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Abstract. An operational multi-model forecasting system for
air quality including nine different chemical transport models
has been developed and provides daily forecasts of ozone, ni-
trogen oxides, and particulate matter for the 37 largest urban
areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median
concentrations for the next 3 days are displayed on a publicly
accessible website (http://www.marcopolo-panda.eu, last ac-
cess: 7 December 2018). The paper describes the forecasting
system and shows some selected illustrative examples of air
quality predictions. It presents an intercomparison of the dif-
ferent forecasts performed during a given period of time (1–
15 March 2017) and highlights recurrent differences between
the model output as well as systematic biases that appear in
the median concentration values. Pathways to improve the
forecasts by the multi-model system are suggested.

1 Introduction

The rapid economic growth in China has been accompanied
by a substantial degradation of air quality, particularly in the
densely populated areas of the eastern part of the country.
Air pollution is the source of cardiovascular and respiratory
illness, increased stress to heart and lungs, and cell damage
in the respiratory system, which in turn can result in fatali-
ties resulting from ischemic heart disease, chronic obstruc-
tive pulmonary disease (COPD – please refer to Appendix
A for a list of other abbreviations and their definitions), and
lower respiratory infections. To address this problem, China
is taking effective measures to reduce the emission of pri-
mary pollutants such as nitrogen oxides (NOx), volatile or-
ganic compounds (VOCs), and particulate matter (PM). In
addition to these long-term mitigation measures, immediate
action can be taken to avoid the occasional occurrence of
acute air pollution episodes, particularly in winter during sta-
ble meteorological situations, by drastically reducing emis-
sions associated with polluting activities during the periods
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of predicted events. The implementation of such measures
requires that accurate forecasts of air quality be produced
and made available to local and regional authorities. Alerts to
warn the public of the imminence of acute pollution episodes
can be released several days before the event on the basis of
model predictions.

Advanced forecast models include a detailed formulation
of the chemical and physical processes responsible for the
formation of secondary pollutants such as ozone and partic-
ulate matter in response to the emissions of primary species
produced as a result of industrial, agricultural, and residen-
tial activities, energy production, and transportation. These
models simulate the transport of these constituents by the at-
mospheric circulation as well as vertical exchanges by con-
vective motions and turbulent boundary layer mixing. Mete-
orological information provided by weather forecast models
is therefore an essential input to regional air quality models.
Surface deposition of oxidized compounds and wet scaveng-
ing of soluble species are also taken into account. The atmo-
spheric concentrations of the chemical and physically inter-
acting species are obtained by solving a mathematically stiff
system of partial differential equations with appropriate ini-
tial and boundary conditions.

The approach used to produce predictions of air quality
bears a lot of resemblance to the methods used for weather
forecasts. In both cases, models make use of similar numer-
ical algorithms, assimilate data, and produce large amounts
of output that have to be analyzed and evaluated, and even-
tually disseminated to the public in the form of easily ac-
cessible information. The steady progress made in the nu-
merical weather prediction since the 1980s (Bauer et al.,
2015), through combined scientific, computational, and ob-
servational advances, has also considerably improved our ca-
pability of providing predictive information on air quality
and on its impacts for human society (i.e., health, food pro-
duction, and the state of ecosystems).

Many models are available for operationally forecasting
air quality (Kukkonen et al., 2012) and have been tested in
different contexts. These models are usually driven by differ-
ent input data (surface emissions, weather forecasts, chem-
ical schemes, aerosol formulation, land-use data, boundary
conditions, etc.) and hence generate different output (e.g.,
different concentrations of chemical species). In most cases,
it is difficult to clearly distinguish between models that per-
form well and models that perform poorly because the suc-
cess of individual models varies with the conditions that are
encountered (e.g., geographic location, season, meteorologi-
cal situation) and can be different for the different chemical
species and for different statistical parameters. If the mod-
els involved have been developed fairly independently from
each other their results can be combined and their individ-
ual behaviors can be examined by comparing the predicted
fields to the median or the mean derived from the ensem-
ble of simulations. Much can be learned from a systematic

day-by-day examination of the model behavior operated in a
forecast mode.

Building an ensemble of models is an attractive approach
to forecast air quality because the inter-model variability pro-
vides insight on the robustness of the results or conversely on
their uncertainties (McKeen et al., 2005; Vautard et al., 2006;
Solazzo et al., 2012). Further, the composite products have
usually better overall performance than the results produced
by individual systems (McKeen et al., 2005; Galmarini et al.,
2013; Riccio et al., 2007; Sofiev et al., 2015, 2017). This ap-
proach is especially useful in the context of decision-making
since it samples the uncertainty space associated with the dif-
ferent individual forecasts.

A numerical weather forecast is usually based on a single
model ensemble in which the initial conditions are slightly
perturbed so that different likely evolutions of the atmo-
spheric dynamics can be projected. In the case of air qual-
ity forecasts, which are not only initial-value problems, it is
advisable to also perturb emissions, meteorology, and bound-
ary conditions as well as model parameters (kinetic reaction
rates, etc.), which is best performed by considering a multi-
model ensemble (Dabberdt and Miller, 2000). Nevertheless,
in addition, it would also be useful to assess the behavior of
a single air quality model, which shows is driven by different
realizations of ensemble meteorological forecasts, different
emission scenarios, and different chemical schemes.

The models used in the present study have been developed
fairly independently, and this leads to a rather broad range
of model results. Model performance does not only depend
on the quality of emissions datasets: they differ for a wide
range of reasons, including dynamical and weather aspects
but also the adopted formulation (e.g., parameterizations, op-
erator splitting, time integration) and numerical algorithms.
An inspection of the different choices made in the models
can lead to some improvements in model configurations and
hence will reduce the “artificial” spread between calculated
fields. This spread often results from errors in the configu-
ration (e.g., setup bugs) or from inaccuracies in the adopted
input parameters (e.g., land use). By including each model
configuration within a large ensemble, the combined perfor-
mance of the forecast system is considerably less affected by
initial implementation issues or an inadequate choice of input
parameters applied in individual models.

This paper describes the early phase of a system that fore-
casts air quality in eastern China. The system can be charac-
terized as a multi-model “ensemble of opportunity” (as de-
fined by a combination of models running in their default
configurations) that is evolving into an operational air qual-
ity ensemble prediction system, similar to the system estab-
lished in Europe under the Copernicus Atmospheric Moni-
toring Service (CAMS) (Marécal et al., 2015). The concept
adopted here will be briefly presented in Sect. 2. Section 3
presents a description of the different models,L and Sect. 4
briefly discusses the performance of the whole system and
of the contributing models. A second paper (Petersen et al.,
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2018) discusses in more detail the performance of the fore-
cast system including the representativeness of the model-
observation discrepancies, specifically in urban areas. Ap-
proaches to improve the performance of the system are pre-
sented in Sect. 5.

The ensemble of models considered in the present study
has been assembled under the Panda and MarcoPolo projects
supported by the European Commission within the Frame-
work Programme 7 (FP7). Seven models were initially
included in the operational system: the global IFS (In-
tegrated Forecasting System) model developed and oper-
ated by the European Centre for Medium-Range Weather
Forecasts (ECMWF), five regional models implemented by
European research and service institutions (CHIMERE by
the Royal Netherlands Meteorological Institute (KNMI),
Weather Research and Forecasting model coupled to chem-
istry by the Max Planck Institute for Meteorology (WRF-
Chem-MPIM), SILAM (System for Integrated Modeling
of Atmospheric Composition) by the Finnish Meteorolog-
ical Institute (FMI), EMEP/MSC-W (European Monitor-
ing and Evaluation Programme/Meteorological Synthesiz-
ing Centre-West Model hosted at the Norwegian Meteo-
rological Institute) by the Norwegian Meteorological In-
stitute (MET.Norway), LOTOS-EUROS (Long-term Ozone
Simulations – European Operational Smog) by The Nether-
lands Organisation for Applied Scientific Research (TNO)),
and one model (WRF-Chem-SMS) applied in China by
the Shanghai Meteorological Service (SMS). In later steps,
forecasts by additional regional models applied by Nanjing
University (WRF–CMAQ; CMAQ – Community Multiscale
Air Quality) and by the Shanghai Meteorological Service
(WARMS-CMAQ; WARMS – WRF ADAS Real-time Mod-
eling System (WARMS)) were added to the ensemble. In the
following section, we provide a brief overview of these dif-
ferent models. Only seven of them contribute to the inter-
comparison presented in Sect. 4.

2 Description of the models included in the ensemble

In the following subsections, each of the nine participating
models will be described. Table 2a–b present the key charac-
teristics of each model involved in the intercomparison, and
Table 3 summarizes the emissions adopted in each model.

2.1 IFS

IFS is ECMWF’s global numerical weather prediction sys-
tem. As part of the past series of European projects MACC
and now of CAMS, IFS has been developed to represent op-
tionally chemical processes in the troposphere and in the
stratosphere. Flemming et al. (2015) provide a detailed de-
scription of the modeling of chemical processes in the IFS,
and Inness et al. (2015) describe the data assimilation as-
pects.

For the work presented here, the version of IFS
used is Cycle 43R1 (see documentation at https:
//www.ecmwf.int/en/forecasts/documentation-and-support/
changes-ecmwf-model/ifs-documentation, last access: 7 De-
cember 2018). The model is run globally at a resolution of
T511 (about 40 km) on the horizontal and with 60 levels on
the vertical extending up to the top of the stratosphere. The
chemical package used originates from the TM5 chemistry
and transport model (Huijnen et al., 2010). It has been
fully integrated into the IFS code and comprises 54 tracers
and 120 reactions focusing on tropospheric-ozone–CO–
NMVOC–NOx chemistry. In the configuration used here,
stratospheric ozone is modeled with a simple linearized
scheme. Aerosols are represented using the scheme de-
scribed by Morcrette et al. (2009), which includes five
species: dust, sea salt, black carbon, organic carbon, and
sulfates. Tracers are transported using the semi-Lagrangian
scheme available in IFS with a mass fixer activated in order
to minimize mass nonconservation.

During the study period, IFS has been run twice daily
(5-day forecasts) assimilating a range of satellite chemical
data on top of the full list of meteorological satellite and
non-satellite data that ECMWF uses for its medium-range
weather forecasts. Table 1 indicates the satellite data streams
actively assimilated for the experiments presented here. As
a result, IFS forecasts benefit from all these observations to
afford a realistic representation of large scales for weather
parameters as well as, to some extent, for chemical variables
(species assimilated).

IFS used the MACCity emission dataset updated for the
year 2017. Biogenic emissions of volatile organic com-
pounds (VOCs) were taken from a climatology of a multi-
year Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) simulation. Daily emissions from biomass
burning were derived from satellite retrieval of fire radiative
power (FRP) from the MODIS instruments by the Global
Fire Assimilation System (GFAS; Kaiser et al., 2012). The
observed fire emissions from the day before the forecast start
are used for all 5 days of the forecast. Desert dust and sea salt
emissions were simulated online for each time step based on
the IFS meteorological fields and the land use.

As part of CAMS, the chemical configuration of IFS
benefits from routine detailed evaluations. Validation re-
ports are produced quarterly and can be found here: http:
//atmosphere.copernicus.eu/quarterly_validation_reports
(last access: 7 December 2018). The report for the
period March–May 2017 provides insight on the
overall performance of the runs that are also pre-
sented here. Further information about the IFS code
can be obtained from Vincent-Henri Peuch (vincent-
henri.peuch@ecmwf.int) and on the website https://www.
ecmwf.int/en/about/what-we-do/environmental-services/
copernicus-atmosphere-monitoring-service (last access:
7 December 2018).
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Table 1. Satellite data streams (atmospheric composition variables only) assimilated in IFS.

Instrument Satellite Space agency Data provider Species

MODIS EOS-Aqua, EOS-Terra NASA NASA AOD
MLS EOS-Aura NASA O3 profile
OMI EOS-Aura NASA KNMI O3, NO2, SO2
SBUV-2 NOAA-19 NOAA NOAA O3 profile
IASI METOP-A, METOP-B EUMETSAT/CNES ULB/LATMOS CO
MOPITT EOS-Terra NASA NCAR CO
GOME-2 METOP-A, METOP-B EUMETSAT/ESA AC-SAF O3, SO2
OMPS Suomi-NPP NOAA EUMETSAT O3
PMAp METOP-A, METOP-B EUMETSAT EUMETSAT AOD

2.2 CHIMERE

CHIMERE is a regional chemistry transport model used
for analysis, scenarios, and forecast (Menut et al., 2013a).
When used in the forecast mode, the model provides local-
scale information (to be compared with data from numerous
air quality networks) or regional-scale information (e.g., the
French PREV’AIR and the CAMS systems). CHIMERE is
an open-source model, freely distributed at http://www.lmd.
polytechnique.fr/chimere/ (last access: 7 December 2018). In
this version, CHIMERE is used in off-line mode at a spa-
tial resolution of 0.25◦ (about 25 km). It is forced by pre-
calculated hourly meteorological fields for the dynamics and
by several emissions fluxes for the chemistry. The emis-
sions are pre-calculated or online estimated in the model with
anthropogenic emissions (MEIC 2010), biogenic emissions
with the online MEGAN (Guenther et al., 2006), mineral dust
(Menut et al., 2013b), and biomass burning emissions (Tur-
quety et al., 2014). The gas-phase chemistry is calculated us-
ing the MELCHIOR2 mechanism, and the aerosols are rep-
resented using a distribution of 10 bins, from 40 nm to 40 µm
to describe both number and mass well. The chemical bound-
ary conditions are provided by the LMDz-INCA model for
gas and particles (Szopa et al., 2009), except for mineral
dust, which is extracted from global GOCART simulations
(Ginoux et al., 2001). Further information about the imple-
mentation of the model for air quality forecasts in China can
be obtained from Ronald van der A (avander@knmi.nl) at
KNMI and on the website http://www.lmd.polytechnique.fr/
chimere/CW-download.php (last access: 7 December 2018).

2.3 WRF-Chem-MPIM

WRF-Chem is a mesoscale non-hydrostatic meteorological
model (Skamarock et al., 2008) coupled “online” with chem-
istry that simultaneously predicts meteorological and chemi-
cal components of the atmosphere (Grell et al., 2005; Fast et
al., 2006).

The model version used at the Max Planck Institute for
Meteorology (MPIM), WRF-Chem-MPIM, is based on ver-
sion 3.6.1 of the WRF-Chem model coupled to the gas-

phase chemistry and the aerosol microphysics schemes pro-
vided by the Model for Ozone and Related Chemical Tracers
(MOZART-4; Emmons et al., 2010) and the Model for Sim-
ulating Aerosol Interactions and Chemistry (MOSAIC; Za-
veri et al., 2008), respectively. Aerosol sizes are represented
by four consecutive bins, and the formation of secondary or-
ganic aerosol (SOA) from anthropogenic precursors is pa-
rameterized according to Hodzic and Jimenez (2011).

Two nested model domains with horizontal resolutions
of 60 km (Asian continent from India to Japan) and 20 km
(eastern China), respectively, are implemented. The ver-
tical grid is composed of 51 levels extending from the
surface to 10 hPa (∼ 30 km). A more complete descrip-
tion of the selected physical and chemical options is pro-
vided in the WRF and in the WRF-Chem user’s guides un-
der http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_
V3.6/ARWUsersGuideV3.6.1.pdf (last access: 7 Decem-
ber 2018) and https://ruc.noaa.gov/wrf/wrf-chem/Users_
guide.pdf (last access: 7 December 2018).

The WRF-Chem-MPIM model forecasts are initialized
and forced at the lateral boundaries every day by 6-hourly
meteorological analysis data from the NCEP Global Fore-
cast System (GFS) at 0.5◦ resolution. For the chemical
and aerosol species, 6-hourly datasets are provided by the
global operational forecasting system implemented within
the Copernicus Atmospheric Monitoring Service project
(Flemming et al., 2015). More information on the
model’s configuration can be obtained from Idir Bouarar
(idir.bouarar@mpimet.mpg.de) at the Max Planck Institute
for Meteorology and on the website http://www2.mmm.
ucar.edu/wrf/users/downloads.html (last access: 7 Decem-
ber 2018).

2.4 SILAM

FMI uses the SILAM version 5.5 (Sofiev et al., 2015a, b).
SILAM includes a meteorological preprocessor for diagnos-
ing the basic features of the boundary layer and the free tro-
posphere from the meteorological fields provided by vari-
ous meteorological models (Sofiev et al., 2010). The dry-
deposition scheme for particles is described in Kouznetsov
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and Sofiev (2012). The surface resistance model for gases is
based on a modified Wesely scheme (Wesely, 1989).

The gas-phase chemistry was simulated with CBM-IV,
with reaction rates updated according to the recommenda-
tions of IUPAC (http://iupac.pole-ether.fr, last access: 7 De-
cember 2018) and JPL (http://jpldataeval.jpl.nasa.gov, last
access: 7 December 2018) and the terpenes oxidation added
from the 2005 Carbon Bond (CB05) chemical mechanism re-
action list (Yarwood et al., 2005). The sulfur chemistry and
secondary inorganic aerosol formation is computed with an
updated version of the DMAT scheme (Sofiev, 2000), and
secondary organic aerosol formation is computed with the
volatility basis set (VBS; Donahue et al., 2006), with the
volatility distribution of anthropogenic organic carbon (OC)
taken from Shrivastava et al. (2011).

The MACCity land-based emissions are used to-
gether with the Ship Traffic Emission Assessment Model
(STEAM). The simulations include sea salt emissions as in
Sofiev et al. (2011), biogenic VOC emissions as in Poup-
kou et al. (2010), wild land fire emissions as in Soares et
al. (2015), and desert dust.

The grid cell size was roughly 15 km× 10 km
(0.125◦× 0.125◦) covering the whole of China, India,
Japan, and several countries of Southeast Asia (7◦ N, 67◦ E)
– (54◦ N, 147◦ E). The Asian forecasts are nested into the
SILAM global air quality forecasts (http://silam.fmi.fi, last
access: 7 December 2018), from where they take lateral
and top boundary conditions. The initial conditions for
each run are taken from the previous day’s forecast or,
in case of failure, from global computations. Detailed
information about the SILAM modeling system can be
obtained from Mikhail Sofiev (Mikhail.Sofiev@fmi.fi) and
from Rostislav Kouznetsov (rostislav.kouznetsov@fmi.fi)
and on the website of the Finnish Meteorological Institute
(http://silam.fmi.fi/).

2.5 EMEP

EMEP/MSC-W (hereafter referred to as “EMEP model”) is
a 3-D Eulerian chemical transport model described in detail
in Simpson et al. (2012). Although the model has tradition-
ally been aimed at European simulations, global modeling
has been possible for many years (Jonson et al., 2010; Wild
et al., 2012). The EMEP configuration for the present study
covers the east Asian domain (15–55◦ N× 90–135◦ E) with a
horizontal resolution of 0.1◦× 0.1◦ (longitude–latitude). The
model uses 20 vertical levels defined as sigma coordinates.
The 10 lowest levels are within the planetary boundary layer
(PBL), and the top of the model domain is at 100 hPa.

Particulate matter (PM) emissions are split into elementary
carbon, organic matter (OM) (here assumed inert), and the
remainder, for both fine and coarse PM. The OM emissions
are further divided into fossil fuel and wood-burning com-
pounds for each source sector. As in Bergström et al. (2012),
the OM / OC ratio of emissions by mass is assumed to be

1.3 for fossil-fuel sources and 1.7 for wood-burning sources.
The model also calculates windblown dust emissions from
soil erosion. Secondary PM2.5 aerosol consists of inorganic
sulfate, nitrate, ammonium, and SOA; the latter is gener-
ated from both anthropogenic and biogenic emissions (an-
thropogenic SOA and biogenic SOA, respectively), using the
VBS scheme detailed in Bergström et al. (2012) and Simpson
et al. (2012).

Model updates since Simpson et al. (2012), resulting in
EMEP model version rv4.9 as used here, have been de-
scribed in Simpson et al. (2016) and references cited therein.
The main changes concern a new calculation of aerosol
surface area, revised parameterizations of N2O5 hydrolysis
on aerosols, additional gas-aerosol loss processes for O3,
HNO3, and HO2, a new scheme for ship NOx emissions, and
the use of new maps for global leaf area (used to calculate
biogenic VOC emissions) – see Simpson et al. (2015) for de-
tails. The EMEP model, including a user guide, is publicly
available as open-source code at https://github.com/metno/
emep-ctm (last access: 7 December 2018). For more details,
please contact Michael Gauss (michael.gauss@met.no).

The EMEP forecasts are driven by 3-hourly meteorologi-
cal forecast data from the ECMWF IFS model at 0.1◦ resolu-
tion. As for WRF-Chem, 6-hourly datasets for the chemical
and aerosol species are provided by the global operational
forecasting system implemented within the Copernicus At-
mospheric Monitoring Service project.

2.6 LOTOS-EUROS

LOTOS-EUROS is a three-dimensional regional chemistry
transport model for simulation of trace gases and aerosol
concentrations in the boundary layer. Meteorological input is
obtained from an off-line model, in this study from ECMWF.
The model is of intermediate complexity allowing long-term
model simulations. For a detailed model description, we refer
to Manders et al. (2017) and references therein.

In this study LOTOS-EUROS version 1.10 was used to
simulate air quality over China. The configuration is de-
scribed by Timmermans et al. (2017), who adopted this ver-
sion of the model to investigate the origin of fine particu-
late matter across China using a source apportionment tech-
nique. Through a one-way nesting procedure a simulation
over east China was performed on a resolution of 0.25◦ longi-
tude by 0.125◦ latitude, approximately 21 km by 15 km. This
domain is nested in a larger domain covering China almost
entirely with a resolution of 1◦ longitude by 0.5◦ latitude,
approximately 84 km by 56 km. Chemical boundary condi-
tions for the coarse resolution domain were taken from the
CAMS global modeling framework (Flemming et al., 2015)
and include trace gasses and aerosols. In the vertical, the
model used a boundary layer approach with five layers: a sur-
face layer of 25 m, a well-mixed boundary layer, two reser-
voir layers, and a layer for the free troposphere. The bound-
ary layer height therefore defines the vertical structure of
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the model, and is here taken from the meteorological input.
More details about the code can be obtained by contacting
Renske Timmermans (renske.timmermans@tno.nl) at TNO
or by consulting the website https://lotos-euros.tno.nl/ (last
access: 7 December 2018).

2.7 WRF-Chem-SMS

WRF-Chem-SMS hosted at the Shanghai Meteorological
Service is based on WRF-Chem (Grell et al., 2005) ver-
sion 3.2. The Regional Acid Deposition Model version 2
(RADM2; Chang et al., 1989) is used to represent gas-phase
chemistry. ISORROPIA II is implemented to treat thermo-
dynamic equilibrium for inorganic aerosols (Fountoukis and
Nenes, 2007), and the Secondary ORGanic Aerosol Model
(SORGAM) (Schell et al., 2001) is used to parameterize
secondary organic aerosol formation. A Madronich TUV
scheme is applied for photolysis (Madronich and Flocke,
1999; Tie et al., 2003). The model domain covers the east-
ern region of China with horizontal resolutions of 6 km
and 28 vertical layers. Biogenic emissions are calculated
online using MEGAN (Guenther et al., 2012). The multi-
resolution emission inventory for China (MEIC inventory,
http://www.meicmodel.org/ (last access: 7 December 2018);
Li et al., 2014; Liu et al., 2015) for the year 2010 is used to
represent anthropogenic emissions.

The modeling system is initialized and forced at the lateral
boundaries every day by 6-hourly data from the NCEP GFS
at 0.5◦ resolution. For chemical species, a previous model-
ing result is used for initial conditions. MOZART-4 historic
data are employed as the gaseous chemical lateral boundary,
and a real-time forecast of dust from the WRF-Dust model is
employed as a dust lateral boundary every 6 h. More detailed
information can be found in Zhou et al. (2017) and by con-
tacting Jianming Xu (metxujm@163.com) at the Shanghai
Meteorological Service.

2.8 WRF–CMAQ

A regional air quality operational forecasting system was de-
veloped at Nanjing University, China, on the basis of the
WRF–CMAQ model. The versions adopted for the WRF
(Weather and Forecasting) and CMAQ (Community Multi-
scale Air Quality) models are V3.5 and V4.7.1, respectively.
Two nested domains with horizontal resolutions of 36 and
12 km are adopted for the forecasts. The outer domain cov-
ers the entire continental region of China as well as surround-
ing countries in east Asia. The inner domain mainly focuses
on the densely populated area of eastern China. The num-
ber of grid points adopted for the WRF model are 170× 130
and 202× 226, respectively with 51σ layers in the vertical
(12 layers below 1.5 km a.g.l.) between the surface and the
model top at 50 hPa. The CMAQ model is applied to the
same domains but with three grid cells removed at each lat-
eral boundary of the WRF domains. Overall, 15 vertical lay-

ers are selected from the 51 WRF layers, including about 8
layers in the boundary layer and 7 layers in the free tropo-
sphere.

Anthropogenic emissions are supplied off-line from the
MIX inventory (Li et al., 2017). Terrestrial biogenic emis-
sions are calculated off-line using MEGAN v2.04 (Guen-
ther et al., 2006). Sea salt emissions are incorporated into
the AERO4 aerosol module and calculated online in CMAQ.
Windblown dust is derived online from the WRF-Dust
model. Open biomass burning emissions are not considered
here. It should be noted that the anthropogenic emissions are
not fixed in this system but are automatically adjusted every
week according to the system performance in the past week.
The adopted scaling factors are determined from the devia-
tion between the weekly averaged calculated and observed
concentrations of SO2, NOx , CO, PM2.5, and PM10 in 334
Chinese prefectures.

The system provides a forecast every day for the next
192 h. The NCEP GFS’s products at 00:00 UTC are used
for the initial and boundary conditions of the WRF model
with a resolution of 0.5◦ and with a 3 h interval. For the
CMAQ model, the boundary conditions are created using
ideal profiles, and the chemical initial fields are initialized
from the previous forecasting. In addition, hourly averaged
observed concentrations of SO2, NO2, CO, O3, PM2.5, and
PM10 from 1415 national control air-quality-monitoring sites
are assimilated into the initial fields using an optimal inter-
polation method (Lorenc, 1981). More information on the
code can be obtained from Fei Jiang (jiangf@nju.edu.cn)
at Nanjing University. Information on WRF–CMAQ is also
available on the website http://carbon.nju.edu.cn/cn/ (last
access: 7 December 2018) and https://www.epa.gov/cmaq/
cmaq-models-0 (last access: 7 December 2018).

2.9 WARMS-CMAQ

The Community Multiscale Air Quality (CMAQ) model is a
3-D Eulerian chemical transport model that explicitly simu-
lates emissions, gas-phase, aqueous, and mixed-phase chem-
istry, advection and dispersion, aerosol thermodynamics and
physics, and wet and dry deposition. A detailed description
and an evaluation of the CMAQ model are available in the
papers by Byun and Schere (2006), Foley et al. (2010), and
Appel et al. (2017). Several studies have applied the CMAQ
model to study the air quality in China. For example, Zheng
et al. (2015) used the WRF–CMAQ model to study the im-
pact of heterogeneous chemistry during the January 2013
haze episode. Hu et al. (2016) performed a 1-year retrospec-
tive simulation using the WRF–CMAQ model to study the
O3 and particulate matter formation with a detailed evalua-
tion. Here the CMAQ version 5.0.2 is adopted and includes
the CB05 (Yarwood et al., 2005) to represent the gas-phase
chemistry. The fifth-generation modal CMAQ aerosol model
(aero5) is adopted to formulate the aerosol chemistry and dy-
namics (Carlton et al., 2010).
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Figure 1. Surface emissions of CO, NO, and SO2 (mg m−2 h−1) adopted by the different models (average for the period 1–14 March 2017).
Note that the SCUEM emissions are those used in the WRF-Chem-SMS model.

In this version, CMAQ is used in an off-line mode. It is
forced by pre-calculated hourly meteorological fields for the
dynamics and by several emissions fluxes for the chemistry.
Meteorology fields that drive chemical transport are pro-
duced by the SMS-WARMS. The SMS-WARMS has been
extensively evaluated and provides weather predictions in
eastern China. The modeling domain consists of 760 by 600
horizontal grids at 9 km resolution, with 51 layers in the ver-
tical. As a subdomain of the SMS-WARMS run, the CMAQ
domain consists of 430 by 370 horizontal grid cells at 9 km
resolution. In the vertical, 26 layers are applied.

The anthropogenic emissions are based on the monthly
HTAP v2 dataset (http://edgar.jrc.ec.europa.eu/htap_v2/, last
access: 7 December 2018) (Janssens-Maenhout et al., 2015)
for the year 2010. As suggested by operational forecasting
results, the HTAP NOx , SO2 emissions are adjusted to ac-
count for rapid economic growth in the region. Biogenic
emissions are estimated by MEGAN version 2.10 (Guenther
et al., 2012). Currently, dust and biomass burning emissions
are not included.

For the SMS-WARMS model forecasts, the NCEP GFS
output at 0.5◦ is used as a background for the ADAS data
assimilation scheme, which ingests many local observations
(e.g., radar and buoys), and to provide lateral boundary
conditions. The chemical boundary conditions are currently
based on the default vertical profiles of gaseous species and
aerosols in CMAQ that represent clean-air conditions. For
more details, please contact Ying Xie (yxie33@outlook.com)
at the Shanghai Meteorological Service. The CMAQ code

available on the U.S. EPA modeling site https://github.com/
USEPA/CMAQ/ (last access: 7 December 2018).

3 Adopted emissions

The choice of the adopted surface emissions for primary
chemical species has a significant influence on the atmo-
spheric concentrations calculated for these species and for re-
lated secondary pollutants. In this intercomparison exercise,
the different groups involved have adopted their preferred an-
thropogenic emissions based on published inventories such
as MEIC (Li et al., 2014; Liu et al., 2015), MACCity (Granier
et al., 2011), EDGAR (Emission Database for Global Atmo-
spheric Research; Muntean et al., 2014; Crippa et al., 2016),
and HTAP (Janssens-Maenhout et al., 2015). An inventory
developed specifically for the Panda project called PanHam
has been obtained by combining information from the MEIC
and HTAP inventories. Each model uses its own formula-
tion for dust mobilization or seal salt emissions. In most
cases, the biogenic emissions are derived online or off-line
from MEGAN (Guenther et al., 2006, 2012). Table 3 pro-
vides more details about the specified emissions and Fig. 1
shows the mean distribution of the anthropogenic emissions
for CO, NO, and SO2 adopted by different models during
the period 1–14 March 2017. In the case of carbon monox-
ide, the adopted emissions are relatively similar in all models
with mean emissions ranging from 4.0 to 4.6 mg m−2 h−1. In
the case of nitric oxide, however, there are substantial differ-
ences with mean emissions ranging from 0.31 mg m−2 h−1
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Table 2. Description of the different models.

(a) Model and
institution

Model docu-
mentation

Type of model Spatial domain Vertical and horizontal resolu-
tion

Meteo data Initial and boundary
conditions

IFS
ECMWF

CAMS Global
online

Global 60 vertical levels
T511 (40 km)

ECMWF-IFS IC: previous forecast
corrected by data as-
similation (analysis)

CHIMERE
KNMI

Version 2013b Regional
off-line

18–50◦ N,
102–132◦ E

8 levels (surface to 500 hPa)
0.25◦

ECMWF opera-
tional data

IC: previous forecast
BC: LMDz-INCA (gas
and particles), GO-
CART (mineral dust)

WRF-Chem-
MPIM

Version 3.6 Regional
online

Domain 1: 8◦ S–51◦ N,
59–152◦ E;
domain 2:
18–45◦ N,
95–125◦ E

51 levels (surf. to 10 hPa);
domain 1:
60 km× 60 km;
domain 2:
20 km× 20 km

NCEP-FNL
6 h
1◦× 1◦

IC: previous forecast
BC: IFS

SILAM
FMI

Version 5.5 Regional
off-line

7–54◦ N,
67–147◦ E

14 hybrid sigma-pressure lev-
els
up to ∼ 400 hPa
0.125◦ × 0.125◦

ECMWF-IFS IC: previous forecast
BC: SILAM global
forecast

EMEP
MET Norway

Svn3064 Regional
off-line

15–55◦ N,
90–135◦ E

20σ levels (surf. to 50 hPa) ECMWF-IFS IC: previous forecast
BC: ECMWF IFS (3-
hourly)

LOTOS-
EUROS

Version 1.10 Regional
off-line

Domain 1:
15–50◦ N,
71–139◦ E;
domain 2:
20–45◦ N,
105–130◦ E

5 layers (surf. to 5 km);
domain 1:
0.5◦ × 0.25◦;
domain 2:
0.25◦ × 0.125◦

ECMWF-IFS IC: previous forecast
BC: CAMS C-IFS (3-
hourly)

WRF-Chem
SMS

Version 3.2 Regional
online

20–44◦ N,
110–126◦ E

28 vertical layers (surf. to
50 hPa)
6 km

NCEP GFS
6 h
0.5◦ × 0.5◦

IC: Previous run
BC: MOZART
monthly averages
for 2009

WRF–CMAQ
NJU

WRFv3.5
CMAQv4.7.1

Regional
off-line

Domain 1: 18–52◦ N, 78–
136◦ E;
domain 2: 21–44◦ N, 102–
125◦ E

Domain 1: 36 km× 36 km;
domain 2: 12 km× 12 km
WRF: 51σ levels
CMAQ: 15σ levels

NCEP GFS
3 h
0.5◦ × 0.5◦

IC: Previous run
BC: CMAQ default ver-
tical profile

WARMS-
CMAQ
SMS

Version 5.0.2 Regional
off-line

14–53◦ N,
100–144◦ E

26 sigma levels (from surf. to
50 hPa)
9 km

NCEP GFS
6 h
0.5◦ × 0.5◦

IC: Previous run
BC: CMAQ default ver-
tical profile

(WRF-Chem-MPIM) to 0.99 mg m−2 h−1 (EMEP) but with
values around 0.30–0.45 mg m−2 h−1 used by most mod-
els. For sulfur dioxide, produced primarily from coal com-
bustion, the adopted values range from 0.31 mg m−2 h−1

(WRF-Chem-SMS) to 0.73 mg m−2 h−1 (IFS) but with val-
ues around 0.67 mg m−2 h−1 adopted in most models. The
low values adopted for WRF-Chem-SMS reflect the likely
impact of the recent measures taken in China to limit the
emissions from coal burning facilities.

Emission inventories that are currently available to the
modeling community usually account for anthropogenic
emissions for the years 2010 to 2012 and hence do not ac-
count for the substantial reduction in the emissions that took
place since around 2014 as a result of actions taken by the
Chinese authorities. The lower emission values adopted by

several models may therefore be more realistic for providing
chemical weather forecasts in 2017.

4 Operational forecasts provided by the
MarcoPolo–Panda system

As stated above, the MarcoPolo–Panda system is used op-
erationally to provide daily forecasts of air quality in east-
ern China. In its present configuration (Fig. 2), the sys-
tem is based on nine models, which are executed indepen-
dently on the computing system available at each respec-
tive partner institution. The outputs of the models are lo-
cally processed and the surface concentrations of the key
chemical species are forwarded to a central database oper-
ated by the KNMI. Ensemble mean and median concentra-
tions are derived and, in addition to the forecasts from in-
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Table 2. Continued.

(b) Model and insti-
tution

PBL Land use Deposition Chemistry Data assimilation

IFS
ECMWF

IFS PBL scheme IFS land use Dry: resistance;
wet: in-cloud and below-cloud
scavenging and evaporation

Gas: CB05;
aerosol: LMDz/MACC

Yes
(O3, CO, NO2,
SO2, HCHO)

CHIMERE
KNMI

Bulk Richardson number
(Menut et al., 2013a)

GlobCover LandCover
version 2.3, 2009

Dry: resistance;
wet: in-cloud and below-cloud
scavenging

Gas: MELCHIOR2;
aerosol: schemes for nu-
cleation, absorption (ISOR-
ROPIA), and coagulation

No

WRF-Chem-MPIM YSU MODIS Dry: resistance;
wet: in-cloud scavenging

Gas: MOZART-4;
aerosol: GOCART

No

SILAM
FMI

Bulk Richardson number, mod-
ified to use 2t and U∗.

Maps of roughness,
LAI from C-IFS

Dry: resistance for gases,
Kouznetsov and Sofiev (2012)
for particles;
wet: rainout and washout with
air–water equilibria

Gas: CBM-IV;
aerosol: DMAT/VBS

Not used

EMEP
MET Norway

Slightly modified bulk Richard-
son number, PBL height always
between 100 and 3000 m

GLC2000 Dry: resistance;
wet: in-cloud and below-cloud
scavenging

MARS module for aerosols
gas: EmChem09

No

LOTOS-EUROS Version 1.10 Regional
off-line

Domain 1:
15–50◦ N,
71–139◦ E;
domain 2:
20–45◦ N,
105–130◦ E

5 layers (surf. to 5 km);
domain 1:
0.5◦× 0.25◦;
domain 2:
0.25◦× 0.125◦

ECMWF-IFS

WRF-Chem
SMS

YSU MODIS Dry: resistance;
wet: in-cloud scavenging

Gas:RADM2;
aerosol: ISOR-
ROPIA/SORGAM

No

WRF–CMAQ
NJU

YSU USGS modified with
MODIS urban cover
data

Dry: resistance;
wet: in-cloud and below-cloud
scavenging

Gas: CB05;
aerosol: aero4

Yes (SO2, NO2, CO, O3,
PM2.5, PM10)

WARMS-CMAQ
SMS

YSU MODIS Dry: resistance;
wet: in-cloud and below-cloud
scavenging

gas: CB05;
aerosol: CMAQ aero5

No

dividual models, are posted on a dedicated website (http:
//www.marcopolo-panda.eu/, last access: 7 December 2018)
and Chinese mirror site (http://116.62.195.108/, last access:
7 December 2018). For the 37 Chinese cities with a popu-
lation above 3 million in 2010, the predicted concentration
values of ozone, NO2, PM2.5, and PM10 are compared each
hour to local measurements reported by the Chinese monitor-
ing network (http://pm25.in/, last access: 7 December 2018).
Observations for each city represent the mean of several mea-
surements performed within one city (usually 5–12 stations).
The data are averaged to city-center coordinates.

We start by presenting a few examples of randomly se-
lected forecasts as provided by the MarcoPolo–Panda system
to illustrate the diversity among the models and the differ-
ences obtained under different situations. The performance
of each individual model varies from day to day because
it strongly depends on the individual weather forecast (me-
teorological situation, cloudiness, precipitation, etc.) that is
adopted to simulate transport, photochemistry, and deposi-
tion. Therefore, this first description of model forecasts does
not provide reliable information on the accuracy of the fore-
casts provided by the different models included in the ensem-
ble.

The first example presents a relatively successful forecast
made for the coastal city of Xiamen in southeast China on
13 October 2017. The panels in Fig. 3 show the excellent
agreement in the case of NO2, ozone, and PM2.5, suggest-
ing that the median values derived from the individual mod-
els capture well the features associated with the meteorolog-
ical situation, atmospheric transport, and the emissions in
the region on that particular day. The situation corresponds
to very clean conditions, with PM2.5 and NO2 concentra-
tions of the order of 10–15 µg m−3. The predicted ozone con-
centration ranges from 70 to 90 µg m−3 (35 to 45 ppbv). In-
terestingly, however, the predicted PM10 concentrations are
underestimated during most of the day. The model predicts
concentrations close to 20–25 µg m−3, while the measure-
ments indicate that the concentration reached values as high
as 30–40 µg m−3. The presence on 13 October of a strong
wind flow in the strait between mainland China and Taiwan
and associated with the Khanun tropical depression present
on this particular day west of the Philippines was likely a
source of elevated sea salt emissions and dust mobilization
that may not have been properly captured by the models.
Under such strong meteorological disturbance, the forecast
could be strongly resolution dependent.
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Table 3. Adopted emissions.

Model and in-
stitution

Anthro. dataset Dust Sea salt Biogenic Biomass burn-
ing

Special treat-
ment/modification

IFS
ECMWF

MACCity Ginoux et
al. (2001)

Monahan et
al. (1986)

Monthly cli-
matology of
MEGAN v2
run

GFAS Diurnal cycle for isoprene

CHIMERE
KNMI

MEIC 2010 None None MEGAN None None

WRF-Chem-
MPIM

HTAPv2 GOCART MOSAIC MEGAN None Diurnal profiles by sector;
anthro. NOx emission
−50 %;

SILAM
FMI

MACCity with excluded ship-
ping, STEAM2015 shipping,
PanHam for coarse PM

SILAM scheme
after Zender et
al. (2003)

SILAM scheme
Sofiev et
al. (2011)

MEGAN-
MACC

GFAS (gases),
IS4FIRES
(PM)

Diurnal profiles by sector

EMEP
MET Norway

PanHam
(HTAP +MEIC2012)

None Tsyro et
al. (2011)

EMEP scheme GFAS None∗

LOTOS-
EUROS

EDGAR +
MEIC2010

Online Online MEGAN GFAS anthro. NOx emission
−35 %;
anthro. SO2 emission
−50 %

WRF-Chem
SMS

MEIC 2010 With dust BC
from WRF-
Dust

None MEGAN v2 None Diurnal profiles by sector;
anthro. NOx emission
−40 %;
anthro. SO2 emission
−60 %

WRF–CMAQ
NJU

MIX WRF-Dust CMAQ scheme MEGAN v2.04 None Adjusted by performance
of previous week

WARMS-
CMAQ
SMS

HTAPv2 None CMAQ scheme MEGAN v2.10 None Diurnal profiles by sector;
anthro. NOx emission
−50 %;
anthro. SO2 emission
−70 %

∗ None during the intercomparison exercise. Since summer 2017, however, the NOx emissions have been reduced by 35 % in this particular model. The present version
of the model also calculates windblown dust emissions from soil erosion.

The second example of predictions (Fig. 4) refers to the
forecast of PM2.5 in Shanghai on a relatively polluted day
(3 November 2017). All models predict the presence of rel-
atively high concentrations over land (diurnal mean values
of typically 100–150 µg m−3) with a steep negative gradient
towards the Chinese sea, where the concentrations are of the
order of only 25–40 µg m−3. Observations made at different
stations in this urban area show the occurrence of two succes-
sive concentration peaks: one around 09:00–10:00 with con-
centrations reaching about 180 µg m−3 and the second one
at 15:00–16:00 with concentrations as high as 150 µg m−3.
The ensemble mean forecast system predicts the occurrence
of a single peak at about 07:00 with a PM2.5 concentra-
tion of about 220 µg m−3. The forecast shows a gradual de-
crease in the concentration during the afternoon that is in
good agreement with the observation. The occurrence of the
second peak in the afternoon, however, is missed by the en-
semble prediction, even though a peak appears in some of
the individual model calculations (WRF-Chem SMS, EMEP,
and WRF–CMAQ) but often a few hours before it was ac-

tually detected by the monitoring stations. An inspection
of the forecasts by the different models highlights the di-
versity in the model results. IFS, CHIMERE, WRF-Chem-
SMS, and EMEP overestimate the PM2.5 concentrations be-
fore midday, while they provide values in good agreement
with the observations in the afternoon and evening. WRF-
Chem-MPIM underestimates the concentrations during the
entire day. LOTOS-EUROS as well as WRF–CMAQ provide
values that are in fair agreement with the observations in the
morning but underestimate the concentrations in the after-
noon.

A third example (Fig. 5) refers to the predicted concentra-
tion of PM2.5 on 25 October 2017 in Beijing. In this partic-
ular case, the ensemble forecast system predicts the occur-
rence of a rather polluted day with stagnant air and high con-
centrations of aerosol particles over Beijing as a band stretch-
ing from the southwest to the northeast. The median concen-
tration predicted for this day is close to 200 µg m−3 but is a
factor of 2 higher than the observation. Most individual mod-
els produce this band of high PM2.5 concentrations with the
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Figure 2. Structure of the operational multi-model forecast system with the nine model components. Postprocessed forecasts for the next
3 days provided by each model are sent to a central database maintained by the Royal Netherlands Meteorological Institute (KNMI). Ensem-
ble medians and means are calculated and information (predicted daily variations in surface concentrations for 37 major Chinese cities, and
maps of predicted diurnal mean surface concentrations) and are posted on http://www.marcopolo-panda.eu/forecast (last access: 7 Decem-
ber 2018). Users in China are redirected to the mirror website maintained by SMS (http://116.62.195.108/, last access: 7 December 2018).
The forecasts are compared with the median and mean observations provided by monitoring stations at different locations of the 37 cities.

exception of the WRF-Chem-MPIM model that shows mod-
erate levels of pollution with an aerosol cloud localized in
the urban area of Beijing. An examination of the results pro-
vided by the individual models again shows large differences.
Some models (CHIMERE, EMEP, LOTOS-EUROS, WRF-
Chem-MPIM) calculate a slow and rather steady concen-
tration increase during the day, while other models (WRF-
Chem-SMS, WARMS-CMAQ-SMS, SILAM, and IFS) ex-
hibit some irregular variations during the day. Most models
overestimate the PM2.5 concentrations except for LOTOS-
EUROS and WRF-Chem-MPIM, which predict concentra-
tions with the same order of magnitude as the observations at
the monitoring stations. The last illustrative example refers
to the forecast of nitrogen oxides and ozone in the Shanghai
area on 31 October 2017 (Fig. 6a, b, and c). All models show
that the NO2 concentrations are highest in the boundary layer
of the urban areas, even though the calculated values may
be different from model to model, and the dispersion of the
species away from the urban centers may also be uneven. In
all cases, predicted values above the ocean are very low, i.e.,
less than a few µg m−3. A band of high NO2 concentrations
extends from Shanghai in the northwest direction.

The median values of NO2 in the city (Fig. 6a) are in good
agreement with the observed values, with nighttime concen-
trations on the order of 60–80 µg m−3 and substantially lower
values during daytime resulting from the photolysis of the
molecule by solar radiation. A minimum concentration of
25 µg m−3 is reached around noon.

The diurnal variation in NO2 is well captured by most
models, in particular by CHIMERE (although the absolute
values are too low), IFS, WRF-Chem-SMS, WRF-Chem-
MPIM, and WARMS-CMAQ-SMS. The diurnal variation is
somewhat underestimated in EMEP, LOTOS-EUROS, and
WRF–CMAQ.

The ozone concentration (Fig. 6a–c) also exhibits a strong
diurnal variation that, to a large extent, mirrors the NO2
variation. Measurements show a maximum value of nearly
100 µg m−3 reached at 15:00 and low nighttime concentra-
tions (typically 10–30 µg m−3). The median concentrations,
provided by the ensemble forecast system (Fig. 6a), are char-
acterized by a similar diurnal variation but with lower am-
plitude. The concentration reaches its maximum at 14:00,
but the value of this maximum is only equal to 60 µg m−3.
The values predicted for the night are generally somewhat
smaller than the observation, with values of the order of 5–
10 µg m−3.

In the case of ozone, differences between model fore-
casts are again substantial. The maximum concentra-
tion values in the early afternoon are 50 µg m−3 for
CHIMERE, 62 µg m−3 for IFS, 85 µg m−3 for WRF-
Chem-SMS, 65 µg m−3 for WRF-Chem-MPIM, 30 µg m−3

for EMEP, 42 µg m−3 for LOTOS-EUROS, 57 µg m−3 for
WRF–CMAQ, and 100 µg m−3 for WARMS-CMAQ-SMS.
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Figure 3. Median concentrations of NO2 (a), ozone (b), PM2.5 (c), and PM10 (d) predicted for the city of Xiamen on 13 October 2017
(black curve) and compared with the measured values (red curves). The dispersion of the forecasts by the individual models belonging to the
ensemble is shown by the grey range, and the dispersion of the measured values at different stations in the city are depicted by the pink band.

5 Intercomparison of individual models

We now present an intercomparison of most of the models
included in the operational MarcoPolo–Panda System. The
participants to this intercomparison examined in detail the
daily forecasts performed for the month of March 2017 with
particular emphasis on the results obtained during the first 2
weeks of the month.

In the following sections, we present selected chemical
fields derived by the different models that participated in
the comparison exercise and highlight similarities and dif-
ferences with the purpose of identifying the causes of the
discrepancies between models and between models and ob-
servations. We first examine monthly mean surface concen-
trations obtained from a subset of the models involved in the
intercomparison. We then compare the time evolution asso-

ciated with the model forecasts with observations made at
specific surface measurement sites and present some corre-
lations between calculated and measured concentrations at
these sites.

5.1 Comparison of average fields

We first compare the March 2017 monthly mean concentra-
tions of different chemical species calculated by seven mod-
els (IFS, LOTOS-EUROS, EMEP, SILAM, WRF-Chem-
MPIM, WRF-Chem-SMS, and CHIMERE) with surface
measurements reported at different sites in the eastern part
of China (http://pm25.in/).

Figure 7a shows the calculated and observed surface con-
centrations of carbon monoxide (CO). We first note the sub-
stantial differences that exist between the individual model
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Figure 4. Forecast by different models of PM2.5 concentration during a polluted day in Shanghai on 3 November 2017. The graph in the top
panel of the first column represents the median concentration, and the individual forecasts provided by CHIMERE, IFS, WRF-Chem-SMS,
WRF-Chem-MPIM, EMEP, LOTOS-EUROS, and WRF–CMAQ are shown by the other panels. Measured concentrations are represented by
the red curves and model concentrations by the black curves.

forecasts, probably reflecting differences in the adopted
emissions or in the atmospheric production resulting from
the oxidation of volatile organic compounds in the plane-
tary boundary layer. Observations indicate that CO concen-
trations are generally higher than 900 ppbv, except near the
southeastern coast and in the southwestern part of the coun-
try, where the values are as low as 500 to 700 ppbv. The mod-
els show considerably lower values, ranging from about 300
to 500 ppbv. The regions with the highest mean concentra-
tions are located in the North China Plain (NCP), where val-
ues higher than 1200 ppbv are recorded. Relatively high val-
ues (close to 1000 ppbv) are also found in some urban areas
(e.g., Hong Kong) near the south coast of the country.

The models provide a rather different picture: most of
them substantially underestimate the CO concentrations,
in particular WRF-Chem-SMS, WRF-Chem-MPIM, EMEP,
and LOTOS EUROS. Higher concentrations are derived by

SILAM and IFS. These models, however, produce peak con-
centrations in the region of the Sichuan Basin in contrast with
the observations. Only IFS reproduces the high concentra-
tions observed in northern China, probably because in this
particular model the initial conditions are constrained by as-
similated observations. Clearly, the performance of the mod-
els regarding the calculation of CO concentrations is not sat-
isfactory. The discrepancies may be attributed to an underes-
timation of CO emissions, to errors in the lateral boundary
conditions, or indirectly to an underestimation of the emis-
sions for primary hydrocarbons.

In the case of NO2 (Fig. 7b), the observations show that the
surface concentrations are highest in the northeastern portion
of China with a few urban hot spots. These patterns are re-
produced well by the EMEP, SILAM, and IFS models. The
other models also produce high concentrations in urban ar-
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Figure 5. Diversity of PM2.5 forecasts in Beijing on 25 October 2017 by several models included in the ensemble of the MarcoPolo–Panda
prediction system. The ensemble median is shown by the top panels, and the individual forecasts provided by CHIMERE, IFS, WRF-Chem-
MPIM, EMEP, WRF-Chem-SMS, SILAM, LOTOS-EUROS, and WARMS-CMAQ-SMS are shown by the other panels. Measurements are
in red and model data in black.

eas but with values that are lower than those provided by the
monitoring stations.

The mean surface ozone concentrations derived from mea-
surements are lowest (about 20 ppbv) in the central part of
China and highest (30–40 ppbv) near the east coast (Shang-

hai region), the south coast, and the western part of China.
Since nitrogen oxides tend to titrate ozone, the models that
predict high NO2 concentrations derive the lowest ozone val-
ues (EMEP, SILAM, IFS). The high NO2 concentrations pre-
dicted by EMEP are probably related to the large emissions
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Figure 6.

used as shown in Fig. 1. CHIMERE, WRF-Chem-SMS, and
to a lesser extent WRF-Chem-MPIM overestimate the mean
ozone concentration during March. All models, however,
produce a minimum in the ozone concentrations in northeast-
ern China, a pattern that is not visible in the observational
data (Fig. 7c).

Finally, in the case of PM2.5 (Fig. 7d), the measurements
suggest the presence of high concentrations (higher than
80 µg m−3) in the region between Beijing and Shanghai.
High abundances of PM2.5 are derived in this region by IFS,
SILAM and to a lesser extent by LOTOS-EUROS, EMEP,
CHIMERE, and WRF-Chem-SMS. Interestingly, most mod-
els produce another marked hot spot in the region of the
Sichuan Basin, while the observations suggest a less pro-
nounced maximum with a more limited geographical extent.

5.2 Time evolution of median forecasts

We now focus on the time period during which the most in-
tensive comparison between models has been performed. We
first examine the time evolution of surface ozone, NO2, and
PM2.5 produced by the different models for the time period
ranging from 1 to 15 March 2017 and for the three large
metropolitan areas: Beijing, Shanghai, and Guangzhou. In
Fig. 8, we compare the median concentrations of the three
species with the median values derived from the different
measurements provided by the network of instruments de-
ployed in the three cities. The median model values are repre-
sented by the red curves, while the shaded areas highlight the
dispersion of the calculated concentrations around the me-
dian values.

– Beijing. Here the predictions of the PM2.5 concentra-
tions follow the observations very closely. Two events
with relatively high aerosol loads are visible, the first
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Figure 6.

one between 2 and 5 March and the second one on
11 March. In the case of NO2, the models reproduce
the daily variability reported by the monitoring stations
fairly well, but on average, they slightly overestimate
the concentrations values. The high concentrations ap-
pearing between 2 and 5 March and between 10 and
11 March are well captured by the median of the mod-
els. Finally, the models reproduce the diurnal variabil-
ity in the ozone concentrations, but they underestimate
these concentrations by typically 20 µg m−3.

– Shanghai. The calculated median concentrations of
PM2.5 are in good agreement with the observations, es-
pecially between 10 and 15 March. During the first part
of the simulation, the mean measured and calculated
values are close, but the models produce peaks in the
concentrations on 3, 6, 8, and 9 March that are higher
than the observation. In the case of NO2, the agree-
ment between calculated and measured concentrations

is good. Again, the models severely underestimate the
ozone concentrations.

– Guangzhou. The median concentration of PM2.5 pro-
vided by the model is similar to the observation between
1 and 7 March. However, the model overestimates the
concentrations between 7 and 11 March and underes-
timates them between 12 and 14 March. For NO2, the
agreement between models and measurements is rela-
tively good during the first days of the month, but the
models overestimates the amplitude of the daily vari-
ability observed after 6 March. Ozone is well simulated
in this particular urban area, even though the daily peaks
are sometimes over- or underestimated.

5.3 Statistical errors

In order to measure the performance of the individual mod-
els involved in the present intercomparison, we have calcu-
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Figure 6. (a) Diversity in the NO2 and ozone forecasts made for Shanghai on 31 October 2017 as highlighted by the predictions from several
models included in the ensemble of the MarcoPolo–Panda system. The left and right columns show the diurnal variation in the predicted
(black) and observed (red) NO2 and ozone concentrations (µg m−3), respectively. The center column presents the geographical distribution
in the vicinity of Shanghai of the diurnal average predicted for the NO2 concentration. The ensemble median is shown in the top row, and
two individual forecasts as provided by CHIMERE and IFS are shown in the middle and lower rows. (b) Same as in (a) but for the individual
forecasts from WRF-Chem-SMS, WRF-Chem-MPIM, and EMEP. (c) Same as (a) but for the individual forecasts from LOTOS-EUROS,
WRF–CMAQ, and WARMS-CMAQ.

lated statistical measures of the model results for the cho-
sen period of 1–15 March 2017. These measures include the
mean bias (BIAS), the mean normalized bias (MNMBIAS),
the root mean square error (RMSE), the fractional gross error
(FGE), and the correlation coefficient for ozone, NO2, and
PM2.5 (Table 4). They apply to the data for the 37 cities con-
sidered in the MarcoPolo–Panda forecast system. The same
statistical measures are also provided for the ensemble me-
dian.

When examining the mean bias of the ensemble me-
dian, the values are equal to −14.7, −3.0, and +3.7 µg m−3

for ozone, NO2, and PM2.5, respectively, to be compared
to mean concentration values of the order of 50 µg m−3

for these three different species. Table 4 shows that in the
case of ozone, individual models are characterized by bi-
ases ranging from −25.8 (SILAM) to +13.2 µg m−3 (WRF-
Chem-SMS), with the smallest absolute value equal to
5.9 µg m−3 (CHIMERE) The corresponding numbers range
from −20.7 µg m−3 (LOTOS-EUROS) to +11.2 µg m−3

(EMEP) with the smallest absolute bias of −2.0 µg m−3

(IFS) for NO2. For PM2.5, they range from −4.7 µg m−3

(LOTOS-EUROS) to +39.6 µg m−3 (IFS) with the small-
est absolute value equal to −2.0 µg m−3 (CHIMERE). In
general, during the period chosen for the intercomparison,
the models underestimate the ozone and NO2 concentra-
tions and overestimate the concentration of PM2.5. The ta-
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Figure 7.
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Figure 7.
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Figure 7. Monthly mean surface concentrations of (a) CO, (b) NO2, (c) ozone (ppbv), and (d) PM2.5 (µg m−3) provided for the month of
March 2017 by different models: CHIMERE (no CO), IFS, WRF-Chem-SMS, SILAM, WRF-Chem-MPIM, EMEP, and LOTOS-EUROS.
The monthly mean concentration values derived from observations at different monitoring stations are represented by dots in the last plot of
the bottom panel. The adopted color scales are the same as the color scales adopted to represent the model results.
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Table 4. For the period 1 to 15 March 2017, statistical measures (mean bias (BIAS), mean normalized bias (MNMBIAS), root mean square
error (RMSE), FGE (fractional gross error), and correlation coefficients) calculated for the forecast of O3, NO2, and PM2.5 concentrations
for all models and for the ensemble median at all stations/cities, for which the MarcoPolo–Panda Forecast is available. The correlation is
based on 1-hourly data.

Ensemble CHIMERE IFS WRF-Chem SILAM WRF-Chem EMEP LOTOS-EUROS
Median SMS MPIM

BIAS (µg m−3) O3 −14.7 −5.9 −13.1 13.2 −25.8 −23.9 −23.3 −4.0
NO2 −3.0 −4.8 −2.0 −4.2 −3.1 8.4 11.2 −20.7
PM2.5 3.7 −2.0 39.7 −4.5 21.7 5.5 12.4 −4.7

MNMBIAS (%) O3 −41 % −24 % −51 % 13 % −74 % −69 % −74 % −7 %
NO2 −8 % −18 % −13 % −19 % −11 % 13 % 15 % −52 %
PM2.5 8 % −4 % 44 % −18 % 22 % 11 % 9 % −7 %

RMSE (µg m−3) O3 32.8 27.0 29.4 41.8 44.6 44.7 42.9 37.2
NO2 21.8 24.4 23.1 31.9 28.5 28.9 34.0 34.4
PM2.5 30.2 31.5 71.3 35.8 47.7 39.1 52.4 27.3

FGE (%) O3 70 % 58 % 72 % 64 % 99 % 97 % 99 % 65 %
NO2 38 % 45 % 44 % 53 % 51 % 43 % 48 % 66 %
PM2.5 38 % 44 % 62 % 54 % 52 % 49 % 47 % 39 %

Corr. coeff. O3 0.60 0.70 0.72 0.45 0.32 0.32 0.39 0.38
NO2 0.64 0.62 0.65 0.47 0.41 0.50 0.46 0.31
PM2.5 0.62 0.55 0.47 0.54 0.66 0.36 0.49 0.64

Table 5. Best model performance.

Statistical variable Best performance ozone Best performance NO2 Best performance PM2.5

Mean bias LOTOS-EUROS IFS CHIMERE
RMSE CHIMERE IFS LOTOS-EUROS
Correlation coefficient IFS WRF-Chem MPIM SILAM

ble also shows that the RMSE for the median values for
ozone, NO2, and PM2.5 are 32.8, 21.8, and 30.2 µg m−3, re-
spectively. With some exceptions (CHIMERE and IFS for
ozone, LOTOS-EUROS, for PM2.5), these values are lower
than the RMSE derived by individual models. The highest
values for RMSE are 44.7 µg m−3 (WRF-Chem-MPIM) in
the case of ozone, 34.4 (LOTOS EUROS) in the case of NO2,
and 71.3 (IFS) in the case of PM2.5. The smallest RMSE
are equal to 27.0 µg m−3 (CHIMERE) in the case of ozone,
23.1 µg m−3 (IFS) in the case of NO2, and 27.3 µg m−3 in
the case of PM2.5 (LOTOS-EUROS). The correlation coeffi-
cient for the ensemble median is of the order of 0.6 for the
three species, which in most cases is higher than the values
derived from individual model forecasts. There are a few ex-
ceptions, however. The correlation coefficients are higher in
the forecast of ozone by CHIMERE (0.70) and IFS (0.72),
in the case of NO2 by IFS (0.65), and in the case of PM2.5
by SILAM (0.66) and LOTOS-EUROS (0.64). Table 5 sum-
marizes the models that have achieved the best performance
from the point of view of the mean bias, the RMSE, and the
correlation coefficient.

5.4 Time evolution of individual forecasts

The time evolution of predicted concentration values at Bei-
jing by five different models involved in the intercomparison
is provided in Fig. 9 for the period of 1–15 March 2017. An
examination of the figure shows that, during most days, the
daytime height of the PBL reaches 2500–3000 m with an ex-
ception on 2 to 5 March, when the height does not exceed
1000 m. Interestingly, during this period, the observed con-
centration of particulates, of NO2, and of SO2, strongly influ-
enced by surface emissions, are significantly higher than dur-
ing the following days. During the same days, the nighttime
concentration of ozone is relatively low. On 10 March, one
also observes high surface concentrations of emitted species
and a low concentration of nighttime ozone, even though the
calculated PBL height is not particularly low. One should
mention here that, in two models (i.e., EMEP and LOTOS-
EUROS), the information on the PBL is deduced from the
IFS forecast, while in other models (such as WRF-Chem-
MPIM and WRF-Chem-SMS), the PBL height is derived in-
dependently. In the case of WRF-Chem-MPI, however, the
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Figure 8. Evolution of the surface concentrations of ozone, nitrogen dioxide, and particulate matter (diameter less than 2.5 µm) in (a) Beijing,
(b) Shanghai, and (c) Guangzhou between 1 and 15 March 2017. In black: median of calculated values by the different models; in red:
observed median concentrations.
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Figure 9. Forecast of the chemical concentrations of ozone, NO2, PM2.5, and PM10 at Beijing between 1 and 15 March 2017 by the different
models involved in the intercomparison conducted in the present study. The calculated values of Ox = O3+NO2 as well as the height of
the planetary boundary layer (PBL) are also shown. The mean values from the measurements made at the different monitoring stations of
Beijing are shown by the thick red line.

calculation of the PBL height makes use of meteorological
data provided by the IFS model.

In most cases, the models capture the day-to-day variabil-
ity in the species concentrations relatively well. The agree-
ment with observations is generally good in the case of PM2.5
and PM10, except in the case of the IFS model, which consid-
erably overestimates the concentrations, mainly because of a
regional overestimation of the OM emissions and a lack of
a diurnal variation in the emission. The anthropogenic OM
emissions in IFS are parameterized based on anthropogenic
CO emissions following Spracklen et al. (2011). The rela-
tively high CO emission in this region may require a re-
duced conversion factor between OM and CO emissions. The
main contribution to PM overestimation of IFS came from
the nighttime values (see next section). Since nighttime over-
estimation also occurs for NO2, a lack of vertical mixing
during the night in IFS could cause the nighttime overesti-
mation of the surface values. As already noted, the models
tend to underestimate the ozone concentrations, perhaps due
to a slight overestimation of the nitrogen oxide concentra-
tions. Another possible explanation is an underestimation of
the VOC sources. Routine measurements of VOCs, however,
are not available. The need for such measurements, however,
needs to be stressed.

The model comparison reported here also shows differ-
ences between models in the case of NO, which should prob-
ably be attributed to differences in the emissions and emis-
sion injection heights of this species and in the formulation of
vertical mixing in the boundary layer. Here again, measure-
ments of NO in addition to those of NO2 and ozone would
be useful. Finally, one notes in Fig. 9 the relatively good
agreement between models (with the exception of the IFS
and the WRF-Chem-SMS model) regarding the time evolu-
tion of odd oxygen (Ox = O3+NO2). The models, however,
slightly underestimate the absolute values of the Ox concen-
tration.

5.5 Diurnal variations

In order to evaluate the behavior of the different models re-
garding their ability to reproduce the diurnal variation in the
surface concentrations of ozone, NO2, and PM2.5, we have
calculated the mean diurnal variations over the period of 1–
15 March 2017 averaged for the 34 cities included in our
analysis (3 of the 37 cities, located in the western part of
the country and adopted in the MarcoPolo–Panda prediction
system have not been considered in this analysis). The re-
sulting results are shown in Fig. 10 for ozone and NO2 (ex-
pressed in µg m−3). We have added the corresponding diur-
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Figure 10. Upper row: diurnal variation in ozone (left), NO2 (middle), and Ox = NO2 + O3 (right) for the period 1–15 March 2017 for
all cities included in the MarcoPolo–Panda Prediction system for all seven models and the ensemble median and the observations (red line).
Middle row: root mean square error (RMSE) for ozone (left), NO2 (middle), and Ox (right). Lower row: bias for ozone (left), NO2 (middle),
and Ox (right) for all models and for the ensemble median (black line).

nal evolution of Ox (expressed in ppbv) defined as the sum
of the ozone and NO2 mixing ratios. This last chemical vari-
able has the advantage that it is not affected by the fast inter-
change (null cycle) between ozone and NO2 by the reactions
NO+O3, NO2 + hv, and O + O2 + M. Since this cycle
tends to transfer “odd oxygen” from ozone to NO2 after sun-
set and from NO2 to ozone after sunrise, the Ox variable is
less variable than its two components NO2 and O3 over a di-
urnal cycle. Figure 10 shows that, when averaging over the 34
largest Chinese cities, the diurnal variation in the ensemble
median is in good agreement with the observation in the case
of NO2. In the case of ozone, the median values are some-
what underestimated in late morning and in the afternoon. A
similar situation is found in the case of Ox . The RMSE for
ozone and NO2, also shown on the figure, is generally lower
in the case of the ensemble median than for the individual
models. In the case of PM2.5, however, the RMSE of the two
models CHIMERE and IFS are smaller than the RMSE of the
ensemble median (not shown here). The mean bias of the en-
semble median for NO2 and ozone is generally smaller than
that of the individual models. In the case of Ox , some models

exhibit a positive bias (WRF-Chem SMS), while others (e.g.,
SILAM) are characterized by a negative bias.

Figure 11a, b, and c show similar estimates of the diurnal
variation in the three large cities of China: Beijing, Shang-
hai, and Guangzhou. These graphs show that the ozone fore-
cast from the ensemble median is lower than observed val-
ues during the entire day both in Beijing and in Shanghai. In
Guangzhou, however, ozone is slightly overestimated by the
prediction. In the case of NO2, the surface concentrations are
overestimated in Beijing and to a lesser extent in Shanghai,
with the largest overprediction occurring during nighttime,
when the planetary boundary layer is very thin and vertical
mixing almost shut off. At the same time, ozone is negatively
biased due to its efficient titration by NOx . In the three cities,
the RMSE of NO2, ozone, and Ox appear to be largest at sun-
set. Thus, a general issue with the MarcoPolo–Panda predic-
tion system is the overestimation of surface NO2 and the un-
derestimation of ozone concentrations during the nighttime.

In the case of PM2.5, one of the models involved (IFS)
strongly overestimates the concentrations during nighttime
but is in fair agreement with observations during daytime.
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Figure 11.

This issue may again reflect a problem with the formulation
of species dispersion in the planetary boundary layer. It may
also be due to the lack of specified diurnal variation in the
emission of primary pollutants as well as to the increased
nighttime stability.

6 Approaches to improve the forecasts

The intercomparison presented in the previous sections pro-
vides useful information and represents the basis on which
the accuracy of the model predictions can be improved. Since
the models have been developed fairly independently and the
choices about input parameters such as emissions, chemical
schemes, and adopted weather forecasts have been based on
best judgement by these individual teams, a statistical treat-
ment of the model results (e.g., determination of averages
and standard deviation) provides, in general, more reliable
information than the data provided by the individual model
components of the ensemble. The examination of the model
output reveals, however, some systematic biases that could
be reduced by identifying the likely cause of these errors.

A simple approach is to recognize that the failure of mod-
els to correctly predict air quality could result from several
factors: (1) errors in the adopted emissions and the formu-
lation of boundary layer dispersion best diagnosed by an-
alyzing the ability of the model to reproduce the monthly
mean surface concentrations of chemical species; (2) errors
or omission in the adopted chemical scheme leading to in-
accuracies in the calculated mean diurnal variations in the
concentrations of secondary species; and (3) inaccuracies in
the adopted weather forecasts leading to poorly calculated
day-to-day variations in the calculated chemical fields. In
this later case, one should distinguish between fundamental
model biases (i.e., the representation of PBL mixing, a bias
that is intrinsic to the models) and the increasing error in the
forecast of synoptic weather patterns as the model integration
proceeds. This probably provides an oversimplified view of
the causes of errors in chemical weather forecasts, but it of-
fers a simple approach to address some issues in the models
and hence to improve the predictions.

A first step towards the improvement of the different
model components will be to conduct additional simulations
by adopting the same best available emissions data and the
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Figure 11.

same meteorological forecasts. Remaining differences be-
tween the models will be due in large part (although not ex-
clusively) to the adopted chemical scheme and the formula-
tion of boundary layer processes. An additional step would
be to bring the different formulations of chemistry closer to-
gether by at least harmonizing the adopted rate constants and
using the same module to calculate photodissociation rates.
Finally, it would be interesting to assess the differences in
chemical weather predictions resulting from the adopted me-
teorological forecasts. In particular, it would be important to
better constrain the differences in the photolysis rates result-
ing from the adopted or calculated concentrations of aerosols
and in cloudiness. One single model could be run for several
days with the weather predictions produced by different me-
teorological centers.

Finally, a few specific issues from the present intercom-
parison require attention:

1. Most models overestimate the surface levels of NO2 and
PM2.5 as well as other species emitted at the surface,
specifically during nighttime. The largest discrepancies
appear around 18:00 LT when the surface cools and the
boundary layer collapses and the emitted species remain

trapped in the lowest model layers. Evidently, these
models underestimate the vertical exchanges between
layers probably produced by the turbulence thermally
or mechanically generated by the presence of buildings.
Such effects are not accounted for in models that do
include a specialized urban formulation. The overesti-
mation of NO2 during nighttime leads to the titration
of ozone near the surface and hence an underestima-
tion of the concentration of this gas. The emission in-
jection height is also a relevant factor here, which can
largely influence results. During nighttime, emissions
from stacks may be emitted above the mixing layer.
However, if the injection height in the model is put
at a lower altitude (or even at the surface), this could
lead to an overestimation of emissions. The LOTOS-
EUROS model evaluated the impact of emission injec-
tion heights. An update of the emission heights was
tested that injects emissions from industry at lower
heights, indicating that the number of high stacks is
limited (and not that, contrary to most models, the con-
centrations at nighttime are often underestimated in the
case of LOTOS-EUROS; see Figs. 10 and 11). Figure 12
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Figure 11. (a) Same as Fig. 10 but for the urban area of Beijing. The statistical variables for PM2.5 are also included. (b) Same as Fig. 10 but
for the urban area of Shanghai. The statistical variables for PM2.5 are also included. (c) Same as Fig. 10 but for the urban area of Guangzhou.
The statistical variables for PM2.5 are also included.

Figure 12. Annually averaged diurnal evolution of the PM2.5 con-
centrations in the city of Chengdu simulated for different values
of the particulate injection height. Calculations by the LOTOS-
EUROS (LE) model.

shows diurnal cycles of the simulated PM2.5 concentra-
tions in the city of Chengdu, averaged over an entire
year. The updated emission heights clearly have a large
(positive) impact on the simulations.

2. Daytime concentrations of ozone are generally under-
estimated in most regions of eastern China, even when
the level of NO2 is in reasonable agreement with the
values reported by the monitoring stations. The discrep-
ancy could be caused by an underestimation of the emis-
sions of some VOCs, especially in urban areas where
ozone is often VOC-limited. More work is required to
investigate this question.

3. Emissions of primary pollutants are changing extremely
rapidly in China. The adopted emissions inventories
usually reflect the situation a few years before the
present day. Since the current emissions have decreased
significantly in some urban areas of China in response
to measures taken by the authorities, the emissions used
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in this case for current forecasts may be overestimated.
For example, the EMEP model team applied a reduction
in NOx emissions after the study period of March 2017
and thereby, through less ozone titration, reduced the
severe underestimation of ozone.

4. Land-use data. Due to the rapid development occurring
in particular in the eastern part of China, land-use data
and vegetation change rapidly, and datasets in the model
may not accurately reflect the current situation. This has
an influence on emissions (including biogenic) but also
on the deposition of pollutants and even meteorology.
Land-use data should be updated using satellite obser-
vations, urban planning maps, and other data sources.

7 Conclusions

An operational multi-model air quality forecast system has
been established through a close cooperation between Euro-
pean and Chinese research groups and with the support of the
European Commission (7th Framework Programme). This
system provides daily forecasts for the surface concentration
of key pollutants in eastern China and particularly in the ma-
jor urban centers of the country. These predictions are posted
on a dedicated website (http://www.marcopolo-panda.eu/,
last access: 7 December 2018), where they are compared
hour by hour to surface measurements for each city, per-
formed at the monitoring stations deployed in China by the
PM2.5 network (http://pm25.in/).

The discussions presented in this paper show that in most
cases, the model ensemble reproduces quite satisfactorily the
synoptic behavior and the day-to-day variability of the con-
centrations of ozone and particulate matter and, in particular,
predicts the development of most air pollution episodes a few
days before their occurrence. This must be attributed to the
quality of the weather forecasts at the synoptic scales that
are used for the calculation of chemical species. Overall and
in spite of some discrepancies that have been highlighted in
the previous sections, the forecast system can therefore be
regarded as successful.

The system is in its early phase of development and the
purpose of the intercomparison exercise presented here was
to diagnose differences between models and perhaps iden-
tify errors. An important objective was to determine ways
by which the models could be improved. Even though, in
many instances, the surface concentrations are in good or fair
agreement with the measured values, differences between
calculated and observed values can occasionally be substan-
tial. These occasional differences are often attributed to in-
accuracies in the weather forecasts for specific days, but er-
rors in the adopted surface emissions and PBL exchanges or
the simplifications introduced in the adopted chemical and
aerosol schemes can also be substantial.

The degree by which the concentrations derived by global
and regional models, even at high spatial resolution, can be
compared with local measurements made in a complex ur-
ban canopy remains an important issue that requires further
investigation. The insertion of more detailed land-use mod-
ules or of a large eddy simulation system in the chemical
transport models should be considered in future studies.

Data availability. The models described here are used opera-
tionally by the participating research and service organizations in-
volved in the present study. The data produced by the multi-model
forecasting system are available from the KNMI.
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Appendix A: Abbreviations and acronyms used in this
article

AC-SAF Atmospheric Composition–Satellite Application Facilities
ADAS the ARPS (the Advanced Regional Prediction System) Data Assimilation System
AERO5 the fifth-generation modal CMAQ aerosol model
AOD aerosol optical depth
BIAS mean bias
CAMS Copernicus Atmospheric Monitoring Service
CBM carbon bond mechanism
CMAQ United States Environmental Prediction Agency, Community Multiscale Air Quality

Model
CNES National Centre for Space Studies
CO carbon monoxide
COPD chronic obstructive pulmonary disease
DMAT Dispersion Model for Atmospheric Transport
ECMWF European Centre for Medium-Range Weather Forecasts
EDGAR Emission Database for Global Atmospheric Research
EMEP European Monitoring and Evaluation Programme
EOS the Earth Observing System
ESA European Space Agency
EUMETSAT The European Organisation for the Exploitation of Meteorological Satellites
FGE fractional gross error
FMI Finnish Meteorological Institute
FNL Final Operational Global Analysis data
FP7 Framework Programme 7
FRP fire radiative power
GFAS Global Fire Assimilation System
GFS Global Forecast System
GO-CART The Goddard Chemistry Aerosol Radiation and Transport model
GOME The Global Ozone Monitoring Experiment
HTAP Hemispheric Transport of Air Pollution
IASI Infrared Atmospheric Sounding Interferometer
IFS Integrated Forecasting System
ISORROPIA an aerosol thermodynamic model
KNMI Royal Netherlands Meteorological Institute
LAI leaf area index
LATMOS Laboratoire Atmosphères Milieux Observations Spatiales
LMDz- INCA Laboratoire de Météorologie Dynamique, version 4 – INteraction with Chemistry and

Aerosols, version 3
LOTOS-EUROS Long-term Ozone Simulations – European Operational Smog model
MACCity an anthropogenic emission inventory derived from the ACCMIP and RCP8.5 datasets

as part of two projects funded by the European Commission: MACC (Monitoring
Atmospheric Composition and Climate) and CityZEN. (http://eccad.aeris-data.fr/, last
access: 14 December 2018)

MARS Model for the Atmospheric Dispersion of Reactive Species
MEGAN Model of Emissions of Gases and Aerosols from Nature
MEIC Multi-resolution Emission Inventory for China
MET.Norway Norwegian Meteorological Institute
MIX a mosaic Asian anthropogenic emission inventory under the international

collaboration framework of the MICS-Asia (Model Inter-Comparison
Study for Asia) and HTAP. (http://www.meicmodel.org/dataset-mix, last access:
14 December 2018)

MLS Microwave Limb Sounder
MNMBIAS mean normalized bias
MODIS Moderate Resolution Imaging Spectroradiometer
MOPITT Measurements Of Pollution In The Troposphere
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MOSAIC the Model for Simulating Aerosol Interactions and Chemistry
MOZART the Model for Ozone and Related Chemical Tracers
MPIM Max Planck Institute for Meteorology
MSC-W Meteorological Synthesizing Centre – West Model
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NCP North China Plain
NJU Nanjing University
NMVOC non-methane volatile organic compound
NOAA National Oceanic and Atmospheric Administration
NO2 nitrogen dioxide
NOx nitrogen oxides
O3 ozone
OM organic matter
OMI Ozone Monitoring Instrument
OMPS the Ozone Mapping And Profiler Suite
PBL planetary boundary layer
PM particulate matter
PMAp Polar Multi-Sensor Aerosol product
RADM2 Regional Acid Deposition Model version 2
RMSE root mean square error
SBUV Solar Backscatter Ultraviolet instrument
SCUEM Shanghai Centre on Urban Environmental Meteorology
SILAM System for Integrated Modeling of Atmospheric Composition
SMS Shanghai Meteorological Service
SO2 sulfur dioxide
SOA secondary organic aerosol
SORGAM Secondary ORGanic Aerosol Model
STEAM the Ship Traffic Emission Assessment Model
Suomi-NPP Suomi National Polar-orbiting Partnership
TNO the Netherlands Organisation for Applied Scientific Research
TUV Tropospheric Ultraviolet-Visible model
U.S. EPA US Environmental Protection Agency
ULB Université Libre de Bruxelles
VBS volatility basis set
VOC volatile organic compounds
WRF-Chem Weather Research and Forecasting model coupled to chemistry
YSU Yonsei University
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