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Quasisymmetric stellarators are appealing intellectually and as fusion reactor candi-
dates since the guiding center particle trajectories and neoclassical transport are iso-
morphic to those in a tokamak, implying good confinement. Previously, quasisymmetric
magnetic fields have been identified by applying black-box optimization algorithms to
minimize symmetry-breaking Fourier modes of the field strength B. Here instead we
directly construct magnetic fields in cylindrical coordinates that are quasisymmetric to
leading order in distance from the magnetic axis, without using optimization. The method
involves solution of a 1-dimensional nonlinear ordinary differential equation, originally
derived by Garren and Boozer [Phys. Fluids B 3, 2805 (1991)]. We demonstrate the
usefulness and accuracy of this optimization-free approach by providing the results of
this construction as input to the codes VMEC and BOOZ_XFORM, confirming the
purity and scaling of the magnetic spectrum. The space of magnetic fields that are
quasisymmetric to this order is parameterized by the magnetic axis shape along with
three other real numbers, one of which reflects the on-axis toroidal current density, and
another one of which is zero for stellarator symmetry. The method here could be used
to generate good initial conditions for conventional optimization, and its speed enables
exhaustive searches of parameter space.

1. Introduction
Toroidal magnetic fields can posses a remarkable hidden symmetry, called quasi-

symmetry, in which the field strength B = |B| is independent of a particular coor-
dinate (“Boozer angle”) even though the magnetic field vector B is not (Boozer 1983;
Nührenberg & Zille 1988; Helander 2014). Since the Lagrangian for guiding-center particle
motion in Boozer coordinates varies on magnetic surfaces only through B, a symmetry
direction in B implies that guiding-center trajectories behave as if the magnetic field
had a true symmetry direction, and the conserved quantity that follows from Noether’s
theorem implies that particle trajectories are confined. In contrast, magnetic fields
without continuous symmetry generally have unconfined guiding-center trajectories.
(Quasisymmetry is sufficient but not necessary for guiding center confinement (Cary
& Shasharina 1997).) Plasmas confined by quasisymmetric magnetic fields are also
predicted to have temperature screening of impurities and to allow larger flows, which
may lead to improved stability. For these reasons, quasisymmetric magnetic fields are
interesting both for fusion energy and on basic physics grounds.

A number of quasisymmetric magnetic configurations have been identified to date
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(Nührenberg & Zille 1988; Nührenberg et al. 1994; Anderson et al. 1995; Garabedian
1996; Zarnstorff et al. 2001; Ku & Boozer 2011; Drevlak et al. 2013; Plunk & Helander
2018; Henneberg et al. 2018; Drevlak et al. 2018). In all of these cases except the work
of Plunk & Helander (2018), the quasisymmetric configurations have been found using
optimization, by minimizing the amplitudes of symmetry-breaking Fourier modes of
B. The optimization algorithms used have been “off the shelf” algorithms that can be
applied to minimizing any function and do not exploit information about the underlying
physical system. While this approach has proven successful, it does have a number
of shortcomings. Little insight is provided as to the form and dimensionality of the
landscape of solutions. As the results of the optimization depend on the initial guess
and on manually chosen weight parameters, there is no guarantee that all interesting
solutions have been found. Optimization is also computationally demanding, requiring
many 3D equilibrium calculations.

A complementary approach to finding quasisymmetric geometries, developed by Garren
& Boozer (1991a), is to directly construct the geometry from the relevant equations, with
no need then for optimization. Expanding in small distance r from the magnetic axis (that
is, large aspect ratio), Garren & Boozer derived equations for quasisymmetry to first and
second order in r. Their work is perhaps best known for the result that the number of
equations exceeds the number of unknowns at third order, so quasisymmetry may be
achieved on one surface but not throughout a volume. However the useful constructive
procedure at lower order has not been fully exploited as a tool to generate quasisymmetric
shapes, which can be useful as initial conditions for conventional optimization, and
to understand the landscape of quasisymmetric shapes. The goal of this paper is to
reinvigorate this development.

In an accompanying Paper I (Landreman & Sengupta 2018), we derived two ways to
generate a shape in standard cylindrical coordinates with prescribed B using the Garren-
Boozer framework, summarized in sections 4.1 and 4.3 below. In the present paper, we
develop the optimization-free approach to constructing quasisymmetric geometries in
several ways. In section 3, we present a new spectrally accurate algorithm for solving the
equation for quasisymmetry to first order in r. Using several methods for converting the
results to standard cylindrical coordinates, explained in section 4, we present in section
5 examples of quasi-axisymmetric and quasi-helically symmetric equilibria obtained
without optimization. (Quasi-poloidally symmetric configurations cannot be generated
using this approach since this symmetry is impossible near the axis.) For each of
these configurations, we use the codes VMEC (Hirshman & Whitson 1983; Hirshman
et al. 1986) and BOOZ_XFORM (Sanchez et al. 2000) to compute the spectrum of
B, confirming that the symmetry-breaking harmonics are small and that they scale as
expected. One family of equilibria we consider (section 5.3) possesses quasisymmetry
but not stellarator symmetry, which may be desirable for obtaining significant intrinsic
rotation. We discuss and conclude in section 6. A proof that a unique solution to the
first-order quasisymmetry equation exists despite the nonlinearity of the problem is given
in the appendix.

The approach here allows quasisymmetric flux surface shapes to be computed in < 1
millisecond on a laptop. This timescale is at least 4 orders of magnitude faster than a
typical equilibrium calculation with VMEC, much less an optimization in which VMEC
is iterated to find quasisymmetric equilibria. Our approach can therefore be used for
extensive searches of parameter space, potentially enabling an identification of all possible
quasisymmetric plasma shapes, at least in the vicinity of the magnetic axis. Also, this
“direct construction” approach makes clear how many degrees of freedom are available in
the space of quasisymmetric magnetic fields, giving insight into the landscape of solutions.
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2. System of equations
Here we summarize the equations relevant to first-order quasisymmetry derived in

Garren & Boozer (1991a). The position vector can be written in flux coordinates as

r(r, θ, ϕ) = r0(ϕ) + rX1(θ, ϕ)n(ϕ) + rY1(θ, ϕ)b(ϕ) +O(r2), (2.1)

where r0 is the position of the magnetic axis, (θ, ϕ) are the poloidal and toroidal Boozer
angles, r =

√
2|ψ|/B0 is an effective minor radius that labels flux surfaces, 2πψ is the

toroidal flux, and B0 is the magnetic field strength along the axis, which must be a
constant due to quasisymmetry. The unit normal vector n and unit binormal b are
defined in terms of the magnetic axis shape by the Frenet-Serret relations

dt/d` = κn, (2.2)
dn/d` = −κt + τb,

db/d` = −τn,

where t(ϕ) = dr0/d` is the unit tangent vector, t · n × b = 1, ` denotes arclength,
κ(ϕ) is the curvature, and τ(ϕ) is the torsion. (Garren and Boozer use the opposite sign
convention for torsion.) The t component in (2.1) at O(r) can be shown to vanish. To
first order in the distance from the magnetic axis, the flux surface shape is described by

X1 = X1s(ϕ) sin θ +X1c(ϕ) cos θ, Y1 = Y1s(ϕ) sin θ + Y1c(ϕ) cos θ, (2.3)

and the magnetic field strength satisfies

B(r, θ, ϕ) = B0 + r [B1s(ϕ) sin θ +B1c(ϕ) cos θ] +O(r2), (2.4)

where

X1s(ϕ) = B1s(ϕ)/[B0κ(ϕ)], X1c(ϕ) = B1c(ϕ)/[B0κ(ϕ)]. (2.5)

In the case of quasisymmetry, we can choose the origin of the θ coordinate so B =
B0 + rη̄B0 cos(θ − Nϕ) + O(r2) for some constant η̄ and fixed integer N , with quasi-
axisymmetry defined by N = 0 and quasi-helical symmetry defined by N 6= 0. Then
B1s = η̄B0 sin(Nϕ) and B1c = η̄B0 cos(Nϕ). Furthermore,

Y1s = (sGsψκ/η̄) [σ sin(Nϕ) + cos(Nϕ)] , Y1c = (sGsψκ/η̄) [σ cos(Nϕ)− sin(Nϕ)] ,
(2.6)

where sG = ±1 is positive (negative) if B points towards increasing (decreasing) ϕ,
sψ = sign(ψ) = ±1, and the periodic function σ(ϕ) satisfies the Riccati-type equation

dσ

dϕ
+ (ι−N)

[
η̄4

κ4
+ 1 + σ2

]
− 2G0η̄

2

B0κ2

[
I2
B0
− sψτ

]
= 0. (2.7)

Here, ι is the rotational transform on axis; G0 is the on-axis value of G(r), the poloidal
current outside the flux surface times µ0/(2π); and I2 is the leading coefficient in I(r) =
r2I2 + O(r4), the toroidal current inside the flux surface times µ0/(2π). The functions
G(r) and I(r) here are those appearing in the Boozer coordinate representation

B = β(r, θ, ϕ)∇r + I(r)∇θ +G(r)∇ϕ. (2.8)

Using Eq (2.18) in Paper I, eq (2.7) can be written in terms of the standard toroidal
angle φ (the azimuthal angle in cylindrical coordinates (R,φ, z)) as

dσ

dϕ
=
|G0|
`′B0

dσ

dφ
, (2.9)
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where

`′ = d`/dφ =
√
R2

0 + (R′0)2 + (z′0)2, (2.10)

the magnetic axis has cylindrical coordinates R0(φ) and z0(φ), and primes denote d/dφ.
Also, G0 can be related to the magnetic axis shape by G0 = sGB0L/(2π) where L =∫ 2π

0
dφ `′ is the length of the axis. The above equations all apply even if the plasma

pressure is nonzero, although the pressure turns out not to appear in these expressions
to this order.

As discussed in section 5.2 of Paper I, N can be determined directly from the axis
shape. The integer N is the number of times the normal vector n rotates poloidally
around the magnetic axis as the axis is traversed once toroidally. We can determine N
this way because the vector at each ϕ pointing from the magnetic axis to the maximum-B
contour on a flux surface r is nr|η̄|/κ+ brY1, which has a positive projection onto n at
every ϕ. Hence these two vectors are always within 90 degrees of each other, and so the
B contours loop around the magnetic axis the same number of times n does so.

Stellarators, whether quasisymmetric or not, typically are designed to possess stellara-
tor symmetry, since this symmetry reduces the dimensionality of the parameter space for
optimization, reduces the computational cost of many calculations, and typically reduces
the number of unique coil shapes. Stellarator symmetry corresponds to R(−θ, φ) =
R(θ, φ), z(−θ,−φ) = −z(θ, φ), and B(−θ,−φ) = B(θ, φ). For a magnetic field described
by (2.1)-(2.7) to be stellarator-symmetric, the magnetic axis shape must be stellarator-
symmetric, and σ(ϕ) should be odd.

As proved in the appendix, even though (2.7) is nonlinear in σ, this equation can be
posed in such a way that there is guaranteed to be precisely one solution. Specifically,
given well-behaved κ(ϕ), τ(ϕ), I2/B0, G0/B0, η̄, and an initial condition σ(0), there is
precisely one solution pair {ι, σ} such that σ(ϕ) is periodic. As a result, for any magnetic
axis shape with nonvanishing curvature, there are an infinite number of magnetic fields in
the vicinity of that axis which are consistent with quasisymmetry to first order in r. The
possible magnetic fields are parameterized by three numbers: I2/B0, η̄, and σ(0). If the
current density vanishes on axis, which is common in stellarators even at finite plasma
pressure since the bootstrap current density vanishes on axis, I2 = 0. Furthermore, for
stellarator-symmetric fields, σ(0) = 0. Therefore, in practice usually only one of the
three scalar input parameters is free. While every magnetic axis shape with nonvanishing
curvature admits an infinite number of quasisymmetric fields, for many axis shapes it is
found numerically that the elongation of the surrounding flux surfaces reaches enormous
values (tens, hundreds, or thousands), making the shape uninteresting.

3. Numerical method
For a practical solution of (2.7) we consider the inputs to be η̄, I2/B0, σ(0), and

the shape of the magnetic axis {R(φ), z(φ)}. The outputs are σ(φ) and ι. Given the
inputs, we solve (2.7) with (2.9) for σ(φ) using Newton iteration with a pseudo-spectral
collocation discretization. A uniform grid of Nφ points, φj = (j − 1)2π/(Nφnfp) where
j = 1 . . . Nφ, is defined on [0, 2π/nfp), where nfp is the number of identical field periods.
The vector of unknowns is taken to be [ι, σ2, . . . , σNφ

]T where σj = σ(φj), so there
are Nφ unknowns. There is no need to include σ(φ1) = σ(0) as an unknown since it
is a prescribed input. A system of Nφ equations is obtained by imposing (2.7) at all
φj . The dσ/dφ derivative is discretized using the Fourier pseudo-spectral differentiation
matrix (Weideman & Reddy 2000). Newton iteration proceeds by solving linear systems
involving the Jacobian matrix [∂R/∂ι, ∂R/∂σ2, . . . , ∂R/∂σNφ

], where R is the residual
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Figure 1. The algorithm of section 3 allows the equations of section 2 or section 4.3 to be
solved to machine precision with a modest number of grid points Nφ. The equations of these
two sections yield results that are identical to machine precision (for sufficient Nφ) since the
equations are equivalent, as proved in Paper I.

vector. It is straightforward to analytically evaluate the derivatives in the Jacobian in
terms of the differentiation matrix. For the examples shown below, the residual L2 norm
is reduced by 15 orders of magnitude in 6 5 Newton iterations. The numerical solution
is extremely robust: in parameter scans to date we have not observed any examples in
which the Newton iteration fails to converge.

Figure 1 demonstrates the convergence of the rotational transform computed by this
method as the number of grid points increases, for the example of section 5.1. As expected,
the convergence is spectral, and ι can be computed to 15 digits of precision with Nφ ∼ 50.
In the figure, the ‘true’ value of ι is taken to be the result for Nφ = 149.

4. Conversion to cylindrical coordinates
To take advantage of stellarator physics codes that accept VMEC equilibrium files,

such as the STELLOPT optimization suite, we wish to transform the solutions from the
Frenet-Serret frame to the VMEC input representation. In this representation, the plasma
boundary is expressed as a Fourier expansion of the cylindrical coordinates R(θ, φ) and
z(θ, φ), where θ can be any poloidal angle. Here, we will continue to let θ be the poloidal
Boozer angle. We can compute R(θ, φ) and z(θ, φ) from the asymptotic large-aspect-ratio
solution in several ways, described in the following subsections. The first three approaches
have the common feature that an expansion in r for the surface shape is evaluated at a
finite value of r.

4.1. First-order method
In one approach, the solution in the Frenet-Serret frame is transformed to cylindrical

coordinates using the method detailed in Paper I, summarized here. The position vector
is expressed as

r = r̂0(φ) + r [R1(θ, φ)eR(φ) + z1(θ, φ)ez] +O(r2), (4.1)
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where r̂0(φ) = R0(φ)eR(φ) + z0(φ)ez, and equated to (2.1). The n and b components of
the result give (to leading order in r)(

X1

Y1

)
=

(
nR nz
bR bz

)(
R1

z1

)
, (4.2)

where nR = n · eR, bz = b · ez, etc, and this matrix equation can be inverted to give(
R1

z1

)
=

`′

R0

(
−bz nz
bR −nR

)(
X1

Y1

)
. (4.3)

Since X1 and Y1 each have sin θ and cos θ components, the same is true of R1 and z1, so
the flux surfaces are ellipses in the R-z plane. Eq (4.3) can be applied at each φ to both
the sin θ and cos θ components. Then given any choice for r, a finite-aspect-ratio magnetic
surface can be formed in cylindrical coordinates from R(θ, φ) = R0(φ) + rR1(θ, φ) and
z(θ, φ) = z0(φ)+rz1(θ, φ). Note that the transformation (4.3) represents only the leading
order behavior in an expansion in r, so for finite r the flux surface geometry will depart
somewhat from (2.1), meaning cross-sections of the boundary surface normal to the
magnetic axis will no longer be perfect ellipses.

4.2. Alternative method
The method of the previous subsection results in a flux surface shape that is consistent

with (2.1) to O(r). Alternatively, one can compute the surface defined by the terms
through O(r) in (2.1) as follows. First a positive value of r is chosen. Given uniform grids
in θ and φ, a tensor product grid is formed. For each point (θ, φ) in this tensor product
grid, a 1D root finding problem is solved to find ϕ such that the position vector (2.1)
has toroidal angle φ. In this way, R and z are obtained on the (θ, φ) grid, and so they
can be Fourier transformed to provide input to VMEC. To O(r) the resulting surface is
identical to the surface constructed in the previous subsection, but O(r2) differences are
present. This second method ensures cross-sections of the flux surfaces perpendicular to
the magnetic axis are elliptical, while cross-sections in the R-z plane will generally not
be elliptical.

For the quasi-axisymmetric examples below, we find the two methods for converting to
cylindrical coordinates yield nearly indistinguishable results, and so there is no need for
the extra complexity of the second method. However, for the quasi-helically symmetric
example below, we find the second method yields smaller symmetry-breaking harmonics
by a factor ∼ 2, and so we will use it in section 5.2.

4.3. Direct solution in cylindrical coordinates
There is also a third approach to computing R(θ, φ) and z(θ, φ) for first-order qua-

sisymmetric magnetic surface shapes: directly solving the first-order quasisymmetry
equations in cylindrical coordinates rather than in the Frenet-Serret frame. The first-
order quasisymmetry equations in cylindrical coordinates were derived in Paper I and
are

R1sz1c −R1cz1s − sG`′/R0 = 0, (4.4)
KRR1c +Kzz1c −B1c/B0 = 0, (4.5)
KRR1s +Kzz1s −B1s/B0 = 0, (4.6)

ιV − T = 0, (4.7)



Direct construction of optimized stellarator shapes. II. 7

where

KR = κn · eR KR = κn · ez (4.8)

T =
|G0|

(`′)3B0

[
R2

0 (R1cR
′
1s −R1sR

′
1c + z1cz

′
1s − z1sz′1c) (4.9)

+ (R1cz1s −R1sz1c) (R′0z
′′
0 + 2R0z

′
0 − z′0R′′0 )

+ (z1cz
′
1s − z1sz′1c) (R′0)

2
+ (R1cR

′
1s −R1sR

′
1c) (z′0)

2

+ (R1sz
′
1c − z1cR′1s + z1sR

′
1c −R1cz

′
1s)R

′
0z
′
0] +

2G0I2
B2

0

and

V =
1

(`′)2

[
R2

0

(
R2

1c +R2
1s + z21c + z21s

)
+ (R′0)

2 (
z21c + z21s

)
(4.10)

−2R′0z
′
0 (R1cz1c +R1sz1s) + (z′0)

2 (
R2

1c +R2
1s

)]
,

and primes denote d/dφ. As proved in Paper I, these equations are exactly equivalent to
(2.7) under the transformation (4.2)-(4.3).

The system (4.4)-(4.7) can be solved with Newton’s method using a procedure similar
to the one of section 3. The vector of unknowns consists of R1c, R1s, z1c, and z1s, each
evaluated at φj , along with ι. The same number of equations are obtained by imposing
(4.4)-(4.7) at each of the φj , along with one additional equation corresponding to the
initial condition for σ. We verified that this direct solution in cylindrical coordinates (4.4)-
(4.7) indeed yields indentical results to the method of section 4.1, within discretization
error that can be made as small as machine precision, as shown in figure 1.

4.4. Outward extrapolation using specific coils
A fourth method for generating finite-size quasisymmetric plasma shapes from the

high-aspect-ratio theory, which we now describe, can potentially generate shapes with
relatively low aspect ratio that are realizable with reasonable coils, at least for the limited
case of vacuum fields. In this method, first one of the methods of sections 4.1-4.3 is used
to generate a flux surface shape at a high aspect ratio. Next, a coil design code such as
REGCOIL (Landreman 2017) or FOCUS (Zhu et al. 2018) is used to find coil shapes
that produce this high-aspect-ratio surface, by minimizing the (squared) magnetic field
normal to the surface. Typically, good flux surfaces will be produced by these coils well
outside of the original target surface, and field line tracing can be used to identify a large
region filled with good surfaces. If desired, VMEC can be run in free-boundary mode to
obtain a representation of the field in this larger region. This fourth approach results in
boundary surface shapes that are not strictly ellipses. There is substantial flexibility in
this method, as the designer can choose the number of coils, the regularity of the coil
shapes, and any other input parameters to the coil design code. There is no particular
reason the magnetic field will be quasisymmetric outside of the smaller high-aspect-ratio
target volume, so this procedure tends to produce better quasisymmetry on axis than at
the edge. Since this method requires a coil design code, which takes at least ∼ 10 seconds
to run in the case of REGCOIL, as well as field line tracing to find the resulting surfaces,
the computational cost is higher than that of the previous methods, though still very
small compared to conventional stellarator optimization. An example of this method will
be shown at the end of section 5.1.
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Figure 2. Quasi-axisymmetry example. (a) Flux surface shape computed by the procedure of
sections 3 and 4.1, taking aspect ratio = 10, showing |B| computed by VMEC. (b) Cross sections
of the flux surfaces at equally spaced values of φ, with + signs denoting the magnetic axis.

5. Examples
5.1. Quasi-axisymmetry

We now demonstrate the procedures of the previous sections to construct a variety
of quasisymmetric stellarator shapes. We begin with an example of quasi-axisymmetry,
considering the magnetic axis shape

R0(φ) = 1 + 0.045 cos(3φ), z0(φ) = −0.045 sin(3φ), (5.1)

with η̄ = −0.9. We take σ(0) = 0 (stellarator symmetry). For this and the later examples,
we consider a vacuum field, so I2 = 0. For these parameters, the numerical procedure
above yields a rotational transform ι = 0.418, and the maximum flux surface elongation
in the R-z plane is found to be 2.40. Hereafter we call 1/r the aspect ratio, since the
average major radius is 1. The flux surfaces for aspect ratio 10 are shown in figure 2.
Supplying this surface as an input to VMEC, the resulting magnetic field strength on the
boundary is shown in figure 2.a. The Fourier spectrum of B in Boozer coordinates at each
flux surface is then computed using the BOOZ_XFORM code (Sanchez et al. 2000). The
resulting spectra for aspect ratios 10 and 80 are shown in figure 3. At aspect ratio 10,
the (m,n) = (1, 0) harmonic is dominant across all surfaces, as desired, and the quality
of the quasisymmetry increases as the aspect ratio is increased. For both aspect ratios
shown, the largest symmetry-breaking mode at the edge is the mode (m,n) = (2,−3).
Since modes of B with given poloidal mode number m have amplitude ∝ rm near the
axis (Garren & Boozer 1991a), the symmetry-breaking on axis is dominated by modes
with m = 0 (shown in brown in figure 3).

The theory here generates flux surface shapes that give quasisymmetry to first order
in the distance from the magnetic axis, and at next order in this distance there will be
breaking of the symmetry. Therefore, the symmetry-breaking Fourier harmonics should
scale as 1/A2 where A is the aspect ratio. This scaling is verified in figure 4. In this figure
the amount of symmetry-breaking is measured by the quantity

S =
1

B0,0

√ ∑
n/m 6=N/M

B2
m,n. (5.2)

As expected, the symmetric modes Bm,n are found to scale as 1/A (not shown). Similarly,
figure 5 shows that the rotational transform computed by VMEC converges to the value
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Figure 3. Fourier amplitudes Bm,n(r) of the magnetic field magnitude B(r, θ, ϕ) computed by
BOOZ_XFORM, for the quasi-axisymmetric configuration of section 5.1.
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Figure 4. For all three examples presented in section 5, the symmetry-breaking Fourier
components scale as A−2 as predicted by theory.

predicted by (2.7) as the aspect ratio increases. For A > 160, the agreement extends to
at least 5 digits.

Figure 4 includes a point for the quasi-axisymmetric design NCSX, which was obtained
using conventional optimization. The NCSX point falls below the trend line, so it
evidently has a somewhat better quality of quasisymmetry for its aspect ratio than the
configurations constructed here.

For a different approach to constructing a finite-aspect-ratio geometry from the high-
aspect-ratio theory, an example of the outward extrapolation method of section 4.4 is
shown in figure 6, again using the input axis shape (5.1). First, an aspect ratio 160 shape
is generated by the method of section 4.1. Coil shapes to produce this magnetic surface
shape are then calculated using the REGCOIL method (Landreman 2017). For this
method, a coil winding surface is chosen by taking an aspect ratio 5 surface constructed
using the method of section 4.1, and expanding uniformly outward by one quarter of the
average major radius. REGCOIL’s regularization parameter is chosen to be the smallest
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Figure 5. For all three examples presented in section 5, the rotational transform computed by
VMEC converges to the value predicted by eq (2.7) as the aspect ratio increases.

value for which there are no saddle coils, i.e. there are no local maxima or minima in
the current potential. Next, 24 coil shapes (4 unique shapes, each repeated 6 times) are
identified from uniformly spaced contours of the current potential. A Poincare plot of the
vacuum field produced by these coils (figure 6.c-e) shows that good flux surfaces exist
out to an aspect ratio of 5.0 (using VMEC’s definition of the major and minor radius).
The Fourier amplitudes of B in Boozer coordinates are shown in figure 6.f, showing the
quasi-axisymmetric term is dominant, as desired. Again the largest symmetry-breaking
mode at the edge is the mode (m,n) = (2,−3). The symmetry-breaking harmonics reach
a rather sizeable amplitude at the last closed flux surface, and no effort has been made
to achieve other desirable physics properties such as a high MHD β limit. However,
this configuration required very little computational effort to compute, compared to the
hundreds or thousands of VMEC computations required for conventional optimization,
and it could serve as a useful initial condition for conventional optimization.

5.2. Quasi-helical symmetry
For an example of quasi-helical symmetry, we consider the magnetic axis shape

R0(φ) = 1 + 0.265 cos(4φ), z0(φ) = −0.21 sin(4φ). (5.3)

For this curve, the normal vector rotates poloidally in each field period, so solutions
have quasi-helical symmetry rather than quasi-axisymmetry. We also choose η̄ = −2.25
and σ(0) = 0. For these parameters, the numerical procedure of sections 3-4.1 yields a
rotational transform ι = 1.93, and the maximum flux surface elongation in the R-z plane
is found to be 2.52.

The flux surfaces for aspect ratio 40, computed using the method of section 4.2, are
shown in figure 7. Due to the strongly shaped axis in this example, the flux surface
cross-sections in the R-z plane become visibly different from ellipses even at this high
aspect ratio. Note that the cross-sections in the plane perpendicular to the magnetic axis
are perfectly elliptical, and the cross-sections in the R-z plane approach ellipses as the
aspect ratio is raised. The spectra of B in Boozer coordinates for aspect ratios 40 and
160 are shown in figure 8. The largest symmetry-breaking mode at the edge is the mode
(m,n) = (2,−16).

As pointed out by Garren & Boozer (1991a), the relevant ratio for breaking of
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Figure 6. The aspect ratio 5 quasi-axisymmetic stellarator constructed by the procedure of
section 4.4, using no optimization (aside from the REGCOIL linear least-squares problem).
(a)-(b) Color indicates B on the outermost flux surface, and the four unique coil shapes are
shown with four shades of gray. (c)-(e) Poincare plots computed from the vacuum field of the
coils, demonstrating good flux surfaces out to aspect ratio 5, at three toroidal angles. (f) Boozer
spectrum, demonstrating the quasi-axisymmetric mode is dominant. (g) Profile of ι.
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Figure 7. Quasi-helical symmetry example. (a) Flux surface shape computed by the procedure
of sections 3 and 4.2, taking aspect ratio = 40, showing |B| computed by VMEC. (b) Cross
sections of the flux surfaces at equally spaced values of φ, with + signs denoting the magnetic
axis.
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Figure 8. Fourier amplitudes Bm,n(r) of the magnetic field magnitude B(r, θ, ϕ) computed by
BOOZ_XFORM, for the quasi-helically symmetric configuration of section 5.2.

quasisymmetry is the minor radius divided by the scale length of the magnetic axis’s
Frenet-Serret frame (e.g. 1/κ, 1/τ), not the conventional aspect ratio. For axis shapes
consistent with quasi-helical symmetry, where the normal vector rotates about the axis,
the scale lengths of the axis Frenet-Serret frame are smaller than for axes consistent
with quasi-axisymmetry at comparable major radius. Therefore, quasi-helical symmetry
is limited to higher conventional aspect ratios than quasi-axisymmetry. This trend is
apparent in a comparison of the examples of sections 5.1-5.2. The peak axis curvature
and torsion are roughly twice as large in the latter compared to the former, and this ratio
is squared in the symmetry breaking. Indeed, figure 3.a for quasi-axisymmetry at aspect
ratio 10 has comparable symmetry breaking to figure 8.a for quasi-helical symmetry at
aspect ratio 40.

Figure 4 includes a point for the quasi-helically symmetric experiment HSX, which
was designed using conventional optimization. (Coil ripple is not included for the HSX
and NCSX configurations in the figure; the values of S for HSX and NCSX are nearly
unchanged on the scale of the figure if coil ripple is included.) HSX has symmetry breaking
that is an order of magnitude smaller than the configuration generated here at comparable
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Figure 9. Quasi-axisymmetric stellarator without stellarator symmetry. (a) Flux surface shape
computed by the procedure of sections 3 and 4.1, taking aspect ratio = 10, showing |B| computed
by VMEC. (b) Cross sections of the flux surfaces at equally spaced values of φ, with + signs
denoting the magnetic axis.

aspect ratio. The fact that conventional optimization results in lower symmetry breaking
than the construction here is not surprising, given that the construction is limited to
producing shapes with elliptical cross section.

5.3. Case without stellarator symmetry
There is no reason a stellarator with quasisymmetry must also possess stellarator

symmetry. For instance, a tokamak with a single null is quasiaxisymmetric but not
stellarator symmetric. Plasma shapes that lack stellarator symmetry are of interest since
the turbulent momentum flux is predicted to be larger by a factor ∼ 1/ρ∗ than in
stellarator symmetric shapes, meaning the intrinsic rotation is larger (Peeters & Angioni
2005; Parra et al. 2011; Sugama et al. 2011). The resulting rotation and/or rotation
shear may improve plasma stability. While quasisymmetry reduces the strong damping of
flows otherwise typical of stellarators, significant flow still requires a drive, and turbulent
momentum transport associated with broken stellarator symmetry could provide such a
drive. In the model considered here, stellarator symmetry can be broken by specifying a
non-stellarator-symmetric axis shape, or by specifying a nonzero σ(0), or both. Here we
present an example with both sources of symmetry-breaking. We take the magnetic axis
shape to be

R0(φ) = 1 + 0.042 cos(3φ), z0(φ) = −0.042 sin(3φ)− 0.025 cos(3φ), (5.4)

with η̄ = −1.1 and σ(0) = −0.6. For these parameters, the numerical procedure above
yields a rotational transform ι = 0.311, and the maximum flux surface elongation in the
R-z plane is found to be 3.29. The flux surface shape for A = 10 is displayed in figure
9, and the Boozer spectra for A = 10 and A = 80 are shown in figure 10. In figure 10,
it can be seen that B has a significant sin θ component (red dotted line) which is not
stellarator-symmetric but which preserves quasi-axisymmetry. As with the stellarator-
symmetric quasi-axisymmetric example, the largest symmetry-breaking mode at the edge
is the mode (m,n) = (2,−3). The 1/A2 scaling of the quasisymmetry-breaking harmonics
is again plotted in figure 4, and the convergence of the VMEC rotational transform to
the predicted value as A→∞ is shown in figure 5. Generally the properties of this family
of configurations are quite similar to the stellarator-symmetric and quasi-axisymmetric
configurations of section 5.1.
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Figure 10. Fourier amplitudes Bm,n(r) of the magnetic field magnitude B(r, θ, ϕ) computed by
BOOZ_XFORM, for the non-stellarator-symmetric quasi-axisymmetric configuration of section
5.3.

6. Discussion and Conclusions
While quasisymmetric stellarator shapes have been found previously by applying black-

box optimization methods to minimize the departure from quasisymmetry, such methods
are computationally demanding and do not provide comprehensive information about
the landscape of all possible solutions. Here we have demonstrated a complimentary
approach in which quasisymmetric stellarator shapes can be parameterized and computed
extremely rapidly (< 1 ms on a laptop), enabling exhaustive high-resolution parameter
scans and insight into the size of the solution space. We have demonstrated that this
approach is a practical method to generate configurations that can be examined nu-
merically with VMEC and other physics codes. As part of this demonstration, we have
shown using BOOZ_XFORM that the Boozer-coordinate Fourier spectra of the resulting
equilibria are indeed dominated by a single helicity. We have further demonstrated that
the symmetry-breaking harmonics scale as r2 as expected.

Although the “optimization-free” approach here requires solving a nonlinear equation
(2.7), the numerical solution is extremely robust since the problem can be formulated
so a unique solution is guaranteed to exist. As proved in the appendix, every magnetic
axis shape with nonvanishing curvature admits an infinity of (first-order) quasisymmetric
flux surface shapes surrounding it, each labeled by the three numbers η̄, I2, and σ(0).
Given any values for these three numbers, as long as η̄ 6= 0, and given any axis shape
for which the curvature does not vanish, there is exactly one first-order quasisymmetric
shape (as a function of r.) However, much of this solution space is not interesting since
the elongation of the surfaces is impractically high. The space of stellarator-symmetric
solutions is significantly smaller than the space of all solutions both because the space of
axis shapes is restricted and also since σ(0) must be 0.

While the calculations here are limited to high aspect ratio, any stellarator with a low
aspect ratio boundary will have a region close to the magnetic axis in which the local
aspect ratio is high. Hence the results here describe the core of any quasisymmetric stel-
larator, even those with low aspect ratio at the plasma boundary. The observed accuracy
of the solutions constructed here is consistent with the popular wisdom that good quasi-
axisymmetry can be achieved at much lower aspect ratio than quasi-helical symmetry.
It is likely that by extending the method here to second order in r, using equations in
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the appendix of Garren & Boozer (1991b), the accuracy of these parameterized solutions
could be extended to lower aspect ratio.
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Appendix A. Existence and uniqueness of solutions to the ODE
The problem for first-order quasisymmetry (2.7) can be stated as

dσ

dϕ
+ ι(P + σ2) +Q = 0, σ(0) given, (A 1)

where σ(ϕ), P (ϕ), and Q(ϕ) are 2π-periodic functions, P > 0, and ι and σ(0) are
constants. (Without loss of generality, the shift −N to ι is dropped in this appendix to
simplify notation.) Here we prove that for given P , Q, and σ(0), assuming that P and Q
are integrable and bounded, a periodic solution {ι, σ(ϕ)} to (A 1) exists and it is unique.

Note that if the problem is posed instead with ι as given and σ(0) as part of the solution,
rather than the other way around, then there may be zero, one, or two solutions. In this
alternative formulation there can never be more than two solutions (Pliss (1966), page
102).

A.1. Uniqueness
Returning to the original formulation of (A 1) with σ(0) as an input and ι as an output,

we will first prove that no more than one solution can exist. For the moment, we relax
the requirement that σ(ϕ) be periodic, so that for any given ι, (A 1) becomes an initial
value problem, which has a unique, finite, and generally non-periodic solution σ(ϕ) in
some neighborhood of ϕ = 0. Solutions for a particular choice of P , Q, and σ(0) are
shown in figure 11.a. Note that the solution of this initial value problem may not extend
all the way to ϕ = 2π since it may diverge to ±∞ beforehand, as can be seen from the
analytic solution in the case of constant P and Q:

σ(ϕ) = −
√

(Q+ Pι)/ι tan
(
ϕ
√

(Q+ Pι)ι− tan−1
(
σ(0)

√
ι/(Q+ Pι)

))
. (A 2)

Returning to the case of general P > 0 and Q, suppose σ0(ϕ) is the solution to the initial
value problem for ι = ι0, and σ1(ϕ) is the solution for ι = ι1. Subtracting (A 1) for these
two solutions,

0 =
d(σ1 − σ0)

dϕ
+ (ι1 − ι0)P + ι1σ

2
1 − ι0σ2

0

=
d(σ1 − σ0)

dϕ
+ (ι1 − ι0)(P + σ2

0) + ι1(σ1 − σ0)(σ1 + σ0). (A 3)

This equation may be integrated using an integrating factor to give

σ1(ϕ)− σ0(ϕ) = −(ι1 − ι0)F (ϕ), (A 4)
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Figure 11. (a) Solutions of the ODE (A1), interpreted as an initial value problem, for
P = 2 + sin(2ϕ), Q = 1 + 3 cosϕ, σ(0) = 2, and various ι ∈ [−1, 1]. (b) Demonstration that
∆(ι) = σ(2π)− σ(0) is a monotonically decreasing function of ι, and illustration of the function
∆̄(ι) of section A.4, for the same parameters as (a).

where

F (ϕ) = exp

(
−ι1

∫ ϕ

0

dϕ′ [σ1(ϕ′) + σ0(ϕ′)]

)
×
∫ ϕ

0

dϕ′′
[
P (ϕ′′) + σ2

0(ϕ′′)
]

exp

(
ι1

∫ ϕ′′

0

dϕ′ [σ1(ϕ′) + σ0(ϕ′)]

)
. (A 5)

Using P > 0 it can be seen that F (ϕ) > 0 for any positive ϕ for which the initial value
solutions exist, so ι1 > ι0 implies σ1(ϕ) < σ0(ϕ). That is, σ(ϕ) is a strictly monotonically
decreasing function of ι at any ϕ for which the initial value solution exists. This is true
in particular at ϕ = 2π. Defining ∆(ι) = σ(2π) − σ(0) (defined at any ι for which the
initial value solutions do extend to 2π), we then have

∆(ι1)−∆(ι0) = −(ι1 − ι0)F (2π). (A 6)

Using F > 0, ∆(ι) is a strictly monotonically decreasing function. Figure 11.b shows ∆(ι)
for the particular parameters of figure 11.a, and this monotonicity is apparent. Thus, no
more than a single value of ι can exist for which ∆(ι) = 0, corresponding to a periodic
σ(ϕ).

A.2. Bounded solutions
To prove that at least one solution to (A 1) exists, let us prove several intermediate

results that will be needed, beginning with the following proposition. Suppose when
ι = ι0, the initial value problem (A1) with some given initial condition σ(0) has a
bounded solution σ0(ϕ) throughout ϕ ∈ [0, 2π]. Then there exists some d > 0 such that
for all ι satisfying |ι− ι0| < d, then σ solving the initial value problem (A1) with ι and
the same initial condition remains bounded throughout ϕ ∈ [0, 2π]. In other words, for
any ι0 that yields a solution that is non-singular, there are nearby values of ι that also
avoid singularity. Put yet another way, if B is the set of values of ι that yield bounded
solutions to the initial value problem (for a given σ(0)), then B is open.

To prove this proposition, it is useful to consider the pair of solutions {ι0, σ0} and
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{ι, σ} which are both finite up to some ϕ, and write (A 4) as

[σ(ϕ)− σ0(ϕ)] exp

(
ι

∫ ϕ

0

dϕ′ [σ(ϕ′)− σ0(ϕ′)]

)
(A 7)

= (ι0 − ι) exp

(
−2ι

∫ ϕ

0

dϕ′σ0(ϕ′)

)∫ ϕ

0

dϕ′′
[
P (ϕ′′) + σ2

0(ϕ′′)
]

exp

(
ι

∫ ϕ′′

0

dϕ′ [σ(ϕ′) + σ0(ϕ′)]

)
.

Recognizing the left hand side as a total derivative ι−1(d/dϕ) exp(. . .), and integrating,

exp

(
ι

∫ ϕ

0

dϕ′ [σ(ϕ′)− σ0(ϕ′)]

)
= 1 + ι(ι0 − ι)

∫ ϕ

0

dϕ′′′ exp

(
−2ι

∫ ϕ′′′

0

dϕ′σ0(ϕ′)

)
(A 8)

×
∫ ϕ′′′

0

dϕ′′
[
P (ϕ′′) + σ2

0(ϕ′′)
]

exp

(
ι

∫ ϕ′′

0

dϕ′ [σ(ϕ′) + σ0(ϕ′)]

)
.

We now consider three cases, depending on the sign of ι0, beginning with the case
ι0 < 0. If ι lies in (ι0, 0), then the fact that σ is a monotonically decreasing function of ι
at each ϕ means that σ is bounded between σ0 and

σQ(ϕ) = σ(0)−
∫ ϕ

0

dϕ′Q(ϕ′), (A 9)

the solution of the initial value problem for ι = 0. As σ0 and σQ are bounded throughout
[0, 2π], σ cannot be unbounded. On the other hand, if ι < ι0, then σ > σ0 and (A 8)
imply

exp

(
ι

∫ ϕ

0

dϕ′ [σ(ϕ′)− σ0(ϕ′)]

)
> 1− Y (ϕ) (A 10)

where

Y (ϕ) =ι(ι− ι0)

∫ ϕ

0

dϕ′′′ exp

(
−2ι

∫ ϕ′′′

0

dϕ′σ0(ϕ′)

)
(A 11)

×
∫ ϕ′′′

0

dϕ′′
[
P (ϕ′′) + σ2

0(ϕ′′)
]

exp

(
2ι

∫ ϕ′′

0

dϕ′σ0(ϕ′)

)
.

Note Y > 0. If Y < 1, then the reciprocal of (A 10) can be applied to (A 7) to obtain

σ(ϕ) <σ0(ϕ)− ι− ι0
1− Y

exp

(
−2ι

∫ ϕ

0

dϕ′σ0(ϕ′)

)
(A 12)

×
∫ ϕ

0

dϕ′′
[
P (ϕ′′) + σ2

0(ϕ′′)
]

exp

(
2ι

∫ ϕ′′

0

dϕ′σ0(ϕ′)

)
.

Therefore, σ is bounded between σ0 and the right hand side of (A 12), both of which
are finite as long as Y is bounded away from 1. To bound Y , it is convenient to require
|ι− ι0| < 1, so

ι0σ0 − |σ0| < ισ0 < ι0σ0 + |σ0|, (A 13)
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and 1/(−ι) > 1/(1− ι0). Then requiring |ι− ι0| < d− where

d− =
1

2(1− ι0)
min
ϕ

{∫ ϕ

0

dϕ′′′ exp

(
−2

∫ ϕ′′′

0

dϕ′ [ι0σ0(ϕ′)− |σ0(ϕ′)|]

)
(A 14)

×
∫ ϕ′′′

0

dϕ′′ [P (ϕ′′) + σ0(ϕ′′)] exp

(
2

∫ ϕ′′

0

dϕ′ [ι0σ0(ϕ′) + |σ0(ϕ′)|]

)}−1
,

where minϕ indicates a minimum over ϕ ∈ [0, 2π], it follows that Y < 1/2. So in summary,
whenever ι0 < 0, if ι satisfies |ι − ι0| < d where d = min(1,−ι0, d−), then σ will be
bounded between two functions that are nonsingular throughout ϕ ∈ [0, 2π]: σ0 and
either σQ or the right hand side of (A 12). Hence σ cannot be unbounded.

The case ι0 > 0 can be analyzed just as the case ι0 < 0. This time the final bound
obtained is d = min(1, ι0, d+), where d+ is defined exactly as d− in (A 14) but with
1/(1− ι0)→ 1/(1 + ι0). For the final case, ι0 = 0, then the upper bound (A 12) applies,
as does a lower bound analogous to (A 12) from the ι0 > 0 case. Therefore a suitable
bound on ι is d = min(1, d−, d+).

A.3. Continuity of ∆(ι)

Before proceeding to prove that at least one solution to (A 1) exists, we need to prove
that ∆(ι) is continuous at every ι = ι0 for which (A 1) can be integrated to ϕ = 2π. To
do this, we continue to allow non-periodic σ, we let σ+(ϕ) be the generally non-periodic
solution of (A 1) with ι = ι0 + d, and we let σ−(ϕ) be the solution with ι = ι0 − d.
Here, d > 0 is the quantity defined in section A.2, guaranteeing σ− and σ+ are finite
throughout ϕ ∈ [0, 2π]. Now consider any ι1 in the interval (ι0, ι0 + d) with associated
solution σ1. From section A.2, we know σ1 is finite throughout ϕ ∈ [0, 2π]. From (A4)
and F (ϕ) > 0 for ϕ > 0, then σ+ < σ1 < σ0 for any ϕ > 0. Defining

A(ϕ) = −(|ι0|+ d) [|σ0(ϕ)|+ max (|σ0(ϕ)|, |σ−(ϕ)|, |σ+(ϕ)|)] , (A 15)

and noting that a < b < c implies |b| < max(|a|, |c|) for any numbers (a, b, c), it can be
seen that ι1(σ1 + σ0) > A. Therefore (A 3) implies

d(σ1 − σ0)

dϕ
> −(ι1 − ι0)(P + σ2

0)− (σ1 − σ0)A. (A 16)

Using an integrating factor as before and integrating over [0, 2π],

∆(ι1)−∆(ι0) > −(ι1 − ι0)C (A 17)

where

C = exp

(
−
∫ 2π

0

dϕA(ϕ)

)∫ 2π

0

dϕ
[
P (ϕ) + σ0(ϕ)2

]
exp

(∫ ϕ

0

dϕ′A(ϕ′)

)
. (A 18)

Similarly, if ι1 is in the interval (ι0 − d, ι0), then σ0 < σ1 < σ− for any ϕ > 0. Again
ι1(σ1 + σ0) > A, and so (A 3) implies (A 16) with the direction of inequality reversed.
Then (A 17) follows with the direction of inequality reversed. Therefore, given any ε > 0,
we can define δ(ε) = min(d, ε/C), so that |ι1 − ι0| < δ(ε) implies |∆(ι1) − ∆(ι0)| < ε.
Thus, ∆(ι) is continuous everywhere on B.
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A.4. Continuity of ∆̄(ι)

Next, it is convenient to define a function ∆̄(ι) which is like ∆(ι), except that it is
non-infinite for any ι ∈ R, and its range is constrained to lie in [−1, 1]:

∆̄(ι) =


1 if σ is unbounded from above or if ∆(ι) > 1,

−1 if σ is unbounded from below or if ∆(ι) < −1,

∆(ι) otherwise.
(A 19)

The function ∆̄(ι) for the parameters of figure 11.a is shown in figure 11.b.
We now prove that ∆̄(ι) is continuous at ι = ι0 for all ι0 ∈ R, considering three cases.

In the first case, consider ι0 for which (A 1) can be integrated to ϕ = 2π. Then due
to the results of sections A.2-A.3, ∆(ι) is non-infinite in a neighborhood of ι0. In this
neighborhood, ∆̄ is a composition of continuous functions: ∆̄(ι) = max(−1,min(1, ∆(ι))),
hence ∆̄(ι) is continuous at this ι.

In the second case, consider an ι0 for which the associated solution σ0 is unbounded
from above, so ∆̄(ι0) = 1. This scenario can only happen if ι0 < 0. For any ι < ι0, then
σ > σ0 by the monotonicity results of section A.1, so σ must diverge to +∞, and so
∆̄(ι) = 1 = ∆̄(ι0). To bound the behavior of ∆̄ when ι > ι0, consider that since σ0 is
unbounded from above, then for any quantity q, there must exist some ϕ0 ∈ (0, 2π) such
that (A 1) (with ι0 and σ0) can be integrated to ϕ0, and σ0(ϕ0) > q. This statement is
true in particular for the choice

q = 2 + σ(0) +

∫ 2π

0

dϕ|Q(ϕ)|. (A 20)

Since σ must be a continuous function of ι at ϕ0 and ι0 (since the argument of section
A.3 applies at ϕ0 just as it does at ϕ = 2π), then there exists some δ such that for all ι
satisfying |ι− ι0| < δ, then |σ(ϕ0)− σ0(ϕ0)| < 1, so σ(ϕ0) > q − 1. For such an ι, if we
require |ι− ι0| < |ι0| so ι < 0, then either σ will diverge to +∞ or else

∆(ι) =− σ(0) + σ(ϕ0) +

∫ 2π

ϕ0

dϕ
dσ

dϕ
> −σ(0) + q − 1 +

∫ 2π

ϕ0

dϕ
dσ

dϕ
(A 21)

=1 +

∫ 2π

0

dϕ|Q(ϕ)|+
∫ 2π

ϕ0

dϕ[−ι(P + σ2)−Q] > 1 +

∫ 2π

0

dϕ|Q(ϕ)| −
∫ 2π

ϕ0

dϕQ > 1.

Therefore, as long as |ι− ι0| < min(δ, |ι0|), then ∆̄(ι) = 1, so |∆̄(ι)− ∆̄(ι0)| < ε for any
ε > 0. Therefore ∆̄(ι) is continuous at ι = ι0.

For the third case, in which ι0 is such that σ0 diverges to −∞, continuity may be
proved analogously to case 2, with a few appropriate changes of sign.

A.5. Existence of a solution
Finally, we can prove that at least one value of ι exists for which the solution σ of

(A 1) is periodic. Let P̄ =
∫ 2π

0
P dϕ and Q̄ =

∫ 2π

0
Qdϕ, and let

ιn = min
(
0, −Q̄/P̄

)
. (A 22)

Since ιn 6 0, either the associated σ diverges to +∞ or else we can integrate (A 1) over
[0, 2π] to obtain

∆(ιn) > −ιnP̄ − Q̄ > 0. (A 23)
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Thus, ∆̄(ιn) > 0. Similarly, let ιp = max
(
0,−Q̄/P̄

)
. Since ιp > 0, either the associated

σ diverges to −∞ or else we can integrate over [0, 2π] to obtain

∆(ιp) 6 −ιpP̄ − Q̄ 6 0. (A 24)

Then ∆̄(ιp) 6 0. We have thus shown that values of ι exist for which ∆̄(ι) is non-positive
and non-negative, and we have shown ∆̄(ι) is continuous. By the intermediate value
theorem, then there must exist an ι in the interval [ιn, ιp] for which ∆̄(ι) = 0. Therefore
∆(ι) = 0, corresponding to a periodic σ. Thus, it is guaranteed that precisely one periodic
solution {ι, σ(ϕ)} of (A 1) exists.
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