Supplementary material:

The occurrence and formation of monoterpenes in herbivoredamaged poplar roots

Nathalie D. Lackus, Sandra Lackner, Jonathan Gershenzon, Sybille B. Unsicker and Tobias G. Köllner*

Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany

*Corresponding author. Tel.: +49 (0) 3641 57 1329; fax: +49 (0) 3641 57 1302. E-mail address: koellner@ice.mpg.de.

Supplementary Figure S1: Root volatile collection system. Volatiles were sampled for 68 h with a dynamic push-pull system and a trap packed with Poropak adsorbent. Trees were grown in sand and the pots were bagged in PET foil for volatile collection.

Supplementary Figure S2: Effect of herbivory on root mass of *Populus trichocarpa* (A) and *P. nigra* (B) trees. Root masses are displayed for undamaged roots (ctr) and roots damaged by cockchafer (*Melolontha melolontha*) larvae (herb) and shown as means \pm SE in g (n = 8). Asterisks indicate statistical significance in Student's t-tests. *P. trichocarpa* ($P \le 0.001$, t = 6.973); *P. nigra* (P = 0.108, t = 1.717).

Supplementary Figure S3: Sesquiterpene synthase activity of PnTPS4. The gene was heterologously expressed in *E. coli* and partially purified protein was incubated with (*E,E*)-FPP as substrate. Enzyme products were analyzed using GC-MS. 1, (*E*)- α -bergamotene; 2, (*E*)- β -farnesene; 3, (*E,E*)- α -farnesene; 4, sesquiphellandrene; 5, (*Z*)- α -bisabolene; 6, nerolidol. Compounds were tentatively identified by database comparisons.

Α

Name	Length	Score	CTP	CS- score	cTP- length
				11 405	
PnTPS4_full_length	589	0.568	Yes	11.435	40
PtTPS16_full_length	593	0.569	Yes	11.435	38
PtTPS21_full_length	593	0.570	Yes	11.435	38

В

Name	Len	cTP	mΤΡ	SP	other	Loc	RC	
PnTPS4_full_length PtTPS16_full_length PtTPS21_full_length	589 593 593	0.913 0.826 0.894	0.108 0.486 0.352	0.083 0.029 0.028	0.040 0.016 0.025	C C C	1 4 3	
cutoff		0.000	0.000	0.000	0.000			

Supplementary Figure S4: Signal peptide prediction of PnTPS4, PtTPS16, and PtTPS21. Signal peptide (cTP) prediction was done using the web-based prediction programs chlorop v1.1 (http://www.cbs.dtu.dk/services/ChloroP/) (A) and targetp v1.1 (http://www.cbs.dtu.dk/services/TargetP/) (B).

Supplementary Figure S5: Amino acid sequence comparison of PtTPS16 and PtTPS21 from *Populus trichocarpa* and PnTPS1 from *P. nigra*. Amino acids with identical side chains are marked by black boxes and amino acids with similar side chains are marked by gray boxes. Red arrows highlight different amino acid residues in the active site. The conserved DDxxD motif is marked in red.

Supplementary Table S1. Emission of aromatic volatile compounds from undamaged (ctr) and *Melolontha melolontha*-damaged (herb) roots of *Populus trichocarpa* and *P. nigra.* Volatiles were analyzed using GC-MS/FID and emission levels are displayed as means \pm SE in pg g⁻¹ h⁻¹ fresh weight (n = 8). *P*-values are based on the results from Student's t-tests or from Mann-Whitney Rank Sum Tests between control and herbivore treatments.

	P. trichocarpa				P. nigra			
	ctr	herb	P-value	t-value	ctr	herb	P-value	t-value/
								T-value
benzaldehyde	123 ± 44	297 ± 98	0.063	-2.023	69 ± 15	75 ± 34	0.442	76.00
benzyl alcohol	244 ± 63	269 ± 61	0.765	-0.305	284 ± 68	364 ± 131	0.931	0.0887
salicylaldehyde	749 ± 401	1403 ± 631	0.236	-1.239	1467 ± 520	1002 ± 324	0.376	0.914

Supplementary Table S2. Accumulation of aromatic volatile compounds and camphene in undamaged (ctr) and *Melolontha melolontha*-damaged (herb) roots of *Populus trichocarpa* and *P. nigra.* Root material was extracted with hexane and analyzed using GC-MS/FID. Accumulation levels are displayed as means \pm SE in µg g⁻¹ fresh weight (n = 8). *P*-values are based on the results from Student's t-tests or from Mann-Whitney Rank Sum Tests between control and herbivore treatments.

	P. trichocarpa			P. nigra				
	ctr	herb	P-value	t-value/	ctr	herb	P -	t-value/
				T-value			value	T-value
camphene	NA	NA	NA	NA	0.0 ± 0.0	0.3 ± 0.1	0.002	40.00
benzaldehyde	$\textbf{7.9} \pm \textbf{4.4}$	48.9 ± 6.6	≤0.001	37.00	0.1 ± 0.05	0.2 ± 0.03	0.373	-0.920
benzyl alcohol	11.9 ± 1.4	1.9 ± 1.9	≤0.001	5.298	NA	NA	NA	NA
salicylaldehyde	550.1 ± 135.4	1948.6 ± 209.5	≤0.001	-7.408	33.4 ± 4.3	73.4 ± 8.9	≤0.001	-4.538

Supplementary Table S3: Oligonucleotides used for isolation, qRT-PCR analysis and sitedirected mutagenesis of *TPS* genes.

Name	Sequence	Usage
PtTPS16-PtTPS21-fwd	CACCATGGTAGCGACCGAAACTTG	cloning of PtTPS16/21
PtTPS16-rev	CTATATATCTTGGAGAGGAATGG	cloning of PtTPS16
PtTPS21-rev	GATTTATCAAGAAAACTTAAC	cloning of PtTPS21
PnTPS4-fwd	ATGGTAGGTCTCAGCGCGTTGCCACCGAAGCTGCTGGT	cloning of PnTPS4
PnTPS4-rev	ATGGTAGGTCTCATATCATAAAGGCTTAATAAGTAAGGATTTC AC	cloning of PnTPS4
PnTPS1-PtTPS21-qRT-PCR-	TATCGAAAAATGGCGACCAGGG	aRT-PCR
fwd		
PnTPS1-PtTPS21-qRT-PCR-rev	GCAGTTGGTCCAATGCATTGAT	qRT-PCR
PtTPS16-qRT-PCR-fwd	TATCGAAAAATGGCGACCAGGA	qRT-PCR
PtTPS16-qRT-PCR-rev	GCAGTTGGTCCAATGCATTGAC	qRT-PCR
PnTPS4-qRT-PCR-fwd	CATATACAGCGCGAATCGAAAAGT	qRT-PCR
PnTPS4-qRT-PCR-rev	AGATAACCCAAGTCTTTGCAAGGC	qRT-PCR
PtTPS16-I335V-fwd	ATGGCGACCAGGGTTACTGCTCTAATAACAGCATTAGAT	site-directed mutagenesis
PtTPS16-I335V-rev	ATCTAATGCTGTTATTAGAGCAGTAACCCTGGTCGCCAT	site-directed mutagenesis
PtTPS16-T336N-fwd	ATGGCGACCAGGATTAATGCTCTAATAACAGCATTAGAT	site-directed mutagenesis
PtTPS16-T336N-rev	ATCTAATGCTGTTATTAGAGCATTAATCCTGGTCGCCAT	site-directed mutagenesis
PtTPS16-V444I-fwd	GATAATGCTTGGTTGTCAATTTCCGGACAAGTCATACTA	site-directed mutagenesis
PtTPS16-V444I-rev	TAGTATGACTTGTCCGGAAATTGACAACCAAGCATTATC	site-directed mutagenesis
PtTPS16-V483L-fwd	CGTCACTCGTCAACGATTTTGCGACTCGCAGATGACCTA	site-directed mutagenesis
PtTPS16-V483L-rev	TAGGTCATCTGCGAGTCGCAAAATCGTTGACGAGTGACG	site-directed mutagenesis
PtTPS16-I335V-T336N-fwd	ATGGCGACCAGGGTTAATGCTCTAATAACAGCATTAGAT	site-directed mutagenesis
PtTPS16-I335V-T336N-rev	ATCTAATGCTGTTATTAGAGCATTAACCCTGGTCGCCAT	site-directed mutagenesis