to a more efficient CD8 T cell response, as has indeed been 180 

observed for HLA-B compared to HLA-A (14). HLA-C-bound epitopes did not show any 181 

significant association with spVL, mirroring the lack of independent genetic associations 182 

for HLA-C in the latest GWAS (4). Predicted disease-associated epitopes of HLA-B and 183 

HLA-A together accounted for 12.2% of the variation in HIV-1 viral load, approximately 184 

corresponding to the 12.3% variation previously attributed to all independent genetic 185 

associations in the entire HLA (Fig. 2A). 186 

Interestingly, the Env protein showed the largest number of disease-associated predicted 187 

epitopes, with both positive and negative effects. Among the disease-associated predicted 188 

HLA-B-bound epitopes, Env-derived epitopes alone accounted for 6.4% of variation in 189 

spVL, the highest among all HIV-1 proteins (Fig. 3A). In addition to already known Env-190 

derived CD8+ T-cell targeted epitopes associated with lower viral load and disease control 191 

e.g. RIKQIINMW, HRLRDLLLI (13), ERYLKDQQL (15), our analysis revealed 192 
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previously undescribed HLA-epitope complexes e.g. B*57:01-STQLFNSTW, -193 

NSTWFNSTW, or -RGWEALKYW showing strong associations with lower viral load 194 

(Fig. 3C). The potential importance of the predicted Env epitopes is quite surprising, since 195 

the high genetic variability of the Env protein across different HIV-1 isolates suggests that 196 

the virus could readily evolve escape variants in this protein. However, a previous study 197 

has already established that sequence conservation alone is not a reliable predictor of 198 

protective epitopes, instead highlighting structural conservation as the more important 199 

feature (13). More intriguingly, we found that the protective Env epitopes predicted through 200 

our PepWAS approach are significantly enriched for residues that are associated with 201 

broadly neutralizing antibodies (bNAbs; OR = 1.5, P = 0.036, SI Appendix, Fig. S7), 202 

suggesting that they represent parts of the Env protein that can be efficiently targeted in 203 

both antibody therapy as well as in HLA-mediated CTL response. 204 

Notably, several of the represented HLA alleles were predicted to bind both negatively and 205 

positively disease-associated epitopes (SI Appendix, Tables S4 and S5), i.e. epitopes 206 

bound by the same HLA allele did not necessarily have the same effect on viral load. This 207 

can be explained by the fact that a given epitope can be bound by several different HLA 208 

alleles with very distinct disease association (see schematic in Fig. 1). This is also in 209 

agreement with a previous study showing that viral control is mediated by specific 210 

immunogenic epitopes which could be restricted by HLA alleles other than already known 211 

ones (13). 212 

HLA molecule variants are known to bind peptide repertoires with distinct anchor motifs, 213 

based on the composition of their peptide-binding groove (16). This entailed the possibility 214 

that our PepWAS approach is merely identifying distinct groups of peptides per HLA 215 

variant, thus translating the known HLA variant-specific effect on viral load into peptide 216 

group-specific effects. While still helpful in guiding epitope research, this would provide 217 

only limited knowledge-gain compared to the HLA allele-specific associations known 218 

from previous work (4). In order to test for this possibility, we performed a cluster analysis 219 

on the predicted disease-associated epitopes bound by HLA-B (N = 132) and analyzed 220 

cluster-specific motifs and HLA allele binding patterns. Intriguingly, among the ten most 221 

dominant epitope clusters, each exhibiting a distinct peptide motif, nine were defined by 222 

multiple HLA-B alleles (Fig. 4), some of them even belonging to different supertypes (SI 223 
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Appendix, Table S7). All of these clusters included both novel and previously described 224 

epitopes, and three of them were defined by both risk- and protection-conferring alleles. 225 

Furthermore, all HLA variants bound peptides of multiple dominant clusters; e.g. B*57:01 226 

is associated with 3 dominant clusters, each showing a distinct peptide motif, but all 227 

showing a strong preference for amino acid ‘W’ at anchor position 9 (Fig. 4). Overall, the 228 

cluster analysis shows that our PepWAS approach identifies groups of peptides with 229 

distinct motifs that are different from HLA variant-specific binding motifs (see also 230 

schematic in Fig. 1). Generally, the 24 disease-associated epitopes predicted to be bound 231 

by HLA-B*57:01 (but some of these also by other alleles), accounted for the highest level 232 

of variation in spVL, even though they derived from 5 different HIV-1 proteins (Fig. 3B, 233 

C and SI Appendix, Fig. S8). One of these epitopes, the well characterized HIV-1 Gag 234 

epitope ISPRTLNAW (belonging to the dark purple cluster in Fig. 4), slightly exceeded 235 

the effect of all other epitopes (Fig. 3B), in concordance with experimental evidence (17). 236 

Other HLA-B alleles, including the B*08, B*44, and B*51 types, were also included in our 237 

dataset, and their predicted epitope repertoires roughly followed their disease-association 238 

known from previous studies (SI Appendix, Fig. S1B; allele-specific associations and 239 

number of bound peptides are given in SI Appendix, Table S4).  240 

Mechanistically, a negative association between predicted HIV-1 epitopes and viral load is 241 

intuitive and likely resulting from the peptides’ immunodominant role in CTL response 242 

and their escape mutations leading to significant fitness costs for the virus. However, a 243 

number of the predicted HIV-1 epitopes exhibited a positive association with viral load, 244 

indicating that they confer lower disease protection relative to the bulk of the peptides. 245 

They likely represent peptide variants that fail to elicit an efficient CTL response or can 246 

readily mutate with negligible fitness effects, thus allowing viral escape from HLA 247 

presentation at no cost for the virus. Indeed, the most risk-associated predicted Vpu epitope, 248 

IPIVAIVAL (SI Appendix, Fig. S8F; belonging to the largest, grey cluster in Fig. 4), 249 

includes an anchor residue that exhibits significant variation in primary HIV-1 clones and 250 

is involved in mediating immune-evasion through down-regulation of HLA-C (18), whose 251 

high expression has been implicated in HIV control (19). The lack of significant 252 

associations between predicted HLA-C bound epitopes and viral load in our analysis might 253 

indicate that previously observed viral control associated with HLA-C is not mediated 254 
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through specific peptide presentation of HLA-C. However, more research is required to 255 

fully understand the role of HLA-C in viral control (18). 256 

So far, our analysis was based on the HIV-1 genome reference sequence. Though widely 257 

used for research, focusing on this sequence accession may restrict our findings. We thus 258 

repeated the entire analysis using the HIV-1 proteome consensus sequence from the Los 259 

Alamos database, which incorporates major variation across different HIV-1 strains. The 260 

results remained qualitatively the same (SI Appendix, Fig. S9 and Table S8). However, 261 

HIV is well known to exhibit substantial within-host evolution (20, 21) and it is easily 262 

conceivable that the ability of a patient’s HLA variants to bind HIV epitopes is significantly 263 

affected by genetic variation in the patient’s HIV population (22). We therefore also 264 

analyzed patient-specific autologous HIV-1 sequence information, which was available for 265 

a small subset of patients, covering 8 of the 10 HIV-1 proteins (SI Appendix, Table S6). 266 

For 4 of the 8 proteins (Gag, Pol, Vif and Nef) we found that the proportion of variation in 267 

spVL associated with HLA-bound epitope repertoires changed when predicting epitopes 268 

from autologous sequences instead of from the reference sequence. In all 4 cases, the 269 

variation associated with predicted autologous epitopes was higher than when using their 270 

homologs from the reference sequence (SI Appendix, Table S6), suggesting that our 271 

PepWAS approach might be able to explain more variation in spVL than a standard GWAS 272 

if autologous sequences were available for a larger fraction of infected individuals. 273 

PepWAS relies on computational algorithms for the prediction of binding affinities 274 

between HLA variants and peptides, and is thus inherently limited by their accuracy and 275 

specificity. For instance, the empirical data used to train currently established HLA class I 276 

algorithms contains mainly 9mer peptides, even though HLA class I molecules can 277 

occasionally bind slightly shorter or longer peptides. Such peptides might therefore be 278 

missed by current prediction algorithms. On the other hand, the current setup does in fact 279 

identify 9mer cores of larger known epitopes. For instance, the here predicted protective 280 

9mer Gag epitope ‘STLQEQIGW’ resides within the previously described 10mer Gag 281 

epitope TW10 (Fig. 3B). Furthermore, this limitation is likely to be alleviated as more 282 

training data is becoming available. 283 

Overall, our findings reveal a functional basis of the robustly established association 284 

between HLA genes and HIV-1 infection outcome. We show that both quantity and quality 285 
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of HLA-bound HIV epitopes contribute to controlling a patient’s viral load. Our data also 286 

suggests a more important role for Env protein-derived epitopes than previously thought. 287 

Ultimately, our PepWAS approach of combining computational HLA-specific epitope 288 

prediction with disease phenotype validation provides a promising avenue for 289 

identification and prioritization of novel epitopes. As such, it complements existing 290 

empirical essays for the development of targeted therapy. Noteworthy, by involving a 291 

functional layer (peptide binding), the PepWAS approach enables the detection of disease-292 

relevant properties that are shared among several genetic variants (overlap in peptide 293 

binding among HLA alleles). Such shared properties would be undetectable by GWAS, 294 

because of its focus on distinct genetic variants instead of function, and should therefore 295 

lead to higher sensitivity in the PepWAS approach compared to GWAS. Furthermore, the 296 

PepWAS approach allows to account for individual variation in the pathogen proteome if 297 

autologous sequence information is available, potentially further increasing sensitivity. As 298 

such it may be applied to any HLA-associated complex disease. 299 

  300 
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Material and Methods: 301 

For detailed information on Material and Methods see SI Appendix Supporting Methods 302 

available online. 303 

 304 

Samples and Genotype data: 305 

We analyzed HLA genotype data and set point viral load (spVL) measurements of 6,311 306 

subjects chronically infected with HIV-1. The original data and thorough quality check 307 

are described in detail in McLaren et al. (4) and explained briefly in Supporting Methods. 308 

 309 

HLA binding affinity for HIV-1 epitopes: 310 

We used the NCBI accession NC_001802.1 as the reference sequence for the HIV-1 311 

proteome (M group subtype B). The algorithm NetMHCcons-1.1 was used to predict HLA 312 

allele-specific binding affinities for all 9mer peptides generated from the entire HIV-1 313 

proteome, applying the default affinity rank threshold for ‘strongly bound’ peptides (rank 314 

< 0.5). 315 

 316 

Association with viral load: 317 

The association of an allele or a peptide with viral load (spVL) was calculated using a 318 

linear regression model corrected for population covariates following McLaren et al. (4). 319 

Covariates included the first five principle components of SNP variation and the cohort 320 

identity (all adopted from McLaren et al. (4)). Variation in viral load attributable to a 321 

given variable (allele or epitope) was calculated as the difference between adjusted-R2 322 

values of the model with variable and covariates and the model with covariates only, 323 

following McLaren et al. (4). The variable’s regression coefficient was used as the 324 

measure of its effect on viral load.  325 

 326 

Clustering of HLA-B-specific predicted epitopes: 327 

Position-associated entropy was calculated for all HLA-B-bound disease-associated 328 

epitopes (N = 132) and used for visualization in a non-metric multidimensional scaling 329 

plot as well as for density-based clustering. 330 

 331 
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HLA binding of peptides from autologous HIV-1 sequences: 332 

We analyzed autologous HIV-1 sequences from Bartha et al. (23). Autologous sequences 333 

were available for 8 of 10 HIV-1 proteins (only Gp41 segment for Env), and only for a 334 

small subset of patients in our cohorts (SI Appendix, Table S6).  335 
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Figure legends: 413 

 414 

Fig. 1. Schematic for determining peptide-specific associations through PepWAS. 415 

Disease-associated peptides are identified by integrating the different disease-associations 416 

of the different HLA alleles that are predicted to bind them. Some peptides will only be 417 

bound by one HLA allele, thus drawing their disease-association directly from the disease-418 

association of that allele (e.g. peptides in the purple shaded area, bound only by HLA-419 

B*57:01). However, many peptides will be bound by several HLA alleles, which can have 420 

quite distinct, possibly even opposing disease associations (e.g. peptides in overlap of 421 

*B57:01 and *B35:01). In this case, the disease-association of the peptide derives from the 422 

disease-associations of each of the binding HLA alleles as well as their frequencies in the 423 

dataset. The novel peptidome-wide association study (PepWAS) approach differentiates 424 

these distinct sets of peptides and identifies both specific peptides and epitope motifs with 425 

distinct disease-association (e.g. distinct motif of purple shaded peptides, corresponding to 426 

the dark purple cluster in Fig. 5). Circles depict repertoires of peptides (small pointed ovals) 427 

predicted to be bound by the given HLA allele. Overlap of circles defines sets of peptides 428 

bound by both HLA alleles. Color of circles and peptides depicts disease-association of 429 

corresponding HLA alleles and peptides, respectively, from blue (protective) to red (risk). 430 

The number of peptides in this schematic does not correspond to the actual number of 431 

peptides observed for these HLA alleles. In reality, the overlap among HLA alleles is 432 

substantially more complex than depicted in this simplified schematic. 433 
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 435 

Fig. 2. Variation in viral load associated with predicted epitope repertoires bound by 436 

HLA-B and HLA-A.  437 

Among HIV patients (N = 6,311), the proportion of variation (estimated as adjusted ΔR2) 438 

in set point viral load (spVL) associated with the patient-specific number of predicted 439 

HLA-bound HIV-1 epitopes is shown separately for HLA-B and HLA-A, and for different 440 

epitope sets. (A) Previously, 11.4% and 0.9% of the variation in spVL had been associated 441 

with independent genetic variants in HLA-B and HLA-A, respectively (grey bars; data 442 

from ref. 4). Here we instead calculated the variation in spVL associated with individual 443 

HLA-bound HIV epitope repertoires (yellow bars), based on known CTL epitopes from 444 

Los Alamos HIV Molecular Immunology Database, all HLA-bound HIV epitopes, and 445 

only the disease-associated HIV epitopes (the latter corresponding to 99.2% of the variation 446 

previously associated with HLA genetic variation). (B) Variation associated with different 447 

sets of predicted epitopes. P-values (in parentheses) indicate the improvement over null 448 

model (covariates only: first five PCs and cohort group). Number of disease-associated 449 

predicted epitopes is 132 for HLA-B, and 74 for HLA-A, respectively. 450 
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 452 

Fig. 3. Epitope- and protein-specific association with viral load.  453 

(A) Percent of variation in spVL associated with all predicted epitopes of a given HIV-1 454 

protein. Absolute number of predicted HLA-B bound epitopes per protein is shown above 455 

the bars. (B-C) Predicted HLA-B-bound epitopes accounted for varied levels of variation 456 

in set point viral load (spVL). Height of the bar represents the fraction of variation in spVL 457 

associated with each epitope, while the color reflects each epitope’s effect on spVL, 458 

ranging from protection (blue) to risk (red). Note that epitope effects are estimated 459 

separately and are thus not independent. Gag (B) and Env (C) proteins are shown as 460 

representative examples, together with information on predicted binding for 3 protective 461 

and 3 risk HLA-B alleles highlighted in a recent review (24) and whether peptides are 462 

known epitopes in Los Alamos HIV database. All other HIV-1 proteins are shown in SI 463 

Appendix, Fig. S8. 464 
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 466 

Fig. 4. Clusters of disease-associated epitopes. 467 

Non-metric multidimensional scaling (NMDS) was used to visualize the pairwise distance 468 

between predicted HLA-B-bound disease-associated epitopes, which revealed 10 dominant 469 

clusters. Each circle represents an HLA-B bound disease- associated epitope (N = 132). 470 

Filled circles represent known CTL epitopes from the Los Alamos HIV Molecular 471 

Immunology Database (N = 45), while open circles represent previously uncharacterized 472 

disease-associated predicted epitopes. Cluster-specific motif and HIV-1 associated HLA-473 

B alleles (N = 16) binding the cluster’s epitopes are shown. The coloring of the allele names 474 

indicates disease-association of the specific alleles. 475 


