
Discussion Papers of the
Max Planck Institute for

Research on Collective Goods
Bonn 2019/1

Estimating Heterogeneous
Reactions to Experimental
Treatments

Christoph Engel

MAX PLANCK SOCIETY

Discussion Papers of the
Max Planck Institute
for Research on Collective Goods Bonn 2019/1

Estimating Heterogeneous Reactions to
Experimental Treatments

Christoph Engel

This version: January 11, 2020

Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10, D-53113 Bonn
http://www.coll.mpg.de

Estimating Heterogeneous Reactions to
Experimental Treatments∗

Christoph Engel

This version: January 11, 2020

Abstract

Frequently in experiments there is not only variance in the reaction of participants
to treatment. The heterogeneity is patterned: discernible types of participants
react differently. In principle, a finite mixture model is well suited to simultane-
ously estimate the probability that a given participant belongs to a certain type,
and the reaction of this type to treatment. Yet finite mixture models may need
more data than the experiment provides. The approach in principle requires ex
ante knowledge about the number of types. Finite mixture models make distri-
butional assumptions that one may not feel comfortable with. They are hard to
estimate for panel data, which is what experiments often generate. For repeated
experiments, this paper offers a simple two-step alternative that is much less data
hungry, that allows to find the number of types in the data, that does not make
distributional assumptions about the type space, and that allows for the estima-
tion of panel data models. It combines machine learning methods with classic
frequentist statistics.

Keywords: heterogeneous treatment effect, finite mixture model, panel data,
two-step approach, machine learning, CART

JEL Classification: C14, C23, C91

∗Prof. Dr. Christoph Engel, Max Planck Institute for Research on Collective Good, D 53173 Bonn,
engel@coll.mpg.de, ++49 228 91416210, ORCID 0000-0001-8513-8532. Helpful comments by Sebastian
Schneider, Marcel Schubert and audiences at the Economics Department of National University of
Taiwan, and at the Max Planck Institute for Research on Collective Goods at Bonn, are gratefully
acknowledged.

1

1 Introduction

Not all experimental participants are equal. This is not only a truism. If, strictly
speaking, all were equal, and one would be justified to assume that the choice functions
of individuals are deterministic, there would be nothing to estimate. There would be
no need to expose a randomly selected sample to random variation. One could infer
the universal law of nature from exposing one of two otherwise identical individuals to
treatment. Most empirical researchers shy away from the philosophical debate over nat-
ural laws. Even if such laws exist, and matter for the behavior of human participants,
the researcher is not in a position to observe them. All she can study is the reaction
of a sample that she suspects to differ in multiple ways. Yet as long as (a) assign-
ment to treatment is random, (b) the sample is randomly drawn from the population
and sufficiently large, and (c) reactions to treatment are sufficiently pronounced, the
researcher can infer the population effect. Frequentist statistics let her assess whether
it is sufficiently unlikely for the observed difference to be a false positive.

Note that this standard approach to the analysis of experimental data assumes het-
erogeneity: different individuals react differently to treatment. Yet this heterogeneity
is treated as a nuisance variable. It results from the fact that perfectly clean data is
unavailable. It is the purpose of randomization to prevent this heterogeneity from bi-
asing the estimation of the treatment effect. The researcher feels justified to treat the
unobserved heterogeneity as noise. This is why, in statistical textbooks, the estimation
of the treatment effect is introduced as the difference in the central tendency of two
Gaussian distributions.

Not so rarely, experimenters have reason to doubt that the heterogeneity in reaction
to treatment is indeed random. A prominent illustration is social preferences. On
average, participants in dictator, ultimatum or public good games do not behave as
predicted by microeconomic textbooks. They share some of their endowments with
their passive counterparts (Engel, 2011), they reject offers that exploit a first-mover
advantage (cf. Cooper and Dutcher, 2011), and they make substantial contributions
to socially beneficial joint projects (Zelmer, 2003). Yet a substantial fraction of most
experimental samples maximize short-term profit. A rather small minority are true
altruists. And many only neglect the dilemma structure of a public good if they know,
observe or believe that their counterparts will do so as well (Fischbacher et al., 2001).1
There are thus (at least) three discernible types.

In principle, such patterned heterogeneity is a case for a finite mixture model. The
model is typically estimated with full information maximum likelihood. One simulta-
neously estimates the probability of a datapoint to belong to each of the types, and the
reaction of each type to treatment. In postestimation, each participant of the experi-
ment can be assigned to the most likely type. While this approach is appealing, it has
a number of drawbacks. If the model is estimated with maximum likelihood, one must

1For detail see below Section 6.

2

make two-dimensional distributional assumptions (like joint normality). These assump-
tions are not necessarily easy to defend, especially if one expects the number of types
to be small, and the distribution of types to be pronouncedly asymmetric. Typical ex-
perimental datasets are rather small. As estimation is in two dimensions, finite mixture
models with experimental data need not converge. Chances for convergence improve
if one tries out alternative statistical models, alternative distributional assumptions, a
whole grid of starting values, alternative approximation algorithms or the rescaling of
parameters.2 But one may then be afraid of being on a fishing expedition that yields a
false positive result.

Many experiments are repeated, and often additionally interactive. Such an experiment
generates data from choices, nested in individuals, nested in groups. Each group is a
single independent observation. To properly capture the dependence structure and the
heterogeneity of types, one would need four-dimensional maximum likelihood. Chal-
lenges for the amount and the purity of the data compound. A further drawback is
the necessity to fix the number of types beforehand. Admittedly, there is a way out:
in a first step, one estimates a series of finite mixture models, and imposes an increas-
ing number of types. In the second step one uses a technique for the comparison of
non-nested models to select the most convincing model (El-Gamal and Grether, 1995;
Bosch-Domènech et al., 2010; Bruhin et al., 2018). Yet this process is laborious and
there is no consensus about the criterion for model selection.

In this paper, I propose an alternative approach. It is not a panacea. It comes with its
own limitations, which I discuss in the concluding sections. Yet it has its comparative
advantages. Experimentalists interested in heterogeneous reactions to treatment have
another tool in their box. They may revert to it as it tends to be more robust to
implement, or as they are sufficiently concerned about one of the limitations of a finite
mixture model.

With the proposed approach, the biggest challenge for the estimation of a finite mix-
ture model turns into the critical asset: the panel structure of repeated experiments.
The approach needs one identifying assumption: type is a personality variable. The
heterogeneity originates in the fact that different individuals react to treatment in dif-
ferent ways. If this assumption can be made, in a first step one can separately regress
each individual on all (time-varying) independent variables. The coefficients from these
local (per participant) regressions characterize the individual’s type. Standard machine
learning techniques can be used to find the best way to partition the type space. In
the second step, each participant is characterized by one of these types. The proposed
approach is thus a two-steps estimator. Such estimators have been used frequently in
other areas of statistics, and in particular for the combination of non-parametric with
parametric methods (for an overview see Chapter 17 Greene, 2003).

If treatment is within-subjects, this procedure directly produces estimates of the treat-
ment effect conditional on type. If treatment is (exclusively) between-subjects, there is

2I am grateful to an anonymous referee for listing all these options.

3

an additional challenge. The procedure separates types conditional on treatment. Yet
if one, for instance, finds 8 conditional types, one does not yet know which untreated
and which treated conditional types originate from the same unconditional type. One
unconditional type may be very sensitive to treatment, while another is not. One
unconditional type may even react positively to treatment, while another reacts neg-
atively. Hence one needs additional assumptions (or complementary within-subjects
data) to match types of untreated with types of treated subjects. Yet if one has reason
to trust the matching, one can interact treatment with type. The interaction terms
then estimate in which ways the reactions of different types to treatment differ.

Machine learning is not standard in the experimental literature. A few remarks ex-
plaining the approach may therefore be in order (for an excellent introduction see
James et al., 2013). The epistemic goal of machine learning is not identification, but
prediction or, as exploited here, classification. One isolates the observed features that
have the highest potential to define discernible classes in the dependent variable of in-
terest. This paper uses one of the most well-established methods in machine learning, a
classification and regression tree CART. The method is conceptually very simple. One
starts by finding the independent variable that most clearly separates the dependent
variable into two classes. This is the origin of the tree. Now one repeats the procedure
separately for each branch of the tree, until the final tree is constructed3. As the sim-
ulations in sections 4 and 5 show, this very simple approach is very powerful. In the
conclusions, I discuss in which situations more elaborate machine learning procedures
might be of interest, and explain their logic.

The remainder of the paper is organized as follows. The next section relates the paper
to the literature. Section 3 explains the approach in detail, and contrasts it with the
alternatives. Section 4 uses simulation to explore how well the proposed non-parametric
method performs. Section 5 investigates the robustness of the method. Section 6 applies
the approach to a real experimental dataset. Section 7 concludes with discussion. The
code for implementing the procedure in R is reproduced in the technical appendix.

2 Related Literature

Experimenters pay increasingly attention to patterned heterogeneity (see, for instance,
Bruhin et al., 2018; Conte and Levati, 2014; Santos-Pinto et al., 2015) and use finite
mixture models (Moffatt, 2015) to simultaneously estimate the composition of the type
space, and reactions to treatment conditional on type, in games as diverse as public
goods (Bardsley and Moffatt, 2007; Kassas et al., 2018), prisoner dilemmas (Becchetti
et al., 2017), beauty contests (Bosch-Domènech et al., 2010; Breitmoser, 2012), bribery
games (Bolle et al., 2011), learning in networks (Kovářík et al., 2018), and attitudes

3For more about the method, and in particular the definition of the depth of the tree, see below
section 4.

4

towards macro-risk in financial markets (Brown and Kim, 2013). Yet to the best of my
knowledge, none of these papers discuss machine learning methods to organize the type
space.
There is an active literature on the estimation of heterogeneous treatment effects out-
side experimental economics. Some of these papers discuss the application of machine
learning methods (for overviews see Alaa and Schaar, 2018; Künzel et al., 2017; Powers
et al., 2017). They for instance use CART (Athey and Imbens, 2016; Su et al., 2009),
random forests (Lu et al., 2018; Wager and Athey, 2017) or support vector machines
(Imai et al., 2013) to estimate differences in the reaction to treatment, or advocate
averaging types over the outcomes from multiple alternative machine learning methods
(Grimmer et al., 2017).
A particularly active application is biostatistics. Data from reactions of patients to
alternative medical interventions is used to personalize treatment (Bonetti and Gel-
ber, 2004; Gail and Simon, 1985; Sauerbrei et al., 2007; Tian et al., 2014; Wendling
et al., 2018; Zhao et al., 2012) or to evaluate the performance of hospitals in treating a
heterogeneous population of patients (Berta et al., 2016).
Closest in spirit is Bonhomme et al. (2016). They also propose to proceed in two steps.
In the first step, they estimate the probability that a datapoint belongs to a certain
group, exploiting repeated measurement. In the second step, the data are weighted by
these estimates. Yet they assume the number of groups (types) to be known ex ante,
while my approach allows to estimate them from the data. Bertoletti et al. (2015)
propose a Bayesian method to estimate the number of groups in a finite mixture from
the data. As I will explain below, under suitable conditions there is a simpler approach
if one has multiple observations per participant of an experiment.

3 Estimation Approaches

Observed Type

If the type space is fully understood, a two-step approach invites itself. In a first step,
one measures type, for instance with the test developed by Fischbacher et al. (2001).
In a second step, one explains observed choices yi from participants i ∈ {1, ..., N} with
a set of dummy variables k ∈ {1, ..., K} indicating type and the indicator function 1

assigning type to the individual in question, and with treatment θi ∈ {0, 1}. Hence one
estimates

yi = β0 + β1θi +
K∑
k=2

βk1(ki = k) +
K∑
k=2

βK−1+k1(ki = k) · θi + εi. (1)

One defines one type as the reference category. For this type, β0 is the estimated
choice when untreated, and β0 + β1 is the estimated choice when treated. For any

5

other type, the choice when untreated is estimated by β0 + βk, and the choice when
treated is estimated by β0 + β1 + βτ + βK−1+k. In this specification β2, ..., βK are a
direct estimate for the difference between the type chosen as the reference category and
the respective alternative type when untreated. Likewise the interaction terms measure
how the reaction to treatment differs between the reference type and the remaining
types.4

Finite Mixture Model

If type ki is not observed independently of choice yi, the composition of the type space,
and choices conditional on type, must be simultaneously estimated. In principle, this
can be done with a finite mixture model. If one feels confident to estimate a linear
model, the density to be estimated is given by

f(yi) =
K∑
k=1

πkfk(yi|xi
′β). (2)

In (2) xi
′β is a generic way of writing the first two terms in (1), while allowing xi to

contain further covariates, together with the treatment variable θi. Yet through πk,
the model allows for different types to react differently to treatment, and estimates the
probability of an observation to be of a certain type, given independent variables xi

and the dependent variable yi, with the constraint that
∑K

k πk = 1.

The model defined in (2) can be estimated with (full information) maximum likelihood.
The probabilities (often also referred to as mixing proportions) π1, ..., πK result from
unobserved types. Estimating these latent types is a challenge though. Statistical
packages usually parry the challenge iteratively, using the EM algorithm (Dempster
et al., 1977), going back and forth between (initially arbitrary) probabilities, and the
coefficients, conditional on an observed datapoint belonging to one of the types.

Two-Steps Estimator

The previous approaches have treated each data point as an independent observation.
Economic experiments are frequently repeated, i.e. come from period t ∈ {1, ..., T}. For
estimating the treatment effect, this is not a concern. One can estimate the random
effects model (3):

yit = β0 + β1θit + ui + εit, (3)

assuming that individuals i ∈ {1, ..., N} in each period t ∈ {1, ..., T} are randomly
exposed to treatment θ ∈ {0, 1}, and that choices are nested in individuals i. Yet

4Of course both only holds if the statistical model is linear.

6

finite mixture models for panel data are difficult, at least if one wishes to estimate a
random effects model. The individual specific error ui is itself a random latent variable.
One would be forced to integrate out latent variables in two dimensions (types, and
individuals). One way out is adding dummies for individuals to x in (2) (Deb and
Trivedi, 2013).5 Another option is demeaning. But either way one loses the ability to
estimate the effect of time invariant independent variables.

For the approach proposed here, the panel structure of the data is, to the contrary, not
a challenge, but the critical asset. For the approach to work, one must feel confident to
assume that type is a personality variable. The population subdivides into an (initially
unknown) number of types. Each individual is permanently of one and the same type. It
depends on type how the individual reacts to treatment. The approach finally requires
that type induces some within-participant variation. The archetypal illustration is a
time trend that differs across types. Then type can be inferred from development of
individual choices over time. Typical repeated experiments fulfil these conditions. A
classic illustration is a public good. But the approach can also be justified for repeated
market experiments, or for learning experiments. Actually if the researcher does not
have ex ante knowledge about the composition of the type space and cannot pre-classify
participants, detecting characteristic patterns in their choices over time is the only
possibility to partition the type space from the data.

If these conditions are fulfilled, one can proceed in two steps. In the first step one
defines the type space and assigns each individual in the sample to one of these types.
In the second step, one estimates the treatment effect conditional on (estimated) type.

Steps 1-9 of the Algorithm proposed below explain in which ways the panel structure
of the data can be exploited to estimate the type space from the data. This part of the
procedure has two components. One first regresses the choices yit of each individual
on all time varying observed explanatory variables xit (step 3 of the algorithm). This
yields for every participant a series of coefficients βi. These coefficients characterize
the between subjects variance in the data.

The second component uses these coefficients to organize the type space (steps 5-7 of
the Algorithm). The purpose of the exercise is estimating a heterogeneous treatment
effect. Consequently, supervised learning is appropriate. One trains a classification
algorithm on choices yit, as explained by the individual coefficients βi. In principle, one
could use any classification algorithm for the purpose, including naive Bayes, nearest
neighbor methods, support vector machines or neural networks (for a very accessible
introduction to these methods see James et al., 2013). Yet a classification tree CART
is appealing for two reasons: the classification is straightforward to interpret, and there
are well-validated methods for defining the depth of the tree, and thereby the estimated
number of types in the population (Breiman et al., 1984; Strobl et al., 2009).

CART recursively partitions the data, such that each split explains as much variance
5The workaround only works though if the panel is sufficiently long. Otherwise one runs into the

incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000).

7

as possible. Hence at the first split, CART uses each coefficient in β. If coefficients
are continuous, CART not only tries out each coefficient, but each cutpoint on each
coefficient. This first step creates a tree with one node and, consequently, two branches.
CART repeats the procedure and, separately for each branch of the tree, finds the
(cutpoint at the) coefficient that explains most of the remaining variance. The standard
CART algorithm first grows the complete tree, and then "prunes" it, to find the optimal
balance between exploiting the information in the sample, and overfitting. The method
proposed here uses this approach to find the optimal number of types. The method
is appropriate for partitioning the type space, as one only has the sample to estimate
the type space in the population. Hence one has reason to be concerned about putting
too much stress on unsystematic features of the sample. One needs to strike a balance
between underusing and overusing the information present in the sample.

A tree that yields three types might for instance have a first split at β0 < 2, and a
second split for the right branch of the tree at β1 < 5. These splits can be used to assign
participants to types. All participants with β0 < 2 are classified as k̂1. Participants
with β0 ≥ 2 and β1 < 5 are classified as k̂2, and participants with β0 ≥ 2 and β1 ≥ 5 are
classified as k̂3. Note, of course, that types are estimates. Each participant is assigned
to the type that she is most likely to adhere to. To make the estimated character
apparent, I use the k̂ notation.

One uses these estimated types to predict the dependent variable conditional on type
(step 10 of the Algorithm). If treatment is within-subjects, this step also yields an esti-
mate of treatment conditional on type. If treatment is (exclusively) between-subjects,
one needs supplementary information, or must make assumptions, for matching un-
treated and treated types (step 11 of the Algorithm). In the final step (step 12 of
the Algorithm) treatment effects conditional on type can then be recovered by way of
postestimation. One uses Wald tests to estimate the treatment effect, separately for
each type.

As, in step 10 of the Algorithm, one can treat participants as if one had always known
their type, it is easy to capture the dependence structure by splitting up the error into
ui+εit, i.e. by estimating a random effects model. This is particularly helpful if, as often,
the data not only comes from a repeated, but from a repeated interactive experiment.
Then choices are nested in individuals who are themselves nested in groups g.6 This
dependence structure can be captured by ug + ugi + εgit, i.e. by a mixed statistical
model that distinguishes between the "fixed" effects x and the series of (assumedly
orthogonal) random error terms (where g stands for the group).

Algorithm

1. Let D0 be a panel with dependent variable yit, and explanatory variables xit that
include treatment θi (which may differ over repetitions, i.e. may be θit)

6If groups are rematched during the experiment, g must stand for the matching group from which
the rematching is done.

8

2. initialize β

For every participant do

3. regress yit on all time varying xit

4. collect participant id and all βi in separate data frame D1

EndFor

5. merge D1 with D0 on id

6. fit classification tree of yit on β

7. use standard algorithm to define optimal depth of tree

8. use optimal tree to assign type to each participant

If treatment is between subjects

9. split estimated types into treated and untreated cases

EndIf

10. estimate panel version of (1)

If treatment is exclusively between subjects θi

11. match untreated and treated types

12. use postestimation for estimating treatment effects conditional on type

EndIf

The approach combines a non-parametric first step (CART) with parametric estimation,
using the types predicted in the first step as explanatory variables in a parametric
model (the random or mixed effects model explaining choices with type and treatment).
Such two-step estimators are routinely used in other areas, like selection models or
semiparametric regression. Coefficients estimated in the second step are consistent,
provided the first step yields a consistent estimate of the input into the second step
(Greene, 2003, Chapter 17.7). In general, CART consistently estimates the type space
(Breiman et al., 1984, Chapter 12), although proofs still seem to be missing in case
the tree is trimmed with pruning (Toth and Eltinge, 2011), which is desirable to avoid
overfitting (and proposed in step 7 of the Algorithm).

Yet the literature about two-step estimators is usually not concerned about the con-
sistency of the estimates for the coefficients, but about standard errors. If one uses
maximum likelihood for the second step, this is limited information maximum likeli-
hood, not full information maximum likelihood. In the second step, one uses a predicted
value from the first step, and ignores the noise inherent in estimating the first step. If

9

both steps are parametric, one can correct standard errors in the second step, using
the procedure developed by Murphy and Topel (1985). Yet this method needs a vari-
ance covariance matrix from the first step, which is unavailable for non-parametric first
steps. If the non-parametric method has a close parametric equivalent, one can take
the variance covariance matrix from auxiliary estimation of this parametric alternative
(Ackerberg et al., 2012). But there is no close parametric equivalent to CART. Yet on
closer scrutiny, this is a second order problem. The first order difference between (full
information maximum likelihood) finite mixture and the method proposed here is the
way how individuals are assigned to types. While a finite mixture model calculates the
probability of participants with a certain vector of choices and covariates to be of any
of the estimated types, CART assigns each participant to one defined type. Hence with
a finite mixture model, assignment of type is probabilistic, while it is deterministic with
CART.

In the Appendix I propose a safeguard that at least partly addresses the concern. I
exploit the fact that the development of choices over time is used to characterize indi-
viduals (and have assumed that types are nested in individuals). For each participant,
this development may be more or less consistent. The degree of consistency can directly
be read off the standard errors of the local regression. Hence for each input into CART
I not only know parameters (the coefficients of the local regression), but also have a
measure for the confidence in these parameters. I propose an alternative version of
the algorithm that weights the information about the individual participant with the
inverse of the standard error from the respective local regression. That way the more
the information about a participant is precise the greater its impact on the partition of
the type space.

4 Simulation

In this section, I show with simulated data how the approach works. The R code for
performing the analysis is available in the Appendix, so that researchers can use the
code to adapt the approach to their own experimental data. The simulation is for a
between subjects treatment, to also demonstrate the additional steps needed in this
case.

In the simulation, N = 400 individuals are observed for T = 10 periods each. Half of the
individuals are treated (θi ∈ {0, 1}),7 and individuals are of types ki ∈ {1, ..., 4}. Types
differ in their reaction to treatment. Specifically, dependent variable yit is generated
according to (4)

yit = 4 + 2 · (3− ki) · θi · t+ ui + εit, (4)
7When generating the data using (4), θi is not coded as a (zero-one) dummy variable as otherwise

all untreated observations would be identical. Yet for facilitating interpretation, in the final dataset,
θi is recoded as a dummy variable.

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●
●

●

●

● ●
●

●
●

●
●
● ●

● ●

●
● ●●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●
●

●

●●

●
●

●

● ●

●

●

●

●

●
●

● ●
●● ●

●
●

● ●
●

●

●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●
● ●

●

●

● ●
● ●

●
● ●

●

●
● ●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●
● ●

●
●

● ●
●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

● ●

● ●
●

●

●

● ●

● ●

●
● ●

● ●

●

●
●

● ●
●

●
●

●
●

●

●

● ●

●●●
●

●
●

●
● ●

●

● ●

●
● ●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
● ●

●

● ●

● ●

●

●

● ●

● ●

●
●

●
●

● ●
●

● ●
●

●
●

● ●

●

●

● ●

●
●

●

●
●

● ● ●
●

● ●
●

●
● ●

● ●
● ●

● ●
●

● ●

● ●
●

●

●
●

● ● ●

●
●

●●

● ●
●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

● ● ●

●

●

● ●
●●

●●

●
●

● ●

●●
●

●
●

● ●
●

●
● ●

●
●

●
●

●
●

●
● ●

●
● ●

●
●

●
●

● ●●

● ●

●

●
●

●

●
● ●

●

●
● ●

● ●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

● ●
●

●

● ●
●

●
● ●

●

●

●

● ●

●
●

●
● ●

● ●●● ●

● ●

●

●

●
● ●●

●
●●●

●

●

● ● ●●●
●

●● ● ● ● ●

●
●

●
●

●
● ●●

● ● ● ● ● ●

●●● ●
● ● ●

● ●
● ● ●

● ●
●

●
●

● ● ● ● ●
● ● ●● ●

●

● ●
●

●● ● ● ●
●● ● ● ●

● ●
● ●

●
●●●

●
● ●

● ● ● ● ● ● ● ●
●

●
● ● ●

●

●

●
● ● ● ● ● ● ●

●

●
●

●
● ●

●
●●

● ●
● ●

●
●

●
●

●
●

● ●● ●●
● ● ●● ● ● ●

● ● ● ● ● ●● ●
● ●

●●

●

● ● ● ●
●● ●
● ● ● ● ● ●

●●
● ● ● ●

● ●
● ●

●
● ● ● ● ●

●
●

●
●

● ●
● ● ●● ● ●

●
●

●●
● ● ● ●

●
●

● ●
● ●

● ●
●

●

●
●● ● ● ●●

● ● ●● ● ● ● ● ●
●

●

●
●● ● ●
●

●●
● ● ●

●
● ●

● ● ●
●

● ●
● ●●

●● ●

●

●
●

●
● ●

● ● ● ●
●

●●
● ● ●

●

● ● ● ●
●

●

● ●
● ● ●

● ● ●
●●

●
● ●

●
●● ●

● ●●
● ● ● ● ●
●

● ●
● ●●

●
● ●

●● ● ●● ●●●
● ●● ● ● ● ● ●● ● ●●

●
●

● ● ● ●●
● ● ●

● ●● ● ● ●
● ●

● ●

●

●

●

●
●● ●

● ● ●●
●

●
●

●

● ●●
●
● ●●● ●●

●
●

●
●●

● ●
● ●

●
● ● ● ●

●
● ●

● ●
● ● ●

●
● ● ●●●

●●● ●
●●● ●

●●
●●

●

●● ●
●

●●

●●
●

● ● ●●

●
●●● ●●● ●●● ● ●

●
●
●

●
●●

● ●
●

●
● ●

●
●

● ●● ●
●

●
●

●

●
● ●

●●
● ● ●●

●

●● ● ●● ●● ● ●● ● ●
● ●● ●

●
●
●● ●
●

●●
●

●
●● ●

●●

●
●
● ●

●
●

●
●

●●
●

●
●
●

●
●

●
●

● ●● ●
●● ●

●
●

●
●●● ● ●●

●● ● ●
●●●

●●●
●● ●●

●

● ●●●●
●● ●● ●●

●● ●
● ●●

● ●
● ●

●
● ●● ●

●
●

●
●

●

● ● ●● ●● ●
●

● ●
●●
●

●
● ● ●● ●●●●

●●●
●

●● ●

●

● ● ● ● ●
●
● ●

●

●
● ● ● ●●● ●

●
● ● ●● ●

● ●
●

●
●

● ●●

● ●

●
●

● ● ●
●

●● ●
●

● ●

●
● ●

● ●●
● ● ●

●
● ● ●

● ●
●●●

●

● ● ● ●
●

●●
● ●● ●● ●●

● ● ●●● ● ●●●
● ● ● ●● ● ●

● ●

● ●

● ●
●

●
● ●

● ●

● ●

● ●●
●

●
● ●

●●
●● ● ●

●
● ● ●

● ● ●● ● ● ●
● ●

●
●● ●●

●
●

●

● ●
●

●
● ●● ● ● ● ●● ● ●

●

●
● ●

● ●
● ● ● ● ● ●●

●
●

●●
●

●
●

●
●●

●
●

● ●
●

●
● ●

●
● ● ●●●
● ● ●●

● ●
● ● ● ●

● ● ● ●● ●
●

●●● ●

●
●

●
●

● ● ●
● ● ● ●

● ●●
●

● ● ●●● ● ●
●

●
● ● ●

● ●
● ● ● ●● ● ● ● ● ●●

● ● ● ● ●
● ● ●

●● ● ● ●
●● ●

● ● ●●
●

●
●

●
●

● ● ● ●
● ● ● ● ●

● ● ●
● ●●

● ● ●
● ● ● ● ● ●● ●

●
●

●● ● ●
● ●

●●
●

●
●

●●● ● ●● ● ● ● ●● ●
● ● ● ●

●
● ● ●

●
●

● ●●
● ●

● ●
● ●●

●
● ●

● ●
●

● ● ●
● ●

● ●
● ●● ● ●●

●●
●●● ●

●
●

● ●●
●

●
● ●

●●
●

●
●
● ●

● ●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●●●
●

●
●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●● ●

●

●

●

●

●●
●

●
●

●
●

●

●
●

● ●

●

●
●

●

●

● ●

●

● ●
●

●
●

●

● ●

●
●

●
● ●

●

● ●●
●

●●

●

●

●
● ● ●

●

● ●
● ●●
● ●

●

●
●

●
●

●
●

●

●

● ●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●

●
● ●

●
● ●

● ●
●

● ●
●

●
●

●
●

●●

●

●

● ● ●

●

●
●

●
●

●
●

● ●
●

●
●

● ●

●

●
●

●
● ●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
● ●

● ●

●
●

●
● ●

●
●

● ●
● ●

●

●
●

●

●●
●●

● ●

●

●
● ●

●

●

●
● ●

●

●
●

●
●

●
●

●

● ●
●

●
● ●

●
●

●
●

● ●
●

● ●

●

●
● ●

●
●

● ●

●

●

●
●

●

● ●
●

●
●

●

●
●

● ●
●

●

●

● ●

●

● ● ●

●

●
● ●

●

● ●

●
●

● ●

●
●● ●

●
●

●
● ● ●

● ●

● ●
●

●
●

●

●
● ●

●
● ●

●

●

●
●

● ●

●
●

●
●

● ●

●
●

●
●

●
●

●●

● ● ●
●

●
●

●

●
● ●

● ●

●

●
● ●

●
●

●

●
●

● ● ●

●
● ●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
● ●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

● ●

●

● ●
● ●

●

●
●

●
●

●

●
● ●

●

●

● ●
●

● ●
●

●
●

● ●

●

● ●
●

●
● ●

●

● ●

● ●
●

●
●

●
●

● ● ●
●

●
●

●

● ●

● ●
●

●
●

● ●

● ●

●
● ● ●

●

●
● ●●

● ●

● ●
●

●

2 4 6 8 10

−
40

−
20

0
20

40
60

80

period

y
●

●

untreated

treated

Figure 1: Simulated Data Pooled

where individual specific error ui ∼ N (0, 1) captures dependence within individuals,
and εit ∼ N (0, 1) ⊥ ui is residual error. Figure 1 shows that the dependent variable
seemingly exhibits 6 different groups. Both extremes come from treated data. Two in-
termediate arrows purely come from untreated participants. The remaining two arrows
are mixed from treated and untreated participants (black and red circles overlap).

Comparing the regression in Table 1 with Figure 2 shows that ignoring the heterogeneity
yields a very misleading picture. The regression finds overall a significant positive time
trend. Yet this only holds for 2 of 4 types, while the trend is negative for type 4 and
close to 0 for type 3. Likewise the interaction between treatment and the time trend is
misleading. Overall it is again significantly positive. But this effect is driven by types
1 and 2, while the treatment effect is actually negative for type 4, and again close to 0
for type 3.

If this were experimental data, one would only have Figure 1. It clearly suggests
patterned heterogeneity. But it is hard to guess the number of types: two, as there
are some with a positive and some with a negative trend? Three, as there are two
arrows that clearly separate untreated and treated cases? Or four, as is indeed the data
generating process?8

8In an experiment, random assignment would exclude 6 types, as there could not be selection of

11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●
● ●

●
●

●

●

●
●
●

●
●

●●
●

● ●
●

●
●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●
●

●●

●
●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

2 4 6 8 10

20
40

60
80

type 1

period

y

●

●

untreated

treated

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

● ●

●
● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

● ●

●

●

●

●

●

●

● ●

●●
●

●
●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●
● ●

●

● ●

●

●
●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●
●

● ●
●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

● ●

● ●
●

●

●

● ●

● ●

●
● ●

● ●

●

●
●

● ●
●

●
●

●
●

●

●

●
●

●●●

●

●
●

●
● ●

●

● ●

●
● ●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
● ●

●

●
●

● ●

●

●

●
●

● ●

●
●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
● ●

●

● ●

●

●
● ●

● ●
● ●

●
●

●
●

●

● ●

●

●

●
●

● ● ●

●
●

●●

● ●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ● ●

●

●

● ●
●●

●●

●
●

●
●

●●
●

●
●

● ●
●

●

● ●

●
●

●
●

●
●

●
● ●

●
● ●

●
●

●
●

● ●●

● ●

●

●
●

●

●

●
●

●

●
● ●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●
●

●

●
●

●

●
● ●

●

●

●

● ●

●
●

●
● ●

● ●
●● ●

● ●

●

●

●
● ●

●

●
●●●

●

●

2 4 6 8 10

0
10

20
30

40

type 2

period

y

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●● ● ●

●

●●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

● ●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●● ●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●
●

●
●

●

●
● ●

●

●

●

●

●
● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

● ●

●

●
●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

2 4 6 8 10

0
2

4
6

8

type 3

period

y

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

● ●

●
●

●

●

● ●

●

●

●
●

●
●

● ●●

●

●●

●

●

●
● ● ●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●
●

●

● ●
●

● ●

●

●
●

●

●

●●

●

●

● ●
●

●

●
●

●
●

●
●

● ●
●

●
●

● ●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

● ●

● ●

●

●
●

●

●●
●●

● ●

●

●

● ●
●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●
●

●

●
●

● ●
●

●
●

●

●

● ●

●
●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●
● ●

●

●

● ●
●

●
●

●
●

● ●

●
●● ●

●
●

●
● ●

●
● ●

● ●

●
●

●

●

●

● ●
●

● ●

●

●

●
●

● ●

●

●
●

●
● ●

●
●

●

●

●
●

●●

●
●

●
●

●
●

●

●
● ●

● ●

●

●

● ●

●
●

●

●
●

● ● ●

●

● ●
●

●

●
●

●
●

●
●

●

●

● ●

●
●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●
●

●
●

●
●

●

●

● ●

●

●
● ●

●

●
●

● ●
●

●
●

●

●

● ● ●
●

●

●

●

● ●

●
●

●

●
●

● ●

● ●

●
● ● ●

●

●
●

●●

● ●

● ●
●

●

2 4 6 8 10

−
40

−
30

−
20

−
10

0

type 4

period

y

Figure 2: Simulated Data by Type

12

θ -0.001 (2.061)
t 0.987∗∗∗ (0.084)
θ ∗ t 1.009∗∗∗ (0.118)
cons 4.057∗∗ (1.457)

N 4,000

Linear model with
individual random ef-
fect. Standard errors in
parenthesis. ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001

Table 1: Pooled Random Effects Model

As the simulated data generation process is so clean, the correct finite mixture model
with four types converges and yields results that closely match (4), Table 2. Yet note
that the model ignores dependence at the individual level.9 As the data is simulated,
I can compare estimated with true type. For that purpose I classify an individual to
be of the type with the highest posterior probability. The estimate is correct in 96.53
% of all cases. The root mean squared error is 0.0059, which is even considerably less
than in the original data, where it is 1.427.10

type 1 type 2 type 3 type 4
pk 25.25 24.88 24.94 24.93
t 4.013 1.985 -0.003 -1.994
θ 0.315 -0.086 0.105 0.102
θ · t 3.968 2.018 -0.000 -2.006
cons 3.864 4.040 4.101 3.812
Linear finite mixture model, assuming 4
groups, and treating all data points as in-
dependent

Table 2: Finite Mixture Model

I now contrast this result with the result generated applying the Algorithm. The only
variable that varies within participants is time t ∈ {1, ..., 10}. I therefore, separately
for each individual, estimate

types into treatment.
9Given each participant is assigned to either baseline or treatment for the entire sequence, one

can also not emulate a fixed effects model by adding participant dummies: they would be perfectly
collinear with the explanatory variable of interest, i.e. the interaction between k and θ. As treatment
is exclusively between subjects, the treatment effect would also drop out with demeaning.

10This betrays a certain degree of overfitting: the finite mixture model "explains" some of the noise
in the sample.

13

yt = β0 + β1t+ εt. (5)

This step yields a new dataset with two scores per participant, β0 and β1, plus the
observed outcomes yit, and a user identifier. I use these scores to build the regression
tree of Figure 3.11 Two things are remarkable: the tree exclusively uses β1, i.e. the
individual slope coefficients, and it finds 6 types, i.e. the six distinct arrows of Figure 1.

Now θ is observed as well. If a type proposed by CART encompasses treated and
untreated cases, one must split it up. Actually four of the types generated by CART
exclusively cover treated or untreated cases. Taking this into account, the final set of
types consists of eight types, four treated, and four untreated. Actually, CART finds a
type space with the exact same frequencies as in the simulated data generating process,
i.e. 50 participants per condition.

In the next step I estimate (6), where k̂i is one of the 8 estimated types.

yit = γ0 + γ1tit +
8∑

k=2

γk1(k̂i = k) +
8∑

k=2

γ2k1(k̂i = k) · tit + ui + εit. (6)

Table 3 shows that the procedure works well. Type main effects are all insignificant,
as they should, given the data generating process of (4) starts at the same point,
irrespective of type. The coefficient of t captures the time trend for the first type (it
corresponds to type 4 in Figure 2, for the untreated participants). The interaction
effects define how much the time trend for each of the remaining estimated types k̂i
differs from the time trend in the first type.

In the simulation, treatment exclusively affects slopes. Consequently the algorithm
exclusively uses β1 for classification. I assume that types are characterized by the
proximity of slopes. This implies that type is assumed to be more important than
treatment. Personality is the dominant factor, which is only moderated by treatment.
As this is how I have simulated the data, I know that this will allow me to find the gen-
erated types. In a real experiment, it would of course depend on background knowledge
whether this assumption seems well founded.

t · k̂2 captures the treatment effect of type 4 in Figure 2. To test the treatment effect
for the remaining types, I can use Wald tests. t · k̂3 and t · k̂4 capture the treatment
effect for type 3 in Figure 2. As expected, slopes are practically identical (the difference
is 0.012), and the difference between the interaction effects is insignificant (p = .591).
Untreated and treated cases corresponding to type 2 in Figure 2 are captured in the
regression by types k̂5 and k̂6, respectively. The difference in slopes between treated

11I use the tree command of R’s library tree. It uses the Gini coefficient as the impurity measure,
and cross-validation to find the tree depth with the optimal tradeoff between bias and variance. If
users want more flexibility and control in growing and pruning the tree, they can switch to the rpart
package. There is also a helpful manual for that package (Therneau et al., 2010).

14

|
beta1 < 0.999002

beta1 < −1.03757

beta1 < −3.018

beta1 < 6.04078

beta1 < 2.99107
−18.100 −7.130

 4.138

 15.020 25.970
 48.070

Figure 3: Regression Tree from Scores of Local Regressions

15

and untreated cases of this type is estimated to be 2.048, p < .001. Finally untreated
and treated cases of type 1 in Figure 2 are captured in the regression by types k̂7 and
k̂8, respectively. For this type, the treatment effect is estimated to be 3.991, p < .001.

t -2.005*** (0.016)
k̂2 -0.036 (0.247)
k̂3 0.248 (0.247)
k̂4 0.261 (0.247)
k̂5 0.355 (0.247)
k̂6 0.026 (0.247)
k̂7 0.132 (0.247)
k̂8 0.266 (0.247)
t · k̂2 -1.988*** (0.022)
t · k̂3 1.997*** (0.022)
t · k̂4 2.008*** (0.022)
t · k̂5 3.963*** (0.022)
t · k̂6 6.012*** (0.022)
t · k̂7 5.998*** (0.022)
t · k̂8 9.988*** (0.022)
cons 3.900*** (.175)
N uid 400
N obs 4000

Linear random effects
model, based on estimated
types. Standard errors
in parenthesis. ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001

Table 3: Two-Step Approach: Final Model

Figure 4 shows that the local regression approach predicts the data very well. The
predicted values from (6) not only reconstruct the six arrows from Figure 1. The
predicted values even sit close to the midpoint of the local distribution of y. The root
mean squared error of 1.427 is almost perfectly identical with the root mean squared
error of the simulated data, which is 1.429.

5 Performance and Robustness

The previous section demonstrates the logic of the approach, and shows that it works
well with one simulated dataset. Yet this dataset uses one specific set of random

16

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

● ●

●

●

●
● ● ●

●
●

●
●

● ●

●
●

●
● ●

●

● ●
●

●

● ●

●

●

● ●
● ● ●

●

●
●

● ● ●
●

● ●
●

●
● ● ●

●
● ●

●
● ● ●●

●
● ● ●

● ● ●

●

●● ●
● ● ● ● ●

●
●

●

●

●

●

● ● ●
●

●

●
●●

● ●
●

●
●

●

●
● ●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

●

● ●

●
● ● ● ●

●

●
●

●
●

● ● ● ●

● ●
●

●
●

● ● ● ● ●

●
● ●

●●
● ●

●
● ●

●
●

●
●

●
● ● ●

●
●

● ● ●
●

●

● ● ●

●

●
●

● ● ●
●

●
●

●

●
● ●

● ● ●
●

● ●
●

● ● ●
●

●
●●

●
● ● ●

●
●

● ● ●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

● ● ● ●
●

●

● ●
● ●

●
●

●
●

●
●

● ●
● ●

●
●

●
●● ● ● ●

●
●

● ●
●

●
●

●
● ● ● ●

●
●

●
●

●
● ● ●

●

● ● ●
●

●

● ●

●

● ●
● ● ●

● ●● ●

●
● ●

●
● ●

● ●●

● ●
●

●
● ● ● ● ●●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
● ●

●
●

●
●

●

● ●

●
●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
● ●

●
●

●
●

●
● ●

●
● ●

● ● ● ● ●●
●

●

● ●

●
●

● ● ●

●

●
●

●
●

●
● ● ● ●● ●

● ●
● ● ● ●

●
●

●

●

●

● ● ●
●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
● ●

●

●

●
●

●

●

●

●

●
●

● ● ● ●

● ●

●

●

●

●
● ● ●

●● ●
● ●

●
● ● ●

●

●

●
●

●
●

●

●

● ●
● ●

● ●

●
●

●

●
● ● ● ●

●
● ●

●

●
● ● ●

●
●●

● ●
●

●
● ●

● ●

●

●
● ●

● ●

●

● ●
●

●
●

●
●

●
● ●

● ●
●

●

●
●

●
●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●
● ●

●
●

●

●

● ●
● ● ● ●

● ●
●

●

●
●

●
●

● ●●
● ●

●
●

● ● ● ●
●

● ●

●

●
● ●

●
● ● ●●

●
●

●
● ● ● ●

●

●

●
●

● ● ●
●

● ●
●

●●
● ●

● ●
●

● ● ● ●● ●
●

●

●

● ●
●

● ●
●

●
● ● ●

●
● ●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

● ● ●

●

●

● ●
● ●

●
●

●

●

●

●
● ●

● ●● ●
●

●
●

●
●

● ●
●

●
● ● ● ●

●
● ●

●
●

●
●

●

●
● ● ● ●

● ●
●

●
● ● ● ● ●

●
●

●

●
●

●
●

● ● ●

●
●

●●

●

●

●

●
●

● ● ●
●

●
● ● ● ●

●
●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●
●

● ● ●
●

● ●
●

● ●
● ● ● ●● ●

●

● ●
●

●

●

●

●
●

●

●
● ● ● ●

●

●

●

●

●

● ● ●
●

● ●
●

●
●

● ●
●

● ● ●
●

●
●

●

●
●

● ● ● ● ●
●

●

●
●

●

● ●
●

●
● ●

●

● ● ●
●

● ● ● ● ●
●

●

●

●

●

●

● ●
● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
● ●●

●
●

●
● ● ●

●
●

●
●

● ● ●
●

● ●
●

●

●

● ●
● ● ●

●

● ●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
● ●

●
●

●
●

●

●
●

●
●

●
● ● ● ● ●

● ●

●

●
● ● ●

●

●

●
● ●

●

● ● ●
●

●
● ●

● ●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●●
●

● ●
●

●

● ● ●
●

● ● ●
●

● ●
●

●

●
●

● ● ●

●

● ● ●
●

●
●

●

●

●

●

● ● ●
●

●

●● ●
●

●

●

●
● ●

● ●● ●

● ●

●
● ● ● ● ●● ●

●

●
● ●

●
● ●

●

●
●

●
●

●

●

●

● ●

●

●
● ●

●
● ●

● ● ●
●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

2 4 6 8 10

−
40

−
20

0
20

40
60

80

local regression approach

t

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

observed

predicted

Figure 4: Raw Data and Predicted Values from Two-Steps Approach

17

variables,12 and for expositional reasons it works with a very clean data generating
process. This section investigates the performance of the proposed two-step estimator,
both in comparison with the simulated data generating process and with the alternative
to use a finite mixture model. Specifically I rerun the original data generated process 500
times, and I draw 500 samples each of 11 potentially more challenging data generating
processes.

In these robustness checks, I alter the data generating process in the ways defined in
Table 4:

1. panel length: In the original data generating process, the panel is reasonably
long (T = 10). If the panel is shorter (T = 5 or T = 3), there is less scope for
inferring types from the development of choices over time. For that reason type
information is more noisy.

2. noise: The main simulation fixes σu = 1, σε = 1. In the next step I test whether
the two-step estimator still works well with either σu = 2 or σε = 2.

3. random coefficients: In the main simulation, there is individual-specific error
ui, on top of residual error εit, but the individual specific error affects levels of
choices, not slopes, while types affect slopes, not levels. I change this by an
additional noise term ηi for slopes with ση ∈ {1/10, 1/5}.

4. distribution of the error term: Finite mixture models are estimated with
maximum likelihood. The researcher must therefore specify the distribution of
error terms, and of the distribution of types in the population in particular. By
contrast the two-step approach finds the type space with CART and must not
make distributional assumptions. I investigate in which ways the misspecification
of the distribution of individual specific error ui affects the comparative perfor-
mance of either approach, by replacing normality with a uniform distribution in
the interval [−2, 2], or by a skewed β-distribution with shape parameters 10 and
2.

5. kinked DGP: One reason why choices change over time is learning. Now one
plausible type of learning stops if individuals believe they have understood the
task. I capture this possibility by either letting the more moderate type 2 of
Figure 2 or the extreme type 1 stick to the choices they have individually made
in period 5 for periods 6-10.

6. misspecification of dynamics: The two-step approach critically relies on the
information about types contained in the intercept and the slope of the develop-
ment of choices over time, separately for each individual. In the final simulation I
investigate how the approach fares if the data generating process is misspecified.

12By fixing the seed in R at 1234.

18

I do so by introducing a quadratic term and assume that it is undetected when
analysing the data.

A desirable property of an estimator is prediction accuracy. As Figure 5 shows, in this
respect the two-step estimator clearly outperforms the finite mixture model. Irrespec-
tive of the definition of the data generating process, the two-step estimator is nearly
perfect (the mean prediction error is nowhere larger than 0.000000000001). By contrast
in many random samples, the prediction error of the finite mixture model is substantial.

Interestingly, the prediction error in an FMM is the higher the longer the panel: with
T = 10, the second mode of the distribution is near -.5, while it is near -.35 with
T = 5, and near -.25 with T = 3.13 This is in line with the observation that the
finite mixture model ignores the dependence at the individual level. The longer the
panel the more important this omission. Increasing ui or εi has virtually no effect on
the accuracy of the finite mixture model: the density curves for these treatments are
almost perfectly masked by the density curve for the original data. Random slopes
have opposing effects on accuracy. The second mode of the distribution shifts closer
to 0. This reduces the prediction error. Yet the first mode shifts away from 0. This
increases prediction error. The latter effect is much more pronounced with ηi = 1/5.
Interestingly, prediction accuracy is higher, not lower, if ui ∼ U [−2, 2] or ui ∼ B(10, 2).
The fact that, in estimating the finite mixture model, error has been assumed to be
normal does not hurt. The fact that choices of one type are kinked does also not reduce,
but even slightly increase prediction accuracy. Whether the kink affects a moderate or
an extreme type is immaterial: the density curves for both simulations are practically
identical and therefore superimposed. Finally overlooking a quadratic term in the data
generating process does even lead to the most accurate predictions. Note, however,
that even in this best performing case a substantial fraction of the predictions are
inaccurate. The inaccuracy is only smaller than in other specifications of the data
generating process.

An alternative performance criterion is the fraction of types that have been wrongly
classified. As Figure 6 shows, for most specifications of the data generating process,
the two-step estimator also outperforms the finite mixture model in this respect. While
the fraction of misclassified types is minuscule when the two-step approach is used, it is
substantial in the corresponding finite mixture model. Yet with some data generating
processes, the two-step model also has problems. The problem is most pronounced if
the panel is short (T = 3, mean fraction of wrongly classified types 10.68%, maximum
22.75%). The problem is similar with pronounced random slopes (ηi = 1/5, mean
fraction of wrongly classified types 8.48%, maximum 17%), and it remains discernible
if a quadratic term in the time trend is ignored (mean 0.64%, maximum 12.75%).14

13The fact that mean prediction error is much more likely to be negative than positive follows from
the asymmetry in the data generating process. There are two types with a positive slope, one of which
is pronounced, and only one type with a moderately pronounced negative slope.

14The graph is capped at density 20, as the fraction of misclassified types is 0, or close to 0, for most

19

T σu σε ση ∼ kink t2

1 original 10 1 1 0 N 0 0

2 panel
length 5 1 1 0 N 0 0

3 3 1 1 0 N 0 0
4 noise 10 2 1 0 N 0 0
5 10 1 2 0 N 0 0

6 random
coefficient 10 1 1 1/10 N 0 0

7 10 1 1 1/5 N 0 0
8 distribution 10 NA 1 0 U
9 10 NA 1 0 β 0 0
10 kinked 10 1 1 0 N type 2 0
11 10 1 1 0 N type 1 0
12 dynamics 10 1 1 0 N 0 1

Table 4: Performance and Robustness
500 simulation runs per each of the 12 conditions. T number of periods. σ standard
deviation of normally distributed error term with µ = 0, for individual specific error u,
residual error ε and error term η introducing randomness into slopes. ∼ distribution

of u as either normal (N), uniform with range [−2, 2] (U) or beta with shape
parameters {10,2} (β). Kink for either type 2 or type 1, such that choice in period 5
is kept constant for remaining types. Dynamics: choices develop with 1/20 ∗ t2, which

is not taken into account in local regressions.

20

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
10

overall accuracy FMM

mean prediction error

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−5e−13 0e+00 5e−13

0e
+

00
2e

+
12

4e
+

12

overall accuracy two−step

mean prediction error

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

Figure 5: Prediction Accuracy
left panel: finite mixture; right panel: two-steps

In the original data generating process, a finite mixture model gets the type space quite
frequently wrong, with modes near a quarter and a third of all cases. This is similar
with σu = 2 and σε = 2: the three density curves are superimposed. While prediction
accuracy was better the shorter the panel, the opposite holds for the accurate estimation
of the type space. The fraction of wrongly classified types is highest with T = 3, lower
with T = 5, and lowest with T = 10. If the randomness in the reaction of individuals to
time is more pronounced (ηi = 1/5), misclassification becomes more frequent than with
ηi = 1/10. Again the fact that maximum likelihood assumes normality does not hurt.
Actually the classification of types is even better than in the original data generating
process if ui is taken from a uniform or from a beta distribution. A kink in the reaction of
one type to time is also not causing massive misclassification, while ignoring a quadratic
term in the reaction time does lead to the most substantial misestimation of the type
space.

−0.2 0.0 0.2 0.4 0.6

0
2

4
6

8
10

missed types FMM

mean miss

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−0.1 0.0 0.1 0.2 0.3

0
5

10
15

20

missed types two−step

mean miss

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

Figure 6: Fraction of Misclassified Types
left panel: finite mixture; right panel: two-steps

A final performance criterion is the bias in estimating the treatment effect, conditional
on type. In the finite mixture model, the predicted treatment effect can be directly
read off the coefficient for θ · t (see Table 2). In the two-step estimator, for the first

data generating processes, and hence the density extremely large at 0. The flat line for the skewed data
generating process results from the fact that misclassification is almost perfectly normally distributed
around mean 0 in this case, with minimum and maximum also very close to 0.

21

type it is given by t · k̂2. For the remaining types it can be calculated as t · k̂4 − t · k̂3,
t · k̂6 − t · k̂5 and t · k̂8 − t · k̂7, respectively. This prediction can be compared with the
population effect defined by (4).

As Figure 13 in the Appendix shows, in this respect the finite mixture model and the
two-step estimator each have comparative advantages and disadvantages. Depending
on type and on the specification of the data generating process, the distributions of
biases observed in the 500 samples per data generating process differ substantially. The
mean of these biases per condition is not very informative: underestimations of the
treatment effect and overestimations may cancel out. The range can also be misleading
if there are a few outliers in the respective simulation.15 This is why, in Table 5, I
report the width of the interquartile range, i.e. the difference between the bias at 75%
of the respective distribution and the bias at 25%.

The two-step estimator takes type information from the development of individual
choices over time. The shorter the panel, the less information the estimator has. As
Table 5 shows, a panel of length five is still reasonably long. For all types, the two-step
estimator outperforms the finite mixture model, and the misestimation of the treatment
effect still remains rather small. Yet misestimation jumps up if the panel has only length
three, and for three of the four types, the two-step estimator performs more poorly than
the finite mixture model. Results look similar if the development of choices over time is
only observed with error, i.e. if there is randomness in the slopes. Finally the two-step
estimator gets the treatment effect for one of the types wrong if a quadratic term in
the development over time is neglected, but in this condition the finite mixture model
gets the treatment effect for two other types wrong.

However the two-step estimator clearly dominates the finite mixture model in the re-
maining conditions, i.e. in the original data generating process, with a panel of length
five, with more pronounced noise at the individual level or in the residual error. This
also holds if error is taken from a uniform or beta distribution, or if there is a kink
in the development of choices of one type over time. This is interesting as prediction
accuracy and the identification of types had still been good in these conditions when
using a finite mixture model.

The two-step estimator is not a panacea. In some conditions, the finite mixture model
draws a more accurate picture of the population effect. Yet the simulations suggest
that the two-step estimator is at least as good as the finite mixture model if the infor-
mation about the development of individual choices over time is sufficiently rich, and
sufficiently accurate. It will be for the experimenter to decide whether she is confident
that these conditions are fulfilled in her data. Actually if she suspects heterogeneity in
the treatment effect, she can adjust the design and have participants decide for more
periods.

15In Figure 13 the x-axis of several plots is cut at the extremes for this reason.

22

type1 type2 type3 type4
FMM two FMM two FMM two FMM two

1 original .056 .03 .137 .030 1.994 .029 .963 .030

2 panel
length .215 .086 .574 .095 2.089 .096 .926 .091

3 .604 1.853 1.528 10.498 2.315 2.176 1.032 2.291
4 noise .115 .031 .278 .038 2.036 .030 .937 .030
5 .131 .006 .305 .059 2.053 .057 .957 .059

6 random
coefficient .138 5.976 .106 2.069 2.080 .152 .905 2.031

7 .222 .668 .100 10.469 1.924 3.623 1.151 2.365
8 distribution .058 .029 .180 .029 2.004 .029 .975 .029
9 .040 .029 .073 .030 1.995 .032 .969 .026
10 kinked .056 .030 .137 .030 1.994 .029 .963 .030
11 .056 .030 .137 .030 1.994 .029 .963 .030
12 dynamics .087 2.196 .064 .044 1.410 .033 1.613 .032

Table 5: Misestimation of Treatment Effect
Width of Interquartile Range of Distribution of Bias Estimates

6 Experimental Data

In the final step, I use the seminal contribution of Fischbacher et al. (2001); Fischbacher
and Gächter (2010) to explore the power of the approach with real experimental data.
Fischbacher & Gächter have participants play a standard linear public good, where
payoff is defined by (7).16

πi = 20− ci + .4
4∑
j=1

cj (7)

In (7) πi is payoff, ci is the contribution a participant makes to the public good of a
group of size J = 4. As .4 < 1, it is individually rational to keep the endowment.
Yet as 4 · .4 = 1.6 > 1 it is socially rational that all group members contribute their
entire endowments. The novelty is the use of the strategy method (Selten, 1965). Each
participant makes two contribution choices: one unconditional, and one conditional
on the mean choice of the remaining participants. After the game, the one group
member is randomly determined for whom the conditional choice is payoff relevant.
For this participant, the design removes strategic uncertainty. This provides a clean
test of conditional cooperation: if, but only if, others are holding back the pull of

16As I have used k throughout the paper to characterize types, with a slight abuse of notation in
this equation I use j for any member of the group, including i.

23

Figure 7: Cooperation Types, Fischbacher Gächter Economics Letter 2001, Fig.1
x-axis c−i, y-axis ci solid line is overall mean

selfishness, conditionally cooperative participants are happy to do so as well. This is
indeed what Fischbacher & Gächter find for 50% of their participants. Yet 30% free
ride, and 14% exhibit a peculiar pattern of behaviour: as long as the contributions
of others are moderate, they match them. But if others contribute more than half of
their endowment to the public project, they exploit them, the more so the more they
contribute, see Figure 7.

In their original, frequently cited contribution, Fischbacher & Gächter had only 44
participants. In a later paper, they have repeated the test with a larger sample of
140 participants, and have made the data available (Fischbacher and Gächter, 2010). I
apply my proposed method of organizing the type space to this new dataset.

The research question can be formulated in statistical terms as (8)

cil = β0 + β1c−i + ui + εil (8)

The strategy method exposes participants to a within-subjects design. Treatment con-
sists of the number of tokens the remaining group members on average contribute to
the joint project. There are L = 21 possibilities, ranging l = c−i ∈ {0, ..., 20}. As
the participant in question stays the same, a specification is in order that filters out
unobserved individual idiosyncrasies with the random effect ui. If one estimates (8),

24

0

5

10

15

20

0 5 10 15 20

othcontr

co
nt

r

Figure 8: Fischbacher & Gächter Distribution of Raw Data.
Each participant represented by a separate line

Thickness of lines represents frequency

one finds β0 = .531(p = .201) and β1 = .425(p < .001). This naive model thus suggests
a population of imperfect (β1 < 1) conditional cooperators. Yet Figure 8 shows clear
heterogeneity. Inspecting the figure suggests one relatively clear type: Perfect condi-
tional cooperators. Yet the choices of many participants look very different. Attempts
at estimating a finite mixture model fail as the model does not converge, even if I only
impose 2 or 3 types.

I instead use my proposed method to organize the type space. In this experiment,
treatment is exclusively within-subjects. It consists of the contribution c−i on which
the respective participant i is allowed to condition her contributions. Hence there is no
need to use steps 9 and 11-12 of the Algorithm.

Figure 9 collects the results. It represents mean choices per type. The upper left panel
is resulting from, separately for each participant, regressing cil on c−i. As Figures 7 and
8 suggest the possibility of a non-linear relationship, the upper right panel of Figure

25

1 2 3 4 5 6 7
1 44 1 0 0 0 0 0
2 0 0 0 0 3 3 0
3 13 4 0 0 3 0 1
4 0 0 0 0 2 3 3
5 0 0 3 0 0 0 0
6 0 0 0 3 0 0 0
7 1 6 0 0 6 0 1
8 0 0 0 0 4 1 35
horizontal axis: types based
on local regressions with only
a linear term; vertical axis:
types based on local regres-
sions with a linear and a
quadratic term. Numbers are
frequencies.

Table 6: Type Space in Fischbacher Gächter

7 is derived from local (per participant) regressions of cil on c−i + c2−i. The former
exercise yields 7 distinct types, the latter 8. As Table 6 shows, both methods agree
for the extreme cases (types 1, and types 7 linear vs. 8 quadratic), but disagree in
the intermediate range. Both trees in Figure 11 agree that the slope of the individual
reaction curve (β1 in either local regression) is most important, and hence defines the
first split. Yet the tree based on linear models already splits at moderate inclination
to condition on c−i (β1 = .356), while the tree based on quadratic models requires
β1 = .782. The intermediate range (.356 < β1 < .711) is assigned to a separate type
in the tree based on linear models. For this tree, all finer grained separation is based
on the intercept of local regressions. By contrast, the tree based on quadratic models
uses the coefficient of the quadratic term β2 in the local regressions for classification in
either branch of the tree (for details see Figure ??). There is no statistical reason to
prefer one approach over the other. The choice should depend on the conviction of the
researcher about the importance of non-linearities in the reaction function.

The most instructive graph is, however, Figure 9. For each type, it aggregates over
conditional choices, separately for each possible (mean) unconditional choice. Whether
or not local regressions include a quadratic term (upper right and upper left panels),
the following three types are evident: a type that almost perfectly matches the uncondi-
tional choices; a type that is almost perfectly selfish; a type with very high contributions
even if the unconditional contributions are low. Characteristics of the types in the mid-
dle differ. If one includes the quadratic term in the local regressions, there is a type
that imperfectly matches the unconditional choices; a type that matches very low un-
conditional choices, but then levels off; a type that is selfish if unconditional choices are

26

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●
●

● ●

● ● ● ● ● ● ●
● ● ●

● ● ●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●
● ●

●
● ● ●

●
●

●
● ● ●

●
●

●
●

●
●

●
● ● ● ●

● ●
●

● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

0 5 10 15 20

0
5

10
15

20

linear complete

oth contr

co
nt

r

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ●

● ●

●

● ●

●

●

●

●

● ● ●
●

●
● ●

● ● ● ● ●
● ● ●

●
●

●
● ●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●
● ●

●
● ● ●

●
●

●
● ● ●

●
●

●
●

●

● ●

●
●

●

●
● ● ●

● ● ●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
● ●

● ●

0 5 10 15 20

0
5

10
15

20

quadratic complete

oth contr

co
nt

r

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

● ●
●

●
●

0 5 10 15 20

0
5

10
15

linear 3

oth contr

co
nt

r

●●

●
●●

●

●

1 2 3 4 5 6 7

60
00

0
80

00
0

10
00

00
12

00
00

explanatory power of 3 types

number of nodes

im
pu

rit
y

Figure 9: Types Induced by CART

27

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●● ●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

−5 0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0
1.

5

beta0

be
ta

1

●

●

●

t1

t2

t3

Figure 10: Coefficients of Local Regressions for Tree with Three Types

28

|
beta1 < 0.355844

beta0 < 5.53247

beta0 < 2.16883 beta0 < 15.4524

beta1 < 0.711039

beta0 < −1.83983

 0.6141 4.1470 10.0600 19.3800

 6.1670
 6.8910 9.9870

|
beta1 < 0.782199

beta0 < 4.53783

beta1 < 0.0755074

beta2 < 0.0405733 beta2 < 0.0130465

beta0 < 18.0136

beta2 < −0.0406476

 0.1556 4.6030 3.0880 7.5890

10.0600 19.3800

 6.1020 9.8580

Figure 11: Trees Induced by Local Regression with Only Linear / also Quadratic Term

29

low, but comes closer with higher unconditional choices.

One can make sense of all these types. The optimality criterion of CART suggests
that one would not run an excessive risk of overfitting. Yet the lower right panel of
Figure 9 shows that the loss in precision is low if one only allows for three types.17 The
choice patterns of these three types are shown in the lower left panel. The largest type
(69 participants) is actually the (almost) selfish type. The type that almost perfectly
matches the unconditional choices is a little less frequent (65 participants). There is
finally a small type (6 participants) that makes high contributions, irrespective of the
contributions made by the remaining group members. Note that this partition of the
type space results from a "pruned" tree, with just three final nodes. Hence it assigns all
participants to a type, not only those who exhibit patterns similar to the ones shown
in the lower left panel when allowing for 7 types (upper left panel). This is remarkable
as the reduced type space leads to clearly discernible choice patterns, despite the fact
that it has to assign all participants to one of these three types. Figure 10 shows in
which ways CART defines these three types, simultaneously using the constants (β0)
and the slopes (β1) from the local regressions.

Hence the proposed method corroborates what is often treated as a stylized fact in the
community: the typical experimental community consists of large groups of conditional
cooperators and selfish participants, and a small group of altruists.

7 Discussion

The data from economic experiments often suggests patterned heterogeneity. Reactions
to treatment do not only vary. They seemingly vary in systematic ways. In the long run,
one would wish to theorize the type space, and have reliable measures for classifying
participants into types. But an important first step in the research process is organizing
the type space. In principle, estimating heterogeneous treatment effects is a job for a
finite mixture model. Such a model simultaneously estimates the probability that a
given observation falls into one of the types, and the reaction of participants from this
type to treatment. Yet these models have a number of drawbacks: (a) one must posit the
number of types, and cannot take them from the data; (b) one must make assumptions
about a two-dimensional distribution; (c) experimental data is frequently repeated, and
often also interactive. Finite mixture models have a hard time capturing the dependence
at the individual (and possibly group) level; (d) finite mixture models typically use two-
dimensional maximum likelihood estimation; the datasets from experiments may be too
small for these demanding models to converge.

In this paper I propose a simple two-step procedure to address these concerns. This
procedure exploits the panel structure of many experimental datasets. Separately for

17Impurity is a measure for imprecision, number of nodes refers to the nodes in the (pruned) regres-
sion tree.

30

each participant, I estimate a local (per participant) regression of choices on those
variables that change over time. I use the coefficients from these local regressions to
train a classification algorithm. Specifically I propose to estimate a regression tree that
uses the coefficients from the local regressions to predict choices in the experiment. This
procedure allows to assign each participant to a type. If treatment is between subjects,
I interact this classification with treatment. I propose to use the standard procedure
for regression trees to find the optimal number of types (a). CART is a non-parametric
procedure, and hence does not require distributional assumptions (b). The final step
of the procedure can easily handle random and mixed effects models, as at this point
type need no longer be estimated (c). Splitting up the definition of the type space, and
using type for explaining treatment effects, drastically facilitates estimation, so that in
my trials the model always converged (d).

The proposed approach has a number of limitations that are worth spelling out. Local
regressions require within-participant variation. Hence the method does not work with
one-shot experiments. Yet the variation need not result from reaction to treatment. Any
variation resulting from repeated reactions suffices. It of course is for the researcher to
justify that such variation is meaningful for finding types that exhibit systematically
different reactions to treatment.

The researcher must be confident to assume that type is a personality trait, and hence
does vary between, but not within participants.

Technically, the approach works as soon as each participant is observed more than
once, even if further observations are from supplementary tests, not from the main
experiment. Yet the shorter the panel, or the more remote supplementary tests are
from the main experiment, the less one will be confident that one precisely captures
patterned reactions to treatment in the population.

The approach is straightforward if treatment varies within participants, i.e. in experi-
mental jargon in a within-subjects treatment. If treatment exclusively varies between
subjects, the approach allows to precisely estimate reactions to treatment conditional
on type. One can also precisely estimate the reactions of different untreated types to
change over time. Yet without additional information, or suitable assumptions, one
cannot match one untreated to one treated type. In the simulated data of Figure 1, one
cannot say whether the two upper arrows (clusters) are of one type (as they indeed are
in the simulated data), or whether the uppermost arrow is how one of the other arrows
with black dots react to treatment. If it is important for the interpretation of the treat-
ment effect to get this match right, and if the experimenter suspects a heterogeneous
reaction to treatment, a hybrid design would be appropriate: one not only tests the
treatment effect between, but also within-subjects. Then the within component can be
used for type classification.

At each step, CART implements the binary split of the data that explains most of the
(remaining) variance. If one draws random samples from a larger population, the trees
tend to exhibit some variance. If one is concerned about this possibility, one can use

31

bootstrapping (which the machine learning community calls bagging). The coefficients
from local regressions are usually not hugely different from each other. The more they
are, the more it would be likely that the coefficients with higher variance have a higher
impact on the resulting tree. If one is concerned about this, one can standardize the
coefficients before building the tree. Finally, if one coefficient exhibits higher variance
than another, it likely will receive greater importance in organizing the type space.
For this application, this effect tends to be desirable. But if one were concerned, one
could use the procedure that the machine learning community calls boosting. One
builds multiple trees, and averages types over these trees. Each tree randomly drops
variables from the dataset. Yet if the local regression is simple, as in the examples
presented in this paper, boosting would be inappropriate. One would frequently drop
the information that should be most important for classification. At any rate, both
bootstrapping (bagging) and boosting, i.e. what the machine learning community calls
a random forest, will only yield types. One does not have a single, easily interpretable
tree (for background on bagging and boosting see James et al., 2013).

The local regressions are not meant to predict a population effect. The fact that
a coefficient in a local regression is insignificant is therefore not per se a matter of
concern. The coefficients are just a way to characterize participants (cross sections).
Yet the fact that different participants react in more or less discernible ways to changes
over time may induce a different degree of confidence in this characterization. If different
participants exhibit very different consistency in their reaction to changes over time,
one might want to rely more on the information from participants whose reactions can
be estimated more precisely. Weighted estimation is not standard for CART. Yet one
can emulate weighting by the inverse of precision by multiplying the data, and adding
the more (identical) datapoints the more the individual estimate is precise. For detail,
please see the Appendix.

Arguably, many behavioral traits are not universal. These traits are also not just more
or less pronounced. There are discernible types. One approach is a finite mixture model.
One simultaneously estimates the type space, and reactions to treatment conditional
on type. This paper proposes an alternative simple and robust method, provided the
experiment is repeated. Simulations show that it is more accurate than the finite
mixture model provided type only varies between subjects, and information about the
development of choices over time is sufficiently rich and precise. Experimenters have
an alternative to the finite mixture model at their disposition.

32

References
Daniel Ackerberg, Xiaohong Chen, and Jinyong Hahn. A practical asymptotic vari-

ance estimator for two-step semiparametric estimators. Review of Economics and
Statistics, 94(2):481–498, 2012.

Ahmed Alaa and Mihaela Schaar. Limits of estimating heterogeneous treatment effects:
Guidelines for practical algorithm design. In International Conference on Machine
Learning, pages 129–138, 2018.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, 113(27):7353–7360, 2016.

Nicholas Bardsley and Peter G Moffatt. The experimetrics of public goods: Inferring
motivations from contributions. Theory and Decision, 62(2):161–193, 2007.

Leonardo Becchetti, Vittorio Pelligra, and Francesco Salustri. Testing for heterogeneity
of preferences in randomized experiments: a satisfaction-based approach applied to
multiplayer prisoners dilemmas. Applied Economics Letters, 24(10):722–726, 2017.

Paolo Berta, Salvatore Ingrassia, Antonio Punzo, and Giorgio Vittadini. Multilevel
cluster-weighted models for the evaluation of hospitals. Metron, 74(3):275–292, 2016.

Marco Bertoletti, Nial Friel, and Riccardo Rastelli. Choosing the number of clusters
in a finite mixture model using an exact integrated completed likelihood criterion.
Metron, 73(2):177–199, 2015.

Friedel Bolle, Yves Breitmoser, and Steffen Schlächter. Extortion in the laboratory.
Journal of Economic Behavior & Organization, 78(3):207–218, 2011.

Marco Bonetti and Richard D Gelber. Patterns of treatment effects in subsets of patients
in clinical trials. Biostatistics, 5(3):465–481, 2004.

Stéphane Bonhomme, Koen Jochmans, and Jean-Marc Robin. Non-parametric estima-
tion of finite mixtures from repeated measurements. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(1):211–229, 2016.

Antoni Bosch-Domènech, José G Montalvo, Rosemarie Nagel, and Albert Satorra. A
finite mixture analysis of beauty-contest data using generalized beta distributions.
Experimental Economics, 13(4):461–475, 2010.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classifica-
tion and regression trees. Wadsworth International Group, 1984.

Yves Breitmoser. Strategic reasoning in p-beauty contests. Games and Economic Be-
havior, 75(2):555–569, 2012.

33

Alexander L Brown and Hwagyun Kim. Do individuals have preferences used in macro-
finance models? an experimental investigation. Management Science, 60(4):939–958,
2013.

Adrian Bruhin, Ernst Fehr, and Daniel Schunk. The many faces of human sociality: Un-
covering the distribution and stability of social preferences. Journal of the European
Economic Association, 2018.

Anna Conte and M Vittoria Levati. Use of data on planned contributions and stated
beliefs in the measurement of social preferences. Theory and Decision, 76(2):201–223,
2014.

David J Cooper and E Glenn Dutcher. The dynamics of responder behavior in ultima-
tum games: A meta-study. Experimental Economics, 14(4):519–546, 2011.

Partha Deb and Pravin K Trivedi. Finite mixture for panels with fixed effects. Journal
of Econometric Methods, 2(1):35–51, 2013.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38, 1977.

Mahmoud A El-Gamal and David M Grether. Are people bayesian? uncovering behav-
ioral strategies. Journal of the American statistical Association, 90(432):1137–1145,
1995.

Christoph Engel. Dictator games: A meta study. Experimental Economics, 14(4):
583–610, 2011.

Urs Fischbacher and Simon Gächter. Social preferences, beliefs, and the dynamics of
free riding in public goods experiments. American Economic Review, 100(1):541–56,
2010.

Urs Fischbacher, Simon Gächter, and Ernst Fehr. Are people conditionally cooperative?
evidence from a public goods experiment. Economics Letters, 71(3):397–404, 2001.

M Gail and R Simon. Testing for qualitative interactions between treatment effects and
patient subsets. Biometrics, pages 361–372, 1985.

William H Greene. Econometric analysis. Pearson Education India, 2003.

Justin Grimmer, Solomon Messing, and Sean J Westwood. Estimating heterogeneous
treatment effects and the effects of heterogeneous treatments with ensemble methods.
Political Analysis, 25(4):413–434, 2017.

Kosuke Imai, Marc Ratkovic, et al. Estimating treatment effect heterogeneity in ran-
domized program evaluation. The Annals of Applied Statistics, 7(1):443–470, 2013.

34

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

Bachir Kassas, Marco A Palma, and Charles R Hall. Self-serving motivations of high-
and low-income individuals in public goods provisions. Technical report, 2018.

Jaromír Kovářík, Friederike Mengel, and José Gabriel Romero. Learning in network
games. Quantitative Economics, 9(1):85–139, 2018.

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for
estimating heterogeneous treatment effects using machine learning. Technical report,
2017.

Tony Lancaster. The incidental parameter problem since 1948. Journal of econometrics,
95(2):391–413, 2000.

Min Lu, Saad Sadiq, Daniel J Feaster, and Hemant Ishwaran. Estimating individ-
ual treatment effect in observational data using random forest methods. Journal of
Computational and Graphical Statistics, 27(1):209–219, 2018.

Peter G Moffatt. Experimetrics: Econometrics for experimental economics. Macmillan
International Higher Education, 2015.

Kevin M Murphy and Robert H Topel. Estimation and inference in two-step econo-
metric models. Journal of Business & Economic Statistics, 3(4):370–379, 1985.

Jerzy Neyman and Elizabeth L Scott. Consistent estimates based on partially consistent
observations. Econometrica: Journal of the Econometric Society, pages 1–32, 1948.

Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H Shah, Trevor
Hastie, and Robert Tibshirani. Some methods for heterogeneous treatment effect
estimation in high-dimensions. Technical report, 2017.

Luís Santos-Pinto, Adrian Bruhin, José Mata, and Thomas Åstebro. Detecting het-
erogeneous risk attitudes with mixed gambles. Theory and Decision, 79(4):573–600,
2015.

Willi Sauerbrei, Patrick Royston, and Karina Zapien. Detecting an interaction between
treatment and a continuous covariate: A comparison of two approaches. Computa-
tional Statistics & Data Analysis, 51(8):4054–4063, 2007.

Reinhard Selten. Die strategiemethode zur erforschung des eingeschränkt rationalen ver-
haltens im rahmen eines oligopolexperimentes. Seminar für Mathemat. Wirtschafts-
forschung u. Ökonometrie, 1965.

Carolin Strobl, James Malley, and Gerhard Tutz. An introduction to recursive par-
titioning: rationale, application, and characteristics of classification and regression
trees, bagging, and random forests. Psychological Methods, 14(4):323, 2009.

35

Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M Nickerson, and Bogong Li.
Subgroup analysis via recursive partitioning. Journal of Machine Learning Research,
10(Feb):141–158, 2009.

Terry M Therneau, Beth Atkinson, Brian Ripley, et al. rpart: Recursive partitioning.
R package version, 3(3.8), 2010.

Lu Tian, Ash A Alizadeh, Andrew J Gentles, and Robert Tibshirani. A simple method
for estimating interactions between a treatment and a large number of covariates.
Journal of the American Statistical Association, 109(508):1517–1532, 2014.

Daniell Toth and John L Eltinge. Building consistent regression trees from complex
sample data. Journal of the American Statistical Association, 106(496):1626–1636,
2011.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment
effects using random forests. Journal of the American Statistical Association, (just-
accepted), 2017.

T Wendling, K Jung, A Callahan, A Schuler, NH Shah, and B Gallego. Comparing
methods for estimation of heterogeneous treatment effects using observational data
from health care databases. Statistics in medicine, 2018.

Jennifer Zelmer. Linear public goods experiments: A meta-analysis. Experimental
Economics, 6(3):299–310, 2003.

Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating individ-
ualized treatment rules using outcome weighted learning. Journal of the American
Statistical Association, 107(499):1106–1118, 2012.

36

Appendix 1: Code in R

step 1: define data

Dataset dat is assumed to be a panel with crosssection uid ∈ {1, ..., N}. Each individual
is observed in periods per ∈ {1, ..., T}. Dependent variable y is observed, as well as
treatment treat ∈ {0, 1}.
step 2: initialize vector of coefficients

beta0 <- rep(0,N)
beta1 <- rep(0,N)
uid <- 1:N
rdat <- data.frame(uid = uid, beta0 = beta0, beta1 = beta1)

step 3 - 4: write and execute local regression, collect output in separate
dataset

loc <- function(u) {
lmu <- lm(y[uid == u] ∼ per[uid == u], data = dat)
rdat$beta0[uid == u] «- lmu$coefficients[1]
rdat$beta1[uid == u] «- lmu$coefficients[2]
}
invisible(lapply(1:N,loc))

step 5: merge with main dataset and keep variables needed for tree con-
struction

mdat <- merge(rdat, dat, by = "uid")
trdat <- mdat[,c(1:4)]

step 6 - 7: fit classification tree and define optimal depth

library(tree)
tytree <- tree(y ∼ beta0 + beta1, data = trdat)
plot(tytree)
text(tytree)

step 8 - 9: assign type to participant, and split types into treated and
untreated cases

note: correct code depends on structure of tree; following is a simplified example

37

mdat$ttype <- ifelse(mdat$beta0 < -3 & mdat$beta1 < 2, 1,
ifelse(mdat$beta0 < -3 & mdat$beta1 >= 2), 2, 3)
mdat$trtype <- ifelse(mdat$ttype == 1 & mdat$treat == 0, 1,
ifelse(mdat$ttype == 1 & mdat$treat == 1, 2,
ifelse(mdat$ttype == 2 & mdat$treat == 0, 3,
ifelse(mdat$ttype == 1 & mdat$treat == 1, 4,
ifelse(mdat$ttype == 3 & mdat$treat == 0, 5, 6)))))

step 10: estimation conditional on type (and treatment)

library(plm)
mlretype <- plm(y ∼ as.factor(trtype)*as.numeric(per), data = mdat,
index = c("uid", "per"), model = "random")
summary(mlretype)

Appendix 2: CART with precision weight

If one wants to weigh datapoints by the precision of estimates from the local regressions,
this can be achieved with the following modifications of the algorithm:

Algorithm

1. Let D0 be a panel with dependent variable yit, and explanatory variables xit that
include treatment θi (which may differ over repetitions, i.e. may be θit)

2. initialize β and tval for the t-values of the local regressions

For every participant Do

3. regress yit on all time varying xit

4. collect participant id and all βi as well as tval in separate data frame D1

EndFor

5. for each datapoint, calculate mean t-value (over all coefficients that feature in the
local regression)

6. use critical t-values (taking # df into account) to assign weight to each datapoint
(e.g. 5 if p < .001, 4 if p < .01, 3 if p < .05, 2 if p < .1, 1 if p > .1)

7. expand datapoints in D1 by weight (hence add 4 identical datapoints if weight is
5, and none if weight is 1)

38

8. merge D1 with D0 on id

9. fit classification tree of yit on β

10. use standard algorithm to define optimal depth of tree

11. use optimal tree to assign type to each participant

12. estimate panel version of (1)

In the simulated dataset, this procedure assigns weight 1 to 108 original datapoints,
weight 2 to 5 datapoints, weight 3 to 41 datapoints, weight 4 to 39 datapoints, and
weight 5 to 207 datapoints. The resulting classification tree finds very similar cutpoints,
but has a different structure, and one final node less, see Figure 12.

39

|
beta1 < 3.03366

beta1 < −1.03408

beta1 < 0.999002

beta1 < 6.01105

−12.62
 4.35 14.87

 26.06 48.05

Figure 12: Tree Induced by Precision Weighted Local Regressions

40

Appendix 3: Graphical Representation of Misestimation of Treatment Effect
Conditional on Type

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 1 FMM

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 1 two−step

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 2 FMM

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 2 two−step

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−10 −5 0 5 10

0.
0

0.
2

0.
4

treatment effect type 3 FMM

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 3 two−step

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−15 −10 −5 0 5

0.
0

0.
4

0.
8

1.
2

treatment effect type 4 FMM

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

−4 −2 0 2 4

0
1

2
3

4

treatment effect type 4 two−step

mean bias

de
ns

ity

or
t5
t3
ei2
e2
et/10

et/5
unif
skew
kink2
kink1
quadr

Figure 13: Bias in Estimation of Treatment Effect Conditional on Type
left panel: finite mixture; right panel: two-steps

41

