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Abstract

Für die Auslegung und den Betrieb effizienter chemischer Prozesse ist die Modellierung und die

Simulation von besonderer Wichtigkeit. Effizienzsteigerungen können oftmals durch den Einsatz von

Modellen höherer Komplexität erzielt werden, deren Lösung mathematisch aufwendiger und deren

Modellstruktur andererseits nicht immer bekannt ist. Dadurch werden die Analyse und die Optimierung

dieser Modelle besonders anspruchsvoll. Um dieser Problematik zu begegnen, wurden in der jüngeren

Vergangenheit mathematisch vereinfachte Ersatzmodelle (engl.: surrogate model) entwickelt und

erfolgreich eingesetzt. Der vorliegende Artikel stellt die gängigsten Ersatzmodelle und deren Anwendung

in der chemischen Verfahrenstechnik vor.

Abstract

The ability to accurately model and simulate chemical processes has been paramount to the growing success

and efficiency in process design and operation. These improvements usually come with increasing

complexity of the underlying models leading to substantial computational effort in their use. It may also

occur that the structure of the model is sometimes unknown making optimization and study difficult. To

circumvent these issues, mathematically simpler models, commonly known as surrogate models, have been

designed and used to successfully replace these complex, underlying models with much success. This

technique has seen increasing use within the chemical process engineering field and this article summarizes

some popular surrogates and their recent use in this area.
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1. Introduction

In engineering practice, one must often computationally simulate a complex system. For chemical

engineers, this may include modeling of chemical production processes, scheduling problems, or complex

thermodynamics. These computer simulations help one to gather valuable information about the process

and avoid impracticable or impossible experimental investigation. However, many of these simulations

require substantial computational effort and time to evaluate or functions used in the simulator are

unknown, black-box models adding to the difficulty of their analysis. Models may also be noisy or

discontinuous preventing finite difference techniques from being applied. As a result, the computational

demand of performing domain exploration, optimization, or sensitivity analysis becomes prohibitive due

to the high number of function evaluations that are required. In some cases, a clear relationship between

input variables and their responses may not be accessible to the designer (Simpson [1]).

A solution to this issue is the use of surrogate models (or meta-models, regression surfaces,

emulators), which are mathematically simple models that map, or regress, the input-output relationships

of a more complex, computationally demanding model. This is depicted in Figure 1 for a basic, two

variable example. With their use, a more efficient evaluation of the underlying model is performed,

providing a better understanding of the input-output relationships, enabling complex models from

differing sources to be combined together, and increasing the speed of analyzing the design space and

performing optimization. This has been especially popular in the design and analysis of computer

experiments, or DACE, where optimization through surrogates is key (Sacks et al. [2], Kleijnen [3]). This

has led to many uses in the chemical engineering domain, i.e. for simplifying unit operation and process

optimization, increasing the speed and ease of parameter fitting and analysis, and for identifying the

feasible regions of operation for black-box process models. With a cursory scan of the literature, it would

seem that other branches of the engineering sciences are much more active in surrogate model research.

This is especially the case for aerospace engineering from which several detailed reviews on surrogate

modeling and optimization originate (Queipo et al. [4], Forrester and Keane [5], Yondo et al. [6]).

Notwithstanding, several within the chemical and process engineering community are researching

surrogate modeling and two important reviews were recently published by Bhosekar and Ierapetritou [7],

who covered many aspects of surrogate modeling, optimization and sampling, and by Garud et al. [8],

who provided extensive coverage on the design of computer experiments for surrogate model sampling.

This article presents a brief overview of surrogate modeling use in the chemical process engineering

field. In the next section a short introduction to surrogate modeling design and several of the most

commonly used surrogates in the chemical process engineering literature are given. Section 3 presents

several examples of surrogate modeling followed by the conclusion.
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2. Surrogate Modeling

2.1. Model Selection
One has a complex simulation and is faced with the question: which form should the surrogate take?

There is no consensus or clear-cut guidelines on surrogate model selection in the literature, although some

guidance is found in the works by Forrester [9] and Simpson [1]. It may not be known which surrogate

will perform best for a given function and the decision usually requires some foundational knowledge of

the underlying system (Queipo et al. [4]), which may be difficult when handling black-box functions. One

also needs to consider several factors such as dimensionality, simulation complexity, noisy responses, and

mixed continuous and discrete data. Some model specific guidelines are given in Section 2.2.

Several authors attempted to address the lack of a comprehensive study on which surrogate performs

best by direct comparison (Boukouvala et al. [10], Sikorski et al. [11], Wang and Ierapetritou [12]).

However, these are usually limited to only a couple of model types. More generally, Jones [13] stated that

interpolating models are preferable to non-interpolating ones due to their better ability in matching the

surface of the original function. This is preferable for deterministic computer experiments; however, non-

interpolating methods are recommended for noisy simulations (Forrester et al. [14]). There is also a

distinction made between global and local surrogates: global models represent the entire design space, i.e.

feasibility analysis, where complete domain knowledge is desirable and for tasks involving optimization,

localized models are more commonly used (Crombecq [15]).

2.2. Design of Experiments for Surrogate Modeling
Since surrogate model quality depends strongly on the sample data used to map the input/output

relationship of the underlying model, methods for identifying ideal points are necessary for building a

good model. For DACE, several sampling techniques have been developed that differ from the classical

design of experiments used in physical experiments. The random variation that exists in natural

experiments is not a concern in deterministic computer simulations and replications are not necessary

unless noise is present. The goal remains that one attempts to gather the maximum amount of information

using the fewest number or limited set of simulation runs.

There are two types of sampling strategies relevant to surrogate design: the one-shot design (static, a

priori, non-adaptive, domain based) and the sequential (adaptive, online, model-based) methods. A

flowchart of both methods is shown in Figure 2. The first of these selects sample sites from the complete

design space without considering model knowledge using space-filling designs that attempt to uniformly

spread the sample sites throughout the design space. The latter selects samples sites based on information

provided by the surrogate model after an initial model has been developed. One may consider two

extremes: regressing a surrogate model using only samples with a-priori space-filling designs or using the
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bare-minimum of samples to fit the initial model and improve it with targeted sample sites via adaptive

sampling. Most applications use a compromise of both techniques. The reason is that for higher

dimensional problems, the space-filling designs will become unreasonably large and computationally

prohibitive or fail to sample adequately in the higher dimensional space (Garud et al. [8]). On the other

hand, excessive adaptive sampling leads to frequent refitting of the surrogate model parameters becoming

itself computationally demanding (Quirante et al. [16]). Some researchers have explicitly investigated the

performance of such trade-offs, such as by Wang and Ierapetritou [12], who show that performance is

dependent upon the surrogate used.

Garud et al. [8] and Yondo et al.[6] compressively reviewed space-filling designs for computer

experiments. The consensus is that simply increasing the number of samples does not necessarily lead to

better surrogate design and that there is no universal rule for selecting a space-filling design. Many

researchers have successfully used Latin hypercube sampling (LHS) (McKay et al. [17]) or a maxmin

(Johnson et al. [18]) design for this task. Some also include the extreme vertices of the design space to

prevent extrapolation in these corners. The number of initial sample sites is often based on experience

with the underlying model or by a recommendation from Jones et al. [19], who suggested using ten times

the model dimension. Such a plan is used in Figure 1. In an attempt to add some order to sample plan

selection, Garud et al. [8] presented one of the first comparisons of the space-filling capabilities of several

popular static designs across various dimensions and sample sizes and made several recommendations for

sample plan selection based on these criteria. Additionally, Bhosekar and Ierapetritou [7] compared the

effects of initial sample size and sampling plan on performance for several kriging and RBF surrogates.

Use of adaptive sampling techniques tends to improve surrogate model performance compared to only

using a single static plan while also requiring fewer functional evaluations (Crombecq et al. [20]).

Surrogates built adaptively also result in customized models and eliminate guesswork by the designer that

may lead to unsatisfactory accuracy. Two general types of adaptive sampling techniques exist: one for

improving the surrogate globally and one for improving the accuracy of localized regions of the domain

for use in surrogate-based optimization (Jones [13]). When improving the surrogate model one must

consider the balance between addressing under-sampled regions of the design space (exploration) and

handling highly complex and non-linear areas (exploitation). Several global adaptive sampling techniques

have been developed to handle this, such as the modern LOLO-Voronoi by Crombecq et al. [20] and the

Smart Sampling Algorithm (SSA) by Garud et al. [21]. A comprehensive list of specific methods plus

their surrogate model dependencies is provided by Garud et al. [22]. Here, they also compared the

performance of modern adaptive sampling techniques in developing surrogates to represent several

chemical flow sheet simulations and show that SSA performed the best in almost all cases. Localized

adaptive sampling differs in that it is accompanied by contractions and translations of the design around
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current optima where new surrogates are fit to sample sites in these localized regions around, a process

that repeats until the specified stopping criteria are met. This is the fundamental use of surrogates for

derivative free optimization (DFO) including trust-region methods  (Conn et al. [23]) and a representative

depiction of this procedure is given in Figure 3.

In general, there is no rigorous, all-encompassing analysis of surrogate model selection, sampling

strategy, and underlying model; however, several groups actively pursuing various pieces of this puzzle

(Boukouvala et al. 2011 [10], Nuchitprasittichai and Cremaschi [24], Eason and Cremaschi [25], Sikorski

et al. [11], Cozad et al. [26,27], Wang and Ierapetritou [12], Bhosekar and Ierapetritou [7], Garud et al. [8,

22]). An overall discussion of current progress in these areas of surrogate modeling is presented by Bartz-

Beielstein and Zaefferer [28].

2.3. Surrogate Models
This section presents the most commonly used surrogate models found in the chemical process

engineering literature and short descriptions of polynomials, kriging, and artificial neural networks, radial

basis functions are given. Other surrogate models that are used to a lesser degree in the chemical

engineering literature not discussed here, but also of importance, are high dimensional model

representation (HDMR) (Rabitz and Aliş [29]), support vector regression (Smola and Schölkopf [30]),

and multivariate adaptive regression splines (Friedman [31]). There are also many other models used in

machine learning that may be of interest to the reader but are also beyond the scope of this article and a

recommended source is Murphey [32].

2.3.1. Polynomials
Polynomial functions are the most commonly used surrogate model in engineering practice (Forrester

and Keane [5]). This class of regression model has an extensive history in classical experimental design

where system information was often unknown and it became necessary to develop methods that were able

to explore the significance of the main process variables and their interactions (Box and Draper [33]).

Polynomials reveal this information conveniently through the magnitude of their coefficients and so

provide general knowledge about the design problem and the underlying process. They are the

computationally simplest models for regression purposes and should be used with less complex

underlying models. They are usually restricted to main effects and first order interactions, such as in Eq. 1

since higher-order interactions usually lack significance and require more data to fit the additional

parameters (Simpson et al. [1]). Polynomials work well for low-dimensional problems; however, high

dimensional and highly non-linear systems are commonly encountered in engineering practice. In such a

case, they may not represent the response surface reliably (Jones [13], Wan et al. [34]) and are usually
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restricted to local regions. If a small data set is used, overfitting the polynomial becomes a concern and

several regularization techniques exist to prevent this (Ruppert et al. [35]).

( ) = + + + (1)

2.3.2. Kriging
One of the most popular surrogate models is kriging, developed originally to describe spatial

distributions between ore deposits based on the inverse distance weighting of known sample compositions

(Krige [36]). Kriging was later introduced into deterministic computer experiments to describe the input

and output relationships of computationally demanding simulations (Sacks et al. [2], Jones et al. [19],

Kleijnen [3]). In the literature, kriging is usually the go-to wrench in the surrogate toolbox. Its popularity

extends from its flexibility in being able to model many different kinds of functions and interpolate the

data while requiring only a handful of fitted parameters, which is due to its mathematical basis as a

Gaussian process model (Williams and Rasmussen [37]). The model consists of two parts: a deterministic

polynomial term that describes the global trend of the data and the realization of a stochastic process that

accounts for the lack of fit in the polynomial term (Eq. 2).

( ) = ( ) + ( ) (2)

( ), = , (3)

, = exp − − (4)

( ) = ( ) + ( ) − (5)

( ) = 1− ( ) ( )+
( ) − ( ) ( ) − ( )

(6)

The stochastic part requires selection of a correlation function (Eq. 3) a-priori or by fitting a

semivariogram to trends in the data (Cressie [38]). The former usually take the form of a kernel function

that performs a transformation on the Euclidean distance between two sample sites. The correlation tends

towards unity for two nearby sites and reduces towards zero as the points get further apart. The Gaussian
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kernel (also known as the squared-exponential or radial basis function kernel) is very common in the

chemical engineering literature due to its smoothness (Eq. 4). A prediction for an unsampled point is a

linear function of the observed data is found by Eq. 5 and its prediction error is calculated using Eq. 6.

Regions in the sample space where uncertainty is high can be identified and new samples added to the

observed data to increase the model’s performance and Figure 4 depicts this for a univariate function.

This feature has led to the development of several kriging specific adaptive sampling techniques aimed

explicitly at this goal (Jones [13], Boukoukala and Ierapetritou [39], Wang and Ierapetritou [40]). One

must keep in mind that these predictions are made assuming that the model parameters fit from the

observed data are correct; the predicted variance is itself only a prediction of the expected model

uncertainty.

Kriging is recommended for problems with a dimensionality below 20, when the variables are

continuous, and the underlying function is smooth. If there are discontinuities, this will lead to poor

results due to the stationary covariance assumption of the correlation (Stephenson [41]). Fitting the

kriging model (Eq. 5) involves a matrix inversion and becomes computationally demanding when the

observed set is large. There are many different types of kriging than that presented here and a list of most

variants is found in Yondo et al. [6].

2.3.3. Artificial Neural Networks
Artificial neural networks (ANN) are based on the idea of how information is processed in actual

biological neural networks, like the brain (Haykin et al. [42]). They have come to deviate substantially

from their original inspiration, however, and are at their core a series of tensor operations performed on

data, more like a geometric transformation. They are composed of units called artificial neurons, where

the tensor transforms occur, that are arranged in a series of connected layers. Neurons receive numerical

information from each neuron in the previous layer and output an analogous response that is provided as

input to each neuron in the subsequent layer. Each of these transmissions is accompanied by a weight,

which are fit to the training data using an optimization algorithm most often via back-propagation. In this

manner the model learns to map the input data to the process responses. Figure 5 depicts this idea for a

small, simple network.

These surrogates are capable of being fit to many different systems and have provided some profound

results for many different tasks (Chollet [43]). They are able to adequately represent the global nature of

the design space for high-dimension, nonlinear systems. Despite this, the downside to neural network

modeling is in designing the appropriate network architecture, of which there are potentially infinite

possibilities. This entails designing the network layout and defining its hyperparameters, such as learning

rate, the transfer functions, regularization methods, etc., a process that may result in additional training

and validation expense. Quite often a copious amount of data is needed to fit the usually large number of
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weights without overfitting. Thus, ANNs are recommended when significant volumes of data are present

or cheap to generate (e.g. glass box models). This prohibits their use in computationally demanding

simulations, where the many function calls would become impractical, unless small networks of only a

few neurons are used. In addition, discovering correlations between the inputs and the responses is not

quantifiable, reducing some potential model reduction possibilities. However, when these problems are

insignificant or can be avoided, ANNs provide some of the most powerful surrogate models available.

2.3.4. Radial Basis Functions
RBFs consist of a weighted linear combination of local univariate functions performed on some

measure of the distance from a point to a specified center (Fang and Horstemeyer [44]). The RBF

approximation takes the form of Eq. 7, where xi denotes the ith center of n basis functions, φ(x), (which

can take several forms) evaluated at the Euclidean distances between the prediction sites and the basis

function centers, and λi are scalar weights fit during regression. This form of the RBF is identical to an

ANN with a single hidden layer with radial basis functions (Yondo et al. [4]). Some authors may also

include a first-order polynomial expansion to help find a unique, interpolating solution. Generally, RBFs

are applicable to situations where kriging surrogates may be used. RBFs are not as often used in the

chemical engineering literature because the parameterized basis function of kriging (which may be

considered a special form of RBF) is preferred due to its higher accuracy and flexibility and also because

RBFs cannot make predictions of model variance. Wang and Ierapetritou [12] recently addressed this

issue by developing an adaptive sampling technique for cubic RBFs. In several cases, they showed that

cubic RBFs improved flexibility in exploring the design space with higher accuracy while using fewer

samples than kriging.

( ) = (‖ − ‖ ) ( )

3. Applications of Surrogate Modeling in Chemical Process Engineering
In this section, different applications of surrogate modeling relevant to the chemical engineering field

are presented. These include surrogate models used in optimization, dynamic process modeling,

feasibility analysis, parameter estimation and sensitivity analysis, and scheduling.

3.1. Surrogate-Based Optimization
One of the most important uses of surrogate modeling has been in DFO (Amaran et al. [45], Conn et

al. [23]). Optimization using derivative-based methods is more efficient than DFO and surrogates provide

a surface with which one can derive derivative information (Kramer et al. [46]). This strategy is known by
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many names, including surrogate (or meta)-based optimization, DACE, and response-surface

methodology.

Palmer and Realff [47,48] were the first to optimize chemical flow sheets using surrogates. For this

they used polynomial and kriging surrogates due to their ability to handle limited data sets since they

were determined to use as little sampling as possible. Optimization was performed using the initial

models followed by a contraction or translation of the design space around the current optimum, as well

as possible model reduction if input variables were found to be insignificant. With this method they

achieved process configurations comparable to those found in the literature. Davis and Ierapetritou [49]

introduced one of the first surrogate based optimization approaches, Kriging-RSM, using a sequential

design method to model noisy black-box functions with deterministic feasible regions. The algorithm

begins with a kriging model in order to describe better the domain globally and for performing the initial

optimization. Once local optima have been identified, sub-regions using a geometrically adapted sampling

plan around each local optimum are defined and new, local surrogate models are fit using quadratic

polynomials (Davis and Ierapetritou [50]). The best solution from the set of localized polynomials is

taken as the overall optimum. The idea is to exploit the beneficial properties of each model type to reduce

computational expense while ensuring better convergence to the global optimum. In a subsequent article,

Davis and Ierapetritou [51] added a branch and bound method to the algorithm to handle integer variables

allowing process synthesis and design problems to be considered. In a third iteration, Davis and

Ierapetritou [52] incorporated discrete variables into the black-box models themselves. They optimized

successfully a process for purifying alcohol dehydrogenase and one for the production of tert-butyl

methacrylate, including their superstructures, using kriging models for the NLP sub-problems.

However, in many of these examples the processes modeled had low dimensionality and it would

become impractical to model complete flow sheets as the dimensionality increases. Thus why a modular

or distributed approach is often preferable. Caballero and Grossmann [53] used surrogate models to

replace individual units within a process flow sheet model that were computationally expensive, difficult

to obtain derivatives for, or noisy black-box models. This beneficially lowered the dimensionality of any

given surrogate. They recommended a maximum dimensionality of nine or ten for each surrogate to keep

sampling from becoming the computationally limiting step and to maintain surrogate accuracy. Their

reasoning for using a kriging surrogate is that at each iteration, as opposed to a polynomial, the predicted

variance of the model is maintained allowing for a convenient determination of stopping criteria and

constraint feasibility. This allows for the noise generated by the simulation models to be taken into

account and used as convenient stopping criteria for the optimization. These benefits come as a trade-off

from the higher computational costs associated with fitting and updating the kriging models at each

iteration, as compared to polynomials. Thus, they explicitly developed the algorithm to not update the
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kriging parameters in each iteration and attempted to generate satisfactory models initially that would

require little adaptive improvement. They presented a series of optimal distillation column design

examples where convergence with the original model proved difficult, but where their kriging-based

method delivered reliable and robust solutions.

Quirante et al. [54] adapted this method to include discrete variables for distillation design and

presented several optimization examples that included tray number, feed location, and in one case the

superstructure of a blending process. Quirante and Caballero [55] then applied this method to an existing

sour gas stripping plant in Germany to find the optimal operating conditions that would minimize

operating costs. Here, they stressed not only the replacement of problematic units with surrogates as

before, but that if necessary, explicit functions (especially the recycle streams) could be included as part

of the NLP formulation. They were able to show that optimal operation of the plant could reduce

operating costs by about 46%. More recently, Quirante et al. [16] published an example of their method

exemplified on the successful superstructure optimization of a vinyl chloride monomer production

process. Lin et al. [56] applied a similar modular approach to compare two alternatives, reactive

extraction and reactive adsorption, for the production of levulinic acid and hydromethylfurfural from

glucose. In this example, kriging surrogates replaced both reactor configurations and all flash units found

in both flow sheet variants.

Hasan et al. [57] compared the total annualized cost of vacuum swing and pressure swing adsorption

in carbon capture by optimizing their respective superstructures. These models are very complex and

difficult to solve because of the nonlinear algebraic and partial differential equation system used to model

the non-isothermal adsorption. The solution was to use a global kriging surrogate in its place. Optimal

points were simulated and added to the kriging surrogate until the cost improvement fell below a given

tolerance. Hasan et al. [58] performed a similar study but incorporated the performance of the chosen

zeolite into the design problem. Not only that, they also improved the screening step by performing many

“quick simulations” to find the best set of initial design sites for full-scale simulations used to fit the

kriging surrogate. First et al. [59] again applied this technique to optimize processes for the separation of

CO2 from methane while comparing the use of several different, novel zeolite materials.

Modular surrogate modeling has been used for thermodynamic equilibrium, which often leads to

convergence issues during optimization when solved implicitly. To avoid calculating the liquid-liquid

equilibrium during the optimization of a process for the hydroformylation of 1-dodecene, McBride et al.

[60] replaced the decanter in the flow sheet with a kriging surrogate. Kaiser et al. [61] then used this same

model for optimal reactor design in a similar process. Nentwich and Engell [62] also considered the

optimization of a hydroformylation of 1-dodecene process but used ANN surrogates to describe both the

gas solubility in the reactor and the liquid-liquid equilibrium in a downstream decanter.
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In most of the examples so far, the Gaussian process based kriging method was implemented.

However, like in the last example, ANNs have also been used extensively in the chemical engineering

literature. Nascimento et al. [63] studied ANNs in the optimization of an industrial extruder for the

polymerization of nylon and in the minimization byproducts in an acetic anhydride plant. Meert and

Rijckaert [64] have used them for polymerization modeling and Mujtaba et al. [65] used an ANN in the

optimal control of batch reactors. Bloch and Denoeux [66] used them for optimal control of coagulation

and hot-dip galvanization. Fernandes [67] used them in the optimization of a Fischer-Tropsch reactor.

Additionally, Henao and Maravelias [68] outlined a full featured methodology for a surrogate based

approach to superstructure optimization exemplified using ANNs to replace unit operations found in a

process flowsheet. Fahmi and Cremeschi [69] optimized the superstructure of a biodiesel plant with

surrogates replacing each unit operation, the thermodynamics, and mixing models. Smith et al. [70]

replaced expensive CFD simulations in order to optimize a packed-backed reactor for algae growth.

Nuchitprasittichai and Cremaschi [24] introduced a framework to determine the number of samples

needed for fitting an ANN a-priori and exemplified this method with the optimization of a carbon capture

process using aqueous amines. Eason and Cremaschi [25] continued in this vein by developing two

adaptive sampling algorithm for ANNs, both of which were used to model the same carbon capture

process. With their new methods, they reduced the amount of sampling required to produce accurate

ANN surrogates.

The ANNs in several of these works are restricted to simple network architectures with a single hidden

layer with only a handful of neurons. The benefit of such networks is that they are not difficult to fit and

do not require large amounts of data. However, they lack the predictive power of larger networks.

Naturally, larger networks require more data to prevent overfitting which may become counterproductive

when limited computational expense is desirable. Also, several ANNs published in chemical engineering

literature do not seem to have been rigorously regressed and show signs of being overfit. This strongly

affects the predictive performance of such models that more attention should be applied to building high

quality ANNs when selected as a surrogate model. There is much to learn from the machine learning

community on this topic (Chollet [43]).

One of the more interesting cases of DFO using surrogate modeling is the ALAMO framework (Cozad

et al. [26]). This method designs mathematically simple surrogates from a set of basis functions using the

least amount of data possible. Cozad et al. [27] added constrained regression to the method, which places

bounds on the surrogate ouput, making extrapolation more reliable – an important feature for modeling

physical or safety limitations in chemical processes. They exemplified ALAMO on several relevant

examples, i.e. for a flash drum, a carbon capture adsorber, and a bound constrained batch reactor. It was

also shown that the adaptive sampling method used by ALAMO results in similar accuracy as space-
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filling designs but requires fewer sampling points, reducing the number of complex simulations needed

(Wilson and Sahinidis [71]).

In a similar thread, Boukouvala and Floudas [72] developed ARGONAUT, a framework for

optimizing constrained global DFO problems using surrogate models. Here, surrogates are automatically

chosen from a list of possibilities (i.e. polynomials, RBF, kriging) based on need to limit complexity and

maintain accuracy of the objective and constraints of the underlying gray-box models.

3.2. Surrogates for Dynamic Processes
Surrogates that can accurately represent dynamic systems may be a promising tool for on-line control.

These dynamic surrogates are modeled as explicit functions of time with a discrete time step. The

dynamic system of equations for the process is solved for this specified time interval at various initial

conditions or parameters. The prediction of a current state now requires prior state information in addition

to the current control variable inputs.

Hernandez and Gallivan [73] presented an early work using dynamic surrogates studying the use of

kriging surrogates for modeling a second-order elementary reaction with a single reactant. Hernandez and

Grover [74] later expanded this work to the practical problem of optimally producing platinum

nanoparticles. Shokry and Espuña [75] considered the dynamic optimization of simple chemical process

examples using kriging surrogates and found that selection of the proper time-step is critical for accuracy.

The larger the time-step, the less sensitive is the model to rapid changes in the system. The trade-off in

increasing accuracy by reducing the time-step is the increase in computational time and cost for initial

sampling, fitting the surrogate, and performing the desired optimization.

One main focus of dynamic surrogate modeling of black-box functions has been in pharmaceutical

process engineering, where kriging and polynomials were investigated for steady-state operation of roller-

compaction by Boukouvala et al. [76] and feeder design by Jia et al. [77]. Using dynamic surrogates is of

interest here because first-principle models of the process are often unknown and can be considered

black-box models. Boukouvala et al. [10] explored how well kriging and ANN surrogates were in

capturing the behavior of a dynamic roller compactor process. The kriging surrogates were able to

recreate accurately the dynamic system behavior, even with large perturbations in the control variables.

Due to the nature of the kriging model, predictions made during operation could be incorporated into the

observation database if within a specified prediction variance multiple, which increased the speed and

accuracy of the dynamic kriging model. In this work, the ANN surrogates were unable to capture the

nature of the system leading to poor predictions. In addition, since ANNs are also not able to make model

error predictions they were not able to add new points to the sample database. However, they stated

clearly that only 20 neurons were used in a single hidden layer which is quite restrictive, and that larger

networks would make better predictions at the expense of higher sampling. Rogers and Ierapetritou [78]
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extended surrogate based feasibility analysis to dynamic problems. They also noticed that time

dependency becomes an issue with adaptive sampling, limiting its effective use because adding sample

sites at a specific time is only possible after integrating from the initial time, making their identification

difficult. By limiting the number of sample sites taken across the time horizon and by calculating the

expected improvement for specific times, they were able to overcome these inconveniences and

successfully model the dynamic feasible region of a roller compactor process with dynamic kriging

models.

Sciascio and Amicarelli [79] estimated biomass concentration over time in a fermentation process

using a Gaussian process. This proved to be more reliable in fitting the data than conventional methods

based on extended Kalman filters. Likar and Kocijan [80] demonstrated the use of a Gaussian process for

model predictive control in an actual lab-scale gas-liquid separation unit. They mention that a key

handicap of Gaussian processes for dynamic systems is the computational burden of inverting the

covariance matrix, which in this case consisted of up to one thousand samples. As with kriging, if too

many samples are used, the model may become too computationally expensive itself. Despite this, they

state that the controller is still robust due to the model’s predicted variance, which, similar to the

pharmaceutical examples in the next section, provides more operational safety.

3.3. Surrogates in Feasibility Analysis
Process feasibility describes the capability of the process to comply with all constraints, whether they

relate to operation, product quality, production requirements, or some other performance aspect when

faced with uncertainty in the process parameters or variables. Feasibility analysis is interested in

establishing the range in which process operation may occur without violation of these constraints,

otherwise known as the feasible region, and can be described by the uncertain parameters. The roots of

this problem go back to the flexibility index developed by Swaney and Grossmann [81] to numerically

quantify the size of the parameter space in which feasible steady-state process operation is attainable

using the control variables. A recent review on this topic is found in Grossmann et al. [82]. When

considering complex black-box models, evaluating the feasible region is challenging and several

researchers have addressed this by using surrogate models to map it.

Banerjee et al. [83] presented an early work in this area using HDMR to map feasible regions and then

applying them to a materials design problem. Boukouvala and Ierapetritou [84] performed similar

feasibility analysis using kriging surrogates with a special focus on initial sampling techniques. These

initial surrogates were updated using a standard EI adaptive sampling technique and the authors were

successful in defining the feasible regions for a roller compactor used in the production of solid dosage

pharmaceuticals. They then adapted the EI method to account for variable noise (Boukouvala and

Ierapetritou [85]) and later introduced an EI technique specific to feasibility analysis that required fewer
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sampling than previously to map adequately the feasible region (Boukouvala and Ierapetritou [39]).

Recently, Wang and Ierapetritou [86] developed two new adaptive sampling strategies for feasibility

analysis in modeling stochastic black-box functions with stochastic kriging surrogates.

Rogers and Ierapetritou [78, 87] considered in a series of publications the feasibility analysis and

flexibility analysis of black-box functions with an updated algorithm using an adjustable feasibility,

which is the predicted feasibility less the square root of the prediction variance at some point in the design

space. This is similar to the possible constraint feasibility seen in Caballero and Grossmann [53], but

made the constraint boundary more conservative by creating a buffer between predicted feasibility and the

real boundary. They argue that pharmaceutical products must adhere to strict standards, and that it is wise

to be cautious around constraint boundaries.

Wang and Ierapetritou [12] introduced a novel method for surrogate-based feasibility analysis using

cubic RBFs fit using a newly developed, model specific adaptive sampling technique. With this new

method, they were able to conduct extensive comparisons of how sampling affects the performance of

kriging and cubic RBF surrogates. In almost all of the cases they investigated, the cubic RBF method

required far fewer sampling points than kriging for the same level of accuracy. They also report that cubic

RBFs are less likely to get trapped exploiting regions and show some glaring examples where kriging is

trapped when using a low-resolution grid sample plan. For higher dimensional examples, (one with five

and one with six) both kriging and cubic RBF surrogates ran into the “curse of dimensionality” and the

desired accuracy suffered. They concluded that adaptive sampling simply requires more iterations for

complex surfaces in higher dimensions and recommend using LHS to sample for the initial model

because it helps by potentially finding disjoint feasible regions than when only using the extreme vertices,

but caution that this may weaken the conservativeness of the predictions. The total number of sampling

points is dependent on the original function and how many samples are required is still an open question.

3.4. Surrogates in Parameter Estimation and Sensitivity Analysis
When the original or first principles model is computationally demanding, parameter optimization may

become cumbersome. To avoid the direct optimization of a complex granulation population balance

model, Braumann et al. [88,89] performed parameter optimization using localized first and second order

polynomial surrogates of the full-scale model. Braumann et al. [90] updated their methodology by

applying a more global approach to parameter estimation beginning with a quasi-random screening of the

parameter domain in order to find the best set of parameters for the model by comparing their

performance to experimental data. A second-order polynomial was then fit to the localized region around

the current parameter set and the parameters of the granulation model were optimized using the projection

method in Braumann et al. [89] and a Bayesian approach. In the latter, the Monte-Carlo Markov-Chain

(MCMC) sampling required to develop the posterior is achieved much more efficiently using the
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surrogates than if the full granulation model were used. Mosbach et al. [91] and Kastner et al. [92] also

apply similar methods for reducing uncertainty in complex, computationally demanding models for an

internal combustion engine and for jet-milling, respectively, by means of experimental design. Since

parameter estimation may require many evaluations, second-order polynomials are used again to

represent the objective in the parameter space followed by Bayesian parameter estimation. Here, the

surrogates again reduced the computational burden of the MCMC sampling also allowing for a

comparison of different MCMC algorithms (Kastner et al. [92]). To study the relative importance of

model parameters in parameter optimization, Menz et al. [93] explored the use of an HDMR surrogate in

the global sensitivity analysis of a population balance model for silicon nanoparticle synthesis. Sikorski et

al. [11] presented a key paper addressing some open questions with surrogate modeling. Up until their

work, neither a detailed assessment of how well surrogates describe industrial processes had been

compiled, nor a comparison of surrogates for such tasks undertaken. Using the energy demand of a

biodiesel plant as an example, they measured the performance of various surrogate models based on

polynomials and HDMRs and the effects that dimensionality and domain size have on their accuracies.

They showed that higher order polynomials are not necessarily better suited for higher dimensional data

and that HDMR is not only effective as a surrogate, but also in identifying which variables are

insignificant, leading to possible model reduction strategies.

3.5. Surrogates in Scheduling
Several scheduling and inventory management examples have also been simplified using surrogate

models. Wan et al. [34] presented one of the first applications of kriging surrogate model use in supply

chain management in order to reduce the computational burden compared to the modern methods at the

time. Sahay and Ierapetritou [94] modeled a multienterprise supply chain network considering

interactions between entities using kriging surrogates as part of a derivative free optimization approach.

The expected improvement of the kriging method was used to move towards and ultimately identify the

optimal configuration for the entire supply chain. Shi and You [95] used piece-wise linear surrogate

models to represent the dynamic behavior of batch reactors in a scheduling problem reducing the original

combined scheduling and dynamic optimization problem from an MIDO to an MINLP. The surrogates

were iteratively updated during optimization to ensure they retained high fidelity without frequent

sampling. This method proved to be much faster at converging to an optimal solution than by solving the

full-scale model. Ye and You [96] investigated solving the optimization of an inventory system under

uncertainty by modeling the performance of each inventory node as a kriging model in a localized

manner. The multiple surrogates were aggregated together in order to optimize the entire network. The

benefit of using surrogates in this way is analogous to the modular approach to flow sheet optimization in

that each surrogate model’s dimensionality can be reduced and accuracy maintained. Their region-wise
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surrogate modeling and optimization framework was able to identify better solutions in a shorter time

than by using a conventional genetic algorithm in the two cases studies presented.

4. Conclusion
Surrogate modeling has many benefits including simplifying the object of study, reducing the

computational burden for optimization, hastening parameter fitting and analysis, allowing for sensitivity

analysis to be performed, modeling unknown black-box processes, and many more. Their use has helped

in solving many difficult problems in the chemical and process engineering fields, several of which were

mentioned in this article. It was shown that many of the open questions concerning surrogate model

selection, sampling, and accuracy are being addressed by the chemical and process engineering

community. In other branches, surrogate modeling is being taken to new levels by enhancing various

models or combining them into ensemble methods (Bartz-Beielstein and Zaefferer [28]). All of these

efforts combine to define a set of guidelines for surrogate model use and development and this will lead to

a more systematic and structured approach to surrogate modeling that will help lead to solutions that are

more efficient enabling more difficult processes to be modeled, optimized, and studied in the near future.
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Figure 1. Surrogate model sampling, simulation, and fitting resulting in a surface representation of the
original function. The sampling plan used here is a maxmin design with extreme vertices using a total of
20 samples sites (10 for each dimension).

Figure 2. General procedure for the one-shot and adaptive methods for global surrogate model design.

Figure 3. Hypothetical surrogate-based optimization approach. In the first iteration (i=1), the global
design space is sampled and mapped with a surrogate. This model is used in optimization and the local
optimum is found at x*

i=1. In the second iteration (i=2), the design space is contracted and centered around
the current optimum. New samples sites are identified using DoE techniques and a new, local surrogate
model fit to the new data plus the current optimum.

Figure 4. Kriging surrogate example showing the predicted model error (3σ) for the unsampled sites of a
univariate function. The solid line is the surrogate model, the dashed line is the original model, and the
dots represent the observed sites used in fitting the surrogate.

Figure 5. Basic structure of a neural network with two inputs, five neurons in the hidden layer, and a
single output response.

An overview of surrogate modeling in chemical
process engineering
K. McBride*, K. Sundmacher

This article summarizes recent use of surrogate modeling in the
chemical process engineering field and presents several examples
found in the literature. Through the use of these mathematically
simpler representations of complex functions or process
simulations, the computational effort of optimization or study has
simplified considerably. xxxx


