Supporting Information ## Effect of particulate stabilizer morphology on mechanical properties of liquid marbles Saeid Azizian, 1* Syuji Fujii, 2,3* Moe Kasahara, 4 Hans-Jürgen Butt, 5 and Michael Kappl 5* ¹ Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran ² Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan ³Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan ⁴Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan ⁵Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany **Figure S1.**The SEM images of the prepared CaCO₃ samples with different morphologies, (a) spherical nanoparticles and (b) rod-shaped particles. Figure S2. Height of liquid marble versus volume for (a) L1 and (b) L2. **Figure S3.**Compression-decompression force as a function of relative compression of liquid marble (L_2) for different cycles with the rate of (a) 9.6 μ m/s and (b) 25 μ m/s.