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We study the hydrodynamics and shape changes of chemically active droplets. In non-spherical
droplets, surface tension generates hydrodynamic flows that drive liquid droplets into a spherical
shape. Here we show that spherical droplets that are maintained away from thermodynamic equi-
librium by chemical reactions may not remain spherical but can undergo a shape instability which
can lead to spontaneous droplet division. In this case chemical activity acts against surface ten-
sion and tension-induced hydrodynamic flows. By combining low Reynolds-number hydrodynamics
with phase separation dynamics and chemical reaction kinetics we determine stability diagrams of
spherical droplets as a function of dimensionless viscosity and reaction parameters. We determine
concentration and flow fields inside and outside the droplets during shape changes and division. Our
work shows that hydrodynamic flows tends to stabilize spherical shapes but that droplet division
occurs for sufficiently strong chemical driving, sufficiently large droplet viscosity or sufficiently small
surface tension. Active droplets could provide simple models for prebiotic protocells that are able to
proliferate. Our work captures the key hydrodynamics of droplet division that could be observable
in chemically active colloidal droplets.
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Living cells are compartmentalized in order to organize
their biochemistry in space. Many cellular compartments
do not possess membranes and are formed by the assem-
bly of proteins and RNA in compact condensates1–16.
Such condensates often have liquid like properties and
resemble droplets that form by phase separation of a
complex mixture1,11–13. Indeed protein droplets are ob-
served to form in vitro by phase separation in physiologi-
cal buffer13,15,17–19. Such droplets can organize chemical
reactions in space, and the droplet dynamics can in turn
be influenced by the reactions, as has been shown both in
theory8,20–26 and experiments13,15,17–19,27,28. The ubiq-
uitous nature of RNA-protein condensates in a large va-
riety of different cells and organisms suggests that the
physical chemistry of macromolecular phase separation
represents an evolutionary old mechanism for the com-
partmentalization of chemistry and that droplet forma-
tion could have played a key role at the origins of life and
the emergence of prebiotic protocells15,18,29–40.

A minimal model of a protocell consists of a droplet
that turns over by a chemical reaction and is constantly
supplied with droplet material by diffusion from the
outside39. In such a scenario droplets are maintained
away from thermodynamic equilibrium and can reach a
non-equilibrium steady state with a radius that is set
by reaction parameters26. An interesting possibility is
that the spherical shape of active droplets becomes un-
stable and droplets spontaneously divide in two smaller
daughters drops, providing a physical mechanism for the
division of prebiotic cells39. Such droplet dynamics is a
hydrodynamic problem because surface tension in non-
spherical droplets drives hydrodynamic flows that redis-
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FIG. 1. Chemically active droplet described by an effec-
tive droplet model. Shown is the concentration field c (blue
and green color) of a stationary droplet (interface in black).
Chemical reactions B → A create a sink of droplet material B
in the droplet, and reactions A→ B create a supersaturation
ε of droplet material in the A-rich phase outside. This creates
concentration gradients of B, which drive diffusion fluxes of
droplet material, while A flows in the opposite direction. The
stationary droplet size results from the balance of the fluxes
across the interface. (Parameters: ε = 0.176, A = 10−2,
η+/η− = 1, k+/k− = 1, ν−/(k−∆c) = 1, D+/D− = 1,

β− = β+, c
(0)
+ = 0)

tribute material and deform the droplet shape41–44.

Here we develop a hydrodynamic theory of the dynam-
ics of chemically active droplets. We show that chemical
reactions in active droplets can perform work against sur-
face tension and flows, giving rise to a shape instability
that can result in droplet division. We investigate the
conditions for which droplets divide and determine hy-
drodynamic flow fields of dividing droplets.

We consider an incompressible liquid consisting of
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droplet material B and solvent component A which can
phase separate. The local composition is characterized
by the concentration field c(x) of component B. Volume
preserving chemical reactions can transform component
A into component B and back, A
 B. For simplicity, we
first discuss an effective droplet model. A single droplet
characterized by high concentration c of component B co-
exists with the surrounding fluid that mainly consists of
A and contains B at low concentration, see Fig. 1. Both
phases are separated by a sharp interface. The concentra-
tion of B satisfies a balance equation, where the chemical
reaction provide a source or sink term s±(c),

∂tc+∇ · j = s±(c) (1)

j = −D±∇c+ vc . (2)

Here, the indices + and − refer to quantities outside and
inside the droplet, respectively. The flux j consists of
advection by the fluid velocity v and a diffusion flux,
where D± denotes the diffusion constant of the droplet
material in the two phases.

The chemical reaction is described by the
concentration-dependent rate s±(c) which in gen-
eral is a nonlinear function of c. For simplicity, we
linearize the chemical reaction rates in the vicinity of

reference concentrations c
(0)
± in each phase:

s±(c) ' −k±(c− c(0)
± )± ν± , (3)

where c
(0)
± are the equilibrium concentrations that coex-

ist at equilibrium across a flat interface. We have defined

the reaction rate ν± = s(c
(0)
± ) and the reaction constants

k± = ds(c
(0)
± )/dc. We focus on the case of positive coef-

ficients k± > 0 and ν± > 0, where B is produced outside
the droplet, and degraded inside, see Fig. 1.

The hydrodynamic flow velocity v obeys Stokes equa-
tion of an incompressible fluid,

η±∇2v = ∇p , (4)

which accounts for momentum conservation ∂ασαβ = 0,
where the stress tensor is given by σαβ = η±(∂αvβ +
∂βvα)− pδαβ . Here η± denotes the fluid shear viscosities
inside and outside of the droplet. The pressure p plays
the role of a Lagrange multiplier to impose the constraint
∇ · v = 0.

The bulk equations (1-4) are connected by boundary
conditions at the droplet interface which we parameterize
in spherical coordinates by the radial interface position
R(θ, φ) as a function of the polar and azimuthal angles θ
and φ. The stress boundary conditions read

σ+
nn(R)− σ−nn(R) = 2γH(R) (5)

σ+
nt(R)− σ−nt(R) = 0 , (6)

where H(R) is the local mean curvature of the interface
and γ is the droplet surface tension. The stresses at the
interface on the inner and outer side of the droplet are de-
noted by σ±αβ(R). The tensor indices n and t refer to ten-
sor components normal and tangential to the interface,

respectively. The normal and tangential tensor compo-
nents are defined as σ±nn = nασ

±
αβnβ and σ±nt = nασ

±
αβtβ ,

where nα is a unit vector normal to the surface and tα is
a unit vector tangent to the surface. Eq (6) is valid for all
tangent vectors and summation over repeated indices is
implied. Using no-slip boundary conditions, the velocity
field is continuous at the interface,

v+(R) = v−(R) . (7)

The concentration field c is discontinuous across the in-
terface with values given by

c−(R) = c
(0)
− + β−γH(R) (8)

c+(R) = c
(0)
+ + β+γH(R) (9)

which are set by the physics of phase coexistence and a lo-
cal equilibrium assumption. The coefficients β± describe
the effects of the Laplace pressure on the equilibrium con-
centrations at phase coexistence. In the presence of fluxes
at the interface, the interface moves in normal direction.
The radial growth velocity is

dR

dt
=

n

n · er
· j
−(R)− j+(R)

c−(R)− c+(R)
, (10)

where n is a unit vector normal to the surface and er is
a unit vector in radial direction. Eq. (10) captures both
convection of the interface by flows and droplet growth
and shrinkage by addition or removal of material.

We find nonequilibrium steady state solutions to Equa-
tions (1-10) with a spherical droplet of stationary radius
R̄ and stationary concentration field c̄(r), where r is the
radial coordinate, see Appendix A. The stationary pres-
sure p̄ exhibits a jump 2γ/R̄ across the interface and no
hydrodynamic flows exist, v̄ = 0. An example for a sta-
ble non-equilibrium steady state with steady state con-
centration profile inside and outside the droplet of radius
R̄ is shown in Fig. 1.

We first discuss the properties of these stationary
states as a function of external supersaturation ε =
ν+/(k+∆c) and the dimensionless reaction rate A =
ν−τ/∆c inside the droplet. The supersaturation is in
our system generated by reactions outside the droplet
and in steady state corresponds to the concentration for

which s+ = 0. Here, ∆c = c
(0)
− − c

(0)
+ and we have intro-

duced the time scale τ = w2/D+, where w = 6β+γ/∆c
is a characteristic length scale. The stationary radii as
a function of supersaturation ε are shown In Fig. 2A-C
as solid lines for different values of A. For values of ε
smaller than a threshold value ε0, no stationary radius
exists. For values ε > ε0 two steady state radii R̄c and
R̄s exist, which become equal at ε0 where they approach
a value R̄0. The smaller steady state radius R̄c is a crit-
ical nucleation radius similar to the critical droplet radii
found in passive systems. The larger radius denoted R̄s
stems from the interplay of phase separation and chemi-
cal reactions26,39. As the supersaturation reaches a value
ε∞ =

√
(D−k−)/(D+k+)ν−/(k−∆c), the stationary ra-

dius R̄s diverges.
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FIG. 2. Stationary radii and onset of shape instability.
A–C: Stationary radius as a function of supersaturation for different reaction amplitudes A = 10−8, 10−7, . . . , 101. The station-
ary radii (lines) are independent of the dimensionless viscosity F = wη−/(γτ), while the onset of instability (red dots, connected
by dotted red line) for the different curves varies in the three figures, which show dimensionless viscosities F =∞, 1000, 10 (left
to right). The blue line colors mark stable, the red ones unstable stationary radii with respect to the elongational l = 2 mode.
In panel B the scaling behavior of the nucleation radius R̄c and the stationary radius R̄s are indicated.
D–F: Stability diagram of stationary droplets of size R̄s, as a function of reaction amplitude A and supersaturation ε for
different dimensionless viscosities F =∞, 1000, 10 (left to right). For small supersaturation and large reaction amplitudes, no
stationary radius exists (white). For large supersaturation, the stationary radius diverges (gray). In the region between these
regimes, the stationary solution can be stable (blue) or unstable (red) with respect to shape perturbations of the l = 2 mode.
For decreasing F , the stable regime grows, and the minimal supersaturation ε∗ at which an instability can be found increases,
as well as the corresponding reaction amplitude A∗. The scaling relations (dashed lines) for the regime of stable droplets and
the onset of instability are indicated, with prefactors according to A 5. (Parameters: η+/η− = 1, k+/k− = 1, ν−/(k−∆c) = 1,

D+/D− = 1, β− = β+, c
(0)
+ = 0)

We can find simple expressions for the stationary
radii in the limit of small A while keeping the ratios
ν−/(k−∆c) and k+/k− of reaction parameters fixed. In
this limit, the chemical reactions fluxes vanish as s± ∝ A
and the threshold value ε0 vanishes as ε0 ∝ A1/3. The
critical nucleation radius then behaves as R̄c ' w/(6ε)
and the larger steady state radius R̄s ' w(3εA)1/2 where
ε0 � ε� ε∞, see Fig. 2B and A 5.

The steady state solutions are independent on the fluid
viscosity, however the droplet dynamics is affected by hy-
drodynamic effects. We now investigate the role of hy-

drodynamic flows on chemically driven shape instabilities
that can give rise to droplet division. We perform a lin-
ear stability analysis at the stationary state given by X̄ =
(c̄, R̄, p̄, v̄) for small perturbations δX = (δc, δR, δp, δv).
The dynamics of these perturbations can be represented
using eigenmodes

δX =
∑
n,l,m

εnlmXnlme
µnlmt , (11)

with Xnlm = (cnlYlm, R̄Ylm, plYlm,vlm), where Ylm(θ, φ)
are spherical harmonics with angular mode indices with
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l = 0, 1, . . . and m = −l, . . . , l. The index n = 0, 1, . . .
denotes radial modes. The eigenmodes exhibit an expo-
nential time dependence with a relaxation rate given by
the eigenvalue µnlm. The mode amplitudes are denoted
εnlm. The concentration modes are characterized by the
radial functions cnl(r). The pressure modes are described
by pl(r) and the velocity modes vlm(r, θ, ϕ) can be ex-
pressed as

vlm = vrlmY lm + v
(1)
lmΨlm + v

(2)
lmΦlm . (12)

where Y lm(θ, ϕ) = erYlm, Ψlm(θ, ϕ) = r∇Ylm and
Φlm(θ, ϕ) = er ×Ψlm are vector spherical harmonics45

and the radial functions vrlm(r), v
(1)
lm (r) and v

(2)
lm (r) char-

acterize the velocity field. The radial functions can be
obtained by solving the linearized dynamic equations us-
ing the corresponding boundary conditions, see A. The
Stokes equation can be solved for a given shape pertur-
bation independent of the concentration field so that the
velocity field and pressure field is independent of the ra-
dial mode n. The radial part of the concentration field
obeys a Helmholtz equation with an inhomogeneity that
stems from hydrodynamic flows. The homogeneous part
is solved by modified spherical Bessel functions and the
inhomogeneous solution can be found using Greens func-
tions. Using the dynamic equation for the shape changes
of the droplet Eq. (10), we obtain an equation for the
eigenvalue µnlm,

µnlm =
vrl (R̄)

R̄
+
D+

∆c

(
c̄′′(R̄+) +

c′nl(R̄+)

R̄

)
−D−

∆c

(
c̄′′(R̄−) +

c′nl(R̄−)

R̄

)
.

(13)

Here, the primes denote radial derivatives. Note that
Eq. (13) is an implicit equation for the eigenvalues µnlm
because the radial concentration modes cnl(r) depend
on µnlm, see A. Eq. (13) is independent of the index m,
therefore the degeneracy of an eigenvalue µnl is at least
2l + 1. When all µnl are negative, the spherical shape
is stable. The modes with l = 0 correspond to changes
in droplet size without flows. They are always stable for
R̄ = R̄s and unstable for R̄ = R̄c. Thus droplet smaller
than R̄c will vanish and droplets larger will grow towards
the size R̄s. Thus we consider the stability of R̄ = R̄s
in the following. The modes with l = 1 do not involve
shape deformations of the droplet and are thus not asso-
ciated with flows. There always exists a marginal mode
with µl=1 = 0 corresponding to overall translations where
the droplet and all concentration fields are displaced and
then stay in the new position. Here we consider shape in-
stabilities for which a mode with l > 1 becomes unstable.
Because shape deformations induce flows, this instability
depends on the dimensionless viscosity F = wη−/(γτ), as
well as the ratio of viscosities in the two phases, η+/η−.

If we increase the supersaturation ε while keeping the
other parameters fixed, the steady state can become un-
stable with respect to the mode l = 2 for a critical value

ε = εc. In Fig. 2A-C, the onset of instability µ = 0 for
the largest eigenvalue µ of the stationary radius is shown
as a red dot, and unstable radii are indicated by red
lines. Different lines correspond to different supersatu-
rations, and the panels show different values of F . In
Fig. 2D-E, the corresponding stability diagrams of sta-
tionary droplets are shown as a function of the supersat-
uration and the reaction amplitude for different values of
F . For large A and small ε, no stationary radius exists
(white regions), so that any droplet would shrink and dis-
appear. For large ε, the stationary state diverges (gray
regions). Spherical droplets are stable in the blue regions.
Stationary spherical droplets are unstable inside the red
region, the surrounding black line marks the shape insta-
bility with respect to the l=2 mode. The region where
spherical droplets undergo a shape instability exists for
ε ≥ ε∗, which depends on F . The value of A for which
the shape instability occurs at ε = ε∗ is denoted A∗, see
Fig 2E.

For small A, the onset of instability can be describes
by simple scaling behaviors. In the limit of small A and
for ε � ε∞, we find ε∗ ∝ F−1/2 and A = A∗ with A∗ ∼
F−3/2 (compare Fig. 2E-F). For A < A∗, hydrodynamic
flows govern the onset of instability which occurs at a
value of A which behaves as A ∝ ε−1F−2. For A >
A∗, hydrodynamic flows can be neglected as compared
to diffusion fluxes and the onset of instability occurs for
A ∝ ε3. These two scaling regimes are indicated in in
Fig. 2D-F by dashed lines. A derivation of these results
including prefactors is given in A 5.

We next address the question whether the shape in-
stability found in the linear stability analysis can indeed
give rise to droplet divisions in the presence of hydro-
dynamic flows in the nonlinear regime of the dynamics.
We use a Cahn-Hilliard model46 for phase separation dy-
namics, extended to include chemical reactions and hy-
drodynamic flows, that can capture topological changes
of the interface. We include chemical reactions via a
source term linear in the concentration as well as advec-
tion by the hydrodynamic flow which is described by the
incompressible Stokes equation. Using a semi-spectral
method47, we obtain numerical solutions in a cubic box
with no-flux boundary conditions, see B.

Starting from a weakly deformed spherical droplet, we
find regimes where the droplet disappears, where it re-
laxes to a stable spherical shape and where it undergoes
a shape instability, consistent with the linear stability
analysis of the effective droplet model. The transitions
between these regimes occur for parameter values close
to those predicted by the linear stability analysis. In the
unstable regime, droplets typically divide. This shows
that the droplet division reported previously can also oc-
curs in the presence of hydrodynamic flows. Fig. 3 shows
snapshots of the droplet shape together with correspond-
ing hydrodynamic flow fields on the symmetry plane of a
dividing droplet at different times. At early times when
the droplet deformation is weak, the flow field is similar
to the l = 2 mode obtained from the linear theory, Fig. 3
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A B

C D

FIG. 3. Numerical solution in 3d of an extended Cahn-
Hilliard model with chemical reactions and hydrodynamic
flows reveals that droplets can divide despite the presence of
hydrodynamic flows. Panels A-D correspond to time points
t/τ = 100, 2100, 2700, 2800, respectively, where τ = w2/D
is a diffusion time, with diffusion constant D and interfacial
width w. The dynamic equations were solved numerically in
a three-dimensional box. Shown are two-dimensional cross-
sections of the droplet shape (black) together with streamlines
(grey). Arrows (colored) indicate the direction and magni-
tude of the flow (normalized by respective maximal veloci-
ties vmax · w/D = 0.0016(in A), 0.0048(B), 0.0034(C) and
0.0047(D) ). (Parameters: F = 24, A = 8 · 10−3, ε = 0.2,

η−/η+ = 1, c
(0)
+ /∆c = 0, k+/k− = 1, ν−/(k−∆c) = 0.8)

A. As the droplet elongates and its waistline shrinks, the
flow field becomes more complex, see Fig. 3 B,C. The
flow field shown in Fig. 3 C exhibits two additional vortex
lines that form rings around the axis of rotational sym-
metry. Similarly, after division, two further vortex rings
occur, see Fig. 3 D. Interestingly, for small deformations
the hydrodynamic flow direction opposes the directions of
interface motion at the main droplet axes, see Fig. 3 A,B.
For larger deformations at later times the flow switches
its direction along the long droplet axis where it assists
interface motion. At the waistline, the flow velocity be-
comes small, see Fig. 3 C. After division, the flow field

between the daughter droplets has very small magnitude,
while strong flows at the outer sides move the droplets
apart Fig. 3 D.

This example shows that division of active droplets
can occur even if hydrodynamic flows that oppose divi-
sion are taken into account. Because flows act in oppo-
sition to the initial deformation of the sphere, the linear
stability analysis already provides the key information of
whether droplet division can occur for a given value of di-
mensionless viscosity F , see Fig. 2. This raises the ques-
tion under what experimental conditions active droplets
would become unstable and division could be observed.
Ignoring hydrodynamic flows, F →∞, it was shown that
oil-water droplets and soft colloidal liquids or p-granules
with sizes of a few micrometers could divide in the pres-
ence of chemical reactions39. To address the influence
of hydrodynamic flows, we have to estimate the dimen-
sionless viscosity F = wη−/(γτ) ' kBT/(6πγwa), where
we have used τ = w2/D and D ' kBT/(6πηa) with
molecular radius a. Thus, F is an equilibrium property
of the phase separating fluid. For an oil-water system,
we estimate F ≈ 0.1, see C. For soft colloidal liquids or
p-granules, we estimate values between F ≈ 10 − 104.
We can discuss these values using the stability diagrams
in Fig. 2D-F. Oil-water like droplets with F ≈ 0.1 are
unlikely to divide, as the unstable region in the stability
diagram is very narrow. For soft colloidal systems with
F ≈ 10 − 104, droplet division might be experimentally
observable. We can estimate typical reaction rates re-
quired for division to occur based on the reaction rate A∗

for which the range of supersaturation is maximal. The
value of A∗ corresponds to a reaction rate in the droplet
of the order of ν− = 10−4mM/s, see C. A comparison
with reported enzymatic reaction rates48 suggests that
such values can be achieved in real systems.

We have shown that spontaneous division of chemi-
cally active droplets involves mechanical work against
surface tension as droplets deform. Active droplets thus
can transduce chemical energy to mechanical work and
droplet division is therefore a mechano-chemical process.
The surface tension of the droplet creates pressure gra-
dients as the droplet becomes non-spherical that lead to
hydrodynamic flows. Because the flows generated act
against the shape deformation, droplets divide only for
sufficiently large viscosity or sufficiently small surface
tension and sufficiently large reaction rates. We show
that the dependence of the onset of stability on parame-
ters is captured for small reaction fluxes by simple scaling
relations. Our work shows that droplet division would
be suppressed in oil-water systems due to large surface
tension and low viscosity. However it could be realized
in soft colloidal systems for chemical reaction parameters
that could be achieved experimentally. Furthermore flux-
driven droplet divisions could be observable in biological
systems, as both chemical reactions and phase-separating
membrane-less organelles with low surface tensions can
be found within cells.
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Appendix A: Effective droplet model with hydrodynamic flows

1. Stationary state of a spherical active droplet

Here, we discuss stationary solutions to equations (1-10) in the main text with spherical symmetry and without
hydrodynamic flows v̄ = 0, where the bar indicates a steady state value. In this case, the pressure is constant both
inside and outside the droplet, with a pressure difference due to Laplace pressure between the inside and outside of
the droplets,

p̄− = p̄+ +
2γ

R̄
. (A1)

The steady state concentration profiles in the presence of chemical reactions are given by39,

c̄+(r) = +
ν+

k+
+ c

(0)
+ +A+k0(r/l+) (A2)

c̄−(r) = −ν−
k−

+ c
(0)
− +A−i0(r/l−) , (A3)

where i0(x) = 2 sinh(x)/x and k0(x) = e−x/x denote modified spherical Bessel functions of order zero of the first
and second kind, respectively. The characteristic length scales l± = (D±/k±)1/2 are set by reaction rate constants
and diffusion coefficients. The parameters A± are determined by the boundary condition at the droplet interface, Eq.
(8-9) in the main text,

A+ =

(
γβ+

R̄
− ν+

k+

)
1

k0(R̄/l+)
(A4)

A− =

(
γβ−
R̄

+
ν−
k−

)
1

i0(R̄/l+)
. (A5)

Stationarity of the droplet radius R̄ implies

D+c̄
′
+(R̄) = D−c̄

′
−(R̄) , (A6)

see Eq. (10) in the main text. Note that this equation typically has zero, one or two solutions for a given set of
parameters.

2. Linearized dynamics

We introduce small perturbations to the spherically symmetric stationary state, with p = p̄+ δp, v = δv, c = c̄+ δc
and R = R̄+ δR and write the dynamics of these perturbations to linear order. The linearized dynamics reads

∇δp = η±∆δv (A7)

∇ · δv = 0 (A8)

∂tδc = −δvr c̄′ +D±∇2δc− k±δc (A9)

∂tδR = δvr(R̄) +
1

∆c

[
D+c̄

′′
+(R̄)−D−c̄′′−(R̄)

]
δR

+
1

∆c

[
D+∂rδc+(R̄)−D−∂rδc−(R̄)

]
. (A10)

Here δvr denotes the radial part of the hydrodynamic velocity. With δc− and δc+ we denote perturbations of the
concentration field inside and outside the droplet. The same notation holds for the other fields. In this linear analysis,
boundary conditions apply at the stationary radius R̄,

δc±(R̄) = β±γδH − c̄′±(R̄)δR , (A11)

with perturbation of the curvature δH = H(R)−H(R̄).
The linearized dynamics can be decomposed in spherical harmonics, see Eq (11) in the main text. The curvature

perturbation then takes the form

δH =
∑
nlm

hl
R̄
εnlmYlm , (A12)

with hl = (l2 + l − 2)/2.



7

3. Hydrodynamic eigenmodes of the linearized dynamics

We can expand the hydrodynamic eigenmodes using a basis of vector spherical harmonics, see Eq. (12) in the main
text. The velocity boundary conditions Eq. (7) in the main text for the mode amplitudes read

0 = vr+lm (R̄)− vr−lm (R̄) (A13)

0 = v
(1)+
lm (R̄)− v(1)−

lm (R̄) (A14)

0 = v
(2)+
lm (R̄)− v(2)−

lm (R̄) . (A15)

The stress boundary conditions (see Eq. (5-6) in the main text) at the interface read

0 = 2η+(vr+lm )′(R̄)− p+
lm(R̄)− 2η−(vr−lm )′(R̄) + p−lm(R̄)− 2γεlm

hl
R̄

(A16)

0 = η+

[
(v

(1)+
lm )′(R̄) +

vr+lm (R̄)

R̄
−
v

(1)+
lm (R̄)

R̄

]
(A17)

−η−

[
(v

(1)−
lm )′(R̄) +

vr−lm (R̄)

R̄
−
v

(1)−
lm (R̄)

R̄

]
(A18)

0 = η+

[
(v

(2)+
lm )′(R̄)−

v
(2)+
lm (R̄)

R̄

]
− η−

[
(v

(2)−
lm )′(R̄)−

v
(2)−
lm (R̄)

R̄

]
. (A19)

We solve the radial profiles of the modes with a polynomial ansatz and exclude functions that diverge for r → 0 or
r →∞ inside and outside the droplet, respectively. The pressure is then given by

p−lm(r) = γfA

( r
R

)l+1

(A20)

p+
lm(r) = −γfB

( r
R

)−l
. (A21)

For the hydrodynamic flow velocity we obtain

vr−lm (r) =
γ

η−

[
fC1

( r
R

)l+1

− fC3

( r
R

)l−1
]

(A22)

v
(1)−
lm (r) =

γ

η−

[
l + 3

l(l + 1)
fC1

( r
R

)l+1

− l + 1

l(l + 1)
fC3

( r
R

)l−1
]

(A23)

v
(2)−
lm (r) = 0 (A24)

and

vr+lm (r) =
γ

η−

[
−fC2

( r
R

)−l
+ fC4

( r
R

)−l−2
]

(A25)

v
(1)+
lm (r) =

γ

η−

[
l − 2

l(l + 1)
fC2

( r
R

)−l
− 1

l + 1
fC4

( r
R

)−l−2
]

(A26)

v
(2)+
lm (r) = 0 . (A27)
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Here, we have defined

fA =
(l − 1) (l + 1) (l + 2) (2l + 3)

∆ (2l2 + 4l) + (2l2 + 4l + 3)
(A28)

fB =
l (l − 1) (l + 2) (2l − 1)

(2l2 + 1) + (2l2 − 2) /∆
(A29)

fC1 =
1

2

l (l − 1) (l + 1) (l + 2)

∆ (2l2 + 4l) + (2l2 + 4l + 3)
(A30)

fC2 =
1

2

l (l − 1) (l + 1) (l + 2)

∆ (2l2 + 1) + (2l2 − 2)
(A31)

fC3 =
1

2

l (l − 1) (l + 1) (l + 2)
(
∆
(
2l2 + 4l + 3

)
+
(
2l2 + 4l

))
(∆ (2l2 + 1) + (2l2 − 2)) (∆ (2l2 + 4l) + (2l2 + 4l + 3))

(A32)

fC4 =
1

2

l (l − 1) (l + 1) (l + 2)
(
∆
(
2l2 − 2

)
+
(
2l2 + 1

))
(∆ (2l2 + 1) + (2l2 − 2)) (∆ (2l2 + 4l) + (2l2 + 4l + 3))

, (A33)

where ∆ = η+/η− denotes the ratio of the viscosities inside and outside the droplet.

4. Concentration eigenmodes

The equation for the radial part of the concentration eigenmode is

1

D±
vrl (r)c̄

′(r) =

[
1

r2

d

dr
r2 d

dr
− λ±2

nl −
l(l + 1)

r2

]
cnl(r) (A34)

with

λ±2
nl = (k± + µnl)/D± . (A35)

The boundary conditions at R̄ are

cnl(R̄±) = γβ±
hl
R̄
− R̄ c̄′(R̄±) . (A36)

The left-hand side of Eq. (A34) constitutes an inhomogeneity

f±l (r) = − 1

D±
vrl (r)c̄

′(r) . (A37)

The solution c±nl(r) of the inhomogeneous equation (A34) that satisfies the boundary condition Eq. (A36) can be

constructed from a particular solution c±nl,p(r) of the inhomogeneous equation to which solutions c±nl,h(r) of the

homogeneous equation with f±l = 0 are added to satisfy the boundary conditions, Eq. (A36). This can be expressed
as

c−nl(r) = α−nlc
−
nl,h(r) + c−nl,p(r) (A38)

c+nl(r) = α+
nlc

+
nl,h(r) + c+nl,p(r) , (A39)

where the coefficients α± read

α±nl =
a±l − c

±
nl,p(R̄)

c±nl,h(R̄)
, (A40)

with a±l = c±nl(R̄).
We are especially interested in the case of unstable modes with µnl > 0. Therefore we focus on the solution of

equation (A34) for λ±2
nl > 0 and k± > 0. In this case, the homogeneous equation with f±l = 0 is a modified Helmholtz

equation which is solved by modified spherical Bessel functions, c−nl,h(r) = il(λ
−
nlr) and c+nl,h(r) = kl(λ

+
nlr), where il
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and kl denote the modified spherical Bessel functions of first and second order, respectively. The particular solution
of the inhomogeneous equation can be obtained by a Green’s function approach,

c−l,p(r) = λ−nlkl(λ
−
nlr)

∫ r

0

[
il(λ

−
nlr2)f−l (r2)r2

2

]
dr2 (A41)

+λ−nlil(λ
−
nlr)

∫ R̄

r

[
kl(λ

−
nlr2)f−l (r2)r2

2

]
dr2

c+l,p(r) = λ+
nlkl(λ

+
nlr)

∫ r

R̄

[
il(λ

+
nlr2)f+

l (r2)r2
2

]
dr2 (A42)

+λ+
nlil(λ

+
nlr)

∫ ∞
r

[
kl(λ

+
nlr2)f+

l (r2)r2
2

]
dr2 ,

with the radial part of the inhomogeneity f±l (r) given by Eq. (A37). The explicit calculation of these functions has
to be handled with care, since the functions kl and il have divergences for large and small arguments r that cancel in
the final result but can still lead to numerical difficulties when evaluated directly.

The derivative of the concentration profile at R̄ can be expressed as

c′nl(R̄−) =
a−l
R̄
gl,i(λ

−
nlR̄) +

c−l,p(R̄)

R̄
·
[
gl,k(λ−nlR̄)− gl,i(λ−nlR̄)

]
(A43)

c′nl(R̄+) =
a+l
R̄
gl,k(λ+

nlR̄) +
c+l,p(R̄)

R̄
·
[
gl,i(λ

+
nlR̄)− gl,k(λ+

nlR̄)
]
, (A44)

with

gl,i(x) =
xi′l(x)
il(x) (A45)

gl,k(x) =
xk′l(x)
kl(x) . (A46)

Using the equation for the shape perturbations (A10), and using Eqns (A43) and (A44), we obtain Eq. (13) in the
main text. This equation determines the eigenvalue µnlm of the hydrodynamic modes.

5. Scaling relations in the limit of small reaction fluxes

In the limit of small chemical reaction fluxes s± we obtain simple scaling expressions for stationary radii and their
shape instability conditions. Here we present the method and discuss the results.

a. Stationary radius

Here we discuss the stationary radius in the limit of small chemical reaction amplitude A = ν−τ/∆c while keeping
the ratios ν−/(k−∆c) and k+/k− of reaction parameters fixed. This corresponds to the curves R̄(ε) shown in Fig. 2A
for different values of A. We can identify two regimes in the figure. The first is the region of small ε, ε ∼ ε0, which
corresponds to the minimum of ε(R̄). The second is the region of ε∞ where the stationary radius diverges. For A→ 0,
we see that ε0 goes to zero while ε∞ stays constant, and both are connected by a straight line that indicates scaling
behavior of R̄ = R̄s. This increasing separation between ε0 and ε∞ (and the corresponding stationary radii) in the
limit of small A means that we can analyze the behavior of the stationary radius in these two regimes separately. For
this we consider Equations (A.2) and (A.3) for the concentration field and (A.6) for the stationary radius. We can
rewrite (A.6) to obtain an expression relating the supersaturation to the stationary radius,

ε =
β+γ

∆cR̄
+

(
β−γ

∆cR̄
+

ν−
k−∆c

)
D−
D+

R̄
l−

coth R̄
l−
− 1

1 + R̄
l+

. (A47)

In this limit of small A, the characteristic length-scales of the concentration field become large with l± ∝ A−1/2. To

find scaling regimes in equation ((A47)), we change variables in Eq. (A47) from (A, R̄) to (A, R̂) with R̂ = R̄Aa/w,
where a is an exponent. For a = 1/3 we find the behavior of ε(R) close to ε0 and R̄0,

ε̂ =
1

6
R̂−1 +

1

3
R̂2 +O(A1/6) (A48)
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where ε̂ = εA−1/3 becomes independent of A for small A. This function describes the supersaturation as a function
of radius around the threshold value ε0. Due to the inverted presentation ε(R̄) instead of R̄(ε) the function captures
both the nucleation radius R̄c and the larger radius R̄s. The threshold value ε0 can be obtained from Eq. (A48) by

minimizing ε̂ for fixed A as ∂ε̂/∂R̂ = 0. It behave as

ε0 = 4−2/3A1/3 +O(A1/2) . (A49)

For large and small R̂, Eq (A48) describes the steady radii R̄s and R̄c, respectively, for which ε ≥ ε0. For large ε, the
critical radius obeys

R̄c '
w

6ε
, (A50)

while the larger stationary radius is

R̄s ' w(3εA)1/2 . (A51)

In Fig. 2B, the scaling behaviors given by Eq. (A51) and Eq. (A50) are indicated by dashed lines. At ε = ε0 both radii
meet at R̄ = R̄0, where

R̄0 = w(4A)−1/3 +O(A−1/2) . (A52)

For a = 1/2, R̄/l± becomes independent of A and

ε =
D−
D+

ν−
k−∆c

R̄
l−

coth
(
R̄
l−

)
− 1

1 + R̄
l+

+O(A1/2) (A53)

For R̄/l± � 1, the stationary radius obeys Eq. (A51) and is thus the larger stationary radius R̄s. For R̄/l± � 1, we
obtain the divergence of R̄s as ε approaches ε∞ with

ε∞ =

√
D−k−
D+k+

ν−
k−∆c

. (A54)

b. Shape instability

We now discuss scaling relations for the onset of instability in the (A, ε̂) plane in the limit of small A, which give
the trends shown as dashed lines in Fig. 2D-F. We use the scaling of the stationary radius R̄ = R̄s close to ε0 with

R̂ = R̄A1/3/w, ε̂ = εA−1/3 and l̂± = l±A
1/2 in Eq. (13) to obtain

µ̂nlm = −dl
R̂

A−2/3

F
+

2

3
(l − 1)− D+

D−

(l − 1)gl

R̂3
+O(A1/6) (A55)

where µ̂nlm = µnlmτ/A and R̂ is related to ε̂ by (A48). Here, dl = fC3 − fC1, where fC1 and fC3 are defined in
Eq. (A33) and

gl =
hl(l + 1) + D−

D+

β−
β+
hll

l − 1
(A56)

with hl = (l2 + l − 2)/2. For large mode index l,

dl =
l

2(η+/η− + 1)
+O(1/l) . (A57)

We now consider conditions for which µnlm = 0 for small A and the mode (n, l,m) becomes unstable. Using (A48) in

(A55), we find a relation between ε̂ and R̂ at the onset of instability µnlm = 0,

ε̂ =
dl

2(l − 1)

1

F̂
R̂+

(
1

6
+
D+

D−

1

2
gl

)
R̂−1 +O(A1/6) . (A58)
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This curve captures the scaling behavior of the onset of instability for different parameters in the R̄ − ε plane,
corresponding to the red dotted line in Fig. 2A-C.

We now focus on finding the scaling relations for the onset of stability of the stationary radius as function of A, ε
and F , as shown in Fig. 2D-F. At this onset, both (A58) and (A48) need to be satisfied. We use both equations to

eliminate R̂. We find a crossover regime with relations A∗ ∼ F−3/2 between the region where hydrodynamic flows are
relevant (A < A∗) and where they can be neglected (A > A∗). For A > A∗ we find for µnlm = 0 as relation between
A and ε

A ' 54
gl(

1 + 1
2gl
)3 ε3 . (A59)

For A < A∗ we find

A ' 1

3

(
2(l − 1)

dl

)2

ε−1F−2 . (A60)

In Fig. 2D-F, the dashed lines indicate these two scaling solutions in the limit A → 0 and F → ∞ for l = 2, which
we find to be the first mode to become unstable. We find that the general trends of the stability diagram is captured
well, with small deviations from the full solution of Eq. (13) for small ε, and larger deviations in the regime close to
ε∞ where the scaling of the stationary radius R̄s ∝ A−1/3 breaks down.
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Appendix B: Continuum model for active droplets with flows

1. Continuum model for active droplets

We study an extended Cahn-Hilliard equation with chemical reactions coupled to Stokes equation for hydrodynamic
flows at low Reynolds numbers. We consider an incompressible fluid containing two components A and B, with number
concentration fields cA(r, t) and c = cB(r, t) that depend on position r and time t, and with molecular masses mA

and mB and molecular volumes vA and vB . We are interested in the case where component A forms the background
fluid and B is a droplet material that forms droplets by phase separation. Additionally, chemical reactions convert the
two components into each other, A
 B. For simplicity, we consider mass and volume conserving chemical reactions
with mA/vA = mB/vB , which encodes that volume is conserved in the reaction if mass is conserved. Together with
incompressibility, this implies that the mass density ρ = mAcA + mBcB is constant. Therefore, we can describe the
system by the concentration c(r, t) of the droplet material B only.

We use the following double-well free energy density46

f(c) =
b

2(∆c)2

(
c− c(0)

−

)2(
c− c(0)

+

)2

+
κ

2

(
∇c
)2
, (B1)

with ∆c =
∣∣c(0)
− −c

(0)
+

∣∣. Here, the positive parameter b characterizes molecular interactions and entropic contributions.

This free energy describes the segregation of the fluid in two coexisting phases49: one phase rich in droplet material

with c ≈ c(0)
− and a dilute phase with c ≈ c(0)

+ . The coefficient κ is related to surface tension and the interface width46.
The state of the system is characterized by the free energy

F [c] =

∫
d3r f(c) , (B2)

where the integral is over the system volume. We work with an ensemble T , ρ, c here, where T denotes temperature
and the system is considered isothermal. The chemical potential µ̄ = δF [c]/δc, governs demixing and can be split
into local and nonlocal contributions, µ̄ = µ̄0 − κ∇2c with

µ̄0 =
b

(∆c)2

(
c− c(0)

+

)(
c− c(0)

−
)(

2c− c(0)
− − c

(0)
+

)
. (B3)

The dynamics of the concentration field is described by50,51

∂tc = −∇ · j + s(c) (B4)

j = −M∇µ̄+ vc . (B5)

Here, M is a mobility coefficient of the droplet material and v is the hydrodynamic velocity. The source term s(c)
describes chemical reactions, for which we choose for simplicity a linear concentration dependence,

s(c) = ν − k(c− c(0)
+ ) . (B6)

The reaction flux given in Eq. (B6) does not obey detailed balance with respect to the free energy, and thus describes
a situation where an external energy source maintains the system away from equilibrium39.

The hydrodynamic velocity v can be calculated using momentum conservation,

∂t(ρvα) = ∂βσαβ , (B7)

with momentum ρvα and stress tensor σαβ , where α and β number cartesian coordinates x, y, z. We can write the
stress tensor σαβ as

σαβ = −(ρvα)vβ + σeqαβ + σdαβ , (B8)

where the first term describes advection of the stress tensor, σeqαβ and σdαβ denote the equilibrium and dissipative stress
tensors. The equilibrium stress tensor is given by

σeqαβ = −(µ̄c− f)δαβ −
∂f

∂(∂αc)
∂βc− P0δαβ . (B9)
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Here, µ̄c− f is the osmotic pressure of the droplet material, and δαβ denotes the Kronecker delta. Incompressibility
is enforced by an additional partial pressure P0. The deviatory stress tensor can be found as thermodynamic force
related to momentum by writing the entropy production rate,

σdαβ = 2η

(
vαβ −

1

3
vγγδαβ

)
+ η′vγγδαβ , (B10)

where η and η′ denote viscosities, and vαβ = (∂αvβ + ∂βvα)/2 is the symmetric strain tensor.
In the Stokes limit, the inertial terms are neglected, Dt(ρvα) = 0, with advected derivative Dt = ∂t + vβ∂β , leaving

0 = ∂β(σeqαβ + σdαβ). This yields52

η∂2
βvα = 3µ̄0∂αc− κc∇2(∂αc) + ∂αP0 . (B11)

Eqs. (B3)–(B6) and Eqs. (B11) and incompressibility ∂αvα = 0 define the continuum model of active droplets.

2. Numerical solution of the continuum model

We numerically solve the dynamic equations of the continuum model of active droplets, Eqs. (B3)–(B6) and
Eqs. (B11) with Eq. (B13) and incompressibility ∂αvα = 0.

For this we use a spectral method in a 3d rectangular box. This has the advantage that in a spectral decomposition,
the spatial operators become simple multiplications with the wavenumber47. However, our equations contain a number
of nonlinear functions, which are easier to evaluate in real space. We therefore transform forward and back in each
time step.

To calculate the next timestep ti from the fields found in timestep ti−1, we use a semi-implicit Runge-Kutta
method53 (method (2,3,3)) for the concentration field. This evaluates the gradient term in µ̄, Eq. (B3), implicitly,
while evaluating the rest of µ̄ as well as the advection term of the fluxes, vc, explicitly. This effectively means that
the terms related to the interfacial profile are calculated implicitly, which allows for larger time steps as an explicit
scheme.

For the concentration field, we choose no-flux boundary conditions (∂nc = 0, where the derivative is in a direction
normal to the simulation box), which leads to a decomposition in cosine functions in the spectral description. The
Laplacian then is −k2 for a mode with wave vector k. The Stokes equation can also be solved using spectral methods.
Here, no-flux conditions lead to vn = 0. Additionally we enforce incompressibility using a reprojection method. For
this, the velocity field calculated by neglecting the partial pressure, Pp = 0, can be split into two parts (Helmholtz
decomposition),

v = vψ + vφ = ∇×ψ −∇φ (B12)

with vector field ψ and scalar field φ, and velocity parts vψ = ∇×ψ and vφ = −∇φ. With this, we find

∇ · v = ∆φ (B13)

and thus, using incompressibility, ∇ · v = 0, we can calculate φ. We thus find the incompressible part of the velocity
field

vψ = v −∇φ . (B14)

We can evaluate this in Fourier space using a spectral method. For a rectangular box aligned with the coordinate
system, we thus find that each velocity component vα is decomposed by sines in one direction and cosines in the other
direction. Spatial derivatives convert a sine-description into cosines, and vice versa.

We normalize concentration, length, time and energy by ∆c = c
(0)
− − c

(0)
+ , w = 2(κ/b)1/2, t0 = w2/D and ê0 =

κŵ(∆c)2/3, respectively, where the characteristic length scale is w = 2(κ/b)1/2. The relevant dimensionless model

parameters are c
(0)
+ /∆c, kt0, and ν−t0/∆c. We choose c

(0)
+ /∆c = 0, kt0 = 10−2, νt0 = 2 · 10−3 and η ŵ3/(t0ê0) = 2.

Additionally, we use as box-length L/ŵ = 100 in all 3 dimensions, number of grid-points in one direction N = 128
and simulation time T/t0 = 4 · 103. For the time step, we start with a timestep of ∆t/t0 = 10−4, and double the
timestep to a final step size of ∆t/t0 = 0.01.

We start with initial conditions R = R0(1 + εY2,0), with R0/ŵ = 7 and ε = 1. The concentration field at positions
r is initialized by the function

c(r) =
c
(0)
+ + c

(0)
−

2
+
c
(0)
+ − c

(0)
−

2
tanh

d(r)

w
. (B15)

where d(r) is the oriented distance of r to the nearest point on the ellipsoid. The value of d(r) is negative for points
inside the droplet and positive for points outside.
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3. Effective droplet model as a limit of the continuum model

We now discuss the relationship between the effective droplet model and the continuum model. To relate the two
models, we first use the continuum model to derive jump conditions for the concentration in the effective droplet model
in equilibrium. We then consider stress balance across this interface and derive stress boundary conditions in the
effective droplet model. Finally we discuss the dynamical equations in the bulk and at the interface in non-equilibrium
situations.

a. Derivation of jump conditions for equilibrium phase separation

First we consider the phase separation in equilibrium without chemical reactions in the continuum model.

In a one-dimensional system with a mean concentration c̄ with c
(0)
+ < c̄ < c

(0)
− , the free energy of the system in

Eq. (B2) is minimized by the concentration profile

c∗(x) =
c
(0)
− + c

(0)
+

2
+
c
(0)
− − c

(0)
+

2
tanh

x

w
, (B16)

where w = 2(κ/b)1/2 denotes the interfacial width and x is the normal distance to the interface. The concentration

profile describes two phases of concentration c
(0)
− and c

(0)
+ separated by a flat interface of width w. The surface tension

can be defined as

γ =

∫ ∞
−∞

F [c∗(x)]− 1

2
(F [c

(0)
− ] + F [c

(0)
+ ])dx . (B17)

For the free energy Eq. (B2) with the concentration profile Eq. (B16), this can be written as γ =
∫∞
−∞ κ(∇c∗)2dx

which yields γ = (∆c)2/6
√
κb or54.

This interfacial tension governs the concentration jump condition in the effective droplet model, which can be
derived as follows. To describe a curved interface, we consider two homogeneous phases with concentrations c±. For
a finite volume Vs with a droplet of size V and area A the concentrations c± can be found by minimizing the free
energy F = f(c−)V + f(c+)(Vs − V ) + γA with ∂F/∂c−|V = 0 and ∂F/∂V |c− = 0, where the concentration of both
phases are related by Vsc̄ = V c− + (Vs − V )c+ where c̄ denotes the average concentration in the system. Thus for
two phases to be in equilibrium, their chemical potential µ̄ and osmotic pressure Π = cµ̄− f need to obey

0 = µ̄(c−)− µ̄(c+) (B18)

0 = Π(c+)−Π(c−)− 2γH , (B19)

where H the mean curvature of the droplet and 2γH is the Laplace pressure. These equations determine the concen-
trations in the phases c± of coexisting phases54.

For small Laplace pressures, we can express the equilibrium concentrations c± of a curved interface by the concen-

trations of a flat interface c
(0)
± plus a small perturbation,

c− = c
(0)
− + β−γH (B20)

c+ = c
(0)
+ + β+γH (B21)

where β± = 2/(f ′′(c
(0)
± )∆c). For the free energy Eq. (B2), we find β± = 2/(b∆c), which is related to the interfacial

width as w = 6γβ+/∆c.

b. Stress balance across the interface

We now consider stress balance of the continuum model across the droplet interface to derive stress jump conditions
at the interface in the effective droplet model. We discuss the mechanical equilibrium in a small volume across a curved
interface with a local mean curvature H corresponding to a (local) effective radius R̃ = 1/H. We focus on the case
where the interface is rotationally symmetric around the considered point R, and where the curvature does not change
along the interface. We use spherical coordinates, where the radial vector er is aligned with the (outward pointing )
normal vector n and the tangential vectors t and s are aligned with eθ and eφ, respectively (with the vector directions
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FIG. 4. Geometry for the force balance. We consider a spherical cap of the droplet interface, with a box with constant
distance δ to the interface inside and outside. The normal and tangential vectors n, t and s of the interface are shown, as well
as the normal vector ñ of the box. The origin of the spherical coordinate system is the center of the sphere that describes the
interfacial curvature, with radius R̃, while θ0 gives the polar angle of the cap.

for φ = 0 in the limit θ = 0). We consider a small box enclosing R where the outer and inner surfaces Aout and Ain
have a constant distance of δ to the interface, and the lateral surface Alat is at a constant angle θ0 with respect to
the symmetry axis. The geometry is shown in Fig. 4.

Now let us consider the balance of the stress tensor Eq. (B7) across the box, taking into account the curved geometry.
The stress balance ∂βσαβ can be written as

0 =

∮
dA ñβσαβ (B22)

where α and β are cartesian coordinates and ñ the (local, outward pointing) normal vector of the box-surface. We
can split this in three terms,

0 =

∫
dAoutσαn −

∫
dAinσαn +

∫
dAlatσαt , (B23)

where we used that the orientation of the normal vectors of the box coincides with the normal/tangential vector of
the interface.

On the inner and outer areas Ain and Aout, the stress tensor presented in Eq. (B8) with equilibrium stress tensor
in Eq. (B9) reduces to the form of the effective droplet model given after Eq. (6) in the main text, as the gradient
terms are negligible for δ � w. We now consider the limit of a sharp interface w → 0 with finite surface tension γ,
and consider the case of a small box of thickness δ, which remains larger than the interfacial width. The components
α = x, y of Eq. (B23) vanish by symmetry. For α = z we find

0 = πR̃2 sin2 θ0 σ
+
nn − πR̃2 sin2 θ0 σ

−
nn − 2πR̃ sin2 θ0 γ , (B24)

where σ±nn are the stress tensor components of the effective model, Eq. (4), inside and outside the interface at R.

Integration over the lateral box surface Alat yields the last term,
∫
dAlatσαt ∼= 2πR̃ sin2 θ0 γ. We thus find that the

mechanical equilibrium of a curved interface introduces a Laplace pressure 2γH,

0 = σ+
nn − σ−nn − 2γH . (B25)

We therefore recover the stress jump conditions of the effective droplet model, Eq. (6). Additionally, (B25) together
with (B19) implies that the partial pressure needed to satisfy incompressibility is continuous across the interface,
P+

0 = P−0 .
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c. Dynamics of the effective droplet model

We now consider the dynamics of a non-equilibrium system with a droplet. We show how the continuum model is
related to the bulk equations and jump conditions of the effective droplet model. For this we consider a droplet with
a interface that is thin compared to the dynamical length scales l±, so that we can describe the interface by local
equilibrium. In the bulk phases we focus on the case where deviations from the equilibrium concentrations are small.

In the bulk phases, we expand the chemical potential Eq. (B3) around the reference concentrations c
(0)
± . The

gradient term −κ∇2c in the chemical potential is important within the interface, but can be ignored in the bulk
phases, where the length-scales on which the concentration field varies are much larger than the interfacial width.
Thus we can describe the chemical potential by

µ̄±(c) ≈ dµ̄0

dc

∣∣∣∣
c
(0)
±

(c− c(0)
± ) , (B26)

which is µ̄±(c) ≈ b(c − c
(0)
± ) for our specific free energy. With this simplification, Eqns. (B4) and (B5) become

the reaction-diffusion-convection equations (1) and (2) with diffusion constants D± = M (dµ̄0/dc)|c(0)± or D± = Mb.

Similarly we linearize the chemical reaction rate Eq. (B6) in both phases. As we already chose a linear rate for the
continuum model, we only need to relate the parameters k and ν with the constants k± and ν± of the effective model,
with k± = k, ν+ = ν and ν− = k∆c − ν. Inserting the linearized chemical potential Eq. (B26) into the equilibrium
stress tensor (B9) we find that momentum conservation in the bulk phases is given by the Stokes equation (4) with
viscosities η± = η, where the pressure p is determined by the incompressibility condition ∂αvα = 0.

We consider the droplet interface to be in local equilibrium. We therefore obtain Eq. (8) for the jump of the
concentration field in the effective model. The incompressibility condition ∂αvα = 0 implies v−n (R) = v+

n (R) at a
sharp interface, and we consider an interface without slip length, so that v−(R) = v+(R). We thus find Eq. (7) of the
effective model. The normal stress balance in Eq. (6) is derived in B 3 b.

As a last point we need to find Eq. (10) for the interface movement. We consider the concentration change in
a box of width δ around the interface, see Fig. 4. We consider a box enclosing a point R on the interface at the
time t aligned with the normal and tangential directions of the interface at R. The interface may move with normal
movement ∂tR̂(t), with R̂(t) = R(t) ·n and normal vector n, while the box stays at a fixed position. The total change
of material in the volume is given by

∂t

∫
V

dV c = −
∫
A

dA ñ · j +

∫
V

dV s(c) (B27)

where V denotes the volume and A the area of the box. For small w and finite δ the concentration field c makes a
jump from the surface Ain to Aout given by conditions (8) and (9) at R̂. Within each phase, we can express the field
by the boundary values at the interface Eq. (B21) and a linear expansion,

c(r, t) '

{
c−(R(t)) +∇c−(r, t) · (r −R(t)) inside droplet

c+(R(t)) +∇c+(r, t) · (r −R(t)) outside droplet
(B28)

The chemical reaction is given in both phases by Eq. (B6). For small δ and θ0, we find for the left-hand side of
Eq. (B27) that δc vanishes to lowest order and

∂t

∫
V

dV c = AR(c−(R(t))− c+(R(t)))∂tR̂+O(ε) +O(θ0) (B29)

where AR is the area of the droplet interface enclosed by the box. For a spherical cap, AR = 2π(1 − cos θ0)R̂2. We
further find that the source term due to the chemical reaction scales with the volume of the box, and thus vanishes
for a small box,

∫
V
dV s(c) = 0 +O(ε) +O(θ0). The flux across the box can be expressed as

−
∫
A

dA ñ · j = ARn · (j−(R(t))− j+(R(t))) +O(ε) +O(θ0) (B30)

where j±(R(t)) denotes the flux at R inside/outside the droplet. We thus find the normal movement of the interface,

∂tR̂ = n ·
j−(R(t))− j+(R(t))

c−(R(t))− c+(R(t))
. (B31)
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In the main text we use spherical coordinates centered at the droplet center. For a spherical droplet, the normal
and radial movement would thus be the same. For a deformed droplet, we need to consider the relation between the
normal interface movement, R̂(t) = R(t) · n and the radial movement R(t) = R(t) · er. At fixed angles θ and φ,

the interface movement is given by ∂tR = ∂tR er. Using ∂tR̂ = ∂tR(t) · n, we find a relation between the radial

and normal movement, ∂tR = ∂tR̂/(n · er). This relation, together with Eq. (B31), yields the interfacial movement
Eq. (10) presented in the main text.

We thus recover all dynamical equations of the effective droplet model from the continuum model based on irre-
versible thermodynamics. Note that the specific choice of the free energy leads to specific relations between parameters
of the effective model such as D+ = D−. Our derivation shows the relation between both models in the case where
the interface width w is small compared to the droplet size, R/w � 1, and the chemical diffusion length, l±/w � 1.
Additionally, we focused on the case where the concentrations in the phases are similar to the concentrations in equi-
librium and have small concentration gradients. These conditions are not valid in all systems. Most importantly, the

chemical reactions can drive concentrations far away from the equilibrium phase concentrations c
(0)
± . The resulting

behaviors, such as the formation of new interfaces associated with instabilities of the spinodal decomposition regime,
are not captured in the effective droplet model.
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FIG. 5. Growth of shape perturbations of the l = 2 mode for different normalized viscosities F = ηw/(γτ) for the continuous
model (red crosses) and effective model (blue curve). The last data point (with arrow) corresponds to F → ∞. (Parameters:

A = 8 · 10−3, ε = 0.2, η−/η+ = 1, c
(0)
+ /∆c = 0, k+/k− = 1, ν−/(k−∆c) = 0.8)

4. Comparison of the droplet dynamics in the continuum model and the effective model

Here we compare the analytical predictions of the effective model for the instability with numerical calculations of
the continuous model for different values of the renormalized viscosity F . For this we numerically solved the dynamic
equations of the continuous model starting with a droplet with a small initial deformation of mode l = 2. We fitted
the dynamical behavior of the mode to an exponential function, with yields a numerical estimate for the eigenvalue
µ2. In figure 5 the resulting eigenvalues are shown, together with the eigenvalue of corresponding parameters of the
effective model. We find that the value of F for which droplet shapes become unstable is very similar to the value
predicted by the effective model. The eigenvalues are qualitatively similar to the ones of the effective model, despite
working in an a parameter regime where the interfacial width and the differences of concentration within a phase
cannot be considered very small, so that the models are not necessarily comparable.

To generate the data in the figure, we initialized droplets with a small shape perturbation for different values of
F . All parameters and initial conditions were chosen as described in B 2. We found that for F ≥ 100 droplets divide,
while they are stable for F ≤ 1. For F = 10, the shape deformation was very slow, so that division was not seen in the
time interval T/τ = 4000. For 10 < F < 100, as well as F =∞, we fitted radius and spherical harmonic deformation
to the concentration field using Eq. (B15). For short times, the droplet radius changes as the concentration field and
droplet size go towards the stationary values. After that, the shape deformation grows until the droplet deforms
so strongly that the fitting fails. By hand we chose intermediate time windows for the simulations where the size
was stationary and the shape deformation small. In these windows we fitted the deformation amplitude ε (compare
Eq. (B15)) with an exponential function, Aeµ2t +B with parameters A, B and eigenvalue µ2 to the l = 2 mode of the
shape deformation.
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Appendix C: Estimation of parameters

Here we estimate the hydrodynamic parameter for two physical phase-separating systems to understand the impor-
tance of hydrodynamic flows on the droplet division in experimental systems. We discuss two cases, water-oil phase
separation, and soft colloidal systems (such as protein-RNA phase-separation in cells). We have already estimated pa-
rameter values for both systems without the influence of hydrodynamic flows39, where we found that droplet division
should be possible for realistic values of chemical reaction rates in both systems, and that corresponding stationary
radii would have sizes of a few micrometers. Here we estimate the value of the dimensionless viscosity F for water-oil
and soft colloidal systems, and compare them to the analytical phase diagrams presented in Fig. 2.

To calculate the hydrodynamic parameter F for experimental systems, we need an estimation of the diffusion
coefficient of the droplet material D+ outside the droplet, of the interfacial width w (which corresponds to length-
scale w in the paper39), of the surface tension γ and of the viscosity η− inside the droplet. For water-oil systems,
the interfacial width is of the order of w ≈ 1nm and the diffusion constant is D+ ≈ 10−9m2/s. We can estimate the
surface tension as γ ≈ 10−2N/m, and the viscosity η− ≈ 10−3(N · s)/m254,55. With these values, we find F ≈ 0.1. In
this case droplet division is strongly suppressed, see Fig. 2 of the main text. For soft colloidal systems, we estimate
w ≈ 10nm, D+ ≈ 10−10m2/s and γ ≈ 10−6N/m1,54. The value of F depends on the viscosity of the droplet. For
values η− ≈ 10−3(N · s)/m2, F ≈ 10, and for η− ≈ 1− 10(N · s)/m2, we have F ≈ 104. In both cases droplet division
is possible, but more easy to achieve for larger F . We convert A∗ to the reaction rate ν− inside the droplet using the
droplet concentration given in39.

We can use Eq. (A59) and (A60) from the scaling analysis to estimate the instability of the concrete parameter
examples discussed in39 under the influence of hydrodynamic flows. In these scaling equations, the ratios η+/η− and
D−β−/(D+β+) enter the calculation of A∗ and ε∗ but we find that they do not lead to relevant changes in the results.
The scaling analysis thus yields results very similar to the estimation using Fig. 2.
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