
Introduction Methods 

Mid- to late-life obesity has been consistently 
associated with neurodegenerative changes in gray 
and white matter [1] and might contribute to increased 
risk of Alzheimer’s disease [2]. However, it remains 
unclear which metabolic mechanisms underlie these 
findings. Obesity is often accompanied by adipose 
tissue inflammation, insulin resistance, dyslipidemia 
and differences in adipokine and gut-hormone 
signaling and many of the involved hormones, such as 
insulin and leptin [4] have been shown to 
independently affect brain tissue and function. 
 
Objectives: 
 Here, we investigated the covariation of obesity and 
metabolic markers with gray matter tissue volume in a 
large sample of healthy older individuals using partial 
least squares correlation (PLSC), thereby aiming to 
determine metabolic patterns specific to gray matter 
volume changes. 

Study sample:  
• 320 elderly healthy participants  (156 women) from 

the LIFE-Adult Study [5] without stroke, major brain 
pathology or intake of centrally active medication 

• Age: 60 – 79 years (mean: 67.9 y) 
• Body mass index: 17 – 42 kg/m2 (mean: 28.6 kg/m2) 
• Mini Mental State Examination > 26 
 
Obesity and metabolic measures:  
• body mass index (BMI, in kg/m2) 
• waist to hip ratio (WHR) 
• total blood cholesterol (in mmol/l), 
• low/high density (LDL/HDL) lipoprotein (in mmol/l) 
• glycated hemoglobin (log(HbA1c), in %) 
• interleukin 6 (log(IL-6), in pg/ml) 
• C-reactive protein (log(CRP), in mg/ml) 
• adiponectin (log, in ng/ml)  
• leptin (log, in ng/ml)  
• ghrelin (log, in pg/ml).  
 
Magnetic resonance imaging (MRI):  
• T1-weighted MPRAGE using  3T Siemens Verio  
• Inversion time: 900 ms, repetition time: 2300 ms, 

field of view: 256 x 240 x 176, voxel size: 1mm3 
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Preprocessing of MRI data:  
• DARTEL in SPM12 (www.fil.ion.ucl.ac.uk/spm) 
• creation of a sample-specific template 
• warping of T1-weighted images to the template 
•  transformation of flowfields into Jacobian 

determinants showing relative gray matter volume 
(GMV) differences between individuals and the 
population average 

• regression of age and sex  from the morphometric 
data. 
 

Statistical analysis:  
• Spearman’s correlation to assess the correlation of 

anthropometric and metabolic measures 
• PLSC, implemented based on a publicly available 

version of singular value decomposition-PLSC  in 
python (https://libraries.io/github/chrisfilo/pypls). 

• PLSC is a multivariate technique to extract latent 
variables (LV) with maximal covariance [6] which 
allows to model multiple collinear predictors. 

• significance of latent variables (p < 0.05) and reliability 
(Z-value > 2.3) of contributing obesity measures was 
based on permutation  and bootstrapping (N=5000)  

hippocampus, possibly by inhibiting its neuroprotective 
effects. Adiponectin which positively covaried with GMV 
might counteract adverse effects of obesity, supposedly via 
its insulin-sensitizing and arterio-protective properties [8].  
Adipose tissue and subsequent neuronal inflammation is a 
possible mechanism of obesity-associated neuro-
degeneration, however here, CRP and IL-6 did not 
significantly contribute to the first latent variable. 
Similarly, none of the lipid markers had a significant 
saliency which might indicate that variance in lipid 
metabolism is already captured by BMI.  
In sum, our analysis revealed a complex association of 
metabolic obesity markers and gray matter volume loss 
which should be further investigated in longitudinal 
studies focusing on the impact of different adipokines on 
the aging brain. 
 

We found a common covariance structure of higher BMI and 
leptin, lower adiponectin and lower GMV in cortical and 
subcortical brain areas. In line with these results, higher BMI 
has been associated with reduced GMV in a partially 
overlapping sample of older adults [7]. Here, we additionally 
found that leptin and adiponectin significantly contribute to 
explain covariance of obesity measures and GMV. Leptin 
regulates food-intake via hypothalamic neurons and has 
also been shown to have neuroprotective properties, e.g. 
enhancing neurogenesis as well as memory formation in the 
hippocampus [4]. Higher BMI is associated with higher leptin 
levels but also lower leptin sensitivity, which is probably due 
to impaired leptin transport at the blood brain barrier 
induced by chronically elevated peripheral leptin [3]. Our 
results thus indicate that  lower leptin sensitivity in obesity 
might contribute to tissue loss in susceptible regions like the 
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The correlational analysis showed that BMI significantly correlates with most blood measures, even after adjusting for age and sex 
(see Figure 1). WHR showed a similar correlation pattern with a pronounced difference in the association of leptin. 
The first pair of latent variables derived by PLSC explained 26% of variance and was significant according to permutation tests 
(p=0.0172). The obesity LV included negative reliable contributions of BMI (Sal=-0.65, Z=-5.3) and leptin (Sal=-0.56, Z=-3.6), and a 
marginally reliable positive contribution of adiponectin (Sal= 0.28, Z=2.2) (see Figure 2). This  LV covaried with a latent gray matter 
volume LV with positive, reliable contributions from widespread brain areas, with highest saliencies in right hippocampus (cluster 
size= 956 voxel, Sal=0.006, Z=6.2), cerebellum (Crus II, cluster size= 820 voxel, Sal=0.0054, Z=4.2), left hippocampus (cluster size= 
696 voxel, Sal=0.0056, Z=5.1), mesencephalon (cluster size=480 voxel, Sal=0.0056, Z=5.5) and thalamus (cluster size= 228 voxel, 
Sal=0.0052, Z=4.4) (see Figure 3). 
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Figure 1: Correlation of anthropometric and metabolic 
markers associated with obesity (blue/red: 
negative/positive correlation,    indicates significant 
correlation (p< 0.05), corrected for age and sex) 

Figure 2: Saliencies of the first latent obesity variable (blue: saliencies 
of variables, dark blue: saliencies of reliable variables, red: 
bootstrapped Z-values, dark red: bootstrapped Z-values >2.3) 

Figure 3: Reliable saliencies for the first latent 
gray matter volume variable masked for 
bootstrapped Z-values > 2.3 (yellow = saliencies 
of reliable voxels, blue = bootstrapped Z-values ) 
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