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A B S T R A C T

Uncertainty surrounding ohmic tissue conductivity impedes accurate calculation of the electric fields generated
by non-invasive brain stimulation. We present an efficient and generic technique for uncertainty and sensitivity
analyses, which quantifies the reliability of field estimates and identifies the most influential parameters. For this
purpose, we employ a non-intrusive generalized polynomial chaos expansion to compactly approximate the
multidimensional dependency of the field on the conductivities. We demonstrate that the proposed pipeline yields
detailed insight into the uncertainty of field estimates for transcranial magnetic stimulation (TMS) and trans-
cranial direct current stimulation (tDCS), identifies the most relevant tissue conductivities, and highlights char-
acteristic differences between stimulation methods. Specifically, we test the influence of conductivity variations
on (i) the magnitude of the electric field generated at each gray matter location, (ii) its normal component relative
to the cortical sheet, (iii) its overall magnitude (indexed by the 98th percentile), and (iv) its overall spatial dis-
tribution. We show that TMS fields are generally less affected by conductivity variations than tDCS fields. For both
TMS and tDCS, conductivity uncertainty causes much higher uncertainty in the magnitude as compared to the
direction and overall spatial distribution of the electric field. Whereas the TMS fields were predominantly
influenced by gray and white matter conductivity, the tDCS fields were additionally dependent on skull and scalp
conductivities. Comprehensive uncertainty analyses of complex systems achieved by the proposed technique are
not possible with classical methods, such as Monte Carlo sampling, without extreme computational effort. In
addition, our method has the advantages of directly yielding interpretable and intuitive output metrics and of
being easily adaptable to new problems.
1. Introduction

Transcranial magnetic stimulation (TMS) and transcranial direct
current stimulation (tDCS) are two popular non-invasive neuro-
stimulation techniques. For an accurate prediction of the neural effect of
such stimulation, we need to accurately estimate the electric field
induced in the brain. To achieve this, numerical techniques such as the
finite element method (FEM) are required due to the complex structure of
the brain (Windhoff et al., 2013; Opitz et al., 2015). These techniques
rely on knowledge of the electrical conductivities of the head tissues to be
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incorporated in the simulations. However, reliable measurements of
these conductivities are difficult to obtain and the results vary consid-
erably between experimental conditions, subjects, and even repetitions
of the same experiment (Geddes and Baker, 1967; Gabriel et al., 1996). A
recent in-vivo validation study by Huang et al. (Huang et al., 2017;
Huang et al., 2018) showed that conductivity optimization yields values
that are comparable to standard values reported in the literature, e.g. for
skull ~0.02 S/m, for scalp ~0.2 S/m, and for white matter ~0.38 S/m
(Huang et al., 2018). However, the optimal values varied considerably
between subjects. For these reasons, one needs to systematically analyze
nces, Stephanstr. 1a, 04103, Leipzig, Germany.
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how the uncertainty in tissue conductivity translates into an uncertainty
of the predicted electric field. As we have many tissues with uncertain
conductivity in the head, we are challenged by having to analyze a
transfer function in a large multidimensional space. Therefore, doing this
in the classical way, such as using a naive Monte Carlo approach would
require producing many samples of the computationally expensive FEM
models. Here, we describe a principled approach for uncertainty quan-
tification based on a non-intrusive generalized polynomial chaos (gPC)
expansion (Wiener, (1938); Ghanem et al. 2016) to bypass the afore-
mentioned difficulties. We quantify the uncertainty of the electric field
caused by the given uncertainties of the tissue conductivities, based on an
accurate and effective polynomial surrogate of the transfer function (or
functional dependence) between conductivities and fields (Weise et al.,
2015; Codecasa et al., 2016; Schmidt et al., 2015). The non-intrusive gPC
approach used in the current framework is schematically illustrated in
Fig. 1.

In this report, we first describe in detail the methodology of the
proposed approach. Then we provide and discuss three illustrative ex-
amples in order to demonstrate the usefulness and descriptive power of
the method in characterizing the fields generated by TMS and tDCS.
Finally, we briefly discuss possible generalizations and extensions of the
techniques to emphasize its potential as a widely applicable tool for
model assessment and optimization.

2. Methods

The calculations of the electric field, in both TMS and tDCS, were
conducted with SimNIBS (Thielscher et al., 2015) using a high-resolution
finite element model (Fig. 2a). The model consists of tetrahedral ele-
ments with an average size of about 1mm3, resulting in 4:1 � 106 tetra-
hedra and 7:2 �105 vertices. The model was used together with the Finite
Element Method (FEM) with linear elements to calculate the electric
potentials and subsequently the electric fields. Details of the construction
of the model and of the FEM calculations can be found in (Nielsen et al.,
2018; Windhoff et al., 2013). The investigated setups are shown in
Fig. 2c–e. A non-intrusive gPC, implemented in SimNIBS, treats the
problem as a black box, that is, it can be applied without any explicit
description of the original transfer function that maps the input
Fig. 1. Principled approach to uncertainty and sensitivity analysis using the non-intr
the input parameters and efficient sampling of the model allows to expand the soluti
yields the output distributions including the statistical moments as well as their sen
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parameters ξ, (here: tissue conductivities σ ¼ ½σ0;…;σd�1�) (input) to the
electric field Eðσ; rÞ or any other quantity of interest qðξÞ (output). This
renders the method widely applicable, irrespective of any implementa-
tion details of the original problem (Xiu, 2010; Ghanem and Spanos,
1991).

Our initial aim was to describe the uncertainty of the electric field
Eðσ; rÞ, where r are the center of the tetrahedra of the mesh represen-
tation of gray matter, depending on the uncertainties of the tissue con-
ductivities σ. That is, we needed to determine the probability density
function (PDF) pðEðσ; rÞÞ, considering that the conductivities σ are un-
certain. The calculation of the PDF involves a large number of function
evaluations. However, as field calculations are computationally expen-
sive, a simplified representation of the quantity of interest qðξÞ, in this
case the electric field Eðσ; rÞ, can drastically improve the computational
efficiency. A suitable choice to approximate the transfer function is a set
of orthogonal polynomials that can span the entire function space. The
uncertain tissue conductivities are modeled as mutually independent
random variables, described by PDFs with finite variances (e.g., normal,
β, or boxcar distributions).

Each PDF piðσiÞ has to be defined such that it reflects the available
measurements of each conductivity parameter σi in the best possible way.
Here, we used β-distributions in intervals ðai; biÞ, characterized by the
shape parameters pi and qi:

piðσiÞ ¼ ðbi � aiÞ1�pi�qi Γðpi þ qiÞ
ΓðpiÞΓðqiÞðσi � aiÞpi�1ðbi � σiÞqi�1 (1)

The parameters assigned to the different tissues are listed in Table 1
and the associated PDFs are shown in Fig. 2b. The distribution type is
chosen due to a lack of reliable information about the actual distribution.
A bell shaped PDF is expected according to the central limit theorem, and
the beta distribution resembles a Gaussian distribution while being
bounded at the same time (i.e. negative conductivities are prohibited).
The ranges are selected to robustly model the values reported in the
available literature. Only experiments were considered, which measured
relatively fresh or live tissue (preferably human) at low frequencies
(0–100 kHz) near body temperature.

The core concept of the gPC is to find a functional dependence be-
usive generalized polynomial chaos method (gPC). Distributions are defined for
on (here the electric field) with orthogonal polynomial basis functions. The gPC
sitivity with respect to the input parameters.



Fig. 2. Simulation setup. (a) Isotropic head model featuring six different tissue types (colors), discretized into 4:1 � 106 tetrahedra and 7:2 �105 vertices (average size
about 1mm3). (b) Symmetric beta distributions representing the probability density functions of the tissue conductivities, plotted on a double logarithmic scale. The
three investigated non-invasive brain stimulation setups (c) TMS, (d) “standard” tDCS, and (e) “focal” tDCS.

Table 1
Limits of the electrical conductivities assigned to the different tissue types. All
conductivities are modeled as symmetric bell shaped β-distributions with shape
parameters p ¼ q ¼ 3. All values in S/m.

Tissue Min Max Reference

White matter (WM) 0.1 0.4 Li et al. (1968)
Nicholson (1965)
Akhtari et al. (2010)

Gray matter (GM) 0.1 0.6 Li et al. (1968)
Ranck (1963)
Logothetis et al. (2007)
Yedlin et al. (1974)

Cerebrospinal fluid (CSF) 1.2 1.8 Gabriel et al. (2009)
Baumann et al. (1997)

Spongy bone (SB) 0.015 0.040 Akhtari et al. (2002)
Compact bone (CB) 0.003 0.012 Akhtari et al. (2002)

Tang et al. (2008)
Scalp (S) 0.2 0.5 Gabriel et al. (2009)

Yamamoto and Yamamoto (1976)
Burger and Milaan (1943)
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tween the random variables ξ (such as the conductivities) and the
quantity of interest q (such as the electric field at a set of points) by means
of an orthogonal polynomial basis Ψ:

qðξÞ �
X
α2A

uαΨαðξÞ (2)

The functions ΨαðξÞ ¼
Qd

i¼1ψ
i
αi
ðξiÞ are the joint polynomial basis

functions of the gPC. They are composed of polynomials ψ i
αi
ðξiÞwhich are

separately defined for each random variable. The polynomials are chosen
3

to be orthogonal in the normed spaced induced by the PDFs piðσiÞ (Askey
and Wilson, 1985). The multi-index α of the joint basis function includes
the degrees of the individual polynomials. Along with the construction of
the polynomial basis, the gPC coefficients uα that can be used to best
approximate the quantity of interest are determined (see section S.2 in
the supplementary material for a more detailed description). As a result,
an polynomial surrogate of qðξÞ as a function of the random input pa-
rameters ξ is derived. This enables computationally efficient in-
vestigations of their statistics. The applicability of the gPC depends on the
type of transfer function to be approximated, that is, the function relating
the random variables to the quantity of interest. In its classical form, the
gPC is suitable to approximate continuous and smooth transfer functions.
This condition is fulfilled here since the gPC is applied to the electric field
in every finite element separately, considering continuous changes in the
electrical conductivities.

In the current work, the gPC expansion was calculated by drawing
samples from the variables ξ, in our case the conductivities σ, according
to their probability distributions piðξiÞ and then calculating their corre-
sponding quantity of interest qðξÞ, such as the electric fields in the po-
sitions r, Eðσ; rÞ. Starting from a set of basis functionsΨαðξÞ, a regression
methodwas used to obtain the gPC coefficients uα based on a set of values
for ξ and qðξÞ. The regression is described in detail in section S.2 of the
supplementary material. Afterwards, the error between the gPC
approximation and the transfer function qðξÞ is estimated using a k-fold
cross validation scheme, described in Section S.3 of the supplementary
material. If the error remained large, we added more polynomials to the
gPC basis ΨαðξÞ, drew new samples of the random variables ξ according
to their probability distributions, and calculated new values of the
quantity of interest qðξÞ, the regression coefficients uα, and updated the
error estimate. Based on the data shown in Fig. S3 of the supplementary



1 This component is crucial for the stimulation mechanism, that is, which
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material, the number of samples of the random variable ξ, and conse-
quently of the quantity of interest per polynomial added to the gPC basis,
was set to be twice as high as the number of basis functions
ðr ¼ Ns=P ¼ 2Þ, unless otherwise noted. We called this approach
“Adaptive gPC”. The algorithm is described in more detail in Section S.3
of the supplementary material and validated in Section S.4. The adaptive
nature of the algorithm allows the use of the underlying structure of the
problem to quickly determine a reliable set of polynomial basis and co-
efficients to approximate the transfer function, with minimal human
input needed while counteracting overfitting by producing error esti-
mates via cross validation. This is a significant advantage over the clas-
sical way to perform gPC, where the investigator has to manually select a
set of polynomials for the expansion, as for example in Weise et al.
(2015). Unless mentioned otherwise, the adaptive algorithm was run
until it reached a relative error of ε0 < 10�3. This means that the quan-
tities of interest obtained by the gPC approximation, at arbitrary sam-
pling points, are in agreement up to a deviation of about 0.1% with
respect to the ones obtained by the original model. This error rate has
been chosen to be small so that the errors obtained with the polynomial
representation of the transfer function can be neglected for the analysis of
the statistical quantities.

Previous studies have compared regression, quadrature, and inter-
polation based approaches (Ghanem et al., 2016; Weise et al., 2015). It
was shown that interpolation and quadrature-based approaches, which
use optimal grids with respect to the polynomial families, perform better
than regression based gPC, considering the same computational grids.
However, this advantage must be balanced against another crucial
problem – the correct choice of the approximation order. For
non-adaptive approaches with fixed grids, one has to choose the
approximation order in advance, which may lead to under- or overfitting
and the possibility of using too few or too many sampling points. On the
other hand, using adaptive schemes provides an elegant way to overcome
this problem and prevent overfitting. Quadrature based adaptive gPC
approaches require nested quadrature rules such as Clenshaw-Curtis,
which involve an exponential increase in grid size, a method such as
Smolyak's to produce sparse grids (Smolyak, 1963), and an expansion
rule such as the one proposed in Gerstner and Griebel (2003). The pos-
sibility to define different types of probability density functions, and
hence different polynomial families, for each random variable requires
complex algorithms to extend the grid in every iteration (Agarwal and
Aluru, 2011). In contrast, regression based gPC approaches are far more
flexible in this concern. They do not require any particularly structured
grid to determine the gPC coefficients. For these reasons, we opted for an
adaptive gPC algorithm based on regression approaches to iteratively
construct the gPC basis.

Once a polynomial surrogate of the quantities of interest is derived
using gPC, several statistical quantities can be calculated directly from
the coefficients of the polynomial expansion. For example, the expecta-
tion (i.e., mean) μ and variance ν are determined by:

μ ¼ uα1 (3)

ν ¼
X

α2A \α1

ðuαÞ2 (4)

The relative standard deviation (RSD) with respect to the expectation
is then given by RSD ¼ ffiffiffi

ν
p

=μ and computed position-wise.
For a more complete description of the output PDFs of the electric

field, the gPC model has to be sampled using traditional Monte Carlo
methods. However, this is possible without much computational effort,
because the evaluation of the polynomial description is far less time
consuming than the original finite element computation. Typically, it is
not a problem to draw 106 or more samples. The drawn samples can be fit
to appropriate distributions in order to parameterize the PDFs for further
evaluations, such as statistical tests.

GPC enables comprehensive analyses to quantify the sensitivity of a
4

system's output with respect to its input parameters and their un-
certainties, and thus to identify the parameters that contribute most to
the uncertainty of the output variables. We outline two commonly used
measures, namely Sobol indices and global derivative-based sensitivity

coefficients. The Sobol indices SðυÞi decompose the total variance ν of the
quantity of interest into components that can be attributed to individual
random variables ξi or combinations thereof (Sobol, 2001; Sudret 2008).

For each SðυÞi , we summed the squared coefficients u2
α, whose

multi-indices α belonged to the set Ai with non-zero values only for the ξi
of interest.

SðυÞ
i ¼ 1

ν

X
α2Ai

ðuαÞ2 (5)

For example, if we want the Sobol coefficient SðυÞ1 , we select A1 ¼ ff1;
0; …; 0g; …; fP; 0; …; 0gg. The Sobol indices were normalized with
respect to the total variance ν and consequently add up to one. In some
cases however, it is advantageous to omit this normalization, especially
in cases where variances and mean values of different orders of magni-
tude are investigated at the same time, which is the case for field dis-
tributions at, e.g., points with high or almost negligible field intensity.
Importantly, Sobol indices reflect the combined effect of the uncertainty
of the input parameter and the dependence between the input and output
parameters. For example, a low Sobol index could be due to a low un-
certainty of the input parameter, a low sensitivity of the output towards
the input parameter, or both. As such, Sobol indices are well suited to
identify the most important input parameters given our actual (or
assumed) knowledge about them.

On the other hand, the global derivative-based sensitivity coefficients

Sð∂Þi are measures of the average change of the quantity of interest (here:
the electric field) with respect to the i-th random variable. They are
determined by means of the gPC-coefficients and the corresponding
partial derivatives of the basis functions (Xiu, 2009):

Sð∂Þ
i ¼ E

�
∂qðξÞ
∂ξi

�
¼
X
α2A

uα

Z
Θ

∂ΨαðξÞ
∂ξi

pðξÞdξ (6)

In contrast to the Sobol indices, which are stochastic sensitivity
measures, derivative-based sensitivity coefficients are deterministic.
Analyzing both at the same time may be beneficial since they feature
different advantages and disadvantages, as illustrated in Fig. 3. The Sobol
index, shown on the left, measures the variance of an output variable due
to the variance of an input variable. It is thus sensitive to any sort of
relationship between the two variables, which neither needs to be
monotonic nor linear and, strictly speaking, not even deterministic
(although, in our case, it is). On the other hand, the global derivative
reflects the average (linear) sensitivity of an output variable towards an
input variable over the range of the input variable. Hence, it is only
sensitive to the linear part of the transfer function. A periodic transfer
function, for example, would on average show a very low derivative-
based sensitivity, whereas the Sobol indices would reveal the actual
variation. This being a restriction, derivative-based sensitivities have the
advantage that they allow for conclusions on the direction of the influ-
ence (proportional or inversely proportional).

Due to the computationally compact representation of the transfer
function by gPC, the uncertainty and sensitivity analyses can be effi-
ciently extended to cover a range of complementary quantities of inter-
est. Here, we consider location-wise parameters: (i) the electric field
magnitude at each gray matter location and (ii) its normal component
relative to the cortical sheet,1 as well as global parameters: (iii) the 98th
percentile of the electric field magnitude as a proxy for stimulation
dosage, and (iv) the overall spatial distribution of the field in the gray
structures (axons, dendrites) are actually depolarized or hyperpolarized.



Fig. 3. Graphical representation of (a) the Sobol indices and (b) the expected global derivative based sensitivity coefficients. The Sobol indices quantify the variation
of the transfer function (red curve), while the derivative-based sensitivity coefficients provide information about the average derivative over the range of input
parameters. Both are weighted with the corresponding probability density functions of the input parameters.
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matter.
For the location-wise field magnitudes and the normal components

we interpolated the electric field at the 2:9 � 105 vertices of a surface
located in the middle layer of gray matter, obtained with FreeSurfer 6.0.
The interpolation of the electric fields was performed by first deter-
mining the electric field at the nodes of the gray matter volume using the
super-convergent patch recovery (Zienkiewicz and Zhu, 1992) and sub-
sequently interpolating the electric field in the nodes of the middle gray
matter surface using linear interpolation. For the nodal recovery step,
only the electric field values inside graymatter were used. In this way, we
improved on the discontinuous gradients of the FEM solutions, and ob-
tained more precise values for the electric field in the region. We
determined the electric fieldmagnitude and the normal component of the
interpolated electric fields and used the gPC to determine their mean
values, the overall uncertainty (variance or relative standard deviation),
and their partial uncertainties due to each uncertain tissue conductivity
(Sobol indices and global derivatives). For assessing the achievable
stimulation strength, we computed the 98th percentile of the field
magnitude, which corresponds to the field magnitude that is exceeded in
an area of about 40 cm2. The uncertainty of this value is characterized by
computing its distribution and Sobol coefficients.

In order to characterize the impact of the conductivities on the field
pattern we used the relative difference measure (RDM) (Meijs et al.,
1989) as an index of the difference between the field distribution, for
some specific combination of tissue conductivities, and the electric field
arising from the mean values of the model parameters:

RDMðx; xRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

 
xiffiffiffiffiffiffiffiffiffiffi
xT � x

p � xR;iffiffiffiffiffiffiffiffiffiffiffiffi
xTR � xR

p
!2

vuut (7)

The vector x with the elements xi (i ¼ 1…3Ntet) is the linear
concatenation of the electric field vectors in all tetrahedra centers of GM
for the parameter combination under investigation, while xR contains the
respective values for the reference configuration. In this way, the RDM
directly addresses the electric field components and allows the assess-
ment of the impact of conductivity uncertainties on the spatial stimula-
tion patterns, irrespective of the absolute field strengths. We determined
the expected variation of the field distribution, arising from the con-
ductivity uncertainties, by calculating the probability density function
(pdf) of the RDM. In addition, we identified the conductivities with the
strongest influence on the RDM using the Sobol indices.

Three non-invasive brain stimulation setups were investigated as
shown in Fig. 2c–e, namely, TMS, standard tDCS and focal tDCS. For
TMS, the coil position was above the left motor cortex. A typical figure-8
5

coil (Magstim 70mm) was centered above the hand knob of the pre-
central gyrus, with the coil handle pointing to the anterior direction. A
normalized rate of change of the coil current of dI=dt ¼ 1 A=μs was used.
Please note that our conclusions do not depend on this choice, and that
the results can be easily rescaled to give the field strengths at, e.g.
average motor threshold (Thielscher and Kammer, 2002).

For standard tDCS, a motor cortex montage was used with one elec-
trode pad above the left hand knob (5� 5 cm2; 4mm gel and 4mm
rubber layers, with conductivities 1 S/m and 0.1 S/m) and a second
electrode pad over the right supraorbital region (5� 7 cm2; 4mm gel and
4mm rubber layers, with conductivities 1 S/m and 0.1 S/m). For each of
the electrodes, the upper surface was set to a fixed potential corre-
sponding to the Dirichlet boundary conditions, and the results were later
scaled to ensure a current of 1mA. For the “focal” tDCS setup, a motor
cortex montage was used with a central round electrode pad (2 cm
diameter; 4mm gel and 4mm rubber layers, with conductivities 1 S/m
and 0.1 S/m) and a surrounding ring electrode (7.5 cm and 10 cm inner
and outer diameters; 4mm gel and 4mm rubber layers, with conduc-
tivities 1 S/m and 0.1 S/m).

3. Results

3.1. Overview

We will start with a general overview of the results before presenting
the findings for each of the three examples in more detail. The gPC
converged after 58 (TMS), 292 (focal tDCS), and 176 (standard tDCS)
FEM simulations. The gPC matrices ½Ψ� in the last step of the adaptive
algorithm were of size ½N � P� ¼ ½58� 29� (TMS), ½292� 146� (focal
tDCS), and ½176� 88� (standard tDCS) and thus invertible with moderate
computational cost in a short time. The maximum polynomial orders of
the basis obtained with the adaptive algorithm are shown in Table 2.

We interpolated the electric fields obtained during the expansion of
Eðσ; rÞ in a middle layer of gray matter, calculated the field strength and
normal component and expanded these quantities using the same set of
polynomials as used for the original expansion. The cross-validation er-
rors of the resulting expansions were < 1:5 � 10�3 for all modalities and
both quantities of interest.

The remaining calculation steps only involved matrix-matrix multi-
plications with the coefficient matrices ½U� and the solution matrices ½E�.
The coefficient matrices ½U� were of size ½29� 287666� (TMS),
½146� 287666� (focal tDCS), and ½88� 287666� (standard tDCS), and
the solution matrices ½E� were of size ½58� 287666� (TMS),
½292� 287666� (focal tDCS), and ½176� 287666� (standard tDCS). Fig. 4



Table 2
Maximum polynomial orders and interaction orders of the polynomial basis
obtained for the gPC expansion of the electric field with the adaptive algorithm.
The maximum polynomial order was defined as the maximum order of any in-
dividual polynomial ψ i

αi , and the maximum interaction order is the maximum
number of different variables involved in a polynomial basis Ψα. For example, if
we have the set of multi-indices A ¼ fα1 ¼ f0; 0; 0g; α2 ¼ f1; 0; 0g; α3 ¼ f0; 1;
0g; α4 ¼ f1; 1; 0g; α5 ¼ f2; 0; 0g; α6 ¼ f3; 0; 0g g, the maximum polynomial

order will be 3, due to the term α6;where the first polynomial is of degree 3, and
its maximum interaction order 2, due to the term α4, where the first and second
random variable interact.

Simulation Maximum Polynomial Order Maximum Interaction Order

TMS 5 2
Focal tDCS 8 4
Standard tDCS 6 3
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illustrates electric field strength in a given position (chosen to be the one
with the mean electric field strength closest to the 99th percentile), as a
function of gray and white matter conductivities. In the first column, we
see the values obtained from sampling the FEM model, and in the second
column, values obtained from sampling the gPC model. We can see that
both yield very similar results, and divergences tend to happen mostly in
Fig. 4. Comparison of the electric field magnitude jEj (in V/m) in a given position, as
from sampling the original FEM model (left column) or from sampling the gPC app
standard tDCS (bottom row). Both models were sampled in a uniform grid of 20�
constant at their mean values. The difference between the original model function
correspond to the positions where the mean electric field strength is closest to the 9
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low probability regions, as shown in the difference plots (right column).
The expected (mean) field strengths in middle cortical sheet are shown in
Fig. 5a, and their uncertainty is characterized by the relative standard
deviation (RSD) and overall variance (VAR; Fig. 5a and top row of 5b).
The individual contributions of the conductivity uncertainties to the
overall variance are represented by the Sobol indices (Fig. 5b). In addi-
tion, they are characterized by the global-derivative-based sensitivity
coefficients in Fig. 6. Bothmeasures convey similar information.Whereas
the Sobol indices are intuitively interpretable as portions of the overall
variance, the sensitivity coefficients have the advantage that they convey
directional information.

The 98th percentiles were also calculated using the field interpolated
at the middle layer of gray matter. For this quantity, using the same set of
polynomials as for the expansion of Eðσ; rÞ, we obtained cross validation
results < 1:6 �10�3. Fig. 7 shows how the electric field strength, that is
exceeded on a cortical area of about 40 cm2, is affected by the conduc-
tivity uncertainties. It can be seen that the relative standard deviation for
TMS is much smaller than that of tDCS, meaning that uncertainties in the
tissue conductivity values affect the TMS electric fields less than the tDCS
electric fields.

The effects of stimulation are not only dependent on the field
strength, but also on the field direction. Therefore, Fig. 8 depicts the
a function of gray and white matter conductivities, σGM and σWM , obtained either
roximation (central column) for TMS (top row), focal tDCS (middle row), and
20 GM and WM conductivity points, while the other conductivities were kept
and the gPC approximation is shown on the right. The electric fields shown
9th percentile.



Fig. 5. Simulation results of the electric field magnitude jEj on the middle GM surface. (a) Mean and relative standard deviation (RSD) of the electric field strength. In
order to compare the different stimulation methods, the mean distributions were normalized to their respective maximum values and the RSD distributions were

determined with respect to the corresponding mean values at each location. (b) Total variance (VAR) and Sobol indices SðνÞi associated with each tissue type (for tissue
abbreviations see Fig. 1a). VAR and Sobol indices were normalized with respect to the individual squared maxima of the mean distributions of the stimulation
modalities to provide comparability.
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Fig. 6. Global derivative based sensitivity coefficients Sð∂Þi of the electric field magnitude jEj on the middle GM surface associated with each tissue type (for tissue
abbreviations see Fig. 1a). Blue reflects negative relation between tissue conductivity and field strength, and red a positive relation. White reflects little to no
correlation.
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results of the gPC analysis for the normal component of the electric field,
showing similar dependencies as in case of the magnitude of the electric
field.

Finally, the influence of conductivity variations on the overall field
pattern was quantified by means of a gPC analysis with the RDM as the
quantity of interest. However, by performing the gPC using the same set
of simulations and polynomials as for Eðσ; rÞ, as done in the previous
cases, we obtained large cross-validation errors in the order of 4 � 10�1.
To obtain a reliable RDM gPC approximation, we applied the adaptive
algorithm limiting the number of simulations to 1000. The ratio of
samples per polynomial was increased from 2 to 5, and the coefficients
were calculated using Tikhonov regularized regression. After these
8

modifications, the errors decreased to 4:5 �10�2 for TMS, 5:7 � 10�2 for
the focal tDCS, and 5:7 � 10�2 for standard tDCS. The polynomial orders
for the RDM expansions are shown in Table 3. During the analysis, the
conductivities of GM and WM were identified as the most important
model parameters. Because the gPC of the RDM was more intricate than
for the electric field, we also re-evaluated the model fit by systematically
sampling across σGM and σWM , while keeping the other conductivities at
their mean values. This is illustrated in Fig. 9, showing that a low RDM
occurs as long as the ratio between GM andWM conductivities is within a
certain (quite broad) range. It can be observed that the gPC is more ac-
curate in the center of the parameter space, where the joint probability
density is highest. As in Fig. 4, the most significant errors happen in the



Fig. 7. Probability density functions of the 98th percentile of the electric field
strength for the three stimulation methods. This corresponds to a cortical area of
40 cm2 (total area 2000 cm2). The distributions are normalized with respect to
their individual mean in order to provide comparability. The absolute values of
the mean and the corresponding standard deviation are also provided and color
coded accordingly.
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corner regions. Conductivity values in this region are highly unlikely, as
indicated by the 99th and 99.9th percentile boundaries, highlighted by
dashed lines in the figure.

The PDFs of the RDM are shown in Fig. 10. In order to convey a visual
impression of the severity of the expected field pattern changes, as
revealed by the pdfs, exemplary field patterns for an RDM of 0.2 are
shown. In addition, the normalized Sobol indices are depicted in Fig. 11
to provide more detailed insight into the composition of the variance of
the RDM.

3.2. TMS

For TMS, the mean of the electric field (Fig. 5a) shows a focal dis-
tribution on the gyral crowns. RSD and VAR (Fig. 5a and b) reveal a much
higher uncertainty in the sulcal walls (20–25%) than on the gyral crowns
(<5%). The Sobol indices (Fig. 5b) show that the uncertainties of GM and
WM conductivities are the main sources of the uncertainty of the electric
field strength, explaining approximately 75% and 23% of VAR, respec-
tively. The remaining tissues play a minor role.

The results of the global-derivative-based sensitivity (Fig. 6) confirm
these findings and additionally reveal the directionality of the effects. For
example, an increased conductivity of WM results in an increase of the
electric field in GM, which indicates a direct proportionality (positive
derivative, red color). In contrast, an increase in GM conductivity reduces
the field magnitude, which indicates an inverse relationship (negative
derivative, blue color). These effects can be explained by the law of
current conservation and Ohm's law. Increasing GM conductivity de-
creases the electric potential drop and therefore the electric field strength
in GM. Interestingly, increasing the conductivity of neighboring WM
increases the electric field in GM. Considering Ohm's law, it is expected
that an increase in conductivity will increase the current density in the
respective domain. In the presence of boundaries however, the law of
current conservation has to be fulfilled, i.e. the normal component of the
current density has to be continuous, which leads to an increase of the
electric field in neighboring domains.

For the 98th percentile of the field magnitude, the standard deviation
is only about 5.6% of the mean, and the Sobol indices reveal, in accor-
dance to the location-wise results above, that almost all of the variance is
due to GM and WM conductivity uncertainties.

The results for the normal component of the electric field (Fig. 8)
show that misestimating the conductivities can result in deviations in the
sulcal walls where the normal component is high. The main contributors
9

to the deviations were again GM and WM conductivity uncertainties.
The probability density function of the RDM shown in Fig. 10 in-

dicates that the influence of the conductivities on the pattern of the
electric field was small. More specifically, it is very unlikely that the RDM
would exceed a value of 0.25. Additionally, the normal and tangential
components of the electric field are shown in order to get a visual
impression on how the electric field patterns differ between the reference
solution considering the mean conductivities and a conductivity combi-
nation resulting in an RDM of 0.2. Both field maps are normalized to their
respective maxima, since the RDM quantifies differences in field shape
and not in magnitude. Contrary to expectations, the actual field pattern
was only weakly influenced by conductivity variations, even when
considering a worst case scenario of conductivity combinations resulting
in an RDM of 0.2. The similarity between both field solutions shows that
the conductivities only weakly influence the actual spatial pattern of the
field, in contrast to the field magnitude generated in the cortex as
observed in Fig. 5.

Inspecting the Sobol indices (Fig. 11) reveals that only the GM and
WM conductivities notably influence the RDM. Interestingly, a substan-
tial part of the variance is explained by the interaction between these
two.

3.3. Focal tDCS

The mean distribution of the electric field for focal tDCS resembles
the one of TMS (Fig. 5), but the uncertainty is generally higher. The RSD
for the field magnitude was high in the sulcal fundi (~33%) and on the
gyral crowns (~27%). The variance showed a similar pattern. The Sobol
indices revealed that the main contributors to the variance were the
uncertainties of the conductivities of compact bone (~40%), GM
(~30%), and scalp (~25%), minor contributions came from WM (~3%)
and CSF (~2%). Similar results were obtained for the global-derivative-
based sensitivities shown in Fig. 6, which underline that the conductiv-
ities of compact bone, GM and scalp have the strongest influence on the
field strength. Expectedly, increases in compact bone conductivity led to
increases of the electric field in GM, as more current passes through bone
in that case. In contrast, an increase in scalp conductivity tends to “short
circuit” or “shunt” the current along the head surface and in consequence
decreases the electric field. These effects were mainly present at the gyral
crowns below the central electrode.

The standard deviation of the 98th percentile of the magnitude was
about 23.5% of the mean, which is much larger than the uncertainty
found for TMS. The Sobol indices confirmed the findings for the location-
wise results (significant contributions by GM, compact bone and skin).

The results for the normal component of the electric field are shown
in Fig. 8. In contrast to TMS, it can be observed that the normal
component was primarily uncertain on the gyral crowns, where for this
modality the normal component is highest. The main contributors were
again the conductivities of GM, compact bone, and skin.

Fig. 8 reveals a similar dependency of RDM upon the gray and white
matter conductivities as for TMS.

The probability density function of the RDM shows only slightly
larger values compared to TMS (Fig. 10). Correspondingly, no strong
difference in field shape can be observed when comparing normal and
tangential components of the electric field between the reference and
RDM ¼ 0:2. The normalized Sobol indices in Fig. 11 show that the field
pattern was again mainly influenced by the GM and WM conductivities
and their interaction, but also that other tissues such as cortical bone (CB)
have moderate influence.

3.4. Standard tDCS

As expected, standard tDCS results in a far more widespread field
distribution than focal tDCS (Fig. 5a). Near the frontal electrode, the field
peaked in the sulcal fundi, whereas the highest values occurred on the
gyral crowns for the brain regions close to the central electrode. RSD and



Fig. 8. Simulation results of the normal component of the electric field on the middle GM surface. Inflowing electric fields have negative values and are shown in blue.

(a) Mean (b) Total variance (top row) and Sobol indices SðυÞi associated with each tissue type (for tissue abbreviations see Fig. 1a). VAR and Sobol indices were
normalized with respect to the individual squared maxima of the mean distributions of the stimulation modalities to provide comparability.
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Table 3
Maximum polynomial orders and interaction orders of the polynomial basis
obtained with the adaptive algorithm for the RDM expansion. For an explanation
of the items in the table, please refer to Table 2.

Simulation Maximum Polynomial Order Maximum Interaction Order

TMS 18 3
Focal tDCS 11 3
Standard tDCS 20 4
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VAR were consistently high in the sulcal fundi near the electrodes (up to
30%), with the Sobol indices identifying the conductivity uncertainties of
GM (~77%), compact bone (~10%), and scalp (~7%) as the main con-
tributors. These findings were confirmed by the derivative-based sensi-
tivity coefficients (Fig. 6).

The standard deviation of the 98th percentile was about 20.5% of the
mean, thus similar to focal tDCS and much larger than for TMS. Again,
the Sobol indices reflect the findings for the location-wise field
magnitudes.

Considering the normal component of the electric field in Fig. 8, it can
be observed that conductivity uncertainties primarily influenced the
latter in the sulcal fundi and adjacent walls. Similar to focal tDCS, the
main contributors were the conductivities of GM, compact bone, and
skin.

The RDM pattern (Fig. 9) and the probability density function of the
RDM (Fig. 10) were very similar to that of focal tDCS. The shape of the
electric field differed slightly between the reference and RDM ¼ 0:2,
Fig. 9. RDM as a function of the two most significant conductivities σGM and σWM

particular analysis, the original model function (left column) and the gPC approxim
points. The difference between the original model function and the gPC approximat
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which can be explained by the more widespread field distribution in the
case of standard tDCS compared to focal tDCS and TMS. The Sobol
indices presented in Fig. 11 are very similar to focal tDCS, except for a
slightly lower influence of the conductivities of compact bone and skin.

4. Discussion and conclusion

We used a pipeline based on non-intrusive gPC in order to compre-
hensively characterize the impact of uncertain tissue conductivities on
the magnitude, direction, and overall pattern of the electric field for three
exemplary non-invasive brain stimulation setups. The uncertainty range
of field strengths obtained for tDCS (Fig. 7) agrees well with the results
presented in Opitz et al. (2016), Huang et al. (2017), and Huang et al.
(2018) obtained by direct invasive measurements of the fields generated
by 1mA tDCS in patients.

We demonstrated that our approach yields detailed insight into the
spatially dependent impact of conductivity parameter uncertainties on
uncertainties of the electric field caused by TMS and tDCS. We found that
for all investigated scenarios the magnitude of the electric field is most
affected (Figs. 5–7), while the field direction and the global field
topography are less sensitive to the conductivity uncertainties
(Figs. 9–11). In other words, accurate knowledge of the individual con-
ductivities is much more important for quantitative dosage control than
for targeting (Peterchev et al., 2012). Consequently, interindividual
conductivity differences could potentially contribute to the widely
observed interindividual threshold differences observed in non-invasive
brain stimulation (mainly TMS) experiments. We also found that
for TMS (top row), tDCS focal (middle row), and tDCS (bottom row). In this
ation (central column) were sampled on a uniform grid of 20� 20 conductivity
ion is shown on the right.



Fig. 10. Probability density functions of the RDM for TMS, focal tDCS and
standard tDCS. The normal and tangential components of the electric field are
shown for the reference electric field calculated with the average values of all
conductivities, and the conductivities that correspond to an RDM of 0.2. It is
emphasized that the distributions were normalized to their respective maximum
values to focus on the variability in field shape and not in field magnitude
(cf. Fig. 3).
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TMS-induced fields are less affected by conductivity variations than those
caused by tDCS. TMS is primarily influenced by uncertainties of the gray
and white matter conductivities, whereas tDCS also depends on the
conductivities of compact bone and scalp.

In addition, we identified specific differences between the modalities
with respect to the most severely affected locations on the cortex. For
example, the magnitude of the electric field caused by TMS can be pre-
dicted accurately on the gyral crowns (at the field maximum) but is less
12
accurate in the sulcal walls, whereas focal tDCS is less accurate on the
gyral crowns and in the sulcal fundi. For standard tDCS, the main inac-
curacy occurs in the sulcal fundi.

The present work focuses on conductivity variations and not on
anatomical inaccuracies of the modeled head volume conductor. It can be
assumed that the latter also strongly contributes to uncertainties in the
field estimates. Specifically, the results presented here point towards a
low influence of the uncertainty of CSF conductivity on the field esti-
mates. On the other hand, Nielsen et al. (2018) (Fig. 6b), have shown
clear differences in the cortical electric fields for two head models that
differ in the level of detail used for modeling the CSF-filled sulci. Taking
these two findings together, it can be stated that varying CSF conduc-
tivity within the range reported in the literature alters the field in GM
only weakly, while replacing part of CSF by GM in the model clearly
changes the field pattern.

The employed non-intrusive gPC allows for a “black box” approach to
the system under investigation. This ensures maximal generalizability
because a closed analytical description of the problem is not needed. The
gPC can be easily post-processed to determine statistical moments or
sensitivities. Moreover, large numbers of parameter combinations can be
evaluated quickly, in a Monte Carlo sense, due to the parsimonious
polynomial description of the transfer function to determine the output
PDFs. In contrast, direct Monte Carlo sampling (Toschi et al., 2012) or
parameter grid sampling (Salvador et al., 2012) of the original transfer
function would require > 105 FEM simulations for this number of input
parameters (6 parameters) to reach the desired accuracy. Other ap-
proaches that seek to reduce the computational effort, such as worst case
evaluation (Thielscher et al., 2011) or linearization (Santos et al., 2016),
are much more limited in their conclusions. Gomez et al. investigated the
impact of varying conductivities, brain size and coil positions on the
induced electric field in TMS using a collocation-based high-dimensional
model representation approach (CUT-HDMR) (Gomez et al., 2015; Rabitz
et al, 1999). Their analysis was restricted to the mean and the STD of the
electric field, omitting a detailed sensitivity analysis and any other higher
order quantities such as the RDM or the 98th percentile of the electric
field. In contrast to ours and other studies (Weise et al., 2015; Codecasa
et al., 2016), Gomez et al. (2015) reported that conductivity variations
have a negligible effect on TMS operation compared to uncertainties in
coil position or brain size. However, they assumed very large and uni-
formly distributed angle deviations, in a range between 0� and 90�,
which potentially obscures the effect of conductivity variation, since
their iterative approach expands the model in terms of the variables with
the highest influence. In our study, the electrical conductivities were
modelled assuming bell shaped beta distributions, which are more bio-
logically plausible than uniform distributions. An advantage of our
approach, compared to interpolation methods, is that it assures orthog-
onality between the basis functions in the normed spaced induced by the
PDFs. Consequently, the statistical moments and the sensitivities can be
calculated directly from the gPC coefficients. The moderately sized gPC
matrix has to be inverted only once to determine all of the coefficients for
all of the investigated points inside the brain. In summary, the proposed
approach is advantageous in terms of (i) adaptivity, i.e. it assists the
investigator when analyzing “black-box” systems by adding polynomials
to the basis, which are improving the approximation quality. By avoiding
unused polynomials, the number of forward calculations needed to
derive the gPC approximation is reduced significantly; (ii) fast conver-
gence rate (see Supplemental Material Section S.4); (iii) a stable and
efficient error estimator using a k-fold cross validation without the need
for additional model evaluations (see Supplemental Material Section
S.4); and (iv) the use of a regression approach allows to reduce con-
straints on the set of sampling points when setting up the gPC basis
adaptively. This allows for extra flexibility for expanding polynomials
and defining input PDFs.

The proposed formulation allows the direct extraction of un-
certainties of, for example, the electric field and sensitivities towards
specific input parameters. These properties enable systematic



Fig. 11. Most significant normalized Sobol indices of the RDM for TMS, tDCS and tDCS (focal) itemizing the composition of the variance of the RDM (cf. the
probability density functions from Fig. 7).
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investigations of systems with computationally expensive transfer func-
tions (such as the FEM calculation in our case) and large parameter sets.
An important advantage of gPC is that the expansion can be performed
with respect to quantities of interest other than the electric field itself,
allowing for uncertainty analyses also for higher-level parameters such as
the RDM.With the information provided by this and similar analyses, the
relevance of accurate knowledge of tissue conductivities for particular
stimulation situations can be quantified and research aiming at targeted
measurements of distinct tissue types can be directed.

The gPC yields a highly efficient meta-model of the complex transfer
function that can also be used in a variety of further applications. One
further example is optimization studies. Conductivity optimizations, as
they were conducted by Huang et al. (Huang et al., 2017; Huang et al.,
2018), could be solved in a very elegant and time-efficient manner. We
could also use the polynomial surrogates to quickly perform MC-based
uncertainty quantification analyses in quantities of interest where gPC
does not work well, such as the RDM.

Besides the classical FEM, there are other approaches to calculating
electric fields from TMS and tDCS sources, such as discontinuous
Galerkin FEM (DG-FEM) (Engwer et al., 2017), which have the property
of being current preserving and are therefore more accurate, especially in
regions close to tissue boundaries and where the skull becomes exces-
sively thin, causing current to leak through the skull compartment.
However, as we are interested in the middle of the tissue, and as when
creating the head model we imposed a condition that tissue boundaries
should not overlap. we believe that the increase in accuracy from
DG-FEM methods and other advanced solvers for elliptical PDEs would
probably not change the results of the current uncertainty quantification
analysis. In fact, Engwer et al. noticed in the context of EEG forward
simulations that the difference in accuracy between traditional FEM and
DG-FEM is not large when the model is of sufficiently high resolution
(bellow 2mm), as our model is. However, with such methods the post-
processing steps might be easier to implement, as the electric field
resulting from the calculations is not piecewise-constant.

In conclusion, the presented methodology constitutes a very flexible
and efficient tool to assess the reliability of the predictions of brain
stimulation models and to identify the crucial model parameters. This
depends on the particular stimulation configuration and region(s) of in-
terest. Even though the present demonstration is limited to an initial set
of three scenarios, tested on a single head model, our current study re-
veals important differences between the simulated stimulation methods
that likely generalize across individuals. Furthermore, the method offers
great potential for the characterization of other models as well as other
applications, such as model inversion, for example in EEG/MEG source
reconstruction.
13
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