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The injection of cryogenic pellets into a magnetically confined plasma is shown to
be accompanied by a considerable transfer of thermal energy from the electrons in the
background plasma to the ions. The resulting ion heating can be significant, particularly
in plasmas with disparate electron and ion temperatures, and can affect the energy
balance of the plasma. In recent Wendelstein 7-X experiments, this mechanism can
account for a substantial fraction of the ion heating power during pellet injection.

1. Introduction

For several decades, one of the principal ways of fuelling magnetically confined fusion
plasmas has been to inject pellets consisting of frozen hydrogen (or deuterium). This
method has several attractions compared with other fuelling schemes. Unlike neutral-
beam injection, it is independent of the heating of the plasma, and compared with gas
puffing it provides fuelling relatively deep into the plasma.
There are many intricate issues to consider when modelling pellets in fusion plasmas,

such as the ablation of the solid pellet material leading to the formation of a cold plasma
cloud that acts to shield the pellet; the expansion of this cloud along the magnetic
field; its drift across the field; the associated emission of Alfvén waves; striations and
instabilities of the pellet cloud etc. A large body of literature discusses these issues, both
experimentally and theoretically, and several reviews have been published on the subject
(Milora et al. 1995; Pégourié 2007).
In the present work, we would like to raise attention to a phenomenon that appears

to have been overlooked in earlier modelling of plasmas with pellet injection but can
be quite important when the electron and ion temperatures are unequal. Pellets are, of
course, injected to increase the plasma density, but as we shall see they can also affect
the relative electron/ion energy budget significantly. The reason is simple and relies on
a well-known circumstance: when a cold plasma cloud, in our case coming from a pellet,
expands into a region of lower density, the electrons, being more mobile than the ions,
pull the latter with them by setting up an ambipolar electric field which accelerates the
ions. In this way, thermal electron energy is converted into kinetic ion energy. This energy
ends up as ion thermal energy after a few ion collision times as the pellet cloud dissolves
and merges with the background plasma. The resulting electron-ion energy transfer can
easily compete with collisional temperature equilibration and thus significantly affect the
energy budget and transport of the plasma.

† Email address for correspondence: pavel.aleynikov@ipp.mpg.de
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2. Model description and simple estimates

When a small dense pellet enters the plasma only a thin layer is heated and evaporated
by the plasma heat flux. The width of this layer is approximately equal to the mean free
path of the hot plasma electron in the pellet (λp). This evaporated over-dense gas cloud
initially expands with the ion sound speed in three dimensions while its hydrodynamic
pressure is much greater than the magnetic pressure,

3NT

4πr3
≫ B2

2µ0
, (2.1)

where B is the magnetic field and r, N and T are the cloud size, number of evaporated
electrons and their temperature, respectively. During this 3D expansion the cloud line-
integrated density (along the magnetic field line) decreases and the hot plasma reaches
new layers of the pellet. It is essential that the fast expansion of the cloud across the
magnetic field eventually stops when expression (2.1) becomes an equality. Then, the
cloud continues to expand only along the magnetic field line.
As mentioned above, an accurate description the ablation process is generally more

complex. However, in what follows we focus only on the one-dimentinal expansion
dynamics of the cloud along the magnetic field, which follows the ablation process. We
also neglect the cross-field drift of the polarized cloud in the nonuniform magnetic field.
This effect can be important in tokamaks (Parks & Baylor 2005; Pégourié et al. 2006),
but is generally much weaker in stellarators.
We thus consider a relatively small and dense cloud of the cold plasma at some initial

time t = 0. This cloud is heated by collisions from the electrons of the hot ambient plasma.
Since the line-integrated cloud density can only be lower (mainly due to initial spherical
expansion) than the one defined by λp during the ablation, the collisional mean free path
of hot electrons in the cloud is comparable to, or exceeds, the length of the plasma cloud.
In other words the pellet cloud is typically “transparent” for the hot electrons throughout
the entire expansion process. Then, in the limit that the cloud is much colder than the
hot electrons, the heating power density is equal to

Q =
3neTe

2τec
,

where

τec =
3
√
π

4

/

nce
4 lnΛ

4πǫ20m
2
ev

3
Te

=
neτee
nc

denotes the collision time between fast and slow electrons. In these and subsequent
equations, a subscript c refers to the cold electrons of the pellet ablation cloud and
the subscript e to the hot electrons of the ambient plasma. The density of the former
is initially much larger than that of the latter, nc ≫ ne, but drops as the cloud
expands. The thermal speed of the cold electrons is denoted by vTc = (2Tc/me)

1/2

and their temperature by Tc. This temperature and length of the cloud initially evolve
approximately according to

Tc(t) ∼
Tet

τee
, (2.2)

L(t) ∼ vTe

√

met3

miτee
, (2.3)

where the latter estimate follows from the fact that the cloud expands at the sound
speed (cs), which is of order vTe

√

me/mi. The density of cold electrons in the cloud thus
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decreases with time as

nc ∼ n∞

(τee
t

)3/2

,

where n∞ is a constant related to the total number of electrons in the cloud. We restrict
our attention to early times at which the cloud is denser than the ambient plasma,
nc ≫ ne, and thus require

t

τee
≪

(

n∞

ne

)2/3

. (2.4)

At the time of electron temperature equilibration, t = τee, the cloud has reached the
length

L∞ ∼ λee

√

me

mi
,

where λee = vTeτee denotes the mean free path of the background plasma. For simplicity,
we take the number on the right-hand side of Eq. (2.4) to be of order unity, so that the
density of the cloud reaches the background density at around the same time as the
temperatures equilibrate.
The mean free path of the cold electrons is λc = vTcτcc where

vTc = vTe

√

Tc

Te
,

τcc = τee
ne

nc

(

Tc

Te

)3/2

.

Combining these estimates gives the relations

t

τcc
∼ n∞

ne

(τee
t

)2

,

λc

L
∼

√

mi

me

ne

n∞

(

t

τee

)2

,

which allow us to identify two time regimes characterised by different degrees of colli-
sionality. At early times,

t

τee
≪

√

n∞

ne

(

me

mi

)1/4

, (2.5)

the mean free path is shorter than the length of the cloud, which is highly collisional and
can be described by hydrodynamic (Braginskii) equations. At later times,

√

n∞

ne

(

me

mi

)1/4

≪ t

τee
≪

√

n∞

ne
, (2.6)

the mean free path is longer than the cloud, which however expands slowly on the time
scale of collisions between the cold electrons.

3. Equations for the cloud dynamics

In order to treat both early and later time regimes (Eqs. (2.5) and (2.6)), we consider
the kinetic equation for the cloud electrons

∂f

∂t
+ v‖

∂f

∂x
+

e

me

∂φ

∂x

∂f

∂v‖
= C(f),
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where φ denotes the electrostatic potential, C the collision operator and −e the electron
charge. For simplicity we have dropped the subscript c, adopting the convention that
quantities without subscript refer to the cold electrons. The components of the particle
velocity along and across the magnetic field, respectively, are denoted by v‖ and v⊥, and

the speed by v =
√

v2‖ + v2⊥. It is helpful to replace the velocity coordinate by the energy

ǫ = mev
2/2− eφ, so that the kinetic equation becomes

∂f

∂t
+ v‖

∂f

∂x
− e

∂φ

∂t

∂f

∂ǫ
= Ccc(f) + Cce(f), (3.1)

where we have now written the collision operator as a sum of an operator describing
collisions among the cold particles and a term representing collisions with the hot
electrons, which heat the cloud. The time derivatives in this equation operate on the time
scale of the expansion of the cloud, which is comparable to the heating rate (described by
Cce) but much slower than the electron thermal speed. We thus expand the distribution
accordingly, f = f0 + f1 + · · ·, and require in lowest order

v‖

(

∂f0
∂x

)

ǫ,v⊥,t

= Ccc(f0). (3.2)

In order to account for the circumstance that the mean free path can be either shorter
or longer than the cloud, we have adopted a ‘maximal’ ordering and retained the cold-
electron collision operator in this equation. In contrast, the well-known work by Gurevich
(Gurevich 1968) considered the completely collisionless case.
Multiplying Eq. (3.2) by ln f0 and integrating over all of phase space gives

∫ ∞

−∞

dx

∫

Ccc(f0) ln f0d
3v = 0,

which together the H-theorem implies that f0 must be Maxwellian,

f0(ǫ, t) = η(t)

[

me

2πT (t)

]3/2

e−ǫ/T (t),

and the cold-electron density thus follows a Boltzmann distribution,

n(x, t) = η(t) exp

(

eφ(x, t)

T (t)

)

. (3.3)

The ions are much colder than the electrons, and can be treated by pressure-less
hydrodynamic equations

∂n

∂t
+

∂

∂x
(nu) = 0, (3.4)

mi

(

∂u

∂t
+ u

∂u

∂x

)

= −e
∂φ

∂x
, (3.5)

where, thanks to the Boltzmann relation (3.3) and assuming quasi-neutrality†, the electric
force term can be replaced by

−e
∂φ

∂x
= −T (t)

∂ lnn

∂x
. (3.6)

† The length scale of all considered below processes is much greater than the Debye radius
of the background plasma, wheres the Debye radius in the cold and dense pellet cloud is even
smaller.
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The cold-electron temperature T is independent of x but increases with time in response
to the heating, according the energy conservation relation

d

dt

∫ ∞

−∞

(

3nT

2
+

minu
2

2

)

dx =

∫ ∞

−∞

Qdx, (3.7)

where the heating source is given by

Q(x, t) =

∫

mev
2

2
Cce(f0)d

3v.

When T (t) = const equations (3.4) - (3.7) represent a classical isothermal hydro-
dynamics system of equations, sometimes called “shallow water equations”. Depending
on the initial and boundary conditions, this non-linear system permits a wide range of
solutions, including wave and shock wave types solutions (Gurevich & Pitaevskii 1986).
In the next section we suggest a monotonic (on half-axis) self-similar solution which
approximates expansion of a gradually headed plasma. This kind of self-similar plasma
expansion differs from other well-known solutions such as Sedov-Taylor-von Neumann
blast wave (Barenblatt 1996) or plasma expansion into vacuum (Gurevich et al. 1966),
where the temperature of the hot plasma, which initially occupies a half-space, is fixed.

4. Self-similar solutions

We look for solutions to the equations (3.4) - (3.7) with the initial conditions

n(x, 0) = n0δ(x),

n(x, 0)u(x, 0) = 0,

T (x, 0) = 0,

reflecting the circumstance that the cloud is initially very dense, small, stationary and
cold. This initial-value problem contains no inherent length scale and its solution must
therefore be self-similar. We therefore introduce a variable

y =
x

tα
, (4.1)

where the constant α is to be determined, and look for solutions of the form

n(x, t) = t−αN(y), (4.2)

u(x, t) = t−βU(y),

T (t) = t−γτ,

where the first expression manifestly implies mass conservation,

d

dt

∫ ∞

−∞

n(x, t)dx = 0.

Substituting this Ansatz into the continuity equation (3.4), momentum equation (3.5)
and energy equation (3.7) gives equations that imply that α = 3/2, β = −1/2, and
γ = −1 and the equations themselves reduce to

3

2
(yN)′ = (NU)′,

miN(U − 3yU ′ + 2UU ′) + 2N ′τ = 0,
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Figure 1. The normalised cloud density (n/n0), ion velocity (u/cs) and potential (eφ/T )
from the solution (4.3)-(4.5) in the early stage of expansion t ≈ 10µs ≈ τee/20. The ambient
electron temperature is 4 keV and the ultimate cloud density equals the initial plasma density of
5 · 1019m−3 (doubling the density on the field line after expansion).

∫ ∞

−∞

(

3Nτ

2
+

miNU2

2

)

dy =

∫ ∞

−∞

Q dx.

The solutions to these equations are

N(y) = n0

√

3mi

8πτ
exp

(

−3miy
2

8τ

)

,

U(y) =
3y

2
,

τ =
1

3n0

∫ ∞

−∞

Q dx,

and we thus conclude that the plasma parameters become

n(x, t) = n0

√

3mi

8πτt3
exp

(

−3mix
2

8τt3

)

, (4.3)

u(x, t) =
3x

2t
, (4.4)

T (t) =
t

3n0

∫ ∞

−∞

Q dx. (4.5)

Note that the temperature is half of what it would have been if the pellet cloud were
stationary [obtained by setting u = 0 in Eq. (3.7)]. Half the heating power evidently goes
into ion kinetic energy associated with the expansion of the cloud. Figure 1 illustrates
the solution (4.3)-(4.4).
Note also that the potential φ resulting from this solution monotonically decreases

to minus infinity. Physically it is more reasonable to expect that it saturates at a finite
value, in which case the ion velocity u becomes limited and the tail of the ion distribution
exhibits a sharp front (see Gurevich & Pitaevskii 1986; Mora 2003). We neglect these
subtleties in this work.
Our choice of a delta function for the initial condition is of course not to be taken
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literally in the sense that the initial density is actually infinite, only that it is very large.
We have also solved the equations (3.4) - (3.7) numerically with other initial conditions
and seen that the solution converges to ours as t → ∞. It is typical for self-similar
solutions to act as “attractors” in this way in the larger space of other solutions.

5. Very early times: collisional electrons

The ordering leading up to solution (4.3)-(4.5) fails in the very early phase of the
cloud expansion, which we now discuss separately. At early times defined by Eq. (2.5),
the electrons are collisional and the pellet cloud can thus be described by hydrodynamic
equations,

∂n

∂t
+

∂

∂x
(nu) = 0, (5.1)

min

(

∂u

∂t
+ u

∂u

∂x

)

= − ∂

∂x
(nT ), (5.2)

3

2

(

∂T

∂t
+ u

∂T

∂x

)

+ T
∂u

∂x
=

1

n

∂

∂x

(

κ
∂T

∂x

)

+
Q

n
, (5.3)

Here, viscosity has been neglected, being relatively small when the mean free path is
short, but heat conduction has been retained. The heat conductivity κ/n ∼ vcτcc is
unimportant if the time scale of heat conduction

tcond ∼ L2

κ/n

is longer than t. This is the case if

t

τee
≪

√

n∞

ne

me

mi
, (5.4)

and we thus conclude that heat conduction can be neglected at very early times. This
means that the pellet cloud will not be isothermal unless the heating source is uniform. As
discussed in Section 2, a uniform heating source is expected because the mean free path
of the fast electrons is typically longer than the length of the pellet cloud. Nevertheless,
it turns out that half the heating power is still deposited in the ion channel even in the
opposite case of short mean free path of ambient electrons in the cloud. The reason is
essentially that the heating profile is dictated by this mean free path, which evolves in
inverse proportion to the cloud density and therefore evolves in a self-similar fashion,
just like all the other cloud parameters.
To see this, let us consider the kinetic equation for the distribution function fe of the

fast electrons,

v‖
∂fe
∂x

+
e

me

∂φ

∂x

∂fe
∂v‖

= C(fe),

where the time derivative has been neglected on the grounds that the thermal electron
speed exceeds the expansion velocity of the cloud. As long as the cloud plasma is much
denser and colder than the population of fast electrons, the collision operator is well
approximated by

C(fe) =
ne4 lnΛ

3π3/2ǫ20m
2
e

[

1 + Z

v3
L(fe) +

1

v2
∂fe
∂v

]

,

representing slowing down and pitch-angle scattering against cold electrons and ions of
effective charge Z.
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If we again introduce the self-similar variable (4.1) and write the density as in Eq. (4.2)
we find

v‖
∂fe
∂y

+
e

me

∂φ

∂y

∂fe
∂v‖

= N(y)
e4 lnΛ

3π3/2ǫ20m
2
e

[

1 + Z

v3
L(fe) +

1

v2
∂fe
∂v

]

, (5.5)

and conclude that the distribution function can be written as a function of y and v alone,

fe(x, v‖, v⊥, t) = F (y, v‖, v⊥).

The physical reason for this conclusion is that, since the collision operator is proportional
to the density n(x, t) = N(y)/tα, the distribution function depends on x and t only
throught the similarity variable y = x/tα. The same is then true for the heating per
particle

h(y) = − 1

n

∫

mev
2

2
C(fe)d

3v,

which, in turn, implies that the system of equations

3

2
(N + yN ′) = (NU)′, (5.6)

miN

(

U

2
− 3y

2
U ′ + UU ′

)

= −(Nτ)′, (5.7)

3

2

(

τ − 3y

2
τ ′ + Uτ ′

)

+ τU ′ = h. (5.8)

can be solved for N(y), U(y) = t−1/2u(y, t) and τ(y) = t−1T (y, t) as functions of y
alone. The first of these equation is, again, satisfied by U(y) = 3y/2, and the other two
equations then become

3miyN + 4(Nτ)′ = 0,

τ =
h

3
. (5.9)

To calculate the expansion of the pellet cloud, one needs to solve these equations together
with Eq. (5.5). In general, the density profile will no longer be Gaussian, but thanks to
Eq. (5.9) we can conclude that, for any shape N(y) of the cloud, the electron temperature
is always given by

T (x, t) =
t

3
h
( x

t3/2

)

.

The total thermal energy of the cloud electrons is thus equal to
∫ ∞

−∞

3nT

2
dx =

t

2

∫ ∞

−∞

N(y)h(y) dy.

On the other hand, the net energy budget of the system (5.1)-(5.3) is given by

d

dt

∫ ∞

−∞

(

3nT

2
+

minv
2

2

)

dx =

∫ ∞

−∞

nh dx =

∫ ∞

−∞

Nhdy,

which implies that half the heating power goes into increasing the electron temperature
while the other half goes into the ion channel.

6. Ion heating

This kinetic energy will eventually (after a few ion collision times) end up as thermal
ion energy. The time scale of electron-ion temperature equilibration is relatively long
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compared with both the electron collision time and the ion-ion collision time, τeq ∼
τeemi/me ∼ τii

√

mi/me, and the kinetic energy of the pellet ions will therefore be
converted into ion thermal energy before being shared with the electrons.
In plasmas with dominant electron heating, the steady-state ion temperature is typ-

ically determined by the ratio of the energy confinement time (τε) to the equilibration
time τeq (assumed to be longer)

Ti ∼ Te
τε
τeq

. (6.1)

In such a case, the fast electron-to-ion energy transfer through ambipolar expansion may
increase the ion temperature considerably.
If pellets are injected to keep the density constant, then the amount of injected pellet

material per unit time is n/τn, where τn is the particle confinement time. The pellet
ions are quickly accelerated to roughly Te via ambipolar expansion. The resulting power
deposition per ion is then Te/τn, which modifies (6.1) to

Ti ∼ Teτε

(

1

τeq
+

1

τn

)

, (6.2)

where the two both terms in the brackets can be comparable, as discussed in the next
section.
The net effect of a single pellet on time scales exceeding the ion collision time but

shorter than the equilibration time is an increase in density, cooling of the electrons, and
heating of the ions. If we denote the plasma density before the injection by n and that
afterwards by n+ dn, and adopt similar notation for the electron and ion temperatures,
the change in the ion and electron energies are, respectively,

∆Wi =
3

2
(Tidn+ ndTi) ,

∆We =
3

2
(Tedn+ ndTe) .

During the short time scale on which a pellet is injected, evaporates and merges with the
background plasma, the total plasma energy is conserved, dWi + dWe = 0, if ionisation
and radiation losses are negligible. We thus have

dTe + dTi

Te + Ti
= −dn

n
. (6.3)

The electrons lose, and the ions gain, energy, dWe < 0 < dWi. As we have seen, the
energy transferred to the ions is equal to that expended in heating the pellet electrons,
so that

dWi =
3α

2
Tedn,

with α ≃ 1. (A different value of α would allow for the possibility that more or less
energy is channelled to the ions.) Hence, to first order in the perturbation dn/n ≪ 1,

dTi =
dn

n
(αTe − Ti) , (6.4)

and the corresponding drop in electron temeprature calculated from Eq. (6.3) becomes

dTe = −dn

n
[(1 + α)Te] . (6.5)

We thus conclude that the electrons are cooled by pellet injection whereas the ions
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are heated if Te > Ti. As far as we are aware, this heating has usually been neglected
in transport modelling of magnetically confined fusion plasmas. The increased density
caused by pellet injection has simply been modelled as a dilution of the background
plasma at constant energy in each channel, thus leading to cooling of both the electrons
and the ions.
The analytical solution of the cloud expansion process presented in Section 4 could

help to improve the modelling of pellets in three-dimensional magnetohydrodynamics
(MHD) codes, such as JOREK (Futatani et al. 2014). Such codes, which solve a set of
one- (or two-) fluid equations, are not able to accurately describe a pellet cloud, and the
numerical (toroidal) resolution is usually so low that it is difficult to simulate the initial
phase of the cloud expansion.
It is interesting to note that, on time scales shorter than the ion collision time (τii), the

cloud ions will not be Maxwellian but highly anisotropic (accelerated along the magnetic
field), and their (normalised, time-dependent) distribution in velocity space is given by
Eqs. (4.3)-(4.4),

fi = 2

√

1

π

mi

3Te

τee
t

exp

[

− miv
2

3Te

τee
t

]

. (6.6)

This distribution function is somewhat skewed toward high energies, which, among
other effects, would increase the fusion reactivity. To estimate this effect, a quasi-
steady state ion distribution function is found from the numerical solution of the ion
kinetic equation, which includes the ion source, given by Eq. (6.6) with t ∼ 2τee, and
a Fokker-Planck operator for collisions between suprathermal ions and Maxwellian bulk
ions and electrons of the same temperature. The intensity of the ion source is chosen
so that the number of plasma ions would double during one ion slowing-down time
τs = (mi/me)

1/2(Te/Ti)
3/2τii, however a uniform sink term keeps the total ion density

constant. Convolution of the found quasi-steady state ion distribution function with the
D-T fusion cross section suggests that the increase in the fusion rate is up to 30% for 5
keV plasmas (and less than 10% for 10 keV).

7. Pellet injection in W7-X

In the first operational campaign of the Wendelstein 7-X (W7-X) stellarator, the
plasma was exclusively heated by electron cyclotron resonance heating (Wolf & et al.
2017). As a result, the electrons were usually much hotter than the ions, which were only
heated indirectly by collisions with the electrons. Particularly at low plasma density,
the ratio of the ion-electron temperature equilibration time (τeq) to confinement time
(τε ∼ 100 ms) was so large that the electron temperature was several times higher than
the ion temperature (Te/Ti ∼ 5, see Eq. (6.1)), whereas the particle confinement time
in W7-X is such that τn/τε is of the same scale. In this case, the pellet fuelling should
increase the ion temperature significantly, as per Eq. (6.2).
In hydrogen plasmas, it was also difficult to raise the density beyond a few times

1019 m−3 by means of gas puffing alone, but fortunately W7-X is equipped with a pellet
injection system. A blower gun is capable of injecting cryogenic hydrogen pellets at speeds
100-300 m/s from the inboard and outboard sides at frequencies up 60 Hz. Each pellet
contains up to 2 · 1020 electrons and penetrates 10-20 cm into the plasma, depending
on the density and temperature of the latter. Pellet injection proved quite helpful for
raising the density in hydrogen plasmas. By injecting a series of 10-20 pellets in rapid
succession, it was possible to attain densities approaching 1020 m−3 in the plasma core.
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The ion temperature then quickly approached the electron temperature, reaching about
4 keV in the centre of the plasma.
These experimental results will be published and discussed in detail elsewhere. Here,

merely point out that under the conditions prevailing in these plasmas, the ion heating
mechanism discussed above can compete with that from ordinary collisional temperature
equilibration. If several small pellets are injected in rapid succession, the time average of
the increase in ion energy due to the acceleration of pellet ions is

Ẇi =
3

2

(

ṅTi + nṪi

)

=
3ṅTe

2
,

according to Eq. (6.4) with α = 1. This value exceeds the direct (Braginskii) collisional
energy transfer (Braginskii 1965; Helander & Sigmar 2002)

Q =
3nme

miτe
(Te − Ti),

if
ṅ

n
>

2me

miτi

(

1− Ti

Te

)

.

For instance, if n = 2 · 1019 m−3 and Te = 2Ti = 5 keV, then this criterion becomes
ṅ/n >∼ 1 s−1. In other words, if enough pellets are injected that the average plasma
density increases on the time scale of one second, then the ion-electron energy transfer
rate doubles.
Figures 2-3 show calculations of pellet injection into a generic W7-X plasma. Shown

are density and temperature profiles before and after pellet injection, with and without
accounting for the electron-to-ion energy transfer calculated in the previous section, i.e.,
setting α = 1 and α = 0, respectively. Figure 2 refers to very fast (1200m/s) injection
planned in the next W7-X experimental campaign, wheres in Fig. 3 typical steady-state
plasma profiles corresponding to the present campaign OP 1.2 were generated with the
transport code NTSS (Turkin et al. 2011) assuming 2 MW central electron-cyclotron-
resonance heating (ECRH). The transport was represented by neoclassical transport
coefficients calculated by the DKES code supplemented by an ad hoc turbulent energy
diffusion coefficient taken to be inversely proportional to density and equal to 0.5 m2/s in
the central portion of the plasma. In this way, temperature profiles consistent with typical
experimental data were obtained. These profiles are somewhat uncertain because of the
scarcity of reliable temperature measurements, and an additional uncertainty stems from
the fact that our self-similar solutions are only accurate for pellets small enough not to
perturb the background temperature significantly.
The temperature change has been calculated by integrating Eqs. (6.4) and (6.5), giving

the temperatures

Te +∆Te = Te

(

n

n+∆n

)2

,

Ti +∆Ti = −(Te +∆Te) + (Te + Ti)

(

n

n+∆n

)

.

after the injection of a large pellet, ∆n/n = O(1).
In Fig. 2-3, the deposition profile was calculated using the ablation rate given by a

model of Parks and Turnbull (Parks & Turnbull 1978). In the case shown in Fig. 2 we take
a very fast pellet (1200m/s). A large fraction of the pellet is deposited near the plasma
centre, where the ratio of electron to ion temperature is the highest. The middle panel
in figure 2 shows the result of the modelling without accounting for the fast electron-ion
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Figure 2. Profiles of density (left panel), ion and electron temperatures for α = 0 (middle
panel), ion and electron temperatures for α = 1 (right panel) before and after the injection of
1020 hydrogen atoms in W7-X.
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Figure 3. Same as Fig. 2 for a different pellet deposition profile.

energy transfer (α = 0), i.e. the electron and ion pressures are kept constant. Both the
ion and the electron temperature drop considerably. The panel on the right in figure
2 takes into account the ambipolar ion heating effect (α = 1), and as a result the ion
temperature increases.
In the case shown in Fig. 3 we take present W7-X-relevant pellet parameters (see

above). In this scenario the effect of ion heating is less pronounced because the pellet
is ablated in the plasma edge, where the electron temperature is barely higher than
the ion temperature. Yet, without ambipolar ion heating we would expect a significant
ion temperature drop (middle panel), whereas in reality this heating leads to a slight
correction of the ion temperature (right panel).

8. Conclusions

We have presented a simple model of the expansion of a cloud of ablated pellet material
along the magnetic field of a tokamak or stellarator. In those limits where the equations
can be solved analytically, half the energy by which the hot background plasma electrons
heat the pellet cloud ends up as ion kinetic energy. By the time the pellet cloud has
merged with the background plasma, one therefore expects a significant amount of energy
transfer from the electron to the ion channel.
It is difficult to predict exactly how much energy gets redistributed in this way. In

reality, the pellet evaporates gradually and the ablation cloud drifts across the magnetic
field (Parks & Baylor 2005; Pégourié et al. 2006) at the same time as it expands along
it. In doing so, it emits Alfvén waves and can be subject to instabilities, as is clear from
the very fact that as t → 0, our estimates in Section 2 above predict that the pressure
of the pellet cloud becomes very large. Our model is thus very simplified, but the basic
phenomenon of ion acceleration should still be robust, relying, as it were, only on the
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basic fact that electrons are lighter than ions and must be held back by an electric field
that transfer energy to the ions.
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Pégourié, B. 2007 Review: Pellet injection experiments and modelling. Plasma Physics and

Controlled Fusion 49 (8), R87–R160.
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