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Abstract. The onset of self-organized droplet motion is studied in a

poroelastic two-phase model with free boundaries and substrate friction. In the

model, an active, gel-like phase and a passive, fluid-like phase interpenetrate on

small length scales. A feedback loop between a chemical regulator, mechanical

deformations, and induced fluid flow gives rise to oscillatory and irregular

droplet motion accompanied by spatio-temporal contraction patterns inside the

droplet. By numerical simulations in one spatial dimension, we cover extended

parameter regimes of active tension and substrate friction, and reproduce

experimentally observed oscillation periods and amplitudes. In line with recent

experiments, the model predicts alternating forward and backward fluid flow

at the boundaries with reversed flow in the center. Our model is a first

step towards a more detailed model of moving microplasmodia of Physarum

polycephalum.

1. Introduction

Dynamic processes in cells, and cell motility in particular, are intriguing

examples of large-scale spatio-temporal order in systems far from thermodynamic

equilibrium [1, 2, 3]. Here, the continuous turnover of ATP by molecular

motors [4] provides the energy to drive mechano-chemical contraction-expansion

patterns and, ultimately, locomotion. Biological examples of these phenomena

are reviewed and discussed in [5, 6, 7, 8, 9].

A well-studied model organism exhibiting a huge variety of spatio-temporal

mechano-chemical patterns with and without locomotion is the true slime-mold

Physarum polycephalum [10, 11, 12]. Physarum is unicellular, but a cell contains

multiple nuclei and can grow to the size of several square meters [13]. Physarum

microplasmodia are an artificial form of Physarum with a size between 100 µm

and 1 mm that do not occur in nature [14, 15]. They are composed of a gel-like

ar
X

iv
:1

80
3.

00
33

7v
3 

 [
co

nd
-m

at
.s

of
t]

  6
 A

ug
 2

01
8



Active Poroelastic Two-Phase Model 2

ectoplasm and a fluid-like endoplasm [16, 17]. Microplasmodia are produced by

extracting a sufficient amount of cytoplasm from a Physarum cell and placing

it on a substrate. After reorganization, such a protoplasmic droplet displays a

wide variety of mechano-chemical patterns such as standing, traveling, and spiral

waves as well as irregular oscillations [14]. After several hours, a cell elongates

into a tadpole-like shape and starts to explore its surroundings [18, 19, 20, 21].

Movement of microplasmodia occurs in two modes: peristaltic and

amphistaltic [16, 21]. In both modes, microplasmodia alternate between forward

and backward motion with a well-defined period. The forward motion is larger

than the backward motion, resulting in a net displacement within each period.

In the more frequently observed peristaltic mode, motion is driven by mechano-

chemical waves originating at the tail and traveling towards the front. In the

amphistaltic mode, front and tail contract in anti-phase oscillations.

Common models for the cytoskeleton are based on active fluid and gel models

[22, 23, 24, 25, 26]. In contrast, some models for the crawling type of amoeboid

cell motility [27, 28] neglect intracellular flows. As opposed to simple fluids and

solids, which are governed by a single momentum balance equation, poroelastic

media belong to the class of two-fluid models. These are characterized by

individual momentum balance equations for each of the constitutive phases. Such

a description is useful if two phases with largely different rheological properties

interpenetrate on relatively small length scales, such as groundwater permeating

porous rock [29], the superposition of normal and inviscid superfluid helium in

helium II [30], or cytosol pervading the cytoskeleton.

Poroelastic two-phase models have been used successfully [31, 32, 33]

as ingredients in detailed models to replicate the pattern found in resting

microplasmodia of Physarum [14]. Our work is based on the simple generic model

of a poroelastic active droplet introduced by Radszuweit et al. in [34]. Therein, a

feedback loop between an advected chemical regulator and active stress gives rise

to self-organized spatio-temporal contraction patterns. This occurs even without

the inclusion of a nonlinear reaction-diffusion kinetics for the chemical regulator,

that were part of the detailed Physarum models mentioned above.

Appropriate boundary conditions must be introduced to close these

poroelastic models and all earlier approaches utilized fixed boundaries to study

resting microplasmodia. While these fixed boundaries are simpler to implement

in numerical simulations and allow us to study mechanical deformations in the

bulk, they preclude the possibility of deformations of the droplet boundary and

therefore motion of the droplet as a whole.

Here, we introduce free boundary conditions that allow for deformations

and motion of the droplet boundary. Considering a free boundary problem

complicates numerical simulations and can significantly change the solution of

a given problem, especially for fluid dynamics [35, 36].

Previous work has shown that our model is able to exhibit self-organized

spatially non-symmetric deformations [34]. In order to describe the impact of
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spatio-temporal deformation patterns on the motion of the now free boundaries,

we must include a substrate friction into the model. The value of the friction

coefficient strongly affects the resulting motion of the active poroelastic two-phase

droplet in our minimal model. The aim of this work is to explore the conditions

for the motion of a droplet in a minimum model of an active poroelastic medium.

While we are motivated by the observations of Physarum microplasmodia, we do

not intend to provide a realistic model for the latter.

Section 2 contains a comprehensive description of our model. Section 3 gives

results on the relation of the possibility of the motion of the droplet with the

spatio-temporal mechano-chemical patterns and their symmetries. Furthermore,

we show a phase diagram of droplet motility and occurrence of patterns as a

function of the mechano-chemical feedback strength (defining the strength of the

active tension) and the friction coefficient (quantifying the strength of friction of

the droplet with the substrate). Moreover, Section 3 contains a comparison of the

findings in the simple model of a moving active poroeleatic droplet with recent

experiments in Physarum microplasmodia. The discussion explains why our

model cannot show net motion and briefly points towards future work addressing

a complete model for the motion of Physarum microplasmodia.

2. Model

In our poroelastic two-phase model, the homogeneous isotropic droplet consists

of an active, gel-like phase and a passive, fluid-like phase that interpenetrate at

relatively small length scales [37, 38]. The passive phase flows with velocity v.

The active gel phase is a visco-elastic solid with mechanical displacements u and

velocity u̇.

Both phases individually satisfy a momentum balance equation expressed

with stress tensors, where σg and σf denote the stress in the gel and in the fluid,

respectively. The total stress is given by σ = ρgσg + ρfσf , with ρg (ρf ) denoting

the volume fraction of the gel (fluid) phase. Deformations of the medium result

in an exchange of volume between the respective fractions. The time evolution

for the gel fraction is given by ρ̂g = ρg (1− ∂xu). Here, ρg is the initial, spatially

constant gel fraction. However, due to our small strains approximation, only the

constant term ρg enters in our model equations. Furthermore, we assume that

there are no other phases present, and the volume fractions satisfy ρg + ρf = 1

at all times [39].

A droplet occupies a one dimensional, time dependent domain B with

boundaries denoted by ∂B. Assuming that B is infinitely large in the y-direction,

the boundary is straight, and we omit terms that depend on interface tension

or bending. Free boundary conditions in x-direction enable the boundary to

deform and move in response to bulk flow and deformation [40, 41, 42]. We

assume that the droplet is surrounded by an inviscid fluid described with stress

tensor σout = −pout. The exact value of the outside hydrostatic pressure pout
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is not important, as long as it is constant and homogeneous. Thus, we choose

pout = 0. At the droplet’s boundary, the total stress has to be continuous across

the interface. This gives the first boundary condition

σ − p
∣∣∣
∂B

= σout

∣∣∣
∂B

= 0, (1)

where the subscript ∂B denotes evaluation at the boundary of domain B. Because

of the two momentum balance relations in the poroelastic model, we need a

second boundary condition. Assuming there is no polymerization of actin at and

no permeation of the fluid phase through the boundary, the velocity of gel and

fluid must match. This gives rise to the additional boundary condition

u̇
∣∣∣
∂B

= v
∣∣∣
∂B
. (2)

Note, that the free boundary conditions require the evaluation of stress tensors

and flow fields at the boundary, whose position itself must be determined in

the course of solving the evolution equations. We circumvent this problem by

transforming the system to a co-moving frame of reference. In general, continuum

mechanics allows us to use different coordinate frames to formulate the model

equations [43].

We distinguish between the lab frame (LF) with spatial coordinates X and

the gel’s body reference frame (BRF) with material coordinates x. The material

displacement field u connects both frames by u(x, t) = X(x, t) − x. Note that

the domain as well as its boundary, which is time-dependent in the LF, becomes

stationary in the BRF. The gel velocity u̇ is given by the material time derivative

u̇ = ∂tu + (∂xu)ẋ. By definition, the gel is fixed in its BRF (ẋ = 0), and the

material time derivative simplifies to u̇ = ∂tu. On the downside, transforming

stress tensors given by linear constitutive laws from the LF to the BRF gives rise

to many geometric nonlinearities. We simplify by linearizing in the strains, i.e.,

assuming |∂xu| � 1. However, note that we do not assume the displacements u

to be small. The displacements may, for example, grow linearly in time without

bounds for a droplet moving with constant center of mass velocity. See [34, 31]

for details on the transformation from the LF to the BRF and Fig. 6 for a visual

comparison of a quantity plotted in the BRF and the LF.

The fluid phase is modeled as a passive viscous liquid with stress σf = ηf∂xv,

where ηf is the viscosity. The stress σg = σve+σact of the gel phase is decomposed

in a passive part, σve, and an active part, σact. We assume that the passive part is

a viscoelastic Kelvin-Voigt solid with σve = E∂xu+ηg∂xu̇ [44]. Here, E is Young’s

modulus and ηg the viscosity. Recently, the effects of alternative viscoelastic

models for the passive gel stress were investigated in [45]. A poroelastic model

with nonlinear elasticity was introduced in [46].

Hence, we can write momentum balances in the BRF for both phases. The

Reynolds numbers that arise from flows in the medium are assumed to be small

and Re� 1. Thus, inertia effects can be neglected, and the intra-droplet flow is
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described by the Stokes equation. The momentum balances read

ρg∂x (σg − p) + fg + ffric = 0, (3)

ρf∂x (σf − p) + ff = 0, (4)

where p is the pressure stemming from the incompressibility of the medium

expressed as

∂x (ρgu̇+ ρfv) = 0. (5)

The friction between both phases is given by Darcy’s law together with Newton’s

third law fg = −ff = ρgρfβ (v − u̇). We assume a linear substrate friction force

ffric = −ρgγu̇ for friction between gel and substrate, and no friction between fluid

and substrate.

The active stress is assumed to be governed by the concentration c of a

chemical regulator species

σact = T (c) = T0 − ξ
c

1 + c
. (6)

Here, T0 is a homogeneous stress that is inhibited by the regulator c, and ξ

describes the strength of this active stress. This dependency is in contrast with

the assumption of an activating regulator species in the simple model of a one-

component active fluid [25] and in line with observation regarding the effect of

calcium in Physarum microplasmodia [47].

The regulator c is dissolved in the fluid and advected with the fluid flow

v in the LF. Furthermore, the regulator is diffusing with a diffusion coefficient

Dc. Transforming the advection-diffusion equation from the LF to the BRF, and

linearizing in the gel strains ∂xu, yields an advection-diffusion equation with the

relative velocity of the fluid to the gel v − u̇ as the advection velocity,

∂tc+ ∂x [(v − u̇) c] = Dc∂xxc. (7)

We assume that no regulator molecules can cross the droplet’s membrane,

resulting in a no-flux boundary condition for the variable c. Thus, the total

amount of the regulator is conserved. Nevertheless, there can be local differences

in the regulator concentration, which in turn drive mechanical deformations via a

spatially varying active stress T (c). When necessary, a nonlinear reaction kinetics

for the regulator species can be taken into account, for details see [31, 33].

In summary, the model equations are given by

ρfηf∂xxv + ρgηg∂xxu̇+ ρgE∂xxu

−ρgγu̇− ∂xp = −ρg∂xT (c) (8)

ηf∂xxv − ρgβ(v − u̇)− ∂xp = 0 (9)

∂x(ρgu̇+ ρfv) = 0 (10)

∂tc+ ∂x [(v − u̇) c]−Dc∂xxc = 0. (11)

Note, that all patterns in our model emerge through self-organization.

Furthermore, the only nonlinear terms are the advection term for the regulator
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and the active tension term ∂xT (c). We introduce the dimensionless Péclet

number Pe = ξ/(Dcβ) as a measure for the ratio of diffusive to advective time

scales to characterize the strength of the active tension [34].

3. Results

Equations 8-11 are solved with parameter values adopted from [34] and listed

in Tab. 1 unless stated otherwise. The initial condition is the weakly perturbed

homogeneous steady state (HSS) with u = u̇ = v = 0 and c = c0 = 1. Due to the

incompressibility of the medium (Eq. 5), the droplet’s length L is constant, and

the location of the droplet’s left boundary is used as a measure of its position.

We observe fluid flow coupled to concentration and deformation patters both for

resting and moving boundaries. Depending on parameter values of the friction

coefficient γ and the Péclet number Pe, the droplet’s position over time remains

fixed or undergoes regular or irregular oscillations. However, in all cases, the

temporal average of the droplet’s position vanishes, i.e. there is no net motion.

To visualize the dynamics of regulator and gel flow, we show space-time plots of

these quantities in the BRF.
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Figure 1. Regular oscillations of the droplet’s position over

time (top) are accompanied by spatially antisymmetric regulator

oscillations (bottom). The active tension (Pe = 6) is slightly above the

critical value where the HSS destabilizes. After initialization, the resting

droplet exhibits spatially symmetric regulator oscillations with period Ts = 24 s

and slowly growing amplitude. After ≈ 2000 s a transition to spatially

antisymmetric regulator oscillations occurs. Simultaneously, the droplet’s

position starts to oscillate with an amplitude of about 1/3 of its length and a

period Tas = 98 s. The regulator concentration is plotted in a body reference

frame co-moving with the gel phase.

Symmetric and antisymmetric spatio-temporal oscillations

The case of a regular oscillation in Fig. 1 exemplifies how the different parts of the

model interact and motion arises. Shortly after initialization, the concentration
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Figure 2. Snapshots of spatially symmetric (left) and antisymmetric

(right) regulator oscillations. The regulator concentration c is depicted in

blue, the active tension ∂xT ∼ ∂xc/(1 + c) in red, and black arrows indicate

the advection velocity v − u̇. The length of the black arrows indicates the

amplitude of the advective flow. Spatially symmetric oscillations have a period

of Ts = 24 s and c oscillates between high concentration at the center (top left)

and high concentration at the boundaries (bottom left). No movement occurs.

In the second case, c oscillates between two configurations antisymmetric to

each other with a period of Tas = 98 s (right). The droplet is moving with

velocity vdrop towards the direction of high regulator concentration as indicated

by the green arrows.

oscillates in a spatially symmetric manner with period Ts = 24 s (Fig. 1, bottom)

and a constant position of the droplet (Fig. 1, top). The blue lines in Fig. 2 show

snapshots of the regulator concentration as a function of space. The regulator

distribution changes periodically from a high concentration at the center and low

values at the boundaries (top left panel) to a low concentration at the center

and high values at the boundaries (bottom left panel). In the top left panel, the

active tension ∂xT ∼ ∂xc/(1+c) (red line, Eq. 6) generates a symmetric advection

flow from the boundaries towards the center (black arrows). This results in even

more regulator piling up at the center, thus causing an even stronger flow. The

flow deforms the droplet and elastic tension in the gel builds up. Over time, this

elastic tension increases and counteracts to the active tension. The advection of

regulator weakens, and at some point regulator diffusion takes over. The regulator

concentration at the center starts to decrease, diminishing active tension and

thereby advection even further. When the elastic tension overcomes the active

tension the direction of advection changes. The concentration starts to pile up at

the boundaries (bottom left panel), and the process repeats. During the whole

oscillation cycle both the profiles of gel u̇ and fluid v are symmetric in space.

Hence, spatially symmetric oscillations result in immobile droplets.

At t ≈ 1800 s in Fig. 1 a transition from symmetric to antisymmetric

regulator oscillations occurs. Here, the regulator concentration is high at one
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boundary but low at the other. With increasing amplitude of the antisymmetric

oscillation, the droplet starts to move periodically back and forth. After a

transition period of ≈ 200 s, the amplitude of regulator oscillations saturates,

and the droplet performs periodic motion in phase with the regulator oscillations

and a period of Tas = 98 s. Fig. 2 (right) shows two snapshots of antisymmetric

oscillations at different times. When the droplet’s position is at its maximum

displacement to the right, the regulator concentration changes from having its

maximum at the right boundary to being higher on the left boundary. When the

maximum of the concentration switches sides, the active tension changes sign,

causing an advective flow to the left. A rapid movement to the left starts with

a maximum droplet velocity of vdrop = 2.47 µm/s. While this movement takes

place, the concentration piles up on the left boundary (top right) and the elastic

tension inside the droplet builds up. Similar to the symmetric case, this elastic

tension is acting in opposition to the active tension yielding a lower advection and

droplet velocity. At some point, advection becomes weaker than diffusion. Then,

the concentration has reached its maximum and begins to decrease. While the

active tension is diminishing, the elastic stress inside the gel phase still builds

up. Once it overcomes the active tension, the tension in the droplet starts

to decay. This causes a change of direction of the advective flow, leading to

a rise of concentration on the right, and the process repeats (bottom right).

This antisymmetric oscillation results in a periodic movement with a maximum

displacement of umax ≈ 42 µm but not in net motion.

Varying active tension strength and substrate friction excites different modes of

motion

Depending on the strength of the active tension as measured by the dimensionless

Péclet number Pe and the friction between droplet and substrate, the droplet’s

position is stationary or oscillates with one or more frequencies. We decompose

the position over time data in frequency components and use the number of

excited Fourier modes K to characterize a droplet’s movement. We group the

results into four different categories: “HSS” if the HSS is stable against small

perturbations, “non-moving”, when the HSS is unstable, but the droplet does

not move (K = 0), “regular” in the case of movement with less than 5 modes

(1 ≤ K ≤ 4) and “irregular” if K ≥ 5. Fig. 3 gives an overview which mode

of movement emerges (top) and how the droplet speed develops (bottom) when

changing active tension strength Pe and the substrate friction γ.
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Figure 3. Mode of motion (top) and speed (bottom) for different

strengths of substrate friction γ and active tension as measured by

the dimensionless Péclet number Pe = ξ/(Dcβ). Top: We group the

results into four different categories: “HSS” if the HSS is stable against small

perturbations, “non-moving”, when the HSS is unstable, but the droplet does

not move (K = 0), “regular” in the case of periodic movement with less than

5 Fourier modes (1 ≤ K ≤ 4) and “irregular” if K ≥ 5. The thick black line

denotes the critical Péclet number Pecr that results from the linear stability

analysis. Bottom: The mean droplet speed increases for larger Péclet numbers

and shows a maximum for medium values of γ.

In agreement with the linear stability analysis from [34], the HSS is stable

against small perturbations if Pe is below a critical Péclet number Pecr. Above

this critical value, the HSS destabilizes and non-linear numerical simulations have

to be carried out to determine the resulting patterns. The different categories

of movement often arise in bands that appear or disappear when the parameters

change.

The linear stability analysis predicts an oscillatory instability to long-

wavelength modes where initially a symmetric standing wave-like pattern with

two nodes appears from a superposition of left and right traveling waves. In the

long term, however, an antisymmetric standing wave pattern with one node of

double wavelength emerges. An adaptation (coarsening) of the pattern towards

larger wavelength is often found in such systems. Overall this coarsening is a

crucial point, because we show that the change in symmetry of the pattern is

what leads to notable motion of the boundary.

If γ is too large, the friction inhibits any pattern formation. The HSS is

stable, and small perturbations decay. A higher substrate friction shifts Pecr to

higher values, and for γ = 10−2 kg/s the HSS is always stable. If γ is too low

(< 10−7 kg/s), there is effectively no friction between droplet and substrate. In

this case, our equations do not possess full rank any more and we omit showing

these results.

In the region in-between, we can observe regular and irregular oscillatory

motion as well as non-moving droplets. For a high substrate friction, the

droplet performs regular oscillations. Beginning with γ = 5× 10−5 kg/s, irregular
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oscillations appear under strong enough active tension (Pe ≥ 11). An example is

shown in Fig. 4. With a further decrease of γ this band of irregular solutions is

shifted to a lower value of Pe. With γ = 10−5 kg/s non-moving solutions occur

for intermediate Pe. In contrast to the case of transient symmetric oscillations

in Fig. 1, here the symmetric oscillations remain stable on the timescale of the

simulation length (at least 10 000 s).

For γ = 10−5 kg/s the critical Péclet number is Pecr = 5.5. For Pe > 5.5

the droplet’s position exhibits regular oscillations together with antisymmetric

regulator oscillations and a period of about 98 s. A further increase yields a

regime without motion. If Pe ≥ 7.5, the droplet moves again and the number of

excited Fourier modes K rises fast. With a further increase of Pe the droplet’s

motion becomes irregular. Between Pe = 8.5 and Pe = 9, the droplet performs a

regular motion with a fundamental period of about 94 s. Beginning with Pe = 9.5,

the movement becomes irregular again. Upwards from Pe = 11.5 the droplet

oscillates regularly, however the amplitude of the fundamental mode has a period

of about 25 s and is much larger than the other ones. Thus, the movement is

regular but with a higher frequency than in Fig. 1.

The dependence of the mean speed, as measured by the averaged speed of

its boundary, displays a maximum for intermediate values of γ. For Pe = 6.5 the

droplet rests for weak and strong friction (γ ≤ 10−5 kg/s and γ ≥ 5× 10−4 kg/s).

In-between it performs regular oscillations with a mean speed of 2 µm/s. For

higher values of Pe, the droplet’s speed is shifted to higher values with a maximum

speed of about 3.4 µm/s for Pe = 8.5 and about 5.5 µm/s for Pe = 12.5. Just as

for a lower active tension, droplets are at rest for a strong friction and the speed

approaches an almost constant value for a weaker friction.
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Figure 4. Irregular oscillations of the droplet’s position over time

(top) appear together with asymmetric regulator profiles (bottom).

With an active tension (Pe = 9.5) higher than in Fig. 1 the droplet’s movement

and the regulator dynamics become irregular and the spectrum of its trajectory

is continuous (data not shown).
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Comparison of our model with experiments on Physarum microplasmodia

In the following, we compare the predictions of our model with some experimental

results recently reported by [16, 21]. In experiments, directed motion of Physarum

microplasmodia was found to be accompanied by oscillations with a period

between 85 s and 110 s. During the peristaltic mode of motion, microplasmodia

undergo a forward displacement of dF ≈ 40 µm, followed by a backward

displacement of dB ≈ 15 µm-20 µm. As displayed in Fig. 3, we find regular

oscillations for large parameter regimes in our simulations. As shown in Fig. 1,

once the dominant pattern with regular, antisymmetric regulator oscillations has

emerged, the droplet’s position over time oscillates with a period of T = 98 s,

which in line with the measurements, and undergoes displacements of d ≈ 82 µm.

However, we always find d = dF = dB such that no net motion occurs.
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Figure 5. Gel velocity in simulation (top) and experiment (bottom).

At a fixed position, the flow direction alternates between forward and backward

with a period of about 100 s in experiment as well as in simulation. Flow at

the center is opposite and of weaker magnitude than flow at the boundaries.

Experimental backward flow is of weaker magnitude than the forward flow,

resulting in a a net motion. Simulated forward and backward flows have equal

magnitude and thus cancel exactly. Bottom figure taken from [16]. Copyright:

Journal of Physics D: Applied Physics by IOP Publishing.

Additionally, we compare experimentally observed flow patterns within the

microplasmodia with our simulations. The space-time plot in Fig. 5 shows the

gel flow (top) and experimentally obtained ectoplasmic flow (bottom) for the

peristaltic mode of motion from [16]. At a fixed position in our simulations, the

flow alternates periodically between forward and backward flow. While the flow

directions at front and back are equal, with a higher magnitude at the back,

the center part is flowing towards the opposite direction with weaker magnitude

than flow at the boundaries. Experimentally, flows towards the front have a

larger magnitude than backward flows, resulting in a net propagation velocity

of the entire microplasmodia of vexp ≈ 0.15-0.2 µm/s. In simulations, forward

and backward flows have equal magnitude and thus cancel within one oscillation

period.

Spatio-temporal measurements of the regulator dynamics (Ca2+) reveal that

microplasmodia motility is accompanied by calcium waves. These resemble

traveling waves in the peristaltic mode and standing waves in the amphistaltic
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mode [16]. In our simulations, the droplets never exhibit net motion and we

observe only standing or irregular wave patterns. Note, however, that we

model the regulator dynamics with an advection-diffusion equation whereas

in experimental systems, calcium additionally takes part in chemical reactions

[33, 48].

4. Discussion

To model motile cells, continuum mechanical models must be supplemented with

free boundary conditions. Here, we extended the poroelastic model with rigid

boundaries from [31, 32, 33, 34] to the case of free boundaries and included linear

friction with the substrate. In this minimal model, we explore the conditions for

self-organized motion of an active poroelastic droplet. This model is a first step

towards a more detailed description of moving Physarum microplasmodia.

We observed different modes of motion ranging from resting droplets to

droplets performing regular and irregular oscillations. The symmetry breaking

from a standing wave with mirror symmetry and wavelength equal to the system

length to an asymmetric standing wave with half a wavelength in the system

after a long transient is necessary for motion of the boundary (Fig. 1 and Fig. 2).

In [34], only symmetric oscillations were reported, and there were no transitions

to asymmetric oscillations. In addition, we found that the droplet’s speed has a

peak for intermediate values of γ (Fig. 3).

In our earlier work [34], traveling wave patterns appeared that were reflected

at the boundaries and moved back and forth. The chaotic pattern is an

intermediate state between the region of stable standing waves (symmetric or

asymmetric) and the traveling domain pattern. The different patterns have

mostly physiological significance as the quantitative and qualitative aspects of

droplet motion in the model change.

In the parameter plane spanned by the friction coefficient (γ) and the

strength of active tension (Pe), we identified parameters that reproduce

experimentally observed oscillation periods of about 100 s [16, 21]. Additionally,

as shown in Fig. 5, the simulated flow patterns are qualitative in line with

experimentally measured flow patterns.

The obvious question arises why, for all cases of periodic and even

irregular motion, the time averaged position vanishes, and no net motion

occurs. An essential ingredient to achieve directed motion is a mechanism

which breaks the front-back symmetry and thus establishes a polarity [49]. The

regulator distributions produced by pure diffusion-advection dynamics may look

asymmetric at certain instants in time, but the long time averaged distribution

is always symmetric. While this is expected for a regular oscillation such as

Fig. 1, it is surprising for the irregular dynamics as shown in Fig. 4. The absence

of a time-averaged asymmetry in the regulator dynamics for the irregular case

indicates that an additional mechanism to establish a polarity is required to model
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the experimentally observed motion of Physarum microplasmodia.

In [21, 50], the front-to-back symmetry was broken by introducing externally

imposed traveling waves of friction strength and contractile stress. Another

approach to break the spatial symmetry in the time averaged distribution of

the regulator variable c is to include reaction kinetics for the regulator as done

in models for resting Physarum droplets earlier [31, 33]. There, unidirectional

traveling mechano-chemical waves were reported in contrast to the back and

forth moving waves found in our study here and previously in [34]. The reaction

kinetics allows for a temporal variation of the total concentration of the regulator

encoded in the variable c. Additionally, the total amount of the regulator is not

conserved anymore.

Moreover, the following argument shows that net motion is in general

impossible for a substrate friction γ constant in space. For constant mass density,

the velocity v̄ of the droplet’s center of mass is obtained by spatially averaging

the gel velocity

v̄ =
1

V0

∫
B
u̇dx, (12)

where V0 denotes the constant volume of the droplet (length in one spatial

dimension). Adding the force balances for gel and fluid phases, Eq. 3 and Eq. 4,

yields

v̄ =
1

V0

∫
B

1

γ
∂x (σ − p) dx. (13)

For γ constant in space, we may use the Gauss theorem to transform the volume

integral to a surface integral with normal vector n,

v̄ =
1

γV0

∮
∂B

(σ − p)ndS. (14)

Together with the free boundary condition Eq. 1, we immediately obtain a

vanishing center of mass velocity v̄ = 0. This is confirmed by a direct calculation

of v̄ in numerical simulations as given by Eq. 12.

Thus, a spatially dependent substrate friction seems to be an essential

ingredient to obtain net motion. This is in line with the results from [21],

where a space-dependent friction coefficient was introduced and net motion

was observed. In addition, the authors in [16] found evidence for a nonlinear

relationship between microplasmodia velocity and traction force, yielding a

position-dependent friction coefficient.

A recent study suggests that the activity difference between the two phases

can lead to a phase separation [51]. A future extension of the presented model

may include this phenomenon by treating the phase composition as a spatially

dependent local variable.

With minor modifications, our model might be applicable to other systems.

We highlight photosensitive self-oscillating gels where the swelling is regulated

by an embedded, light-sensitive chemical reaction [52, 53, 54, 55]. Applying
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appropriate illumination pattern generates directed waves of a regulator which

lead to oscillatory motion of the gel with [52] and without [54] net motion. Some

parameters in this chemical reaction are easier to control experimentally than in

Physarum microplasmodia. Therefore, it could be a helpful setup to study the

transition from motion without to motion with net motion.

Appendix A: Numerical Details

We solve the equations of motion on an one-dimensional Chebyshev-Lobatto grid

[56] of size L with N points. We utilize no-flux boundary conditions for the

concentrations c and free boundary conditions for the mechanical equations. We

formulate our model in the gel’s body reference frame (BRF). For details about

the derivation of the model refer to [31, 33]

We split the full equations from from Eq. 8 - Eq. 11 into a mechanical and an

advection-diffusion part and solve each part separately. We use pseudo-spectral

methods (Chebyshev) for the discretized spatial derivatives and the Euler method

for time-stepping.

For the mechanical part, we introduce U ≡ ∂tu = u−ut

∆t
, where t denotes

the current time-step and variables without explicit time dependency are at time

t+ ∆t. Then, we arrive at

u− U∆t = ut (15)

ρfηf∂xxv + ρgηg∂xxU + ρgE∂xxu

−γρgU − ∂xp = −ρg∂xT (ct) (16)

ηf∂xxv − ρgβ(v − U)− ∂xp = 0 (17)

∂x(ρgU + ρfv) = 0. (18)

Then, we solve the advection-diffusion part semi-implicitly with ∂tc = c−ct
∆t

. This

approach yields

c+ ∆t∂x
(
wtc
)
−∆tDc∂xxc = ct, (19)

where w = v − U is the fluid velocity in the gel’s BRF. This yields the linear

equation (
1−∆tDc∂xx + ∆t∂xw

t
)
c = ct. (20)

We solve our equations using python [57] with the iterative gmres solver from

scipy and an ILU preconditioner.

Appendix B: Regulator concentration in body reference and lab

frame

We solve our model equations in the gel’s BRF and the resulting quantities are

defined in this frame. However, we as observers are located in the lab frame (LF).

Fig. 6 shows how a regular regulator oscillation (compare with Fig. 1 in the main
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text) looks in BRF as well as LF. The transformation of quantities from the BRF

to the LF is given by the deformation field u with X0 = x0 + u(x0), where x0 the

position in the BRF and X0 is the position in the LF.
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Figure 6. Spatially antisymmetric regulator oscillation in body

reference (top) and lab frame (LF) (bottom). In the LF, the droplet is

moving into the direction where c has a local maximum. The regular regulator

oscillation yields a periodic movement with a period of about 98 s.

The concentration in Fig. 6 exhibits spatially antisymmetric oscillations in

the BRF and switches between a state with a high value of regulator at the left

boundary and a low value at the right boundary and the reversed state. In the LF,

this yields a periodic movement of the droplet. As long as the concentration has

a local maximum at a certain boundary the droplet is moving into this direction.



Active Poroelastic Two-Phase Model 16

Appendix C: Parameters

Table 1. Model parameters

Par Description Value Units

N Number of grid points 120 -

∆t Numerical time step 0.001 s

Dc Regulator diffusion 200 µm2 s−1

L Length 125 µm

ρg Gel fraction 0.5 -

ρf Fluid fraction 0.5 -

ηg Viscosity gel 10−2 kg
µm s

ηf Viscosity fluid 2× 10−8 kg
µm s

β Friction between both

phases

10−4 kg
µm3 s

E Young modulus 0.01 kg
µm s2

Pe Active tension 6 -

γ Substrate friction 10−5 kg s−1

These parameters are used throughout this work any deviation is explicitly

marked. These parameters are based on typical estimates for eukaryotic cells.

Taken from [34].
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