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Abstract

We propose a novel approach to jointly perform 3D ob-
ject retrieval and pose estimation from monocular images.
In order to make the method robust to real world scene vari-
ations in the images, e.g. texture, lighting and background,
we learn an embedding space from 3D data that only in-
cludes the relevant information, namely the shape and pose.
Our method can then be trained for robustness under real
world scene variations without having to render a large
training set simulating these variations. Our learned em-
bedding explicitly disentangles a shape vector and a pose
vector, which alleviates both pose bias for 3D shape re-
trieval and categorical bias for pose estimation. Having the
learned disentangled embedding, we train a CNN to map
the images to the embedding space, and then retrieve the
closest 3D shape from the database and estimate the 6D
pose of the object using the embedding vectors. Our method
achieves 10.8 median error for pose estimation and 0.514
top-1-accuracy for category agnostic 3D object retrieval on
the Pascal3D+ dataset. It therefore outperforms the previ-
ous state-of-the-art methods on both tasks.

1. Introduction

The task of estimating 3D shape and pose from monoc-
ular images (see Figure. 1) are highly correlated and under-
constrained. Many state-of-the-art approaches phrase it as a
retrieval from database and pose estimation. Solving these
two problems jointly is an important topic for computer vi-
sion, which has a broad range of applications in many ar-
eas such as augmented reality, 3D scene understanding and
robotics.

In recent literature, many of the existing methods rely on
training convolutional neural networks (CNN) using syn-
thetic images rendered with the CAD models [3, 4, 19, 16],
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Figure 1. Given a single RGB image of an object, our method re-
trieves its closest 3D shape from a database and estimates its 6D
pose.

due to the difficulty of collecting large scale annotated train-
ing datasets of real images. Many methods learn to match
synthetic image features against the real image features to
factor out the appearance discrepancy between 3D models
and real objects [16, 27, 47]. However, there is a signifi-
cant gap between real images and rendered images due to
distracting factors such as the varying lighting conditions,
appearance, camera response functions and backgrounds,
which leads to low generalizability of the methods to nat-
ural images. Furthermore, the appearance of the objects is
also dependent on the poses. Typically, one has to render
a large number of images from CAD models with different
textures and poses in order to cover the appearance varia-
tion. But simulating all possible variations graphically is
prohibitive and still leads to limited generalizability.

In order to alleviate this problem, [16] proposes 1) to
render depth images instead of RGB images to circumvent
the real vs. synthetic domain gap due to texture, lighting
and background, and 2) to first estimate the pose of the ob-



ject and only render the 3D models in the estimated pose,
which significantly reduces the rendering cost during test-
ing. However, they still have to render the 3D models in
densely sampled poses for training, and more importantly,
the error in the pose estimation leads to failure in 3D shape
retrieval.

In this paper, we propose a novel approach to jointly per-
form 3D shape retrieval and pose estimation based on learn-
ing a disentangled shape and pose embedding. Specifically,
our method consists of two stages: In the first stage, we train
a CNN to learn an embedding space from 3D data, which
only encodes the relevant scene independent information,
namely shape and pose, and therefore is free of environment
dependent factors. Furthermore, we explicitly disentangle
the shape and pose embedding. Specifically, we train the
network with 3D volumes of occupancy grids of the objects
in different poses and map them to a pair of embedding vec-
tors, i.e. a shape vector and a pose vector. Benefiting from
the disentangling, the learned shape embedding is invariant
to the pose and the pose embedding is invariant to the shape.
In the second stage, we train another CNN to map the 2D
image to the embedding vectors, which allows us to retrieve
the 3D shape and estimate its 3D pose simultaneously from
the image.

Our method possesses the following advantages: 1)
Learning the embedding from 3D data instead of images
allows us to eliminate the distracting factors such as tex-
ture, lighting and background. 2) The disentangled embed-
ding for shape and pose alleviates both the categorical bias
for pose estimation and pose bias for shape retrieval. 3)
To learn the embedding space, we do not need to generate
multi-view rendered training images with pose variations,
which is difficult in practice. Instead, our volumetric train-
ing samples in different poses are generated efficiently in an
online manner.

Our experimental results show that our method out-
performs the state-of-the-art methods on the Pascal3D+
dataset [48] on both 3D shape retrieval and pose estimation
tasks.

2. Related work

There is a rich literature on image based object retrieval
and pose estimation. We will limit the discussion in this sec-
tion to the topics that are most related to our work: image-
based 3D shape retrieval, 3D pose estimation and joint rep-
resentation learning.
3D Shape Retrieval from 2D Images. Many methods for
3D shape retrieval rely on synthesized images of 3D mod-
els to perform matching between images and 3D models
[3, 4, 19, 16]. However, it is challenging to perform di-
rect comparison between CNN features of rendered images
and real images due to the domain gap. To overcome this,
metric learning approaches are usually adopted to bridge the

gap between the two domains [47, 16]. To further bridge the
incompatibility between the two domains, [50, 16] opted to
use depth based rendering to reduce the difference between
two domains.

To circumvent the problem arising from the use of ren-
dered images, many methods have attempted to use the in-
trinsic representation of 3D models directly instead of ren-
dered images as proxy for 3D models. Li et al. [24] map
image features to light field descriptors computed from 3D
models. Tasse et al. [41] use the word2vec [14] as an em-
bedding space and map different input modalities such as
3D model, image and sketch drawing to the same space.
Girdhar et al. [13] use voxel reconstruction as embedding
space but did not consider pose variations.

Our proposed method has several advantages to existing
works. We consider fine-grained model level retrieval, un-
like [24, 41], where they only consider category level re-
trieval. We do not require an additional metric learning
stage to bridge the domain gap unlike [16]. Additionally,
Grabner et al. [16] need to render 3D models in different
viewpoints and search against multiple viewpoints as they
does not explicitly decouple pose in their representation.
Our 3D representation is able to naturally embed both shape
and poses in a disentangled way, unlike [24, 13], where they
only consider shape information in their embedding.

3D Shape Representation for 3D Shape Retrieval The ex-
isting 3D shape retrieval methods can also be categorized
into two groups depending on how to represent 3D models:
image-based methods and 3D model based methods. Im-
age based methods learn shape features based on multi-view
projection of 3D models [5, 39] and represent 3D models as
a set of 2D images. Shi et al. [37] propose a variation on
this theme where, instead of multi-view images, a cylinder
projection around the object’s principle axis is used to rep-
resent 3D object. 3D model based methods [44, 28, 36]
directly utilize 3D representations and use 3D CNNss to per-
form various tasks. Image based methods used to outper-
form 3D model based methods in terms of retrieval accuracy
on large scale 3D shape retrieval dataset [0, 34]. Recently,
however, 3D model based methods have started to reach
performance parity against image-based methods [7, 36]. In
our approach, we make use of the 3D volumetric representa-
tion because it is more efficient to perform transformations
on voxels than to produce multi-view renderings for arbi-
trary poses.

3D Pose Estimation. There are two main categories of ap-
proaches to 3D pose estimation from 2D images. The first
category is based on keypoints detection. These approaches
assume that the 3D model of the object is available and pre-
dicts 2D keypoints with known correspondences on the 3D
model. Then perspective-n-point problem (PnP) is solved
to find the transformation parameters, which minimizes dis-
tance from 2D projection of 3D points to detected 2D key-



points.

These approaches are commonly used on the specific ob-
ject classes with limited variations across object instances,
for example, on faces [20, 22, 49]. To apply these ap-
proaches to general objects, the objects are typically ap-
proximated by their 3D bounding boxes and the 8 or 9
points of the enclosing cubes are predicted. In [16], this ap-
proach is used to estimate pose, which is later used to render
the depth image for retrieval. However, this method has to
learn the dimension of the box in addition to the keypoints.

The second category of approaches directly predicts the
transformation parameters. Su et al. [43] represent rotations
as bins in Euler angles and formulate pose estimation as a
classification problem. However, the quantization of angles
introduce inaccuracy, even though the classification predic-
tions are accurate. Su et al. [40] address the task using a
geometry aware soft weighted classification scheme. Ma-
hendran et al. [25] attempt to improve on it by treating it as
a regression problem, which is a more natural formulation
of the task. They represent rotations in axis-angle or quater-
nion space and use geodesic distance as an alternative to
L2 distance. However, their method cannot outperform the
classification approach in [40].

Recently, hybrid approaches based on classification fol-

lowed by residual regression [32, 17, 33] have become pop-
ular for a variety of different tasks. Such approaches have
been applied to pose estimation to achieve state-of-the-art
performance on Pascal3D+ dataset [26, 23]. We adopt this
hybrid strategy in our framework for pose estimation since
it is generic to all objects. Comparing to existing methods,
our approach achieves additional robustness afforded by the
guidance from the “pure” information learned from 3D data,
which is free from distracting factors in the images.
Joint Representation Learning. The idea of using a com-
mon and meaningful embedding space has a rich history.
A well known example is the word2vec embedding [ 4] or
the more recent GloVe [31], where textual input is embed-
ded in space in which words that share the same context
is located close to each other. Using this embedding space,
joint image-to-text embeddings [ 15, 12] have been proposed
where images and text can be compared directly, facilitating
text to image retrieval or vice versa. An important applica-
tion of such embeddings has been seen in zero-shot learning
[12,1,2,46]. A fixed embedding space based on a language
prior also facilitates tasks such as image description [21],
where textual descriptions are generated from images.

Following the same idea, common embedding space for
shape was proposed in [41], where multiple modalities (3D
mesh, image, text etc.) are embedded using the word2vec
semantic space. This allows cross-modal retrieval between
arbitrary modalities. Different input modalities for embed-
dings were investigated such as shapes and text [9], shapes
and images [45], and sketches and 3D shapes [10]. In our

proposed method, we learn a task specific embedding space
shared by images and 3D shapes, which encodes the shape
and pose information in a disentangled way.

3. Method
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Figure 2. Our method consists of two stages: In the first stage, we
learn disentangled embedding space from 3D data, which is free
of distracting factors. Then, we train a CNN to map the 2D images
to the embedding vectors, which allows us to retrieve the 3D shape
and estimate the pose simultaneously for the images.

As shown in Figure 2, our method consists of two stages.
In the first stage, we train a CNN (referred as embedding
network) to learn a disentangled embedding space for shape
and pose. In the second stage, we train another CNN (re-
ferred as regression network) to map a monocular 2D im-
age to the embedding vector, which allows us to retrieve the
3D shape and estimate the 3D pose simultaneously from the
images.

3.1. Disentangled Shape and Pose Embedding

To recognize 3D objects from 2D images is a challeng-
ing task, since there are many distracting variations in the
images, such as textures of the objects, lighting conditions,
camera response functions and backgrounds. To alleviate
this problem, we learn a discriminative embedding repre-
sentation of 3D objects that aims to factor out the distract-
ing variations. The learned embedding should only consist
of the information that we are interested in, namely, shape
and pose. Furthermore, we explicitly disentangle the em-
bedding representation to a shape embedding vector and a



pose embedding vector. On the one hand, this makes the
shape recognizer agnostic to the pose and therefore makes
it generalize better to objects in unseen poses. On the other
hand, this also alleviates the categorical bias in pose estima-
tion.

3.2. Learning the Embedding from 3D Data (Stage I)

Our disentangled shape and pose embedding is illus-
trated in Figure 2 Stage I. Our embedding learning idea
is inspired by [24], where the 3D shapes and images are
mapped to the “light field” descriptors measuring the simi-
larity of the 3D shapes. However, their representation is not
suitable for our purpose, since the pose information is not
encoded in their representation. In contrast, our goal is to
jointly recognize the shape and estimate its 3D pose. There-
fore, we use the 3D volumetric occupancy grid, which is a
natural representation for 3D objects, as the input, and learn
a pure shape and pose embedding from it. The input 3D
volumetric occupancy grid is generated with the binvox [29]
tool using the CAD models of the objects. The resolution of
the input volume is 32 x 32 x 32. We map the input volume
to the concatenated embedding vectors of shape and pose
using an architecture similar to VoxNet [28], which consists
of two 3D convolution layers and one fully connected layer.

For training the shape embedding, we impose a cross en-
tropy loss for shape classification. Note that the cross en-
tropy loss can be replaced with a pair-wise distance met-
ric such as triplet ranking loss [35], when dealing with a
dataset that consists of a large amount of objects, e.g. the
ObjectNet3D dataset [47]. In our experiments, we use the
Pascal3D+ dataset [48] that contains 79 objects, where the
cross entropy loss is more efficient for training.

In order to learn the pose embedding, we apply random
rotations on the 3D volumes during training. Note that the
translation is not encoded in the pose embedding, since we
observe that the translation is dependent on the image crop-
ping. Therefore, we regress the translation from the input
image directly in the second stage.

We make use of the idea of anchors introduced
in [32] to formulate pose estimation as hybrid classifica-
tion/regression problem. Specifically, we derive the con-
tinuous 3 DoF rotation from the pose embedding vector by
classifying the rotation into a specific discrete rotation an-
chor and regressing the residual between the anchor and the
actually rotation. Selecting the parameterization is essen-
tial for rotation estimation. Ideally, our anchors should di-
vide the rotation space SO(3) into bins of the same size.
Therefore, we make use of the uniform quaternion sam-
pling method described in [38]. Specifically, by sampling
up, u,u3 € [0, 1], a quaternion anchor can be obtained by:

q =(1/1—uysin2muy, 1/ 1 —ujcos2mu,,

. (1)
Vursin2mus, \/ujcos2mus).

We thus obtain our anchors by uniformly gridding each
dimension with N values, resulting in N x N x N quaternion
anchors'. The residual qg between anchor quaternion g
and the ground truth qg can be obtained with

44 = Qedy’ )

The ground truth anchor class label is found by comparing
the ground truth rotation to all anchors using the geodesic
distance:

d(qgt, qa) = 2¢05 (| (qats Ga)])- 3)

Note that, to enforce the constraint ||q|| = 1, we use L2
normalization as activation function for the last layer of ro-
tation residual regression sub-network. We use a cross en-
tropy loss as the anchor classification loss and the Huber
loss as the residual regression loss.

3.3. 3D Shape Retrieval and Pose Estimation from
Images (Stage II)

In the second stage of our method, we retrieve the 3D
shape and estimate the 6D pose of the object. As shown
in Figure 2 Stage II, we train a ResNet [18] to map the
image to the ground truth embedding vectors with the L1
loss. The ground truth embedding vectors are obtained by
applying the embedding network on the 3D volume of the
ground truth shape in the ground truth rotation. In addition,
similarly to the embedding network, the regression network
contains a sub-network for shape classification trained with
a cross-entropy loss and another sub-network for the rota-
tion regression trained with an anchor+residual loss.

The absolute 3D translation of the object cannot be ob-
tained without knowing the camera intrinsic parameters, the
image cropping and the dimension of the object. However,
in order to be able to overlay the object onto the image, we
estimate the up-to-scale 3D translation with respect to the
image cropped with the object bounding box, assuming a
common camera model and normalized 3D shape. The re-
gression of 3D translation is performed similarly as the rota-
tion regression with a sub-network trained using another an-
chor+residual loss. To this end, the translation anchors are
obtained by dividing the Euclidean space into equal cubes
centered at t,. During training, we normalize the residual
translation ty using the dimension of the corresponding an-
chor cube to constrain it within range [0, 1]. We use cross
entropy loss for the anchor cube classification and Huber
loss for regressing the translation residual regression within
the anchor cube.

During testing, we only feed a single image into the re-
gression network and obtain the shape label to retrieve the
closest 3D model from the database as well as the 6D pose.

N = 7 in all our experiments. The method of [38] can yield duplicated
anchors. However, they are removed during training by our closest anchor
search, which leads to 259 unique anchors.



3.4. Implementation Details

For training the embedding network in Stage I, we use
a similar architecture as VoxNet [28]. The dimensional-
ity of the embedding vectors for both shape and pose is
512. For our regression network in Stage II, we use the
ResNet50 [18] pre-trained on ImageNet [ 1] as the back-
bone network. The embedding network is pre-trained with
the aligned version [36] of ModelNet40 subset of ShapeNet
dataset [8]. Our networks are trained with Adam optimizer
with a learning rate of 10~*. We train the embedding net-
work for 100 epochs and we generate 10,000 samples dur-
ing each epoch. Our regression network is trained for 16
epochs.

We use PyTorch library for all our implementations. Our
training scheme for the embedding network relies on gen-
erating input 3D data in random poses in an online manner,
and therefore we also need to generate the ground truth pose
anchor label for each input instance. To make this nearest
neighbour search more efficient, we make use of a KD-tree
implementation.

For training the regression network, the range of the
translation vector is restricted to x € [-0.25,1.5], y €
[-0.25,1.5] and z € [0.5, 10.0], which is determined by the
translation range in the training data.

4. Experiments

To demonstrate the effectiveness of our approach,
we conduct experiments on the benckmark dataset Pas-
cal3D+ [48]. We first provide the qualitative results and
quantitative comparisons with the state-of-the-art methods
for both 3D shape retrieval and pose estimation tasks. Then,
we evaluate the importance of each main component of our
approach. Finally, we perform an error analysis to discuss
the failure cases.

4.1. Dataset

We perform our experiments on the Pascal3D+
dataset [48]. In this dataset, there are 13,898 object in-
stances that appear in 8,505 images from PASCAL VOC
images. Additionally, 22,394 images from ImageNet are
annotated. For every instances, pose of the 3D object which
aligned with the images are annotated. There are 12 general
categories and 79 unique models. The general categories
are aeroplane, bicycle, boat, bottle, bus, car, chair, dining
table, motorbike, sofa, train, and tv monitor. On average
there are more than 3,000 instances per category.

4.2. Comparison to the State-of-the-Art

Following many existing methods [16, 40, 43], we use
the images cropped with the ground truth object bounding
boxes as input to our method. To evaluate our method qual-
itatively, we render the retrieved 3D CAD model in the es-

timated pose. These qualitative results with comparison to
the ground truth are shown in Figure. 3, where one example
is shown for each category. In the following, we provide
the quantitative comparisons on 3D pose estimation and 3D
shape retrieval tasks.

4.2.1 3D Pose Estimation

For 3D pose estimation task, We provide the quantitative
comparisons against the existing methods on two metrics
MedErr and Acc. MedErr is a robust measure of pose pre-
diction accuracy by considering the median of pose errors
on all instances quantified as the geodesic distance between
ground truth rotation and the predicted rotation. As we
parametrize our rotation using quaternions, geodesic dis-
tance between two quaternions can be obtained using Eq.
3. This is equivalent to the following rotation matrix based
formulation used in most of the related works:

[Hog®1Ry)
N

Acc is the percentage of the instances, for which the pose
errors are smaller than 30°. Following the standard evalu-
ation protocol, we exclude truncated and occluded objects
from the test dataset.

Our results are shown in Table. 1. Note that all the com-
pared methods except for [16] are category-specific. Their
pose prediction network is composed of a collection of net-
works tailored for each category. For Pascal3D+, there will
be 12 pose prediction networks for each 12 category. The
reason for this is to exploit the biases in view point an-
gle in the training data for a specific category. In contrast,
our pose estimation is category-agnostic by using a single
sub-network for all categories, which is more scalable to
datasets with a large amount of object categories. There-
fore, our disentangled embedding significantly improves the
pose estimation performance over a shared embedding for
pose and shape. In addition, their reported numbers are
achieved by using ground truth category labels to select the
specific pose networks, which is impractical in real world
scenarios. Therefore, for fair comparisons, we split Ta-
ble. 1 to two groups. We can see that, our approach sig-
nificantly outperforms the state-of-the-art method of [16] in
the category-agnostic setting. Moreover, our method even
outperforms all the category-specific methods in both Med-
Err and Acc metrics, although we do not use any ground
truth labels.

d(Ry,Rp) = “)

4.2.2 3D Shape Retrieval

We evaluate 3D shape retrieval performance of our
approach using the Top-1-Acc metric and compare
against [16], which reported the state-of-the-art 3D shape



Table 1. Pose estimation comparison on Pascal3D+. Best results are highlighted in bold. We do not differentiate between category-specfic

and category-agnostic when considering the best results.

category-specific

aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
IMedErr ([43)]) 13.8 177 213 129 5.8 9.1 14.8 15.2 14.7 137 87 154 | 13.59
IMedErr ([30]) 13.6 125 228 8.3 3.1 5.8 11.9 12.5 12.3 128 63 119 11.1
IMedErr ([40]) 154 148 256 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 126 11.7
IMedErr ([16]) 10.0 156 19.1 8.6 3.3 5.1 13.7 11.8 12.2 135 6.7 110 10.9
TACC% ([43D 081 077 059 093 098 089 0.80 0.62 0.88 0.82 0.80 0.80 | 0.8075
TACC% ([30D 078 083 057 093 094 090 0.80 0.68 086 0.82 0.82 0.85 | 0.8103
TACC% ([401) 074 083 052 091 091 0.88 0.86 0.73 0.78 090 0.86 0.92 | 0.8200
TACC% ({16l 0.83 0.82 064 095 097 094 0.80 0.71 0.88 0.87 0.80 0.86 | 0.8392

category-agnostic

aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
IMedErr ([16]) 109 122 234 9.3 34 5.2 15.9 16.2 12.2 11.6 63 112 11.5
IMedErr (Ours) 10.1 14.0 25.7 94 3.8 7.6 14.4 17.2 16.9 129 8.1 10.8 10.8
TACC% ([1reh 080 082 057 090 097 094 0.72 0.67 090 080 0.82 0.85 | 0.8133
TACC% (Ours) 085 082 058 096 097 093 0.87 0.76 0.77 075 0.79 0.87 | 0.851

Table 2. 3D model retrieval accuracy using ground truth detections on Pascal3D+ in terms of Top-1-Acc.

Method aero bike boat Dbottle bus car chair table mbike sofa train tv mean
[16] 048 031 0.60 041 0.78 041 029 0.19 043 036 0.65 0.61 0.460
Ours w/o embedding 053 0.52 0.69 048 0.62 045 024 037 0.58 032 053 059 0456
Ours w/o disentangling 0.57 049 0.66 049 0.65 047 026 043 0.59 020 056 0.58 0.463
Ours 0.59 057 073 053 066 052 032 046 0.63 040 0.57 0.62 0.514

retrieval results on Pascal3D+ dataset. This task is challeng-
ing because some models in Pascal3D+ are quite similar to
each other. In addition, majority of the object instances do
not have an exact 3D model. For some of the images, it is
unclear which model should be the correct ground truth.

The results for 3D shape retrieval are given in Table 2.
Our approach achieved an mean Top-1-Acc of 0.514, which
outperforms the state-of-the-art method of [16] (0.460) by
a large margin. A disadvantage of their method is that
its retrieval performance depends on not only the retrieval
method, but also the pose estimation, since their retrieval
is based on depth images rendered with the estimated pose.
Therefore, an error in pose estimation will drastically exag-
gerate the errors in shape retrieval. In contrast, our approach
explicitly disentangles the shape and pose embedding, and
thus each embedding representation is invariant to the other.
Note that our accuracy is even higher than the highest accu-
racy reported in [16] (0.4967), which is achieved by using
the ground truth poses, and thus can be considered to be the
theoretical upper bound of their method.

4.3. Ablation Study

To understand the behaviour of our method and the ef-
fect of each feature of our approach, we perform ablation
experiments and present the results in Table. 2 and Table. 3.

In order to evaluate the importance of the disentan-
gled embedding learning, we conduct experiments with two

baseline methods: 1) Ours w/o embedding, where we only
train the regression network purely on image input in a sin-
gle stage pipeline. 2) Ours w/o disentangling, where in-
stead of having two separate embedding vectors of dimen-
sion 512 for both pose and shape, we use a single embed-
ding vector of dimension 1024. In the following, we discuss
the results of these experiments for both shape retrieval and
pose estimation tasks.

4.3.1 3D Shape Retrieval

From Table. 2, comparing Ours w/o embedding against
Ours w/o disentangling, we can see that learning an em-
bedding from pure 3D data is helpful for the retrieval task.
However, this improvement is incremental. In contrast, if
we remove the pose information from the embedding with
our disentangling of shape and pose, the retrieval perfor-
mance is boosted by a large margin (Ours w/o disentan-
gling vs. Ours). This indicates that the pose variation is
also distracting for the 3D shape retrieval, which has to be
removed for better performance.

4.3.2 3D Pose Estimation

From Table. 3, we can see that our disentangled embedding
learning is also moderately helpful for the pose estimation
task (Ours w/o embedding vs. Ours). We notice here the



discrepancy between the evaluation metrics of MedErr and
Accg —thatis, itimproves in Acc but degrades in MedErr.
We believe that this discrepancy is due to the characteristic
of the MedErr metric. Although MedErr is robust against
outliers, it is over sensitive to fluctuations, as it is concerned
with only one sample, i.e. the middle sample. Therefore,
when two algorithms yield very similar MedErr, one should
weigh more on the Acc% metric, which takes into account
all available samples and is more indicative of the overall
performance of the algorithms.

When comparing Ours w/o embedding against Ours
w/o disentangling, we can see that the pose estimation per-
formance degrades significantly if we use a common em-
bedding for shape and pose to guide our regression network.
Our interpretation of this is as follows: The random poses
applied on the 3D data is sampled from a uniform distribu-
tion. However, the pose distribution for specific category is
highly biased. Therefore, if we do not disentangle the pose
and shape to make the pose invariant to the categories, the
distribution of our 3D training data does not resemble the
distribution of the image data. In contrast, the distribution
of the category-independent pose embedding is closer to a
uniform distribution.

Number of anchors. We also study the effect of differ-
ent number of anchors on pose estimation task and present
results in Table. 3. Using one anchor is equivalent to di-
rect regression and our result is comparable to the results
presented in [25], which also performs direct regression.
The poor results are consistent with other findings in the lit-
erature [42] where regression performs consistently worse
than classification for pose estimation. However, with just a
small number of anchors (4), the pose estimation accuracy
rapidly increases. We found the optimal configuration of 73
anchors and no performance advantage can be obtained be-
yond this point. Although 93 anchors more densely sample
the rotation space, we speculate that as the number of pa-
rameters grows exponentially, optimization difficulty comes
into play for both anchor classification and residual regres-
sion networks.

Table 3. Ablation study on pose estimation performance.

Method {MedErr  tAccg
Grabner et. al.[16] 11.5 0.8133
Ours w/o embedding (13 anchors) 17.1 0.74
Ours w/o embedding (4> anchors) 11.1 0.81
Ours w/o embedding (73 anchors) 10.6 0.843
Ours w/o embedding (93 anchors) 11.2 0.831
Ours w/o disentangling (7° anchors) 13.2 0.77
Ours (73 anchors) 10.8 0.851

Table 4. Error analysis based on object characteristics.

Retrieval
Setting Top-1-Acc
Default 0.514
Small Objects 0.485
Large Objects 0.552
Occluded Objects 0.457
Truncated Objects 0.443

Pose

Setting |MedErr  tAccg
Default 10.6 0.851
Small Objects 11.36 0.81
Large Objects 10.66 0.879
Occluded Objects  15.49 0.78
Truncated Objects  18.34 0.75

4.4. Error Analysis

We now provide detailed analysis of our failure cases.
Both shape retrieval and pose estimation tasks share some of
the common causes: 1) blurry or small object instances, 2)
ambiguity of the ground truth label and 3) truncated or oc-
cluded objects. We provide an analysis of our failure modes
in terms of object characteristics in Table. 4. We define
’Large Objects’ as the top one third of instances sorted by
bounding box size and *Small Objects’ the bottom one third.
We also show the results for truncated and occluded objects
for pose estimation task even though they are excluded from
evaluation shown in Table. 1. We can see that the method
performs worse on small, occluded or truncated objects.

Category specific failure modes are significantly differ-
ent for shape retrieval and pose estimation. For retrieval,
we yield lowest accuracy on chair and sofa. We attribute
this mainly to large intra-class variation among object in-
stances in the images and the fact that one can not find the
exact or sufficiently similar 3D objects from the database.
We also note that there are several errors in the annotation.
An example can be seen in Figure. 5 (2nd row left) where
the jet fighter is incorrectly labelled as passenger airplane,
whereas we retrieve the correct shape.

For pose estimation, the boat score is significantly lower
than other categories. There are large intra-class differences
for boat category for both object instances in the image and
the 3D models. Only one of the 3D models of boats has
sails, which are unfurled. However, in many cases the sails
of the boasts in the images are furled. There is also sig-
nificant ambiguity in many instances of boats where it is
unclear which part of the boat is front and back. In such
cases, we typically fail by predicting a different front and
back pose than the ground truth annotation. Other causes of
error are similar to retrieval, where blurry images and incor-
rect annotation lead to errors. Failure cases for pose estima-
tion are shown in Figure. 4. An ambiguous example is the
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Figure 3. Qualitative results for pose estimation and 3d model retrieval on Pascal3D+ dataset. We show example results for all 12 categories.
For each instance, the first column is the original image, the second column is image rendered using ground truth pose and model and the

last column is rendered our predicted pose and model.

Figure 4. Example failure cases for pose estimation task. We ren-
der the figures using predicted pose and 3D shape. Therefore, it
maybe possible that both pose and retrieval are wrong in the ex-
amples. However, all the examples here have incorrect pose.

monitor shown in Figure. 4 (3rd row right). Even though
the monitor is rotated 90°, the stand is still in the original
configuration. This violates our assumption that the objects
are rigid. It is interesting to explore in the future how to
address the pose estimation for such articulated objects.

5. Conclusion

Joint 3D shape retrieval and pose estimation from
monocular images is an important and challenging task that
has a wide range of applications in robotics and augmented
reality applications. To factor out the distracting factors in
the images, we learn an embedding space explicitly disen-

Figure 5. Example failure cases for 3D model retrieval task. Note
that unlike pose estimation task, we include both occluded and
truncated objects in the evaluation. The top right car failure is
caused by truncation and the bottom right chair failure is caused
by occlusion.

tangled for shape and pose from pure 3D data, which is
free from distracting factors in the images. Our disentan-
gled representation allows us to learn separated and more
complete manifolds for pose and shape, which improves
the generalization performance of our method on images of
objects under unseen poses. Our proposed method outper-
forms the previous state-of-the-art methods on both shape
retrieval and pose estimation tasks on the challenging Pas-
cal3D+ dataset. Future work can be alternating the rep-
resentation of 3D models for better discriminativity. We
are also motivated to explore further in the same direction



where we map real world images to useful and task specific
representation spaces.
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