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SUMMARY

Obesity-related diseases affect half of the global
population, and bariatric surgery is one of the few in-
terventions with long-lasting weight loss and cardio-
metabolic effects. Here, we investigated the effect of
Roux-en-Y gastric bypass surgery on the plasma
proteome, hypothesizing that specific proteins or
protein patterns may serve as key mediators and
markers of the metabolic response. We performed
mass spectrometry (MS)-based proteomics on two
longitudinal studies encompassing 47 morbidly
obese patients, generating quantitative information
on more than 1,700 proteins. A global correlation
matrix incorporating about 200,000 relationships re-
vealed functional connections between proteins
and assigned them to physiological processes. The
main classes of significantly altered proteins were
markers of systemic inflammation and those
involved in lipid metabolism. Our data highlight
robust correlative and anti-correlative behaviors of
circulating proteins to each other and to clinical pa-
rameters. A group of inflammation-related proteins
showed distinct inverse relationships to proteins
consistently associated with insulin sensitivity.

INTRODUCTION

Over 600million people are obese (BMI > 30 kg/m2) and a further

1.3 billion overweight (W.H.O., 2016). The proportion of the latter

subgroup has doubled since 1980, representing an unprece-

dented number of people predisposed to or already affected

by a broad spectrum of co-morbidities (GBD 2015 Obesity

Collaborators et al., 2017). These include type 2 diabetes
Cell Systems 7, 601–612, Decem
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(T2D), cardiovascular disease, endocrine disturbances, neuro-

degenerative diseases, and several types of cancers.

In response to this global and dramatically increasing burden,

the scientific community has devoted substantial efforts to

obesity and its clinical consequences, aiming to gain a deeper

understanding of the underlying disease mechanisms while

developing new treatment possibilities. From a vast array of

dietary, behavioral, and pharmacological alternatives, bariatric

surgery has emerged as the most effective intervention for treat-

ing obesity and T2D. There are different bariatric procedures,

with Roux-en-Y gastric bypass (RYGB) among the most estab-

lished ones, where the creation of a small gastric pouch and

bypass of the stomach and upper small intestine, causes accel-

erated entry of nutrients into the small intestine (Griffen et al.,

1977; Mason and Ito, 1967; Mason et al., 1975; Wittgrove

et al., 1994). Besides major weight loss (on average 40 kg), the

physiological responses to RYGB include broad improvements

in cardiovascular status and other measures of metabolic health

(Aab et al., 2016; Adams et al., 2017; Cardoso et al., 2017; Mads-

bad and Holst, 2014; Sjöström et al., 2007). Interestingly, RYGB

strongly increases insulin sensitivity for many individuals

suffering from T2D. Hepatic insulin sensitivity tends to improve

markedly within a week after surgery, even before substantial

weight loss, followed by increased sensitivity in peripheral tis-

sues in weeks (Bojsen-Møller et al., 2014). While gastrointestinal

peptides, bile acids, and even the microbiome have been impli-

cated in the rapid and drastic physiological changes after RYGB,

the molecular mechanisms are poorly understood (Cummings

and Rubino, 2018; Miras and le Roux, 2013).

Metabolic processes are regulated by proteins, and the tech-

nology of choice to study changes in the proteome in an unbi-

ased manner is mass spectrometry (MS)-based proteomics

(Aebersold and Mann, 2016). Proteins circulating in the blood

can be both mediators of organ cross talk and markers of

whole-body states. However, a system-wide approach has

only recently become possible due to technological improve-

ments of the proteomic pipeline (Geyer et al., 2017). We recently
ber 26, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 601
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developed ‘‘plasma proteome profiling’’ as a robust and auto-

mated platform for the reproducible analysis of hundreds of

clinical samples. The quantified proteome included the main

functional plasma proteins such as the complement system,

apolipoproteins, and other transporters and allowed assessment

of sample quality (Geyer et al., 2016a). In a subsequent study,

we investigated the longitudinal effects of caloric restriction-

induced weight loss on the plasma proteome of 52 individuals

over more than a year. Analysis of more than 1,000 individual

plasma proteomes revealed that protein levels in general were

much more stable within individuals over time than between

them. We extracted panels indicative of systemic inflammatory

status, allowing stratification of the cohorts. The data also high-

lighted specific proteins correlated to relevant clinical parame-

ters such as BMI, high-density lipoprotein (HDL), low-density

lipoprotein (LDL) and insulin sensitivity (Geyer et al., 2016b).

Here, we wished to gain further insights into the global meta-

bolic changes causedbyRYGBsurgery as reflected in the plasma

proteome. To obtain robust and generalizable results,we selected

two studies with similar design to investigate improvements in

hepatic insulin sensitivity and beta cell function (Bojsen-Møller

et al., 2014; Martinussen et al., 2015). We applied an improved

version of our plasma proteome profiling pipeline, which doubled

our coverage of the plasma proteome. Furthermore, for a more

comprehensive understanding of the dynamics of the plasmapro-

teome, we implemented global correlation maps. These consist

of hundreds of thousands of protein-protein connections and

protein-clinical parameter associations, highlighting co-regulated

proteins and revealing underlying physiological mechanisms.

RESULTS

In-Depth Dataset of the Human Plasma Proteome
in RYGB
Study 1 consisted of 20 and study 2 of 27morbidly obese individ-

uals, with BMI 40 ± 4 kg/m2 (Bojsen-Møller et al., 2014) and 42 ±

4 kg/m2 (Martinussen et al., 2015), respectively (Figure 1A).

Blood was drawn at four time points, once directly before and

three times after surgery (0, 1, 12, and 52 weeks). From 19 indi-

viduals, we also obtained blood samples at 2 or 4 years post

operation (>104 weeks).

Weight declined steadily in the cohorts, stabilizing at an average

loss of 28%of total bodymass 1 year after surgery (Figure 1A). In-

sulin resistance of the liver as estimated by homeostatic model

assessment of insulin resistance (HOMA-IR), decreased from

3.3 ± 0.7 to a near normal value of 2.0 ± 0.9 after 12 weeks.

In this study, we further improved the plasma proteome

profiling pipeline by first generating deep plasma libraries by

consecutive depletions of pooled plasma from the top6 and the

top14 highest abundant proteins. Following depletion, we used

the recently developed high-pH reversed-phase ‘‘spider fraction-

ator’’ (Kulak et al., 2017) to generate a deep library of 1,928

plasma proteins and 14,588 peptides (excluding contaminants)

(Figure 1B). Cohort samples were automatically prepared without

any depletion as described previously (Geyer et al., 2016a) (Fig-

ure 1C). The second improvement of our workflow was a new

acquisition method termed BoxCar, which results in about a

10-fold increase in dynamic range of peptide signals via an equal-

ized filling pattern of the ion trap. This results in substantial
602 Cell Systems 7, 601–612, December 26, 2018
coverage of undepleted plasma samples even without fraction-

ation (Meier et al., 2018), which is visually reflected in isotope pat-

terns detected in the m/z retention time plane for the full scans

(Figure S1).

We generated a large plasma proteome dataset, comprising a

total of 175 human plasma proteomes. In triplicate analysis of the

samples, an average of 1,025 proteins was identified per study

participant, more than twice the number in our previous plasma

proteome study (Geyer et al., 2016b) (Figure 1D; Table S1). In

total, we quantified 1,700 plasma proteins with at least two pep-

tides in the study samples (Figures 1D and 1E). We also evalu-

ated the cohorts based on our previously defined sets of quality

markers. None of the samples suffered from extensive erythro-

cyte lysis or partial coagulation, but we observed a slight trend

toward higher erythrocyte lysis in study 2 (Figure S2).

As this is the largest proteome dataset generated by unbiased

MS-based proteomics on non-depleted plasma, we provide the

data in an easily accessible and minable format for use by the

community (Table S1). Ranking the proteins according to their

abundance and annotating them according to their function

using the Gene Ontology biological process (GOBP) terms and

performing an one-dimensional annotation enrichment analysis

resulted in 117 statistically significant terms (Figure 1F). At this

depth of coverage, processes connected to lipid transport,

coagulation, and inflammation are very well reflected in the

higher abundance ranges, whereas intracellular processes —

presumably as a result of tissue leakage — are enriched in the

low abundance ranges (Table S2).

Plasma Proteome Rearranges after RYGB
Our primary aim was to investigate plasma proteome dynamics

afterRYGBand to relate these to thepathophysiological changes

stemming from the procedure. Over the entire time course, the

levels of 114 proteins changed significantly (Table S3). We ex-

pected the surgery intervention itself to have a strong effect on

the plasma proteome. Indeed, most of the significantly altered

proteins — 88 in total — changed 1 week after surgery; 39 pro-

teins after 12 and 52 weeks; and 33 proteins after more than 2

years. The two longitudinal studies differed onlyminimally in their

design, allowing us to initially use study 1 as the ‘‘discovery

cohort’’ and study 2 as the ‘‘validation cohort’’ according to the

‘‘rectangular strategy’’ for plasma proteome profiling (Geyer at

al., 2017). For the first two time points, where the number of sam-

ples was most comparable, 90% of the significantly changed

proteins in study 1 were also significant in study 2 (Table S3).

Due to the high overlap of proteins regulated in the two indepen-

dent RYGB studies and the fact that we did not detect any signif-

icant differences between them, we henceforth integrated the

data from both of them.

To investigate plasma proteome dynamics after RYGB, we

calculated the median, Z-scored intensities of all significantly

altered proteins at each time point. A hierarchical clustering anal-

ysis stratified proteins into four main groups based on their

response to RYGB (Figures 2A and 2B). Nearly half of these pro-

teins showed a long-term decrease (group 1, 10 proteins; group

2, 40 proteins). The main difference between the two patterns

was that group 2 increased at the first post-operative time point

before dropping below baseline levels for the entire period of up

to 4 years. The 39 proteins in group 3 showed a long-term



Figure 1. Study Design and Analytical Performance

(A) The two studies involved 47 patients who have undergone Roux-en-Y gastric bypass. The boxplots for the BMI distribution indicate a 10–90 percentile, and the

median is highlighted with a black bar.

(B) Highly abundant proteins were only depleted for the library generation in seven pools of plasma. After digestion, peptides were separated at high pH on a

reversed phase material into 24 fractions.

(C) Plasma proteome profiling pipeline applied to 175 plasma proteomes in triplicate. Sample preparation took a total of 4 hr, and 45-min gradients were used,

resulting in a 3D data matrix of quantified proteins as a function of individuals over time.

(D) Number of identified proteins in each of the seven library pools (red dots) and the 175 plasma samples (blue dots).

(E) Total number of proteins identified in the library and in the study cohort.

(F) Quantitative values of 1,700 plasma proteins ranked according to their abundance. Several proteins are exemplified over the abundance range (blue dots).

Functional annotation and 1D enrichment resulted in 117 significantly enriched annotation terms (right graph, gray dots). Eight of these categories are highlighted

as boxplots with a 10–90 percentile.
increase, with many of them initially exhibiting a decrease after

surgery. This was also the pattern of group 4, although here

levels only recovered to baseline. The remaining proteins had a

more heterogeneous behavior with increased or decreased

levels between the different time points.

We annotated each of the 114 significantly changed proteins

with GOBP, molecular function (GOMF), and cellular compart-

ment (GOCC) as well as UniProt-KB keyword terms, to reveal

the biological processes that were influenced by RYGB. Fisher’s

exact test on these keyword annotations yielded 322 connec-

tions based on 20 central keywords, drawing a broad picture

of biological functions affected by RYGB (STAR Methods; Table

S4). These range from inflammation, lipid homeostasis, and pro-

tease activity to changes in metal homeostasis.
Next, we performed hierarchical clustering on a Boolean table

of the proteins annotated by the 20 keywords, to investigate if

proteins belonging to the same cluster also had a functional asso-

ciation (Figure 2C). Terms related to inflammation were most

strongly enriched (cluster 2). Manual inspection revealed even

more inflammatory proteins, including a frequently clinically

used marker of inflammation, C-reactive protein (CRP), the acute

phase proteins SAA1, SAA4, and lipopolysaccharide binding

protein (LBP), and the complement factors C1S, CFHR3, and

CFHR5. The second most keyword-enriched group belonged to

the lipid homeostasis system (cluster 3), as expected uponweight

loss, and their individual dynamics will be described below.

‘‘Metal binding’’ was also significantly enriched, but spread

over clusters 1, 2, and 3, indicating that RYGB differently
Cell Systems 7, 601–612, December 26, 2018 603



Figure 2. Longitudinal Trajectories and Functional Interpretation of Significantly Influenced Proteins

(A) Proteins clustered into four main groups according to their patterns of adaption after RYGB. Z-scores are plotted over five time points.

(B) Hierarchical clustering of the plasma proteins in the four groups.

(C) A Fisher’s exact test identified 20 main keywords, which were used in a second hierarchical clustering analysis for functional interpretation of the longitudinal

trajectories. The dominant keywords — related to inflammation and the lipid homeostasis system — are highlighted by red and blue rectangles, respectively.
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Figure 3. Global Correlation Map of the

Plasma Proteome

(A) Pairwise correlation of proteins using their in-

tensity levels over the 175 study samples results in a

matrix of correlation coefficients where one protein

is compared to all other proteins and clinical

parameters. The left panel illustrates the calculation

of the Pearson correlation coefficient between two

proteins with high and low correlation, respectively.

The right-handpanel showscross-correlationsof all

quantified proteins and clinical parameters (25%

valid values) after subsequent hierarchical clus-

tering, revealing an extensive map of co-regulated

items (proteins, clinical parameters, peptide glyca-

tion). In the map, items with a strong correlation or

anti-correlation to each other cluster together in red

or blue areas, respectively. The main clusters are

functionally annotated with keywords.

(B) Network analysis of the main clusters in (A)

reveals connections within and between them. The

thickness of the lines corresponds to the Pearson

correlation coefficient (red lines: positive correla-

tions; blue lines: anti-correlations; green cycles:

clinical parameters).
affected their functional roles (Table S4). The absorption of iron is

compromised after gastric bypass surgery since the antrum, du-

odenum, and the proximal part of the jejunum, where absorption

takes place is separated from the contact with the ingested

nutrients and results in anemia, due to malabsorption of micro-

nutrients (Worm et al., 2015). Interestingly, levels of transferrin

(TF), the main iron transporter in plasma, increased by 20%

(cluster 3), indicating a sensing mechanism for low iron levels.

In contrast, ceruloplasmin (CP), which oxidizes Fe2+ to Fe3+

for effective transport by TF, was downregulated and present

in cluster 2, which anti-correlates with cluster 3, perhaps

because less iron needs to be oxidized.

We traced the significantly regulated proteins connected

to protease keyword annotations to members of the com-

plement cascade system and different serine protease inhib-

itors (SERPINs). SERPINs are a functionally heterogeneous group
Cell Sy
of proteins, including the inflammation-

associated SERPINA1 and SERPINA3

(cluster 2) and also the adipocyte-secreted

SERPINF1, whose decrease after opera-

tion indicates the lossofbody fat (cluster1).

Encouraged by the fact that plasma

proteomeprofiling revealed specificphys-

iologic changes upon RYGB,we set out to

systematically exploit the observed regu-

lation to construct a global network of

co-regulated plasma proteins and func-

tional modules.

Global Correlation Maps Reveal Co-
regulation of Hundreds of Plasma
Proteins
The levels of plasma proteins have tradi-

tionally been measured and considered
independently; however, proteins often work together as com-

plexes or groups. Treating RYGB as a generic perturbation, we

next investigated the co-regulation of the plasma proteome at

a systems level to identify protein networks and search for new

biomarker candidates. We constructed a global correlation

map containing pairwise relationships between all proteins and

further included clinical parameters. In our case, there were up

to 175 abundance values for each plasma protein (47 individuals;

5 time points). For instance, the Pearson correlation coefficient

between the apolipoprotein proteins APOA1 and APOC1 was

0.57 over all data points (Figure 3A).

We considered only the 580 proteins that were quantified in at

least 25% of the samples and added 26 clinical parameters. As a

third parameter group, we included the levels of glycated pep-

tides, which are related to blood sugar control and can be deter-

mined by proteomics as previously described (Keilhauer et al.,
stems 7, 601–612, December 26, 2018 605



2016). Here, we quantified 203 glycated peptides and combined

them into a single ‘‘peptide glycation’’ factor (STAR Methods).

The protein abundance levels, clinical parameters, and peptide

glycation factor constituted 607 items in total, which we cross-

correlated to generate a matrix of 183,921 correlation coeffi-

cients. Unsupervised hierarchical clustering and color-coding

the correlation coefficients then generated the global correlation

map. We hypothesized that such a map would group the plasma

proteome in such a way that proteins and clinical parameters

associated with the same underlying regulatory mechanism

would cluster in the same area. Thus, the global correlation

map would both capture large-scale organizational features of

the plasma proteome as well as individual associations between

proteins and connect them to measures of disease state repre-

sented by clinical parameters.

A wealth of information can be found in the correlation map

(Figure 3A), with co-regulated areas as large as 76 3 76 items

and as small as binary associations. For functional interpretation,

we employed bioinformatic keyword annotation and subsequent

Fisher’s exact tests. The largest structure belonged to the innate

immune system andwas further dominated by a sub-cluster with

very strong correlations. A cluster consisting of immunoglobulins

was nearly as large as 68 3 68. The global correlation analysis

also identified a cluster dominated by HDL but also containing

adiponectin (the protein and the clinical parameter), which is

positively associated with peripheral insulin sensitivity (Lihn

et al., 2005). Out of more than 20 clusters of similar size, one is

associated with LDL particles, another with proteins partici-

pating in the coagulation cascade such as the von Willebrand

factor (vWF) and fibrinogens, and one contains three steroid-

binding proteins (PZP, SHBG, and SERPINA6).

The strongly correlated sub-cluster of the inflammation sys-

tem includes proteins such as CRP, SAA1, and members of

the complement cascade. Furthermore, it contains diabetes-

associated clinical parameters such as insulin levels, C-peptide

levels, and HOMA-IR, which reflects insulin resistance (Fig-

ure 3A). The fact that these disease markers correlate directly

within the group of inflammation proteins reflects a link between

insulin resistance and systemic inflammation, which is the

subject of extensive metabolic research (Moran et al., 2005;

Ndumele et al., 2006). Notably, there are also anti-correlating

clusters, characterized by off-diagonal areas in the global corre-

lation map (Figure 3A, blue patterns). The main clusters contain

inflammation-associated proteins, apolipoproteins, and insulin-

sensitivity parameters. For instance, there is a negative correla-

tion between CRP and adiponectin of �0.35, highlighting direct

protein-based connections between decreased inflammatory

status and increased insulin sensitivity.

Clearly, the global correlation map contains a treasure trove of

information about the plasma proteome, encoded in its almost

200,000 correlations. Co-regulated proteins identify proteins

associated with diverse physiological processes. Apart from

the most apparent functional associations, there are many clus-

ters with no significant keywords as well as many novel connec-

tions within the clusters.

Interestingly, some clusters contained information about

the sample analysis procedure. These included a tightly co-

regulated group of platelet proteins. Although they accurately

report on sample quality, they do not reflect intrinsic plasma pro-
606 Cell Systems 7, 601–612, December 26, 2018
teome properties and were therefore removed from downstream

analysis (STAR Methods).

To explore the connections between plasma proteins in a

complementary way, we generated a network in which the

connections are given by their correlation coefficients. For all

proteins and clinical parameters in the 20 clusters with the

highest number of nodes, we only selected proteins with corre-

lation coefficients of at least 0.4 to display their relationship

within and between these clusters (Figure 3B). This highlights

the connections within main physiological processes. In the

inflammation cluster, for instance, there are strong relationships

of the complement system to other inflammatory proteins such

as LBP. The network clearly captures the relationship of inflam-

mation, insulin resistance, and lipid metabolism.

RYGB and the Response to Low-Grade Inflammation
Inflammation-associated proteins were found in the largest

co-regulated cluster, and they also contained the most highly

regulated ones after RYGB (Figures 2 and 4). The connection

of obesity, metabolic diseases, and systemic inflammation has

been investigated extensively on the molecular and cellular level

(Brestoff and Artis, 2015; Osborn and Olefsky, 2012; Quante

et al., 2015). Plasma proteome profiling of a cohort of morbidly

obese individuals undergoing surgical intervention followed by

strong weight loss presents a unique opportunity to investigate

changes in the inflammatory response in a systems-wide and

unbiased manner. In contrast to previous candidate-driven

approaches, our strategy can in principle retrieve association

of any plasma protein with weight-related inflammation. To

define an inflammatory panel in an unbiased manner, we filtered

for relevant keywords (STAR Methods). This resulted in 51 pro-

teins that covered the major pathways, such as complement

activation and acute phase reaction. This inflammatory panel

was quantified with high consistency in the dataset (90% valid

values). We combined the changes of these proteins, normalized

to their starting level, into a single value by taking the median,

which represents a robust and accurate reflection of the global

inflammation status of each individual at each time point. Then,

we aggregated the inflammatory status of all participants over

time. The longitudinal trajectory of this inflammation status had

a maximum at the first post-operative time point with an average

increase of 10% (Figure 4A), presumably as a direct conse-

quence of the surgery (Finnerty et al., 2013). Following this brief

increase, the global inflammation panel decreased gradually,

reaching baseline level 12 weeks after RYGB surgery and the

minimum of �11% at the final time point (>104 weeks). This

dynamic regulationwas quite consistent across almost all partic-

ipants in the study cohort (Figure S3A).

Proteins included in our inflammation panel were selected by

keyword annotation, which could be spurious, including proteins

with negative correlation to inflammation. To assess their suit-

ability as markers, we inspected their dynamics and found that

the large majority went up at the immediate post-operative

time point and stabilized at lower levels at 52 and greater than

104 weeks (Figure 4A). Next, we compared our data to a plasma

proteomic profiling study where weight loss was induced by

caloric restriction (Cambridge diet), in which 43 participants

lost on average 12% of their bodymass during an 8-week period

and maintained their weight for 1 year (Iepsen et al., 2015). From



Figure 4. Connection between Global Inflammation Status and

Body Mass

(A) Changes of the global inflammation status of all study participants. The

global inflammation status is calculated as the median of 51 inflammation

proteins, selected by keyword annotation. Pie charts over each of the post-

operation time points show the number of proteins, which were up- or

downregulated.

(B) Overlap of inflammation proteins in the caloric restriction (CR) and the

RYGB studies. Plus and minus indicate if a protein was decreased in both or in

one of the two studies. The color code shows how many of the proteins were

significantly regulated.

(C) Correlation plot of protein intensities with the BMI in the RYGB study.

Inflammation proteins are highlighted in red or orange if they were significantly

or not significantly correlated to the BMI, respectively. All proteins above the

dashed line show significant correlations.
that study, we had already defined a ten protein inflammation

panel (Geyer et al., 2016b), which was completely contained in

the current one. After exclusion of the first post-operative

time point in the RYGB study, we calculated the slope of the

inflammation proteins in both studies across all time points

(Table S5). Between caloric restriction achieved through the

Cambridge diet and by RYGB surgery, there was an overlap in

31 increased inflammation proteins. Thus, the direction of

changes in the full 51 panel in the previous study generally

agreed with the current one (Figure 4B). CRP, a prominent risk

factor for cardiovascular disease, showed the strongest

response, and its levels increased 5-fold at the 1-week time point

and decreased 14-fold afterwards.

For further insights into the connection of the plasma prote-

ome to weight loss, we correlated all 1,700 quantified plasma

proteins directly to BMI. In total, 51 proteins had a significant

correlation, of which 18 were part of our inflammation panel (Fig-

ure S3B; Table S6). CRP, complement factor C3, and S100A8

were the proteins with the strongest correlation (Pearson corre-

lation of 0.63, 0.61, and 0.45, respectively). Together with the

fact that the BMI clustered with inflammation-annotated proteins

in the global correlation map, this underlines the strong connec-

tion between inflammation and obesity.

Core Proteins in Lipid Metabolism Are Significantly
Altered by RYGB
Lipid homeostasis was the second most strongly affected phys-

iological system by RYGB, and it clustered into two distinct

regions of the global correlation map (Figure 2). Many of the

proteins found in this cluster are well-known constituents of

different lipoprotein particles such as APOB or receptors of

these particles such as the LDL receptor (LDLR). To elucidate

their behavior, we filtered the identified plasma proteome for

the Gene Ontology cellular compartment (GOCC) terms ‘‘lipid

transport,’’ ‘‘chylomicron,’’ ‘‘high density lipoprotein (HDL),’’

‘‘low density lipoprotein (LDL),’’ ‘‘intermediate density lipoprotein

(IDL),’’ and ‘‘very low density lipoprotein (vLDL)’’ particle. To this

set, we added non-annotated proteins well known to be associ-

ated with lipid metabolism such as apolipoprotein D (APOD),

apolipoprotein(a) (LPA), Prolow-density lipoprotein receptor-

related protein 1 (LRP1), and phospholipid transfer protein

(PLTP). Excluding the keyword-annotated inflammation proteins

SAA1, SAA2, and SAA4 resulted in 25 proteins that reflect the

lipid homeostasis system in blood. They were consistently quan-

tified across all patients and time points. Furthermore, their

correlation map reveals a large degree of similarity between

the caloric restriction and RYGB studies (Figures 5A and 5B).

For instance, the highly correlated clusters for apolipoproteins

APOC1, APOC2, APOC3, APOC4, and APOE, which are LDL

constituents, are almost superimposable. Likewise, the HDL

related proteins—APOA1, APOA2, APOA4, and PON1— corre-

lated highly.

Inspecting the direction of changes in the expression levels of

proteins, we found that the HDL constituents APOA1, APOA2,

APOA4, and PON1 increased in RYGB but decreased in caloric

restriction, reflecting the HDL laboratory values that were

measured independently in these studies (Figure S4). Further-

more, HDL-associated proteins such as APOC1, APOC2,

APOC4, APOM, PLTP, LPA, and several others that may be
Cell Systems 7, 601–612, December 26, 2018 607



Figure 5. Response of Lipid Homeostasis Regulating Proteins to RYGB and Caloric Restriction

(A) Correlation maps of lipid homeostasis-associated proteins in the RYGB study.

(B) Correlation maps of lipid homeostasis-associated proteins in the caloric restriction study.

(C) Median of protein intensities showing increased or decreased expression after RYGB and caloric restriction (CR). Significantly changed proteins are marked

with an asterisk.
associated were regulated in opposite directions. One of those

— APOC1 — has broad physiological functions including

inhibition of fatty acid uptake from adipocytes and inhibition of

lipoprotein binding to LDL. Interestingly, APOC1 was a member

of both the LDL and HDL correlation clusters. In caloric restric-

tion, its levels decreased by 12%, whereas in RYGB they

increased by 7%. This could be due to a lower need for transport

of fatty acids after caloric restriction but not after RYGB andmay

reflect themechanistic differences of these twoweight loss inter-

ventions. Interestingly, mice overexpressing APOC1 seem pro-

tected for obesity and insulin resistance due to reduced fatty

acid uptake in adipocytes (Jong et al., 2001).

After RYGB, insulin sensitivity of the liver rapidly improves

(Bojsen-Møller et al., 2014). In line with this, we observed in-

creases in APOA4, another surrogate marker of hepatic insulin

sensitivity (VerHague et al., 2013).

Improvement in Insulin Sensitivity after RYGB Is
Reflected in the Plasma Proteome
The immediate positive effect of RYGB on insulin sensitivity has

been widely discussed, but any reflections of this in the plasma

proteome have not been described. In both RYGB cohorts, we

determined hepatic insulin resistance by the HOMA-IR based

on C-peptide, and, in study 1, we further measured ‘‘hepatic

insulin sensitivity’’ by tracer estimation of hepatic glucose pro-

duction, ‘‘peripheral insulin sensitivity’’ by the hyperinsulinemic

euglycemic clamp and ‘‘oral glucose insulin sensitivity’’ from

oral glucose tolerance test, resulting in a system-wide assess-

ment of insulin sensitivity (Figure S5).

Connecting the insulin sensitivity measures to the plasma

proteome profile retrieved 75 significantly correlating proteins

(Figures 6A and 6B; Table S7). Adiponectin, sex hormone-bind-

ing globulin, vitamin K-dependent protein S, cholinesterase, the

complement factors C3, CFB, and C4-binding protein alpha

chain correlated with all four assessments. We calculated a

summed insulin sensitivity correlation, taking the strength and

number of correlations into account and followed this measure
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over time since surgery (Figure 6C; Table S8). This factor

reached its maximum 1 year after the gastric bypass operation.

Interestingly, the summed insulin sensitivity correlation was

almost superimposed in both studies (Figure 6B), validating the

individual correlating proteins.

Reassuringly, adiponectin, a classical marker for insulin

sensitivity, was the protein with the highest score (ADIPOQ;

S:16), and sex hormone-binding globulin (SHBG; S:8) and com-

plement factor C3 (C3; S:8) were likewise in the top group.

Strikingly, another 25 proteins and the ‘‘peptide glycation’’ fac-

tor correlated or anti-correlated highly with insulin sensitivity

(Figure 6A). Other proteins in this heterogeneous group

included pigment epithelium-derived factor (SERPINF1; S:11),

afamin (AFM; S:10), antithrombin-III (SERPINC1; S:9), and apoli-

poprotein A1 (APOA1; S:8). Note that some of these correla-

tions may simply reflect the weight loss, rather than a more

specific effect on insulin sensitivity. For instance, SERPINF1,

a protein secreted by adipocytes, is clearly and highly signifi-

cantly anti-correlated to insulin sensitivity — especially to he-

patic insulin sensitivity (Pearson’s R �0.66; p < 10�9). Of

note, we had previously found a strong association of SER-

PINF1 and weight loss in the caloric restriction study as well

as a correlation to insulin resistance based on HOMA-IR (Geyer

et al., 2016b). It would be interesting to determine if SERPINF1

has a functional involvement in insulin sensitivity or if it mainly

reflects total fat mass.

Conversely, a group of high-scoring proteins reflecting the

inflammatory state and lipid transport likely represent functional

connections: both systemic inflammation and dysregulated lipid

homeostasis. These included several components of the com-

plement system and a number of apolipoproteins, which also

correlated or anti-correlated with insulin sensitivity measures in

our global correlation map (Figure 3; Table S8). Clearly, our

protein correlation profiles reflect the complex relationships

between insulin sensitivity, lipid homeostasis, and inflammation.

However, the majority of proteins correlated with insulin sensi-

tivity had no reported connection to these two physiological



Figure 6. Correlation to Insulin Sensitivity Assessments

(A) Correlation of the plasma proteome profile to the four insulin sensitivity assessments: hepatic insulin sensitivity, homeostatic model assessment of insulin

resistance based onC-peptide (HOMA-IR), peripheral insulin sensitivity, and oral glucose insulin sensitivity. Pearson correlationswere rank-ordered, and proteins

grouped, scored, and color-coded from 1 to 4.

(B) Example correlations of four proteins to the insulin sensitivity assessments.

(C) Trajectories of the summed insulin sensitivity correlations defined in (A) over time. Blue, RYGB study 1; gray, RYGB study 2.
processes. As insulin has a broad effect on different organs, it

is not surprising that proteins of different physiological pro-

cesses correlated to insulin sensitivity, which makes them inter-

esting candidates to study as cause or consequence of insulin

resistance.

DISCUSSION

Bariatric surgery fundamentally alters human metabolism, and

much remains to be learned about the molecular mechanisms

underlying surgical therapies such as RYGB. The majority of

research has focused on anthropometric as well as clinical and

physiological data (Puzziferri et al., 2014), whereas there are

few hypothesis-free approaches (Arora et al., 2015; Luo et al.,

2016). In this work, we aimed to describe global rearrangements

of the plasma proteome in a systems-wide view and discover

protein markers of gastric bypass surgery with possible func-

tional relevance. This was enabled by a recently developed

robust and highly reproducible pipeline for MS-based investiga-

tion of plasma, which we termed plasma proteome profiling

(Geyer et al., 2016a). In the current study, we integrated several

technological advances into the workflow including the spider

fractionator to generate deep peptide libraries and combined it

for the first time with the BoxCar scan method to increase the
dynamic range of our measurements (Meier et al., 2018).

Together, this achieved the most extensive quantitative plasma

proteome so far, providing the community with concentration es-

timates of over 1,700 proteins and their bioinformatic keyword

annotations.

We described longitudinal trajectories of 114 significantly

altered proteins in response to RYGB and applied functional

annotation analysis to reveal the underlying physiological mech-

anisms. This identified twomain groups, belonging to the inflam-

mation and the lipid homeostasis systems. We found a strong

overlap of inflammation proteins in RYGB with our previous

study on caloric restriction-induced weight loss (Geyer et al.,

2016b) with the same regulation and tight correlation to BMI.

We conclude that body mass is a major determinant of systemic

low-grade inflammation levels and that weight loss— regardless

of the mode by which it is achieved — is its most important

driver. These dramatic changes are illustrated by regulation of

51 inflammation-associated proteins, the most prominent of

which is CRP that decreased 14-fold during the average weight

reduction of 28%. Note that a few of these proteins were upregu-

lated, for instance, the complement factor C7. Interestingly, our

unbiased analysis revealed that the weight loss-driven decrease

over the subsequent year was as strong as the immediate sur-

gery-induced increase. Such dramatic changes in systematic
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inflammation could affect the risk for cardiovascular events (Da-

nesh et al., 2000).

In contrast to the inflammation system, the lipid homeostasis

system was differently regulated between caloric restriction

and RYGB. While LDL-associated proteins decreased in both

interventions, the HDL-associated cluster was only increased

after RYGB. This is interesting given the link between high

HDL levels and a lower risk of coronary heart disease in asso-

ciative studies but not when increased by pharmacological

intervention (Rader and Hovingh, 2014). At this point, the major-

ity of differently regulated proteins between both types of

weight loss cannot be directly linked to clinically measured

HDL levels alone.

Lipoprotein particles can be sub-classified into several types

that interact or are converted into each other (Kontush et al.,

2013). Proteins are the defining elements of all of them and

could be the basis for more rational classification of the lipid

homeostasis system. In our study, several cardiovascular risk

markers from the lipid homeostasis system such as the LDL-

associated APOB and LPA dropped in both caloric restriction

and RYGB, whereas APOA1, whose levels positively correlate

with decreased cardiovascular risk (Emerging Risk Factors

Collaboration et al., 2012), significantly increased only in

RYGB. A number of such factors emerged from our analyses

(Table S9), and it would be interesting to study them in-depth

for a possible differential involvement in cardiovascular dis-

eases. More generally, it has been widely discussed which

types of cholesterol particles are the most relevant to disease

risk (Krauss, 2010), and our data now suggest that it may be

promising to focus on the different lipoprotein-associated pro-

teins themselves (Hegele, 2009). For the future, we imagine

that plasma proteome profiling of cardiovascular risk studies

may help to unravel the role and biomarker potential of individ-

ual proteins.

The plasma proteome profiles of a well-characterized longi-

tudinal cohort with comprehensive clinical characterization pro-

vided the first opportunity to systematically study the dynamics

of the human plasma proteome. For this purpose, we here

employed global correlation maps, in which we correlated the

quantitative levels of all proteins and clinical parameters to

each other. We sorted the resulting matrix by hierarchical clus-

tering and applied bioinformatic enrichment analysis. This dis-

entangled complex processes in the plasma proteome and

associated proteins to common physiological functions and

clinical risk measures.

Standard clinical parameters for insulin resistance including

insulin levels themselves, C-peptide levels, and HOMA-IR, clus-

tered with proteins of the inflammation system. Hepatic insulin

sensitivity, peripheral insulin sensitivity, and oral glucose insulin

sensitivity all tended to associate with proteins of the lipid

homeostasis system. Network analysis highlighted an anti-

correlation between those two systems (Figure 3B). This is

consistent with the detrimental effect of systemic inflammation

on the risk of metabolic disease and the positive and negative

effects of the levels of different cholesterol lipoprotein particles

(Dali-Youcef et al., 2013; Glass and Olefsky, 2012). Thus, we

here recapitulated the relationships between insulin sensitivity,

the lipid homeostasis system, and systemic inflammation

purely from an unbiased assessment of the plasma proteome
610 Cell Systems 7, 601–612, December 26, 2018
in a human intervention study for diabetes. Interestingly, our

analysis revealed that known single protein markers of insulin

sensitivity, such as adiponectin (Li et al., 2009), were indeed

the highest scoring ones, and that there are many others that

have not yet been connected to insulin sensitivity (Figure 6;

Table S8).

In conclusion, plasmaproteome profiling is a powerful technol-

ogy for studying the effects of physiological interventions such as

RYGB in humans, which may provide new molecular markers

and targets for the treatment of metabolic syndrome and dia-

betes. The approach can assess changes in circulating proteins

resulting from any metabolic perturbation. Our bioinformatic

analysis integrates these data with existing knowledge, thereby

providing a functional and clinical context for interpretation.

Further streamlining of the analytical methods developed here

will make it possible to measure many clinical studies, building

up a comprehensive ‘‘knowledge base’’ of the human plasma

proteome in health and disease states (Geyer et al., 2017).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

RYGB study 1 Bojsen-Møller et al. (2014) Clinical trial NCT01202526

RYGB study 2 Martinussen et al. (2015) Clinical trial NCT01993511

Chemicals, Peptides, and Recombinant Proteins

Multiple Affinity Removal Spin Cartridge Human 6 Agilent Technologies Cat#5188-5230

High Select� Top14 Abundant Protein Depletion Midi Spin Column Thermo Fisher Scientific Cat#A36371

’iST’ Kit for proteomic sample preparation PreOmics GmbH P.O. 00001

Deposited Data

Proteomics data PRIDE ProteomeXchange PXD009348

Software and Algorithms

MaxQuant Cox and Mann (2008) Version 1.5.9.4

Perseus Tyanova et al. (2016) Version 1.5.5.5
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthias

Mann (mmann@biochem.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

RYGB study 1: Ten obese patients with type 2 diabetes (age 43.6 ± 3.4 years, male/female 4/6, BMI 38.9 ± 1.6 kg/m2, HbA1c

7.0 ± 0.3%, diabetes duration 3.3 ± 1.0 years) and ten obese patients with normal glucose tolerance (age 40.1 ± 2.8 years, male/

female 3/7, BMI 40.2 ± 0.8 kg/m2, HbA1c 5.4 ± 0.1%) scheduled for laparoscopic Roux-en-Y gastric bypass (RYGB) were investi-

gated before (n=20), 1 week (n=16), 3 months (n=20) and 1 year (n=18) postoperatively (Clinical trial NCT01202526), as described

previously (Bojsen-Møller et al., 2014). At 4 years post-RYGB, an extension study (NCT03046147) was initiated and 16 patients of

the initial cohort accepted to be included. Written informed consent was obtained from all participants and the study was approved

by the Municipal Ethical Committee of Copenhagen in accordance with the Helsinki declaration and by the Danish Data Protection

Agency. Triple sampling at fasting was performed at all study visits, while hyperinsulinemic-euglycemic clamps (HEC) including basal

glucose tracer infusions were performed at all except the 4 year’s visit as previously described in detail. Oral glucose tolerance tests

(OGTTs) were done on separate study days before, 3 months, 1 year and 4 years after RYGB. Antidiabetic agents were discontinued

R3 days before each study day, and participants were instructed to refrain from strenuous physical activity and alcohol for 3 days

and to fast overnight (10-12 h) prior to all experiments. Calculations: HOMA2-IR was calculated from all study visits based on a triple

sampling of fasting glucose and C-peptide concentrations using the HOMA2. Hepatic insulin sensitivity and peripheral insulin sensi-

tivity were estimated fromHECexperimental days as the tracer determined basal rate of appearance (Ra) of glucose (inmgperminute)

with correction for C-peptide concentrations and the tracer determined rate of disappearance (Rd) of glucose during the HEC ex-

pressed as mg per min per kg fat free mass (ffm), respectively. The Oral Glucose Insulin Sensitivity index was estimated from all

OGTTs and has recently been validated against the HEC in this particular cohort (Bojsen-Møller et al., 2017).

RYGB study 2: Participants: Ten obese patients with type 2 diabetes (age 46.1 ± 2.8 years, male/female 4/6, BMI 41.2 ± 1.3 kg/m2,

HbA1c 45.1 ± 2.2mmol/mol, diabetes duration 3.6 ± 1.3 years), seven obese patients with impaired glucose tolerance (age 41.8 ± 3.7

years, male/female 2/5, BMI 40.3 ± 1.6 kg/m2, HbA1c 40.0 ± 1.0 mmol/mol) and ten obese patients with normal glucose tolerance

(age 41.6 ± 3.0 years, male/female 4/6, BMI 43.8 ± 1.5 kg/m2, HbA1c 35.0 ± 1.3 mmol/mol) were examined before (n=27) and 1 week

(n=25) and 3months (n=25) after RYGB (NCT01993511) as previously described (Martinussen et al., 2015). A few of the patients were

also investigated after 1 year (n=6) and 2 years (n=3) postoperatively. Written informed consent was obtained from all participants

and the study was approved by the Municipal Ethical Committee of Copenhagen in accordance with the Helsinki declaration and

by the Danish Data Protection Agency. Triple sampling at fasting was performed at all study visits. Oral glucose tolerance testing

was done on separate study days before (n=23) and 3 months (n=23) and 1 year (n=5) after RYGB. Antidiabetic medication was

discontinued >3 days (>10 days for Liraglutide) prior to surgery and patients were instructed to fast overnight (10-12 hours) prior

to testing. Calculations: HOMA2-IR and oral glucose insulin sensitivity was obtained as described for study 1.
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METHOD DETAILS

High Abundant Protein Depletion for Building a Matching Library
To construct a library of peptide identifications, we used two commercial depletion kits that together remove the top14 highest abun-

dant proteins in plasma (Geyer et al., 2016a). Following depletion, we separated our samples into 24 fractions, using our recently

developed high-pH reversed-phase ‘Spider fractionator’ (Figure 1B) (Kulak et al., 2017).

Sample Preparation for Study Samples
Plasma samples for the quantitative analysis of the two bariatric surgery cohorts were prepared for all samples according to the

previously published Plasma Proteome Profiling pipeline (Geyer et al., 2016a). In brief, this involved optimized conditions for

denaturation, alkylation, digestion and peptide purification, and liquid chromatography and MS settings. Sample preparation was

carried out in an automated liquid handling platform (Agilent Bravo) in a 96 well format. For sample preparation, we used the ’iST’

Kit for proteomic sample preparation (P.O. 00001, PreOmics GmbH). Depletion was only used for the library and not for the study

samples.

High Pressure Liquid Chromatography and Mass Spectrometry
Samples were measured using LC-MS instrumentation consisting of an EASY-nLC 1200 system (Thermo Fisher Scientific), which

was combined with a Q Exactive HF Orbitrap (Thermo Fisher Scientific) and a nano-electrospray ion source (Thermo Fisher Scien-

tific). Purified peptides were separated on 40 cm HPLC-columns (ID: 75 mm; in-house packed into the tip with ReproSil-Pur C18-AQ

1.9 mm resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis, around 1 mg peptides were used for the 45 min gradients and for the

fractions of the deep plasma data set. Peptides were loaded in buffer A (0.1% formic acid, 5% DMSO (v/v)) and eluted with a linear

35 min gradient of 3-30% of buffer B (0.1% formic acid, 5% DMSO, 80% (v/v) acetonitrile), followed by a 7 min increase to 75% of

buffer B and a 1 min increase to 98% of buffer B, and a 2 min wash of 98% buffer B at a flow rate of 450 nl/min. Column temperature

was kept at 60�C by a Peltier element containing in-house-developed oven. MS data were acquired with a Top15 data-dependent

MS/MS scan method (topN method) for the library and the BoxCar scan method (Meier et al., 2018) for the study samples. Target

values for the full scan MS spectra was 3 x 106 charges in the 300-1,650 m/z range with a maximum injection time of 55 ms and

a resolution of 120,000 at m/z 200. Fragmentation of precursor ions was performed by higher-energy C-trap dissociation (HCD)

with a normalized collision energy of 27 eV. MS/MS scans were performed at a resolution of 15,000 at m/z 200 with an ion target

value of 5 x 104 and a maximum injection time of 25 ms.

Data Analysis
MS raw files were analyzed using the MaxQuant software (Cox and Mann, 2008) and peptide lists were searched against the human

Uniprot FASTA database with the Andromeda search engine (Cox et al., 2011). A contaminants databasewas employed and cysteine

carbamidomethylation was set as a fixed modification and N-terminal acetylation and methionine oxidations as variable modifica-

tions. False discovery rate (FDR) was 0.01 for both the protein and peptide level with a minimum length of 7 amino acids for peptides

and this FDR was determined by searching a reverse sequence database. Enzyme specificity was set as C-terminal to arginine and

lysine as expected using trypsin and LysC as proteases, and amaximum of twomissed cleavageswere allowed. Peptides were iden-

tified with an initial precursor mass deviation of up to 7 ppm and a fragment mass deviation of 20 ppm. ‘Match between run algorithm’

in MaxQuant (Nagaraj et al., 2012) was performed after constructing a matching library consisting of depleted plasma samples. All

proteins and peptides matching to the reversed database were filtered out. For label-free protein quantitation (LFQ) we required a

minimum ratio count of 2 (Cox et al., 2014). Glycated peptide were identified as previously reported (Keilhauer et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

All bioinformatic analyses were done with the Perseus software of the MaxQuant computational platform (Cox and Mann, 2008;

Tyanova et al., 2016). For statistical analysis of significantly changed proteins before and after RYGB, we used a one-sample t-

test with a false discovery rate of <0.05 after Benjamini-Hochberg correction. Correlation to clinical parameters like BMI and insulin

resistance data to MS-based proteomic data were also done within the Perseus environment.

Global Correlation Analysis
Proteins were only considered for the analysis, if they were present in at least 25% of all samples, which is equal to 44 out of the 175

measured samples. After removal of potential contaminants like platelet proteins, this left 580 proteins. Peptide glycation: Quantified

glycation sites were also filtered for at least 25% valid values and Z-scored over all individuals and time points. The median of this

normalized index over 203 glycation sites is reported as the ‘peptide glycation’ factor.

Inflammation System
We filtered for proteins of the inflammation system by including keywords enriched in the analysis of Figure 2 (complement pathway,

immunity, innate immunity, membrane attack complex, cytolysis, complement alternate pathway, inflammatory response, antimicro-

bial) and further included the term ‘acute phase’ as it added well-known inflammation proteins like the CRP.
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Lipid Homeostasis System
We filtered the plasma proteome for the gene ontology cellular compartment (GOCC) keywords lipid transport, chylomicron,

high density lipoprotein (HDL), low density lipoprotein (LDL), intermediate density lipoprotein (IDL) and very low density

lipoprotein (vLDL) particles. We further included non-annotated proteins well known to associate with lipid metabolism: apolipopro-

tein D (APOD), apolipoprotein(a) (LPA), Prolow-density lipoprotein receptor-related protein 1 (LRP1) and phospholipid transfer

protein (PLTP), and excluded the keyword annotated inflammation proteins SAA1, SAA2 and SAA4, which are not associated

with lipoprotein particles. Filtering for at least 10% valid values, resulted in a set of 25 proteins (Table S9). The median changes of

the proteins were calculated across all time points.

Scoring System for Insulin Sensitivity
The correlation analysis were controlled by a Benjamini-Hochberg false discovery rate (FDR) of 0.05 to take multiple hypothesis

testing into account. We ranked proteins correlating to the four insulin sensitivity parameters (‘homeostatic model assessment of

insulin resistance‘ (HOMA-IR), ‘hepatic insulin sensitivity‘, ‘peripheral insulin sensitivity‘, ‘oral glucose insulin sensitivity‘) according

to their Pearson correlation coefficient. The five proteins with the highest correlation to each of the assessments were assigned the

score 4, the next five proteins 3, the following five 2 and the rest 1 (Table S8).

Insulin Sensitivity Score
We defined an overall score for each protein adding the individual scores in each of the four insulin sensitivity assays. Next, we

normalized the protein trajectories over time, using baseline level before surgery for each individual as 100%. The score weighted

the impact of each of the proteins and the median was plotted for both RYGB studies over time.

DATA AND SOFTWARE AVAILABILITY

TheMS-based proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository and are

available via ProteomeXchange with identifier PXD009348.
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