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Plasma microinstabilities in toroidal magnetic confinement devices can be driven unstable by a
radial ion temperature gradient, and stabilized by rotational flow shear. In this study we argue
that these nonlinear dynamics can be captured by the linear stabilization of Floquet modes. To
that end, we propose a novel method (the τAC method) to calculate growth rates by averaging over
linear Floquet modes. The τAC method is compared to nonlinear and other linear approaches, and is
shown to work well at low parallel velocity gradient drive. As such, the method provides a promising
approach to explore the parameter dependencies of flow shear stabilization.

I. INTRODUCTION

Turbulent transport is the primary mechanism which
limits plasma core confinement in tokamaks [1]. Among
the main instability branches which drive turbulence are
ion-temperature-gradient (ITG) modes [2, 3]. At higher
amplitudes, the modes couple nonlinearly and eventually
saturate in a statistically quasi-stationary state. How-
ever, at transport-driving spatial scales, the linear char-
acteristics of these modes are still evident in the nonlin-
ear state, see Refs. [4–7] and references therein. Correct
evaluation of linear mode characteristics is vital for the
accuracy of quasilinear transport models.

Confinement improvement through turbulent trans-
port reduction would allow smaller fusion reactors to be
built for the same output fusion power. One method to
mitigate or weaken the impact of ITG modes is through
plasma rotation flow shear. This has been widely studied
experimentally, analytically, and computationally [8–15].

In this work, we investigate linear ITG modes through
local (flux-tube) gyrokinetic simulations with the Gene
code [16]. The reduction of these linear instabilities
by rotational flow shear are then explored by employ-
ing a novel method to calculate growth rates. Differ-
ences with previous approaches are demonstrated, and
the new method is shown to yield physically relevant
growth rates, thus providing an approach to determine
stabilization of ITG modes by flow shear computationally
much cheaper than nonlinear simulations.

In Sec. 2, we provide some of the background for-
malism, and in Sec. 3, the new growth rate calculation
method is oulined. Finally, in Sec. 4, linear and nonlin-
ear simulations are done to test the method against other
approaches.

II. THEORETICAL BACKGROUND

In this study, Gene is used to simulate a circular toka-
mak on a spectral grid kx, ky, z, where x is the radial and
y the binormal direction, while the parallel direction is
denoted by z. Gene normalization [17] is used through-
out the work. The linearized gyrokinetic framework [18]
is used to calculate the perturbed particle distribution
function f1j of species j, with eigenmodes Φ(k⊥, z, t).

From f1,j the perturbed plasma density is obtained by

n1j =
∫

d3vf1j . The growth rate γ of an eigenmode in

a time interval ∆t is then defined as
n1j(t+∆t)
n1j(t) = eγ∆t

(here, the ky dependency is implicit, and an average is
taken over kx). Instead of n, other fields and moments
can be chosen; all converge to the same growth rate. If
this growth rate γ > 0, the corresponding eigenmode Φ
is considered unstable.

To reduce unstable growth rates corresponding to ITG
modes, rotational flow shear can be added. In the Gene
code, flow shear (defined as γE = −(x/q)∂Ωtor/∂x with
q the safety factor and Ωtor the plasma toroidal angular
velocity) is implemented by shifting the radial wavenum-
ber grid in time: k′x = kx − kyγEt, at certain times t
[19, 20]. Because of the finite number of radial modes
simulated in a numerical system, the kx shifts are dis-
crete, even though t is a continuous variable. Without
flow shear, growth rates converge to a specific value after
some time of the simulation. With flow shear, under cer-
tain circumstances, so-called Floquet fluctuations occur:
the growth rate fluctuates periodically in time, with a
fixed amplitude around some average.

III. THE τAC METHOD

Stabilization of ITG instabilities by flow shear has been
found to adhere well to the so-called quench rule, which
states that a mode is stabilized when γE > αγ0, where
γ0 is the growth rate of the instability at zero flow shear
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and α is a constant [21, 22]. As noted by [23], “this is
suggestive of an essentially linear process, even though it
is a model of the nonlinear simulation results.” The lin-
ear stabilization of Floquet modes by flow shear has been
scrutinized in multiple studies in an attempt to find the
underlying linear process of the observed stabilization dy-
namics. There, effective growth rates from averages over
Floquet modes were found to not correspond well to the
quench rule as predicted by nonlinear simulations, which
has led to the conclusion that the linear approach does
not capture the nonlinear stabilization of ITG turbulence
[23, 24]. The effective linear growth rates in the litera-
ture, however, are often calculated from a simple average
of the fluctuating Floquet mode. Here, we refer to this
approach as the γavg method. Furthermore, studies of-
ten use the reduced physics of adiabatic electrons in their
simulations. In this work, we argue that by employing
kinetic electrons and a novel method to calculate growth
rates from Floquet modes, we can capture the nonlinear
stabilization of ITG turbulence.
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FIG. 1. (a) Mode amplitude timetrace, with growth rates an-
alyzed between the black lines and the calculated converged
time window width ∆t = 1/γk between red lines. (b) Corre-
sponding local growth rates γk(t1,∆t).

To improve upon the γavg method, we therefore in-
troduce the τAC method, similar to that proposed in
Refs. [25, 26]. This approach assumes that the relevant
timescale to average over linear growth rates is the non-
linear decorrelation time, thereby inserting a nonlinear
element in our otherwise linear approach. Next, it is as-
sumed that this timescale at a given spatial scale k⊥ is
given by 1/γk, where γk is the growth rate of the most
unstable mode at the respective spatial scale. Finally,
the physical growth rate corresponding to the resulting
Floquet-fluctuating timetrace is assumed to be weighted
towards the peak of the Floquet cycles, which can intu-
itively be understood by considering the following. The
original instability’s energy resides at kx = 0, where the
modes typically have their maximum growth rate. If
the nonlinear decorrelation time (itself assumed to be
∼ 1/γk) is short enough for a mode not to traverse a full
Floquet cycle, it follows that the effective growth rate is

still weighted towards the kx = 0 values.
The proposed method is to iteratively calculate the

growth rate using an adaptive time window until the
width of the time window converges to the inverse growth
rate calculated. This is illustrated in Fig. 1, where a
mode amplitude timetrace is shown for a Cyclone Base
Case (CBC) linear simulation with kinetic electrons,
γE = 0.3, and ky = 0.3. CBC parameters are circu-
lar geometry, magnetic shear ŝ = (r0/q0)∂q/∂r = 0.8,
safety factor q = 1.4, inverse aspect ratio εt = 0.18,
R/Ln = 2.2, R/LT = 6.75, where R is the tokamak’s
major radius, and Ln and LT are the scale lengths cor-
responding to the plasma density and temperature gra-
dients, respectively. In the present work, typical grid
sizes are 90 for kx, 24 for z, 32 for v‖ and 8 for µ, with
∆kx ≈ 0.1. This small kx step size is necessary in the
presence of flow shear, when the kx grid itself is coupled
to time. At a minimum, ∆kx must be smaller than the
distance between modes that are coupled by the parallel
boundary condition. Convergence is checked by increas-
ing grid sizes until growth rates no longer change signif-
icantly, and then simulating above these thresholds.

A time window is scanned over the amplitude time-
trace. At each point in the scan, growth rates are de-
fined as γk(t1,∆t) = ln

[
n(t1 + ∆t)/n(t1)

]
/∆t, where

t1 is the starting point of the time window, and ∆t
is the time window width. For a given ∆t, the aver-
aged growth rate γk(∆t) is then defined as an average
over the γk(t1,∆t) peaks within the time window, which
smooths out any variations in the peaks which may arise
due to the discrete kx shifts. The final γk is then ob-
tained by iterating this procedure and adapting ∆t, un-
til convergence is achieved when |1 − γk∆t| < δ. The
convergence criterion has been chosen as δ = 0.02 for
this work (which yields the same results as δ = 0.01 or
δ = 0.04). Figure 1(a), shows the mode amplitude time-
trace, and the resulting calculated converged time win-
dow width ∆t = 1/γk between red lines. Correspond-
ing local growth rates γk(t1,∆t) are shown in Fig. 1(b).
The final growth rate in this example is the peak average
γ = 0.33.

For quenched modes γavg < 0, there are often no
clear converged or periodic growth rates, so that the τAC

method cannot be used. An approximate average growth
rate is then obtained by using the γavg method.

IV. APPLICATION TO SIMULATION DATA

It was shown that the τAC method works well at low
values of ky [27]. In the present work, we further validate
the approach by making apparent its advantages over al-
ternative schemes for various plasma parameters. First,
in Fig. 2 we compare the τAC to the γavg method, for
both adiabatic and kinetic electrons at ion and electron
temperature gradients R/LT = 8.75 (in the kinetic elec-
tron case, the normalized electron temperature gradient
R/LT e = 4, such that we avoid a sub-dominant electron
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mode which masks the ITG quenching at high γE). When
using adiabatic electrons, there is little difference in the
linear growth rates and their reduction by flow shear as
calculated by the τAC and γavg methods, with a complete
quench occurring at α = γE/γ0 ≈ 2. However, when used
in conjunction kinetic electrons, the τAC method yields
promising results. The γavg approach shows a sharp drop
in growth rates at very low γE . This is a known issue,
occuring even at vanishingly small γE , where physically,
we would expect the impact on growth rates to also van-
ish. The τAC method on the other hand results in a more
or less linear reduction of unstable growth rates. This is
much more in line with physical expectations and non-
linear simulations.
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FIG. 2. Comparison of growth rates obtained with the γavg
and τAC methods, with R/LTe = 4 for kinetic electrons,
R/LTe = 8.75 for adiabatic electrons and R/LT i = 8.75 for
both cases.

We thus adopt the τAC method and further test it by
investigating the resulting quench behavior under cir-
cumstances where linear adiabatic electron approaches
fail. Shown in Fig. 3 are the growth rates of linear ITG
modes vs. flow shear, at both high (ŝ = 0.8) and low
(ŝ = 0.1) magnetic shear. Either kinetic electrons with
R/LT i = 6.75 or adiabatic electrons with R/LT i = 10
are used, where the temperature gradient is chosen dif-
ferently to match rotationless growth rates γ0 between
these cases for more convenient comparison. At high ŝ,
the reduction of unstable growth rates is similar between
the kinetic and adiabatic electron cases, but at low ŝ, the
ITG modes are quenched at much lower flow shear when
adiabatic electrons are used. The adiabatic-electron case
leads to a highly ŝ-dependent quench rule, with α ≈ 1.4
at ŝ = 0.8 and α ≈ 0.5 at ŝ = 0.1. This conflicts with the
results reported in Ref. [12], where nonlinear gyrokinetic
simulations using adiabatic electrons resulted in higher
values around α ≈ 2, and a low dependency of α on

magnetic shear was demonstrated. It can be concluded
that linear growth rates from Floquet modes yield in-
accurate results at low ŝ when adiabatic elctrons are
used, which may impact previous research done under
these circumstances [14, 15]. On the other hand, the τAC

method with kinetic electrons produces much better re-
sults. The quench behaviour is similar at high and low ŝ
with α ≈ 1.4 in both cases, thus demonstrating the weak
dependency on ŝ.
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FIG. 3. Growth rates of ITG modes at two values of ŝ, for
kinetic electrons (solid) with R/LT i = 6.75 and adiabatic elec-
trons (dashed) with R/LT i = 10.

Next, we perform a set of nonlinear Gene simula-
tions at the same plasma parameters as above. For the
ŝ = 0.8 case, simulation box sizes are Lx/Ly = 150/125
with ky,min = 0.05 and resolutions are nkx/nky/nz0 =
128/16/16 and nv/nw = 48/8, while for the ŝ = 0.1
case Lx/Ly = 333/209, ky,min = 0.03, nkx/nky/nz0 =
256/32/16 and nv/nw = 48/8. Shown in Fig. 4 is the
reduction of the ion heat flux Qi by flow shear, again
at both high and low magnetic shear. Linear rota-
tionless growth rates in these cases are γ0 = 0.64 and
γ0 = 0.61, respectively. When the parallel velocity gra-
dient (PVG) instability drive is excluded, there is clear
E×B turbulence suppression for increasing γE . From
these curves, we can derive an approximate quench point
at α ≈ 1.9. Both the rather linear quenching behav-
ior and the quench points are similar to the results from
the τAC method demonstrated in Fig. 3. As such, for
weak PVG drive, by using kinetic electrons and the τAC

method, we overcome the issues previously encountered
in obtaining physically relevant growth rates from aver-
ages over linear Floquet growth rates.

When pure toroidal rotation is included, as in the
linear simulations shown in this work, no quench of
fluxes is observed (for the impact of PVG in nonlinear
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FIG. 4. Nonlinear simulations showing the reduction of the
ion heat flux (Qi) by flow shear at high and low magnetic
shear ŝ, with PVG drive either included (pure toroidal rota-
tion) or set to zero. R/LTe = 4 and R/LT i = 8.75. Lin-
ear maximum growth rates are γ0 = 0.64 for ŝ = 0.8 and
γ0 = 0.61 for ŝ = 0.1, leading to an approximate quench
point at α = γE/γ0 ≈ 2.

simulations, see, e.g., Ref. [12]), different from predic-
tions by the linear approach. Since the PVG impact is
wavenumber-dependent, it can be explored if agreement
is improved by by linear E×B suppression over the full
spectrum and calculating quasilinear fluxes. This will be
left for future work, as this concise paper focuses solely
on the illustration of the τAC method. Nevertheless, the
significant flattening of the flux with strong PVG in non-
linear simulations is indicative of nonlinear effects which
our linear approach is unable to capture. Indeed, sub-
critical turbulence in the high-PVG regime has already
been reported [14, 15]. In the literature [12, 13], despite
linear stability in the presence of high E×B shear, the
concomitant PVG drive leads to transient growth suffi-
cient to sustain turbulence. Simulations initialised with
sufficient-amplitude noise or fully developed turbulence
were necessary to observe subcritical turbulence in such
cases. This is indeed the case in our simulations, since
the flow shear is only switched on following the establish-
ment of turbulence, to save computational time during
the linear phase.

Thus, this study indicates that nonlinear effects lead-
ing to a lack of justification of linear E×B stabilization

models is limited to cases with significant PVG impact.
This is in line with findings from quasilinear transport
modeling in integrated modeling, where including the
E×B stabilization in the inner half-radius (where PVG is
more important) leads to an overprediction of the E×B
turbulence suppression and the temperature and density
profiles [28].

The τAC method compares favorably to nonlinear stud-
ies on the quench rule. The original gyrofluid work
[21, 22] indicated a value of α ≈ 1, but later studies pro-
duced higher estimates, between α = 1.3 and 2.4 (mostly
between α = 1.5 and 2) [12, 24, 30, 31]. The τAC method
in this study aligns very well with values between 1.4
and 2. As it is computationally much cheaper than non-
linear simulations, the τAC method thus has significant
potential to investigate the different plasma parameter
dependencies of α. This will be explored in future work.

V. SUMMARY

In this work, we introduced a novel growth rate calcu-
lation method for systems exhibiting Floquet oscillations,
based the linear stabilization of Floquet modes, named
the τAC method. The approach is different from pre-
vious averages over Floquet modes, as it assumes that
the averaging timescale is determined by the nonlinear
decorrelation time. Furthermore, the method is used in
conjunction with kinetic-electron simulations. This ap-
proach was shown to yield more physically relevant re-
sults than other linear methods, and to produce a similar
quench rule of the form γE = αγ0 as found by multiple
nonlinear studies in the case of weak PVG. Thus, this
study indicates that in that regime, the τAC method is
able to capture the nonlinear quenching of ITG instabil-
ity.

The τAC method can be applied to calculate the plasma
parameter dependencies of the α factor, potentially lead-
ing to a simple but accurate method for determining the
impact of flow shear on ITG instability. Such a compu-
tationally inexpensive method may be deployed in quasi-
linear transport models such as QuaLiKiz [28, 29], which
will be explored in future work.
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