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Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous sys-

tem (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosyn-

thesis of myelin membranes but required to prevent axonal pathology. This raises the question

whether the exceptionally high level of PLP in myelin is required later in life, or whether high-

level PLP expression becomes dispensable once myelin has been assembled. Both models

require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and

characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine

the rate of PLP turnover after developmental myelination has been completed, and to assess

the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We

found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was

about halved, probably reflecting that myelin is slowly turned over in the adult brain. Impor-

tantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological

changes previously associated with the developmental lack of PLP, including myelin outfoldings,

lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltra-

tion of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in

the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout

adult life emerges as a requirement for the preservation of white matter integrity.
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1 | INTRODUCTION

In the CNS of vertebrates, saltatory transmission of nerve impulses

(Tasaki, 1939) along axons is facilitated by their spiral enwrapment by

oligodendroglial processes, which form electrically insulating myelin

sheaths (Kruger & Maxwell, 1966; Nave & Werner, 2014). The major

protein of CNS myelin is a lipid-associated transmembrane-tetraspan

termed proteolipid protein (PLP) (Folch & Lees, 1951; Krämer-Albers,

Gehrig-Burger, Thiele, Trotter, & Nave, 2006; Milner et al., 1985;

Möbius, Patzig, Nave, & Werner, 2008; Simons, Kramer, Thiele,

Stoffel, & Trotter, 2000; Werner et al., 2013). Expression of the Plp-

gene (official gene name Plp1) is highly enriched in oligodendrocytes

(Lüders, Patzig, Simons, Nave, & Werner, 2017; Trapp et al., 1987).

Complete deficiency of PLP in Plpnull/Y mice impairs the rate of myeli-

nation (de Monasterio-Schrader et al., 2013; Yool et al., 2001), the

ultrastructure of myelin (Klugmann et al., 1997; Patzig, Erwig, et al.,

2016), the abundance in myelin of cholesterol, the deacetylase sirtuin-

2 and filament-forming septins (Patzig, Erwig, et al., 2016; Werner

et al., 2007; Werner et al., 2013), axonal integrity (Edgar et al., 2004;

Griffiths et al., 1998) as well as motor capabilities (Gould et al., 2018;
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Griffiths et al., 1998; Janova et al., 2018; Petit et al., 2014). By quanti-

tative mass spectrometry, PLP constitutes >15% of the total protein

in myelin biochemically purified from healthy mouse brains

(de Monasterio-Schrader et al., 2012; Jahn, Tenzer, & Werner, 2009;

Werner et al., 2013), an exceptionally high level of abundance. Indeed,

when assessing entire mouse brain, PLP is among the most abundant

transmembrane proteins (Sharma et al., 2015). However, the func-

tional relevance of the exceptionally high PLP content of CNS myelin

remained unknown.

Functional myelin can also be formed with low amounts of PLP.

Indeed, PLP is only a minor constituent of PNS myelin (Patzig et al.,

2011; Yoshida & Colman, 1996) and of CNS myelin in fish (Franz,

Waehneldt, Neuhoff, & Wachtler, 1981; Kirschner, Inouye, Ganser,

& Mann, 1989; Waehneldt, 1990; Yoshida & Colman, 1996). Nota-

bly, PLP replaced the adhesion molecule myelin protein zero

(P0/MPZ) as the major constituent of CNS myelin at the evolution-

ary transition from fish to tetrapods (Yoshida & Colman, 1996).

Interestingly, transgenic mice that express P0 instead of PLP in

CNS myelin display axonal degeneration (Yin et al., 2006) similar to

Plpnull/Y mice (Griffiths et al., 1998), suggesting that the P0-to-PLP

shift in ancestral tetrapods provided oligodendrocytes with the

capacity to support the energy metabolism and thus long-term

integrity of axons (Philips & Rothstein, 2017; Saab, Tzvetanova, &

Nave, 2013).

Similar to Plpnull/Y mice, patients with spastic paraplegia (SPG2)

caused by a null-allele of the PLP1-gene display prominent axonal

degeneration (Garbern et al., 2002) but only moderate hypomyelina-

tion (Garbern et al., 1997). Importantly, PLP-related axonal pathology

is a local phenomenon of individual axon/myelin-units. This became

evident when the precise distribution of axonal spheroids was ana-

lyzed in female heterozygous mice (genotype Plp+/−) (Edgar et al.,

2004), in which PLP-deficient oligodendrocytes and myelin sheaths

neighbor those with normal PLP-expression due to random inactiva-

tion of the X-chromosomal Plp-gene (Yool et al., 2001). Indeed, the

spheroids were essentially associated with PLP-deficient myelin

sheaths but did not spread to adjacent PLP-containing internodes

(Edgar et al., 2004). These experiments have corroborated the exis-

tence of a PLP-dependent function of myelinating oligodendrocytes in

locally preserving the integrity of their myelinated axons; however,

they have not addressed the functional relevance of the very high

PLP-content of CNS myelin.

Here, we scrutinize the pathobiological consequences of delet-

ing the Plp-gene in mature oligodendrocytes in adult mice. The

abundance of PLP in CNS myelin is halved about six months after

terminating its replenishment, probably reflecting its slow turnover.

Importantly, this reduction is sufficient to cause all known neuro-

pathological facets of PLP-related disorders, including hypomyeli-

nation, altered myelin ultrastructure and axonal pathology. The

chronology of the emerging neuropathology implies that the onset

of the axonopathy precedes the infiltration of cytotoxic T-cells. We

propose that the exceptionally high level of PLP-abundance in CNS

myelin of tetrapods is subject to selective pressure, which pre-

serves the integrity of myelin and axons and thus a healthy nervous

system.

2 | MATERIALS AND METHODS

2.1 | Mouse models

To delete the Plp gene in oligodendrocytes in the adult CNS, we used

Plpflox mice in which exon 3 of the Plp gene is flanked by loxP-sites

(Lüders et al., 2017; Wang et al., 2017). Plpflox mice were interbred with

mice expressing tamoxifen inducible Cre recombinase under control of

the Plp promoter (PlpCreERT2 mice) (Leone et al., 2003). Mice were

injected with tamoxifen intraperitoneally (i.p.) at the age of 8 weeks

(1 mg/100 μl corn oil per mouse per day) for 10 days with a break of

2 days after the first five consecutive days of injection. Tamoxifen

(Sigma-Aldrich, St. Louis, MO) was dissolved in corn oil (Sigma-Aldrich)

and mixed on a vortexer (Heidolph, Schwabach, Germany) in the

dark for at least half an hour at RT before injection. Both Plpflox/Y and

Plpflox/Y*PlpCreERT2 mice were injected with tamoxifen and are also

referred to as control (Ctrl) and induced conditional knockout (iKO)

mice, respectively. Routine genotyping of the Plpflox allele as shown

in Figure 1b was performed by genomic PCR using primers 24460

(50-GACATAGCCC TCAGTGTTCAGG), 24461 (50-GAATCCTGCA

TGGACAGACAG), and 32796 (50-CACACACATA TTCAGACCCCC).

Genotyping of PlpCreERT2 mice was with primers 10099 (50-

TGGACAGCTG GGACAAAGTAAGC) and 7963 (50-CGTTGCATCG

ACCGGTAATGCAGGC). Genotyping of Plpnull/Y mice (Klugmann et al.,

1997) was with primers 1864 (50-TTGGCGGCGA ATGGGCTGAC),

2729 (50-GGAGAGGAGG AGGGAAACGAG), and 2731 (50-

TCTGTTTTGC GGCTGACTTTG). Mice were bred and kept in the ani-

mal facility of the Max Planck Institute of Experimental Medicine with

a 12 hr light/dark cycle and 2–5 mice per cage. All experiments were

performed in accordance with the German animal protection law.

2.2 | Quantitative reverse transcriptase-PCR

qRT-PCR was essentially performed as described (de Monasterio-

Schrader et al., 2013). Briefly, mice were sacrificed by cervical disloca-

tion, brains were dissected and optic nerves removed. Half brains were

homogenized in 0.32 M sucrose containing protease inhibitor

(Complete Mini, Roche, Basel, Switzerland) using an Ultraturrax homog-

enizer (IKA T10 Basic). 20 μl of the homogenate were transferred to

RLT buffer (RNeasy Miniprep kit; Qiagen, Hilden, Germany) supplemen-

ted with β-mercaptoethanol. RNA extraction and purification was per-

formed using the RNeasy Miniprep kit (Qiagen). Random nonamer

primers and Superscript II RNA H Reverse Transcriptase (Invitrogen,

Carlsbad, CA) were used to synthesize cDNA. The pipetting robot

epMotion 5075 (Eppendorf, Hamburg, Germany) was used for pipet-

ting. qRT-PCR was performed using the Power SYBR Green PCR Mas-

ter Mix (Applied Biosystems, Foster City, CA) and the Light Cycler 480II

(Roche). mRNA abundance was analyzed in relation to the mean of the

standards Ube3l2, Rplp0, and Rps13, which did not differ between

genotypes. Primers were specific for Plp (50-CTCCAAAAAC TACCAG-

GACTATGAG and 50-AGGGCCCCAT AAAGGAAGA), Mbp (50-GCCTCC

GTAG CCAAATCC and 50-AGGGCCCCAT AAAGGAAGA), Cnp (50-CGC

TGGGGCA GAAGAATAC and 50-AAGGCCTTGC CATACGATCT), Tnfa

(50-TGCCTATGTC TCAGCCTCTTC and 50-GAGGCCATTT GGGAAC

TTCT), Ccl2 (50-GCCTGCTGTT CACAGTTGC and 50-CAGGTGAGTG
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GGGCGTTA), Tgfb1 (50-TGGAGCAACA TGTGGAACTC and 50-CAGC

AGCCGG TTACCAAG), Il1b (50-AGTTGACGGAC CCCAAAAG and

50-TTTGAAGCTG GATGCTCTCAT), Il10 (50-GGTTGCCAAG CCTTATC

GGA and 50-ACCTGCTCCA CTGCCTTGCT), Il12b (50-ATCGTTTTGC

TGGTGTCTCC and 50- GGAGTCCAGT CCACCTCTACA), Ube3l2

(5’-CACATTTGCG GATCTCTTCA and 50-AGCAGCACCA GATCCAA-

GAT), Rplp0 (50-GATGCCCAGG GAAGACAG and 50-ACAATGAAGC

ATTTTGGATAATCA), and Rps13 (50-CGAAAGCACC TTGAGAGGAA

and 50-TTCCAATTAG GTGGGAGCAC). Statistical analysis was per-

formed using two-tailed unpaired t-test in GraphPad Prism 6.0. Level of

significance was set as p < .001 (***).

For comparing the abundance of Plp mRNA between Ctrl and iKO

mice in Figure 1c, p-values are p < .0001 (16 days pti), p = .0001

(2 months pti), and p = .0001 (10 months pti). For comparing the abun-

dance ofMbpmRNA between Ctrl and iKO mice in Figure 1d, the exact

p-values are p = .7729 (16 days pti), p = .8771 (2 months pti), and

p = .1565 (10 months pti). For comparing the abundance of Cnp mRNA

between Ctrl and iKO mice in Supporting Information Figure S1c, the

exact p-value is p = .6393. For comparing the abundance of microglial

marker mRNAs between Ctrl and iKO mice in Supporting Information

Figure S4, the p-values are: p = .0353 (Il1b), p = .1952 (Tnfa), p = .1372

(Il12b), p = .6332 (Ccl2), p = .7747 (Il10) and p = .9444 (Tgfb1).

2.3 | Myelin purification and immunoblotting

Purification of a light-weight membrane fraction enriched for myelin

was performed as described (Jahn, Tenzer, Bartsch, Patzig, & Werner,

2013; Patzig, Erwig, et al., 2016). Briefly, half brains of three male Ctrl

and iKO mice each at 16 days and 2, 4, 6, 8, 10, 12, and 16 months

pti were homogenized in 0.32 M sucrose and processed in parallel as

described. Purified myelin was taken up in 1x TBS with protease

inhibitor (Complete Mini, Roche). Protein concentration was measured

using the DC protein assay (BioRad Laboratories, Hercules, CA).

Immunoblotting was essentially performed as described (Kusch

et al., 2017; Schardt et al., 2009). Purified myelin (0.8 μg for

PLP/DM20; 2.5 μg for MBP; 3 μg for CNP; 10 μg for ATP1a3 and

SIRT2) was separated on SDS-polyacrylamide gels (15% for

PLP/DM20 and MBP; 10% for ATP1a3 and SIRT2) and blotted onto

PVDF membranes (Hybond; Amersham) using the Novex Semi-Dry

Blotter (Invitrogen, Carlsbad, CA, USA). Primary antibodies were

incubated over night at 4 �C in 50% Odyssey Blocking buffer (LI-COR,

Lincoln, NE) in TBS with 0.1% Tween 20. Primary antibodies were

specific for PLP/DM20 (A431; 1:5,000; [Jung, Sommer, Schachner, &

Nave, 1996]), MBP 18.5 kDa isoform (1:500; Novocastra 7H11), CNP

(1:500; Sigma C5922), ATP1A3 (1:1,000; abcam ab2826), and SIRT2

(1:2,500; abcam 67299). Fluorescently coupled secondary antibodies

α-rabbit-IRDye800CW (1:2,500; LI-COR P/N 925-32211) and

α-mouse-IRDye680RD (1:2,500; LI-COR P/N 925-68070) were incu-

bated in 50% Odyssey Blocking Buffer (LI-COR) in TBS with 0.1%

Tween and 0.01% SDS for 1 hr at RT and detected using the Odyssey

infrared Imager (LI-COR). Relative intensity of fluorescent bands was

measured in relation to the background using Image Studio Ver 3.1

(Li-COR). Graphs were plotted using GraphPad Prism 6.0 and an expo-

nential curve with one phase decay was fitted in Figure 2b,c. Statisti-

cal analysis was performed using a two-tailed unpaired t-test in

GraphPad Prism 6.0 for each individual time point (iKO compared with

age-matched Ctrl) in Figure 2b,c and for graphs e, f, and h. Levels of

significance were set as p < .05 (*), p < .01 (**), and p < .001 (***).

For comparison of the abundance of PLP in myelin between

Ctrl and iKO in Figure 2b p-values are p = .2131 (16d pti),
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FIGURE 1 Tamoxifen-inducible mouse model of Plp deficiency in adult mice. (a) Tamoxifen injection scheme for inactivation of the Plp gene.

Plpflox/Y (Ctrl) and Plpflox/Y*PlpCreERT2 (iKO) male mice were injected i.p. with tamoxifen and analyzed at the indicated time points (16 days, 2, 4,
6, 8, 10, 12, and 16 months pti). (b) Genotyping PCR of genomic DNA detects the recombined Plpflox allele (Rec; 462 bp product) after tamoxifen
injection, whereas only the non-recombined Plpflox allele (Flox; 683 bp) is observed without tamoxifen injection. (c, d) qRT-PCR to determine the
abundance of Plp and Mbp transcripts in mouse brains. (c) Note that Plp mRNA is diminished in iKO mice compared with Ctrl mice at all
investigated times points (16 days, 2 and 10 months pti). (d) Conversely there is no significant change in Mbp mRNA abundance. pti = post
tamoxifen injection; Tam = tamoxifen; mean with SEM; n = 5–6; two-tailed unpaired t-test; p < .001 (***)
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p = .1511 (2 months pti), p = .0049 (4 months pti), p = .0016

(6 months pti), p < .0001 (8 months pti), p = .0218 (10 months pti),

p = .0045 (12 months pti), and p = .0003 (16 months pti). For com-

parison of the abundance of DM20 in Figure 2c p-values are

p = .5022 (16d pti), p = .1456 (2 months pti), p = .0020 (4 months

pti), p = .0024 (6 months pti), p = .0081 (8 months pti), p = .0138

(10 months pti), p = .0018 (12 months pti), and p = .0022

(16 months pti). For comparison of the abundance of MBP in

Figure 2e, the p-value is p = .4404. For comparison of the abun-

dance of ATP1a3 in Figure 2f, the p-value is p = .0551. For compar-

ison of the abundance of SIRT2 in Figure 2h, p-values are p = .4527

(4 months pti), p = .6991 (8 months pti), and p = .0004 (16 months

pti). For comparison of the abundance of CNP in Supporting Infor-

mation Figure S1b, the p-value is p = .0412.

2.4 | Cryo-immuno electron microscopy

Immunogold labeling of cryosections was performed as described in

(Patzig, Erwig, et al., 2016). Optic nerves were dissected from three

Ctrl and iKO mice each. Primary antibodies were specific for PLP

(A431; 1:300; (Jung et al., 1996)). Sections were analyzed with a LEO

EM912 Omega (Zeiss, Oberkochen, Germany). Per animal, 41–58
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myelin profiles were analyzed using Fiji. This corresponds to

3.4–8.4μm2 myelin area analyzed per animal. The inside and outside

half of the compact myelin area were selected and gold-particles on

these areas were counted. Graphs display gold particles per μm2 mye-

lin normalized to mean of Ctrl. All quantifications were performed

blinded to the genotype. Statistical analysis was performed using a

two-tailed unpaired t-test in GraphPad Prism 6.0. Level of significance

was set as p < .05 (*). Exact p-values are given in Figure 3.

2.5 | Immunohistochemistry

Neuropathological analysis by immunohistochemistry was performed

as described (de Monasterio-Schrader et al., 2013). In brief, 5–7 male

Ctrl and iKO mice per genotype were perfused with 4% PFA at

16 days or 4, 6–8, 10, and 16 months pti. For comparison, 3–10 male

wildtype and Plpnull/Y mice were perfused at the age of 26 weeks.

Brains were dissected, postfixed in 4% PFA for 24 hr and stored in

1% PFA until embedding in paraffin using the Microm HMP110 tissue

processor. Brains were sectioned into 5 μm sections using the Microm

HM400R Microtome. Immunohistochemical detection of neuropatho-

logical markers was performed using the kits LSAB2 (DAKO) and Vec-

tor Elite ABC (Vector labs). Antibodies were specific for MAC3 (1:400;

Pharmingen 553322; clone M3/84), IBA1 (1:1,000; Wako

019-19741), CD3 (1:150; Serotec MCA1477), APP (1:1,000; Millipore

MAB 348), or GFAP (1:200; Novocastra NCL-GFAP-GA5). Images

were captured at 10x (CD3), 20x (GFAP, IBA1, MAC3), 40x (APP), or

100x (representative images for display in the figures) magnification

using a bright-field light microscope (Zeiss AxioImager Z1) coupled to

a Zeiss AxioCam MRc camera controlled by Zeiss ZEN 1.0 software

and processed using Fiji.

To quantify axonal spheroids and T-lymphocytes, the hippocam-

pal fimbriae were selected and APP+ axonal spheroids and CD3+

T-lymphocytes were counted, respectively. To quantify white matter

area immunopositive for IBA1, MAC3 or GFAP, fimbriae were

selected and analyzed using an ImageJ plug-in (de Monasterio-

Schrader et al., 2013) for semi-automated analysis. CD3+ cells were

counted on five non-adjacent slides per animal at 4 months pti, on

seven slides per animal at 6–8 months pti, on four slides per animal at

10 months pti, and on two slides per animal at 16 months pti

(Figure 7a). For 6 months old wild type animals, two slides per animal

were counted and for Plpnull/Y mice, 1–2 slides per animal were

counted (Figure 7c). All other markers were analyzed on one slide per

animal (Figures 5 and 6). For each animal, the mean of both fimbriae

was calculated. All quantifications were performed blinded to the

genotype. Statistical analysis was performed using a two-tailed

unpaired t-test in GraphPad Prism 6.0. Levels of significance were set

as p < .05 (*), p < .01 (**), and p < .001 (***).

For statistical assessment of APP+ axonal spheroids quantified in

the hippocampal fimbria comparing Ctrl versus iKO mice as displayed

in Figure 5a, p-values are as follows: p = .1988 (4 months pti),

p = .0005 (6–8 months pti), p < .0001 (10 months pti), and p < .0001

(16 months pti). For comparison of APP+ axonal spheroids in 6 months

old, Wt versus Plpnull/Y mice displayed in Figure 5c, the p-value is

p < .0001. For quantification of the relative size of area occupied by

IBA1+ microglia in Figure 6a, p-values are as follows: Ctrl versus iKO
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4 months pti p = .1044, Ctrl versus iKO 6–8 months pti p = .0058, Ctrl

versus iKO 10 months pti p = .0621, Ctrl versus iKO 16 months pti

p = .0003 and displayed in Figure 5c, the p-value is: Wt versus Plpnull/Y

6 months p < .0001. For quantification of the relative size of area

occupied by MAC3+ microglia in Figure 6d, p-values are as follows:

Ctrl versus iKO 4 months pti p = .5551, Ctrl versus iKO 6–8 months

pti p = .0326, Ctrl versus iKO 10 months pti p = .0021, Ctrl versus

iKO 16 months pti p = .0002 and displayed in Figure 5f, the p-value

is: Wt versus Plpnull/Y 6 months p = .0034. For quantification of the

relative size of area occupied by GFAP+ astrocytes in Figure 6g, p-

values are as follows: Ctrl versus iKO 4 months pti p = .0787, Ctrl ver-

sus iKO 6–8 months pti = .0008, Ctrl versus. iKO 10 months pti =

.1912, Ctrl versus iKO 16 months pti p = .0018 and displayed in

Figure 5i, the p-value is: Wt versus Plpnull/Y 6 months p = .0066. For

quantification of CD3+ T-cells in Figure 7a, p-values are as follows:

Ctrl versus iKO 4 months pti p = .3280, Ctrl versus iKO 6–8 months

pti = .8601, Ctrl versus iKO 10 months pti = .0016, Ctrl versus iKO

16 months pti p = .0011 and displayed in Figure 6c, the p-value is: Wt

versus Plpnull/Y 6 months p = .0215.

2.6 | Preparation of CNS mononuclear cells and flow
cytometry

FACS analysis was performed as described (Lagumersindez-Denis

et al., 2017). In brief, mice were injected i.p. with heparin (5 IU/g body

weight); 15 min later, they were perfused transcardially with 20 ml

HBSS. Brains were excised and the meninges were removed. The

tissue was dissected and digested for 45 min at 37�C with 2.5 mg/ml
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collagenase D (Roche) and 1 mg/ml DNAse I (Roche) in DMEM.

Mononuclear cells were isolated using Percoll gradient centrifugation

(37%/70%, GE Healthcare, Chicago, IL), removed from the interphase,

washed and blocked with αCD16/32 (BioLegend, Clone 93) for

15 min on ice. The following antibodies were used: αCD3 (145-2C11),

αCD4 (RM4-5), αCD8 (53-6.7), αCD11b (M1/70), αCD19 (eBio1D3,

eBioscience), αCD25 (PC61.5), αCD45 (30-F11), αFoxP3 (FJK-16S,

eBioscience), αLy6C (HK1.4), αLy6G (1A8), αCCR2 (R&D 475301)

(BioLegend, if not stated otherwise). For intracellular αFoxP3 labeling,

cells were fixed after surface staining for 45 min and permeabilized

for 30 min using the eBioscience FoxP3 staining kit. All flow cytome-

try data were acquired on a FACS Canto™ II (BD Bioscience) and ana-

lyzed using FlowJo software (v. 7.6.1, Tree Star Inc., Ashland, OR).

Statistical analysis was performed using two-tailed unpaired t-test in

GraphPad Prism 6.0. Level of significance was set as p < .05 (*).

Immune cells were defined as follows: Microglia: CD45int CD11b+

Ly6C− Ly6G−; T-cells: CD45high CD3+ CD19−; CD4+ T-cells: CD45high

CD3+ CD4+; Regulatory T-cells (Treg cells): CD45
high CD3+ CD4+ CD25+

FoxP3+; CD8+ T-cells: CD45high CD3+ CD8+; B-cells: CD45high CD19+

CD3−. For quantification in Figure 7e–l, precise p-values are as follows:

CD3+ cells in Figure 7e: p = .0318, microglia in Figure 7f: p = .0171,

CD8+ cells in Figure 7h: p = .0332, CD4+ cells in Figure 7i: p = .1280,

reg T cells in Figure 7k: p = .2205, B cells in Figure 7l: p = .9333.

2.7 | Electron microscopy

Sample preparation by high pressure-freezing and freeze substitution for

transmission electron microscopy was essentially as described (Möbius

et al., 2010; Möbius, Nave, & Werner, 2016; Patzig, Kusch, et al., 2016).

After sacrificing mice by cervical dislocation, optic nerves were dissected

and placed into aluminum specimen carriers with an indentation of

0.2 mm. Remaining space was covered with 20% polyvinylpyrrolidone

(Sigma-Aldrich P2307-100G) in PBS. The sample was cryofixed using a

HPM100 high-pressure freezer (Leica, Vienna, Austria) and freeze substi-

tution was carried out in a Leica AFS (Leica, Vienna, Austria) according to

the following protocol: first, samples were kept in tannic acid (0.1% in ace-

tone) at −90�C for 100 hr, then washed with acetone (4x 30 min, −90�C)

and afterward transferred into OsO4 (EMS; 2%) and uranyl acetate (SPI

Chem, 0.1%) in acetone at −90�C. The temperature was raised from −90

to −20�C in increments of 5�C/hr, then kept at −20�C for 16 hr and

then raised to +4�C in increments of 10�C/hr. After washing with

acetone (3x 30 min at 4�C), samples were allowed to adjust to room tem-

perature for 1 hr. Afterward, optic nerves were transferred into Epon

(Serva, Heidelberg, Germany) (25%, 50% and 75% Epon in acetone for

1–2 hr each, 90% Epon in acetone for 18 hr, 100% Epon for 4 hr. Finally,

the samples were placed in embedding molds for polymerization (60�C,

24 hr). Ultrathin sections (50 nm) were cut using a Leica Ultracut S ultra-

microtome (Leica, Vienna, Austria) and contrasted with an aqueous solu-

tion of 4% uranyl acetate (SPI Chem) followed by lead citrate according to

(Reynolds, 1963). Samples were examined in a LEO 912AB Omega trans-

mission electron microscope (Zeiss, Oberkochen). Pictures were taken

with an on-axis 2048 x 2048-CCD-camera (TRS, Moorenweis, Germany).

For assessment of pathology, three Ctrl and three iKO mice were

analyzed 10 months pti. Randomly selected, nonoverlapping images

were taken at 7,000x magnification. Per animal, five electron micro-

graphs (1,105μm2) were analyzed using ImageJ (Fiji). Myelinated and

nonmyelinated axons/internodes were categorized into “normal

appearing myelin”, “myelin with cytoplasmic channels or lamellae
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LÜDERS ET AL. 7



splitting” and “nonmyelinated axons”; these categories were

expressed as percent of all assessed axonal profiles. Furthermore, we

quantified axon/myelin-profiles in the categories “myelin comprising a

swollen adaxonal compartment (inner tongue)”, “myelin outfoldings”,

“profiles with degenerating or degenerated axons” and expressed the

number of these events in percent of all profiles counted. The number

of axon/myelin-units harboring additional axonal profiles (“axons with

sproutings”) was expressed as percentage of assessed axons/myelin-

units. To quantify axonal spheroids at least 20 images taken at 3,000x

magnification (at least 18,000μm2) per animal were analyzed. The

number of axonal spheroids was standardized to the area analyzed for

each individual animal and expressed as axonal spheroids/mm2. All

statistical analyses were performed using GraphPad Prism 6.0. Levels

of significance were set as p < .05 (*), p < .01 (**), and p < .001 (***).

All quantifications were performed blinded to the genotype.

For quantification of myelin and axonal pathology in high pres-

sure frozen optic nerves of Ctrl versus iKO mice in Figure 4, p-

values are as follows: normal appearing myelin in Figure 4a:

p = .1404, nonmyelinated axons in Figure 4b: p = .0055, outfold-

ings in Figure 7c: p = .0455, enlarged inner tongue in Figure 7d:

p = .0268, lamellae splitting or myelin channels in Figure 7e:

p = .0010, axonal sproutings in Figure 7f: p = .1404, degenerating

or degenerated axons in Figure 7g: p = .7951, axonal spheroids in

Figure 7h: p = .0059.

Sample preparation for transmission electron microscopy shown

in Supporting Information Figure S2 was performed by conventional

aldehyde fixation as described (Werner et al., 2013).

3 | EXPERIMENTAL DESIGN AND
STATISTICAL ANALYSIS

Specifications of animals used for the analysis are given in section 2.1.

For all quantifications, n numbers represent individual mice and are
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specified in the respective figure legends. In the figures, data points

represent individual mice, with the exception of the exemplification

of the FACS analysis in Figure 7d,g, in which data points represent

sorted cells. All bar graphs display mean with SEM. Statistical

assessment was performed by two-tailed unpaired t-test using

GraphPad Prism 6.0. Levels of significance were set as p < .05 (*),

p < .01 (**), and p < .001 (***). Exact p-values are given in

section 2.
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4 | RESULTS

The abundance of PLP in myelin is exceptionally high in the normal

adult CNS; however, the functional relevance of this high steady state

level is unknown. Here, we asked if reducing the abundance of PLP in

adult mice has functional or neuropathological consequences. To

achieve mice in which the Plp gene can be inactivated in mature oligo-

dendrocytes in a temporally controlled manner, we crossbred mice

harboring a floxed Plp allele (Lüders et al., 2017) with transgenic mice

expressing tamoxifen-inducible CreERT2 under control of the Plp pro-

moter (PlpCreERT2 mice [Leone et al., 2003]), yielding experimental

Plpflox/Y*PlpCreERT2 mice and Plpflox/Y controls. Males of both genotypes

were injected i.p. with tamoxifen at 8 weeks of age and sacrificed for

analyses 16 days, 2, 4, 6, 8, 10, 12, or 16 months post tamoxifen

injection (pti) (Figure 1a). Indeed, PCR genotyping shows that the

floxed allele was recombined in Plpflox/Y*PlpCreERT2 mice after injection

of tamoxifen but not without tamoxifen (Figure 1b). For simplicity, we

refer to tamoxifen-injected Plpflox/Y*PlpCreERT2 mice as induced condi-

tional knockout mice (iKO) and to tamoxifen-injected Plpflox/Y mice as

controls (Ctrl). To validate that recombination of the Plp gene after

tamoxifen administration affects its expression, we measured the rela-

tive abundance of Plp mRNA in the brains of Ctrl and iKO mice.

Indeed, by qRT-PCR Plp mRNA was strongly reduced in iKO brains at

all analyzed time points (Figure 1c). The relative abundance of the

mRNA encoding myelin basic protein (MBP) was measured as a con-

trol and found unchanged (Figure 1d).

To investigate the dynamics of the change in abundance of PLP

and its smaller isoform (Nave, Lai, Bloom, & Milner, 1987) termed

DM20 in myelin subsequent to recombining the Plp-gene in mature

oligodendrocytes, we biochemically purified a myelin-enriched frac-

tion from the brains of iKO and Ctrl mice for assessment by immuno-

blot (Figure 2a). The abundance of PLP (Figure 2b) and DM20

(Figure 2c) in myelin declined slowly over time, reaching significance

by 4 months pti and at all subsequent analysis time points. Four

months pti, the abundance of PLP and DM20 was 63 and 51%,

respectively, in myelin purified from iKO compared with Ctrl mice.

The graphs resembled fitted exponential curves; by 16 months pti,

the abundance of PLP and DM20 approached 40 and 30%, respec-

tively, in iKO compared with Ctrl myelin. The marker proteins MBP

(Nawaz, Schweitzer, Jahn, & Werner, 2013) and ATP1a3 were

detected as controls 16 months pti (Figure 2d); their abundance was

unaltered (Figure 2e,f ). Considering that the NAD+-dependent deace-

tylase sirtuin 2 (SIRT2) is virtually absent from myelin when PLP is

lacking constitutively in Plpnull/Y mice (Werner et al., 2007), we

assessed its abundance in myelin purified from the brains of iKO and

Ctrl mice 4, 8, and 16 months pti (Figure 2g). Interestingly, quantifica-

tion of immunoblots shows that the reduction of the abundance of

SIRT2 in iKO myelin reaches significance by 16 months pti (Figure 2h)

and thus surprisingly late after that of PLP/DM20. Together, the

abundance of PLP and DM20 in myelin declines slowly after recombi-

nation of the Plp gene in mature oligodendrocytes, reaching signifi-

cance 4 months pti and reduction by half about 6 months pti.

We then employed cryo-immuno electron microscopy to assess

the abundance of PLP at the level of individual myelin sheaths. When

applying specific antibodies and protein-A coupled 10 nm gold parti-

cles to sectioned optic nerves 4 months pti, PLP was readily detect-

able in Ctrl myelin (Figure 3a) and, at reduced density, in iKO myelin

(Figure 3b). Indeed, quantification of gold particles revealed that the

mean abundance of PLP labeling on iKO myelin was about 50% com-

pared with Ctrl myelin, notwithstanding that this trend did not reach

the significance threshold of p < .05 (Figure 3c). In an attempt to dis-

tinguish whether the abundance of PLP declines toward the adaxonal

or the abaxonal side of the myelin sheath, we separately quantified

PLP-immunogold density on the inner and outer half of the com-

pacted myelin layers (Figure 3d). However, the density of PLP-

immunogold particles was approximately similar in the inner (55%)

and outer (47%) myelin layers of iKO compared with Ctrl mice. Cryo-

immuno electron microscopy thus did not allow distinguishing if the

declining PLP abundance occurs toward adaxonal or abaxonal myelin,

possibly owing to a high lateral mobility of the protein within the mye-

lin membrane. Together, the abundance of PLP in iKO myelin is about

halved by 6 months pti compared with controls according to both

immunoblot of total brain myelin and cryo-immuno electron micros-

copy of individual myelin sheaths. This implies that the half-life of PLP

in mature myelin is about 6 months.

To determine if reducing the abundance of PLP in myelin is suffi-

cient to affect the myelin ultrastructure similar to complete PLP-

deficiency in Plpnull/Y mice, we assessed the optic nerves of iKO and

Ctrl mice 10 months pti by electron microscopy after high pressure

freezing and freeze substitution. Indeed, the frequency of normal-

appearing axon/myelin-units was strongly reduced in iKO mice

(Figure 4a). Considering the increased frequency of non-myelinated

axons/internodes in Plpnull/Y mice (de Monasterio-Schrader et al.,

2013; Yool et al., 2001), we quantified this feature in iKO mice.

Indeed, the frequency of nonmyelinated axons/internodes is

increased in iKO compared with Ctrl mice 10 months pti (Figure 4b).

Myelin outfoldings were recently reported as a neuropathological fea-

ture in Plpnull/Y mice (Patzig, Erwig, et al., 2016), and our quantification

reveals that their frequency is also increased in iKO compared with

Ctrl mice (Figure 4c). Enlarged adaxonal myelin layers (Figure 4d) and

the presence of split myelin lamellae or non-compacted cytoplasmic

channels through compacted myelin sheaths (Figure 4e) were also

more frequent in iKO compared with Ctrl mice. According to quantita-

tive immunoblotting of myelin purified from the brains of iKO and Ctrl

mice 4 months pti, the enlargement of these non-compacted myelin

subcompartments in iKO mice correlated with an increased abun-

dance of CNP (Supporting Information Figure S1), a marker protein

for non-compacted myelin (Edgar et al., 2009; Snaidero et al., 2017).

Together, all previously identified pathological ultrastructural features

of Plpnull/Y myelin do also emerge secondarily (see also Supporting

Information Figure S2) when the abundance of PLP in myelin is

reduced upon recombining the Plp gene in the adult CNS.

Considering that Plpnull/Y mice display axonal degeneration

(de Monasterio-Schrader et al., 2013; Edgar et al., 2004; Griffiths

et al., 1998; Lüders et al., 2017; Patzig, Erwig, et al., 2016) qualifying

them as a model of SPG2 caused by PLP1 gene mutations in humans,

we asked if reducing the abundance of PLP in myelin is sufficient to

cause a similar axonopathy. Although the frequency of axon/myelin-

units comprising axonal sproutings (Figure 4f ) or advanced or
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complete axonal degeneration was not elevated in iKO compared with

Ctrl mice (Figure 4g), axonal spheroids emerged as frequent in iKO

mice by 10 months pti (Figure 4h). It is noteworthy that axonal spher-

oids are the most prominent feature of axonal pathology in iKO mice

(Figure 4h), Plpnull/Y mice and SPG2 patients (de Monasterio-Schrader

et al., 2013; Garbern et al., 2002; Griffiths et al., 1998; Werner et al.,

2013), whereas they are virtually absent in Ctrl mice (Figure 4h).

To assess the temporal dynamics of the emerging axonopathy,

iKO and Ctrl mice were sacrificed at various ages and their brains

were subjected to neuropathological analysis by immunohistochemis-

try using amyloid precursor protein (APP) as a marker. The hippocam-

pal fimbria was selected for quantitative assessment because it is a

comparatively uniform white matter tract through which the long

axons of excitatory neurons project (Li, Fang, Fernandez, & Pleasure,

2013; Lüders et al., 2017). A small number of APP+ axonal spheroids

was detected in the brains of iKO mice already 4 months pti, reaching

significance 6–8 months pti and further increasing at later time points

(Figure 5a,b). For comparison, the number of APP+ axonal spheroids in

6 months old Plpnull/Y mice (Figure 5c) was higher compared with iKO

mice (Figure 5a), which is expected when considering that the former

are lacking PLP throughout life. We note that the emergence of axo-

nal spheroids in the brains of iKO mice precedes the reduction of the

abundance of SIRT2 in myelin (Figure 2g,h), which may argue against

a major role for oligodendroglial expression of SIRT2 in preventing

axonal pathology.

Considering that the axonopathy in Plpnull/Y mice is accompanied

by astrogliosis and microglial activation (de Monasterio-Schrader

et al., 2013), the brains of iKO and Ctrl mice were subjected to immu-

nohistochemistry using the microglial markers MAC3 and IBA1 (ion-

ized calcium-binding adaptor molecule 1) and the astrocytic marker

GFAP (glial fibrillary acidic protein). When assessing the hippocampal

fimbria we observed an increased area of immunopositivity in iKO

mice, which reached significance 6–8 months pti and further

increased at later time points (Figure 6, Supporting Information

Figure S3). Together, temporal dynamics of the emerging axonopathy

was similar to that of the reactive astrogliosis and microgliosis. A

clearly pro-inflammatory or pro-regenerative microglia marker gene

expression profile was not evident according to qRT-PCR (Supporting

Information Figure S4).

Axonal pathology and gliosis may be accompanied by the infiltra-

tion of T-lymphocytes (de Monasterio-Schrader et al., 2013; Lüders

et al., 2017). To quantitatively assess T-lymphocytes in the present

model, the brains of iKO and Ctrl mice were subjected to immunohis-

tochemistry using CD3 as a marker. Indeed, quantitative assessment

of the hippocampal fimbria revealed that the number of

T-lymphocytes was increased in iKO compared with Ctrl mice. Inter-

estingly, this first reached significance 10 months pti (Figure 7a,b) and

thus later than the increased number of axonal spheroids, astrogliosis

and microgliosis. Together, iKO mice display the entire spectrum of

neuropathology also observed in Plpnull/Y mice. However, different

from mice constitutively lacking PLP, iKO mice allow the temporal

dissection of the emerging neuropathology. These findings imply that

T-lymphocytes infiltrate the brains of iKO mice subsequent to axono-

pathy, microgliosis, and astrogliosis.

Finally, we used multicolor flow cytometry to characterize

immune cells in more detail. Cells were isolated from whole brains of

iKO and Ctrl mice 12–17 months pti, immunolabeled and separated

by fluorescence-activated cell sorting (FACS). Density plots of cells

immunopositive for the markers CD45 or CD11b indicate that micro-

glia/macrophages are more numerous in iKO compared with Ctrl mice

(Figure 7d). Indeed, quantification confirms an increased number of

microglia (CD45int CD11b+) in the brains of iKO mice (Figure 7e), in

agreement with the neuropathological assessment of the fimbria using

the markers MAC3 and IBA1 (Figure 6). FACS also confirmed that

CD3+ T-lymphocytes are more frequent in the brains of iKO com-

pared with Ctrl mice (Figure 7f ), in agreement with the quantitative

immunohistochemistry (Figure 7a,b). To characterize the subtypes of

T-lymphocytes present in our model, we quantified CD4+ and CD8+

T-cells. CD8+ cells, which are frequently described as cytotoxic T-cells,

are the dominant lymphocyte population in the analyzed brains

(Figure 7g). Moreover, their number is significantly increased in the

brains of iKO compared with Ctrl mice (Figure 7h). Trends toward

increased numbers of CD4+ cells (Figure 7i), which are frequently

viewed as T-helper cells, as well as of FoxP3+ regulatory

T-lymphocytes (Tregs) (Figure 7k) did not reach significance. The num-

ber of CD19+ B-cells was low in both iKO and Ctrl mice; genotype-

dependent differences were not evident (Figure 7l).

5 | DISCUSSION

We report the first mouse model in which the Plp-gene is recombined

in mature oligodendrocytes by temporally controlled injection of

tamoxifen in adult mice, thereby terminating the replenishment of

PLP in mature myelin sheaths. In effect, the abundance of PLP in CNS

myelin declines by half within 6 months probably reflecting its slow

turnover. Notably, the reduced PLP-abundance was sufficient to

cause the entire spectrum of pathological changes that affect the CNS

when PLP is lacking completely in PLP-related disorders. It was strik-

ing that axonopathy and gliosis preceded the infiltration of CD8+

T-cells.

5.1 | Turnover and persistence of PLP in adult CNS
myelin

A previous metabolic pulse-chase labeling approach has found PLP,

MBP, CNP, SIRT2, and other myelin proteins among the most long-

lived proteins in entire rat brains, together with nucleoporins and

histones (Toyama et al., 2013). It is commonly believed that these

proteins are replaced only slowly despite their robust expression

owing to their localization in structures that are turned over slowly,

such as nuclear pore complexes or myelin sheaths. Six months after

the end of the dietary 15N isotope labeling pulse, the fractional abun-

dance of PLP peptides comprising the 15N label was 18.5%, suggesting

that about one out of five PLP molecules persisted for this period.

However, the experiment may not serve well as an approximation for

the turnover rate of PLP and myelin in the adult CNS because (a) the

dietary pulse was applied in the first 6 weeks after birth, the most

active phase of myelin biogenesis that also involves considerable

LÜDERS ET AL. 11



developmental shortening and retraction of myelin sheaths (Baraban,

Koudelka, & Lyons, 2018; Krasnow, Ford, Valdivia, Wilson, & Attwell,

2018), and (b) the experiment was not designed to discriminate PLP

molecules in myelin sheaths from those in oligodendroglial cell bodies,

which most probably have rather different turnover rates. Thus, we

believe that the measured value of 18.5% 15N-containing PLP-related

peptides after 6 months (Toyama et al., 2013) represents an underes-

timation when assumed to reflect the persistence of PLP in adult

myelin.

The turnover of myelin and oligodendrocytes has also been mea-

sured in human brains using the levels of the carbon isotope 14C from

the fallout of nuclear bomb tests in the 1950s and 1960s as a world-

wide labeling pulse (Yeung et al., 2014). Analyzing 14C incorporation

in the nuclear DNA of oligodendrocytes sorted from the corpus callo-

sum derived from autopsy material revealed that almost all oligoden-

drocytes emerged in the first 5 years of life and later displayed a very

slow but continuous replacement rate. Conversely, the 14C concentra-

tion in myelin biochemically purified from the brains of the subjects

was largely similar to the atmospheric 14C concentration at the time

of death. Although the experiment did not allow calculating a particu-

lar rate for the exchange of PLP or myelin it has established that,

different from oligodendroglial nuclei, myelin is indeed turned over in

the human white matter in the time-course of a few years or less.

Together, these pulse-chase experiments have indicated that

oligodendrocytes remodel their myelin over time.

A complex molecular program is required for the maintenance of

myelin, including the continued expression of signal-transducing pro-

teins and transcription factors essential for the expression of numer-

ous myelin-related genes (Nave & Werner, 2014). This was recently

confirmed upon tamoxifen-induced deletion of the transcription fac-

tor myelin regulatory factor (MRF) and of the extracellular signal-

regulated kinases-1 and -2 (ERK1/2) in adult mice (Ishii, Furusho,

Dupree, & Bansal, 2014; Koenning et al., 2012). In the brains of

Mrfflox/flox*PlpCreERT2 mice (Koenning et al., 2012), severe demyelin-

ation was evident by 8 weeks pti, probably a consequence of both

oligodendroglial apoptosis and of surviving oligodendrocytes losing

their ability to maintain their myelin sheaths. Notably, the abundance

of Plp-mRNA declined considerably within 1 week pti in the brains of

these mice, thereby displaying one of the strongest reactions among

the tested myelin-related genes. However, the severe demyelination

in Mrfflox/flox*PlpCreERT2 mice prevents conclusions about the normal

turnover of PLP or myelin. Erk1null/null*Erk2flox/flox*PlpCreERT2 mice (Ishii

et al., 2014) displayed severe demyelination 6 months pti, probably

owing to reduced expression of Mrf, Mbp and other transcripts essen-

tial for normal myelin biogenesis. Importantly, axonal degeneration

was also observed in these mice, a possible consequence of the

reduced expression of Plp, Cnp and other myelin genes involved in

oligodendrocyte-to-axon support.

The present model provides a system with no or only minimal

demyelination in which the abundance of PLP in CNS myelin was

measured after terminating its replenishment by temporally controlled

induced recombination of the Plp-gene. Reduction by half was

achieved about six months pti, both in myelin biochemically purified

from total brains (Figure 2a–c) and individual myelin sheaths in the

optic nerve (Figure 3). We note that this apparent half-life represents

an approximation to the turnover of PLP in healthy mature myelin

considering that various factors affect the measured values in either

direction. For example, splitting of myelin lamellae, itself a conse-

quence of the reduced PLP-abundance, may in turn increase the

lateral mobility of PLP, thereby enhancing its degradation and further

accelerating the declining PLP-abundance. In contrast, the continued

differentiation of oligodendrocyte progenitor cells in adult mice leads

to the emergence of a number of adult-born mature oligodendrocytes

(Auer, Vagionitis, & Czopka, 2018; Hill, Li, & Grutzendler, 2018;

Hughes, Kang, Fukaya, & Bergles, 2013; McKenzie et al., 2014;

Tripathi et al., 2017; Yeung et al., 2014; Young et al., 2013); according

to our experimental design using the PlpCreERT2 driver line (Leone

et al., 2003) it is expected that their newly formed myelin sheaths

contain PLP. Over time, the PLP present in the newly formed myelin

sheaths of these adult-born oligodendrocytes will sum up to represent

a portion of the biochemically purified myelin fraction visible by

immunoblotting. Together, in the present experimental approach the

turnover of PLP in CNS myelin may be moderately over- or underesti-

mated. It may also vary in dependence of species, brain region and

age. Yet, the observed pathology of myelin and axons emerges as a

direct consequence of the reduced PLP-abundance in CNS myelin.

5.2 | Continuous high level of PLP is necessary to
maintain the ultrastructure of CNS myelin

The spatio-temporal expression of the Plp-gene and the very high

abundance of its gene product in CNS myelin imply that PLP has a

critical function for myelination. Yet, PLP is not essential for the bio-

genesis of myelin per se when considering that substantial amounts of

myelin develop when PLP is lacking in humans or mice (Garbern et al.,

1997; Klugmann et al., 1997). Yet, the developmental rate of myelina-

tion is moderately reduced in Plpnull/Y mice (de Monasterio-Schrader

et al., 2013; Yool et al., 2001). Considering that myelination continues

in adult mice we interpret the moderately increased frequency of non-

myelinated axons/internodes in the present model 10 months pti

(Figure 4b) as impaired myelin biogenesis rather than demyelination of

previously myelinated axons.

Various defects affect the ultrastructure and stability of myelin

when PLP is lacking constitutively, including pathological outfoldings

of entire myelin sheaths (Patzig, Erwig, et al., 2016), fused-appearing

intraperiod lines and lamellae splittings (Boison, Bussow, D'Urso,

Muller, & Stoffel, 1995; Klugmann et al., 1997; Möbius et al., 2008;

Möbius et al., 2016). We have noted that similar defects also emerge

when the Plp-gene is recombined in mature oligodendrocytes. In par-

ticular, the strikingly high frequency of axon/myelin profiles with

lamellae splittings (Figure 4e) implies that PLP, beyond its involvement

in myelin biogenesis per se, is also required to maintain myelin ultra-

structure and stability. Lamellae splittings and cytosolic channels

through otherwise compact myelin could not always be distinguished

morphologically and may even represent two manifestations of the

same phenomenon. Indeed, PLP appears to function as an adhesive

molecular strut in myelin (Duncan, Hammang, & Trapp, 1987; Kita-

gawa, Sinoway, Yang, Gould, & Colman, 1993) notwithstanding that it

lacks any features of classical adhesion proteins. Considering the com-

paratively subtle adhesive properties that PLP exerts, at least in vitro
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(Bakhti et al., 2013; Bizzozero, Bixler, Davis, Espinosa, & Messier,

2001), a sufficiently large number of PLP molecules in myelin is

required to stabilize compact myelin in vivo. The present study

provides evidence that a mere reduction of the abundance of PLP in

myelin is sufficient to cause the emergence of cytosolic channels

through CNS myelin as well as susceptibility to widespread lamellae

splitting. This implies that the high content of PLP in CNS myelin of

tetrapods is subject to selective pressure, which maintains myelin

stability.

5.3 | Continuous high level of PLP in myelin is
required to prevent axonopathy and secondary
neuropathology

Generalized, loss-of-function mutations of the PLP1/Plp-gene impair

the biogenesis and stability of myelin and axonal integrity as observed

in SPG2 and Plpnull/Y mice; gain-of-function mutations additionally

cause demyelination and oligodendrocyte death (Duncan, Kondo, &

Zhang, 2011; Garbern, 2007; Gruenenfelder, Thomson, Penderis, &

Edgar, 2011; Werner et al., 1998; Woodward, 2008), as seen in the

leukodystrophy Pelizaeus-Merzbacher disease (PMD) (Saugier-Veber

et al., 1994) and its models including Plptransgenic-overexpressor mice (Edgar

et al., 2010; Kagawa et al., 1994; Readhead, Schneider, Griffiths, &

Nave, 1994; Tanaka et al., 2009) and rats (Mayer, Larsen, Kondo, &

Duncan, 2011), PlpJimpy (Cerghet, Bessert, Nave, & Skoff, 2001; Gotow

et al., 1999; Rosenfeld & Freidrich Jr., 1983; Schneider et al., 1992)

and transgenic PLPL30R and PLPR137W mice (Groh et al., 2016), the

Plpshaking-pup/Y spaniel dog (Mayer et al., 2015) and the myelin-deficient

(Plpmd) rat (Duncan et al., 1987; Miller et al., 2003). The severe and

rapidly progressive demyelination in the latter models has made it dif-

ficult to dissect the chronological order and thus neuropathological

hierarchy of the emerging neuropathology.

While gliosis and infiltrating T-cells were previously observed in the

brains of Plpnull/Y mice (de Monasterio-Schrader et al., 2013; Lüders

et al., 2017) and other PLP-related disorders (Marteyn & Baron-Van

Evercooren, 2016), in the present model axonal spheroids and second-

ary neuropathology emerge within months when the Plp-gene is recom-

bined in mature oligodendrocytes. Although it was impossible to

temporally uncouple axonal spheroids from gliosis, our results indicate

that axonal pathology precedes the infiltration of T-cells. Importantly,

genetic and pharmacological intervention has shown that infiltrating T-

cells accelerate axonal degeneration in the Plptransgenic-overexpressor

(Ip et al., 2006; Ip et al., 2012), PLPL30R and PLPR137W (Groh et al., 2016)

transgenic mouse models of PMD caused by overexpression or mis-

sense mutations of the Plp-gene, respectively. Interestingly, experimen-

tal ablation of T-cells was effective in reducing but did not completely

prevent axonal pathology. Generalized, in a spectrum of PLP-related dis-

orders axonal pathology precedes infiltrating T-cells which in turn

enhance axonal degeneration, suggesting that T-cells are not the pri-

mary cause of but rather accelerate the axonopathy. Considering that

myelin and axon pathology are not simply a developmental defect in

our model, we speculate that it might in principle be possible to reverse

at least some of the pathology in individuals harboring PLP1 null muta-

tions by restoring gene expression after disease onset.

In conclusion, reducing the abundance of PLP in adult CNS myelin

causes widespread neuropathology, suggesting that the high-level

content of PLP is subject to selective pressure. Considering the low

abundance of PLP in peripheral myelin and in the CNS of fish (Patzig

et al., 2011; Yoshida & Colman, 1996), the requirement of PLP for the

functions of myelinating oligodendrocytes in preventing the degener-

ation of myelinated axons is specific to the CNS of tetrapods.
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