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Abstract 

Connectionism's main contribution to cognitive science will prove to be the re-
newed impetus it has imparted to learning. Learning can be integrated into the 
existing theoretical foundations of the subject, and the combination, statistical 
computational theories, provide a framework within which many connection-
ist mathematical mechanisms naturally fit. Examples from supervised and 
reinforcement learning demonstrate this. 

Statistical computational theories already exist for certain associative matrix 
memories. This work is extended, allowing real valued synapses and arbi-
trarily biased inputs. It shows that a covariance learning rule optimises the 
signal/noise ratio, a measure of the potential quality of the memory, and quan-
tifies the performance penalty incurred by other rules. In particular two that 
have been suggested as occurring naturally are shown to be asymptotically 
optimal in the limit of sparse coding. The mathematical model is justified in 
comparison with other treatments whose results differ. 

Reinforcement comparison is a way of hastening the learning of reinforcement 
learning systems in statistical environments. Previous theoretical analysis has 
not distinguished between different comparison terms, even though empiri-
cally, a covariance rule has been shown to be better than just a constant one. 
The workings of reinforcement comparison are investigated by a second order 
analysis of the expected statistical performance of learning, and an alternative 
rule is proposed and empirically justified. 

The existing proof that temporal difference prediction learning converges in 
the mean is extended from a special case involving adjacent time steps to the 
general case involving arbitrary ones. The interaction between the statistical 
mechanism of temporal difference and the linear representation is particularly 
stark. The performance of the method given a linearly dependent representation 
is also analysed. 

The method of planning using temporal difference prediction had previously 
been applied to solve the navigation task of finding a goal in a grid. This is 
extended to compare the qualities of alternative representations of the environ-
ment and to accomplish simple latent learning when the goal is initially absent. 
Representations that are coarse-coded are shown to perform particularly well, 
and latent learning can be used to form them. 
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Chapter 1 

Connectionism in Context 

To compare Al as mechanised flight with neuroscience as natural aviation is to 
ignore hot air ballooning. But where, prey, might the hot air come from? 

After J Oberlander 

1.0 Summary 

The vituperative disputes between connectionism and its more traditional alter-
natives are rather confused between methodology and philosophy, explanation 

and replication, and theoretical neuroscience and practical computer science. 
These confusions can be untangled through the careful use of alternative levels 
of analysis, revealing the interest of connectionism to lie in the cornucopia of 
non-traditional mechanisms and representations that it offers, and its regard 

for learning. 

Unfortunately, traditional delineations of levels are rather cavalier in the way 
they treat learning. This chapter argues that learning can be incorporated into 
such accounts through the mediation of statistical computational theories, and 

presents a summary of the rest of the thesis in this light. 

1 
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1.1 Introduction 

Many of those people who helped forge modern cognitive science out of be-
haviourism's sterile mindlessness see connectionism's reappearance as herald-
ing a return to the bad old days. It seems to suffer from its products' apparently 
uninterpretable and unstructured internal representations, and its producers' 
seemingly empiricist leanings. The ensuing debate has something of the flavour 
of the old battles over the philosophical (il)legitimacy of artificial intelligence 
(Al), with proponents of connectionism talking glibly about systems that can-

not be built, quite yet, and opponents, using arguments oft used against them, 
pointing to a few possible theoretical flaws and to many evident inadequacies 
of existing systems. A salient paradox is that certain of the strongest critics of 

traditional Al are actually mildly more favourably disposed. 

Arguments over empirical adequacy are set to run and run, ever more fiercely 

given the sense of fin de siècle pervading traditional AT, but their theoretical sta-

blemates have recently come to the fore. It seems that philosophically minded 
connectionists are trying to steer an uneasy semi-reductionist course between 

the Scylla of symbolic re-implementation and the Charybdis of biological en-

trainment. As a number of authors have pointed out, coñnectionism should 

refuse to enter this particular Odyssey; it should rather pose questions for its 
whole field, including Al, based on its own domains of expertise, notably learn-
ing. To do this it is necessary to adopt some classification of what it holds 

dear. 

The work contained in this thesis has been motivated by a particular view of 
the role of connectionism in cognitive science. This stresses the importance 
of statistical notions of learning and the distinction between mechanisms and 
representations. This chapter attempts to describe the position and relate it to 
subsequent chapters. The next section looks at theoretical levels of analysis, as 

applied to classical and connectionist systems, section 1.3 considers how this 
might be extended to include learning, and section 1.4 introduces the work 
in the subsequent chapters and relates it to these conclusions. The chapter is 

purely descriptive - about how learning might be incorporated into theoretical 

accounts. Chapter 6 tries to justify why this might be important to cognitive 
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science and A!. 

1.2 Levelling the Field 

1.2.1 The Three and The Many 

Cognitive science now knows well the importance of understanding complex 

systems at a number of different levels. Marr [96] is usually credited with 
bringing the issue to the fore, having self-confessedly transgressed earlier in his 
own career [91,92,93]. For information processing systems, he differentiates 

three levels as follows: 

Computational 	What is the goal of the computation, why is it ap- 
propriate, and what is the logic of the strategy by 

which it is carried out? 

Algorithmic 	How can this computational theory be instantiated? 
In particular, what is the representation for the in-
put and output, and what is the algorithm for the 
transformation? 

Implementational How can the representation and algorithm be re-
alised physically? 

Underlying them is a desire: 

'to make explicit statements about what is being computed and 
why, and to construct theories stating that what is being computed 
is optimal in some sense or is guaranteed to function correctly. The 
ad hoc element is removed, and heuristic computer programs are 
replaced by solid foundations on which a real subject can be built.' 
[961-pl9 

Marr was led to posit these levels by the explanatory failures of earlier theories 
that made a kind of category error in trying to judge computations through 
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algorithms or implementations. All too often, a working program in some 

domain was taken as a complete theory of that domain, when in fact it was 

only an algorithm with no specified range of applicability and many heuristics 
and hacks. Clearly, one computation can be instantiated by many different 

algorithms, and one algorithm realised on many different machines. Marr 
continues by delineating the autonomy of explanation between the levels, each 

of which: 

'will have its place in the eventual understanding of perceptual in-
formation processing, and . . . [all of which] are logically and causally 
related. But an important point to note is that since the three levels 
are only rather loosely related, some phenomena may be explained 
at only one or two of them.' [96]-p25 

Marr considered the implementational level to be 'tied' to neuroanatomy and 
neurophysiology, the algorithmic level to psychophysics. However, he offered 
no such observable constraint to theorising at the computational level. Rather, 
the task here is to isolate and mathematise the regularities in the world that 
make information processing worthwhile at all. The resulting autonomy is 

precisely that of the FORTRAN programmers who need know nothing about 

the precise internal workings of the FORTRAN compiler, or the compiler writers 

who need know nothing about the material composition of the transistors in 

the target machine. 

Foster [431 presents an extensive and critical analysis of the way that levels 

are used and abused in cognitive science and philosophy, and dissects a num-

ber of proposals, including those by Marr, Newell [106], and Pylyshyn [125]. 
Following a more restricted suggestion due to Haugeland [56], she points out 
that much of the confusion is caused by these authors considering only one di-

mension of the levels, rather than two. Two descriptions of a system (eg a VAX 

computer running a program that outputs 1 in response to inputs 01 and 10, and 
in response to 00 and 11) can certainly differ in their degree of concreteness; 

eg a mathematical description of the task, an algorithm in some language for 
accomplishing it, or a wiring diagram and a list of the states of all the transis-
tors. However, and particularly at the elusive algorithmic level, they can also 

differ in their degree of detail; a few succinct lines of FORTRAN compared with a 
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more complete program that includes some checks on the validity of the inputs, 
compared with the binary numbers representing the resulting VAX machine 

code. 

Having identified the separate dimensions, Foster describes a novel, 'massively 
multi-level' proposal of her own, focused on the possible levels of detail in the 
algorithmic description of a system. A particular advantage of this is that it 
also makes clear exactly what forms of equivalence there can be between two 

systems. Weak equivalence is extensional equivalence, ie when the functions 

implemented by the systems are the same (modulo a wealth of complications 
about finiteness and termination). Strong equivalence is a far more severe 
criterion, requiring the systems to go through the same states in the same order, 

for all possible paths from input to output. 

One of the canonical features of the computational level is its abstraction away 
from time and space considerations - different algorithms may trade these off in 
different ways. Much theoretical connectionism, including most of the work in 
the rest of this thesis, seems to be couched at the computational level. Studies fo-
cus on the properties of mathematical objects, independent of their algorithmic 
or state-by-state realisations; there are many possible implementations of all the 
mechanisms described here. In fact there is an equivalent multi-level account 
at the computational level, with varying degrees of detail in the description of 
the mathematical objects, such as the function approximation schemes. 

1.2.2 Battling Connectionism 

This much should be ecumenical between most of the warring symbolic and 
connectionist camps. The disputes really begin when the levels are abused 
to suggest the ultimate irrelevance of classicism or connectionism to under-
standing and/or replicating human cognitive powers. For instance, Fodor and 
Pylyshyn [421 annunciated two criticisms in their recent influential attack on 

connectiorLism: 
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• They claim that connectionist systems are merely methods of implement-
ing a higher level algorithm, and that the 'implementation, and all prop-

erties associated with the particular realisation of the algorithm that the 

theorist happens to use in a particular case, is irrelevant to the psycho-
logical theory' (original emphasis). If true, this would severely restrict 

connectionism's potential explanatory force. 

• They assert that connectionism qua connectionism (ie other than as a mere 

implementational means in the above sense) is incapable of handling 
structured knowledge representation or languages of thought having 
combinatorial syntax and semantics. Given the (excellent) reasons for 
believing such representations to be important in human cognition, this 
would prevent connectionism from offering an account at a cognitive level 

of the mind /brain. 

The second of these assertions is actually incorrect - there are a number of 
radically different schemes ([30, 122, 153, 1541 amongst many others) for han-
dling structured knowledge representation in connectionist systems, and much 
research is underway to overcome their manifest inadequacies. it is also very 
important not to confuse sufficiency and necessity in Fodor and Pylyshyn's ac-
count of combinatorial mental languages and inferential operations (see Fodor's 
ground-breaking [381). Their arguments focus almost entirely on the latter, and 
so say nothing about the possible augmentation or non-formality of their men-
talese and (some) of the processes operating on it. Anderson's ACT* [3] is a 

good example of this, coupling tightly purely formal, structure-sensitive, op-  
- 

erations embodied in a production rule interpreter with spreading activation 
operations in an associative memory. 

Chater and Oaksford, in their elegant critique [22] of Fodor and Pylyshyn's 
article conclude that, in any case, the latter authors are really concerned with the 
first issue rather than the second. Chater and Oaksford sum up the traditionalist 
view as an affirmative answer to the question: 

'Can the cognitive computational level be formally specified in an 
implementation independent way?' (emphasis added) 
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Dennett [29] neatly encapsulates the intent of the traditionalist approach to the 

question of implementation independence as a 'triumphant cascade through 
Marr's three levels', which, like most cascades, flows downwards. For connec-
tionism not to be irrelevant to cognitive science, it is necessary to see why this 
approach is not the only straw in the wind. 

Comtectionist Use of the Levels 

The trouble with the formulation of the question above is the word 'formally. 
Under the notion of the levels which informed both Fodor and Pylyshyn and 

Chater and Oaksford, it nullifies the whole issue. Since McCulloch and Pius [86], 

it has been known that any classical computational system has a connectionist 
'twin' (replicating the finite-state component of a Turing machine operating 
on an external, infinite, tape), and Pollack [121] has further shown that if the 
system can represent numbers to arbitrary accuracy, then it can also represent 
the entire tape in the activation of a set of units. Conversely, it is evident that 
connectionist systems can be approximated to arbitrary accuracy by traditional 
systems, since almost all existing connectionist systems are so simulated. This 

covers anything that can be formally specified. 

To give the question some bite, therefore, the formally must be restricted to 
something akin to structure sensitive operations on some logic such as first order 
predicate calculus.' This, or some suitable equivalent, is effectively a non-trivial 
restriction at the computational level of concreteness, and one which requires 
empirical justification. This is particularly the case in view of Al's success 
in proving just how radically intractable this form of processing is even for 
medium sized bodies of knowledge. The original appeal of such a restriction, 
as the 'obvious' systematisation of folk psychology, is rather diminished by this 
persistent failure to lead to competent systems and by the advent of alternative 
systematisations, such as the one developed in [110] and discussed in chapter 6. 
As mentioned above, Fodor and Pylyshyn only demonstrate that some of the 
operations must be structure sensitive, not that they all must be. The remainder 

of their argument is about how it is theoretically possible to build systems, 
one of whose computational level description.cis formal in the above sense, 

was presumably how Chater and Oaksfonl intended it to be read. 
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whilst retaining the supposed advantages of connectionist systems, such as 

graceful degradation and parallel processing. The gap between claim and 

actual achievement in this is about as large as it is between the claim and 
achievement of structure-sensitive connectionist systems. 

Fodor and Pylyshyn's claims about implementation obscure the real appeal of 

connectionism, which is methodological. To put it inelegantly, connectionism 

comprises a set of computational-level tools that seem appropriate for mod-
elling part of cognitive information processing. This claim will be unpacked 

in two stages; first the notion of computational-level tools, and second their 

appropriateness. 

Marr [96], and most of the proponents of different notions of levels, are in-
terested in describing complete functioning systems, such as the mechanisms 
responsible for line detection in early vision. However, analysis based on levels 
can equally well be used to look at methodologies for building systems, and 
representational and inferential tools, including logics and computer languages 

such as PROLOG. The difference is that each of these methodologies offers only 

its own kind of information processing building block, and not a complete 
building. To extend the analogy further, analysing the nature of the blocks 
should reveal generalisations about the sort of buildings that each can form. 
Unfortunately, this kind of analysis is rarely undertaken. 

As an example, consider semantic networks, over which much classical blood 
was spilt for quite some time. Quillian [126] invented them by mechanising 

certain psychological ideas on associative memory to give increased computa-
tional efficiency for the storage and defeasible inheritance 2  of object properties. 

The initial theory of semantic networks was couched in terms of a particular 

algorithm. The 'neat' wing of Al (see Hayes [581) eventually pieced together a 

logic-based theory at the computational level showing that semantic networks 
offered no more expressive power than previous theories. More seriously, they 
also claimed that semantic networks bought their tractability in reasoning at 

2An  example of defeasible inheritance and reasoning is the revision of the initial surmise that 
Tweety can fly from the information that she is an object of the class BIRD, to the rejection of this 
conclusion given the extra information that she has dipped wings, is dead, or is additionally 
an object of the class PUKEKO. 
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the expense of a delinquency (eg Brachman [17,18] and Woods [1731) that was 

not evident from the description of the original algorithms. Systems based on 
semantic networks can easily come to absurd conclusions, as in Brachman's 
example of one concluding that a non-grey elephant without a trunk must be 
a giraffe. It is apparent that Hayes and his colleagues performed classic levels-
based analyses - inducing a more abstract, computational-level description of 
a representational medium, and deducing some of its properties based on this 

abstract description. 

Coming back to connectionism, one aspect of the theoretical effort, and in par-
ticular the work in all but the last chapter of this thesis, is performed at the 
computational level - an aspect which includes analysis of the mathematical 
properties of connectionist techniques and tools in terms of their representa-

tional power and statistical convergence. 

So much for the tools; the second stage of the claim was that they are appro-
priate for modelling cognitive information processing. This can be justified 
by comparing with empirical data the resulting inferred properties, such as 

associative recall, of systems constructed with these tools. Practical connec-
tionist systems have very different behaviour (even in the weak equivalence 
or input/output sense) from traditional classical ones (contrary to Fodor and 
Pylyshyn's first claim), and may therefore be legitimate contenders as models. 
Of course, these connectionist systems can be realised in traditional hardware, 

and so in the sense discussed above, have purely formal accounts. However, 

methodologically, these formal accounts might never have emerged but for 

their connectionist provenance. 

Equally, it is easy to confuse the non-autonomy of levels for the purposes 
of explanation of some behaviour, with their autonomy for the replication of 
it. Patricia Churchiand [25] is particularly eloquent in her description of co- 

 
- 

evolutionary reduction in the explanation of cognitive phenomena, licensing 
contributions from all the disciplines in the cognitive and brain sciences. How -

ever, were there to be a computational level theory of some set of behaviours, it 

could of course be reproduced by any number of different algorithms, each of 

which could be implemented in a number of different ways, without any reference 
to the original mechanism that generated them. The explanation, though, will 
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inescapably involve all levels, particularly if, as is common in descriptions of 
computational systems, the degree of detail gets higher as they become more 
concrete. So, to re-iterate, the mere fact that the behaviour of some connectionist 
system can be replicated in a classical way says nothing to the methodological 

issue of divining the system in the first place. 

An example of this last point is the recent development of continuous methods 
for solving classical combinatorial optimisation problems such as the Travelling 

Salesman Problem (see [81,64,35] for a discussion). Continuous methods had 
never traditionally been considered, perhaps because of the way the problem 
is usually posed. However, once the alternatives were realised, through the 
development of connectionist solutions, links between them and existing bodies 

of mathematics became clear [34]. 

Marr himself worked at the interface between levels. As mentioned above, he 
thought that psychophysics could provide evidence on the adequacy of different 
algorithms for the same task (indeed choosing between two algorithms for 
stereopsis on these grounds), and neuroanatomy and neurophysiology could do 
likewise for different implementations. These concerns then obviously trammel 
computational theorising, as is evident, for example, from his own work on 
colour vision. It might be thought that an obvious way to detect colour is to 
measure the wavelength of incoming light, but there is ample psychophysical 
evidence that this is not what humans do. The retinex theory (Land and McCann 
[801) is an alternative computational theory constrained by this evidence, and 
Marr actually proposed [94] a neural implementation of an algorithm for retinex 

due to Horn.3  

Connectionism therefore survives Fodor and Pylyshyn's [42] attack of imple-
mentational irrelevance. It provides a set of computational-level mathematical 
tools, some of which are investigated later on in the thesis, that are both novel 
and potentially relevant. This is true whatever the means by which they were 
originally motivated. It does not license the fallacious conclusion that connec- 

31n fact, Horn's algorithm does not quite conform to the computational theory, but that is 
beside the current point. 
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tionism is the only straw in the wind itself. 

Connectionist Abuse of the Levels 

The dual to the criticisms that formal equivalence is methodologically irrelevant 
is the gulf between practical computer science and theoretical neuroscience. 
Connectionism owes far more to the former than the latter, and can justify little 
claim to biological realism. Very little is known in a systematic fashion about 
the computational substrate of the brain in any case, particularly in the area of 
its dynamical behaviour. Connectionism must stand or fall on its own merits, 
and not attempt to bask in mere reflected glory. 

Another heinous crime perpetrated through ignoring levels of analysis is the 
doctrine of 'program as theory,' in which some program simulating human or 
animal behaviour in a domain is taken as a theory of the behaviour in that 
domain. Connectionism is just as prone to this, as evident from the following 

suggestion from Clark [26] 

'The connectionist, however, effectively inverts this strategy [the 
classicist approach of expecting some high level understanding of a 
task to precede and inform the writing of algorithms]. She begins with 
a minimal understanding of the task, trains a network to perform it, 
and then seeks, in various principled ways, to achieve a higher-level 
understanding of what it's doing and why. ...This  explanatory 
inversion ... actually constitutes one of the major advantages of the 
connectionist approach over traditional cognitive science. it is an 
advantage because it provides a means by which to avoid the ad hoc 
generation of axioms and principles.' [26]-p220 

This is based on a rather overly optimistic view of the current capabilities of 
connectionist systems. However, even if it were practical, note that her 'minimal 
understanding of the task' is intended to inform the assumption that the task is 

modular (ie that it is at all meaningful to model it in isolation), the input/output 
representations, the design of the network and the functions performed by its 
nodes, the learning and dynamical algorithms, and the training set. All of these 

are crucial to a network's performance of a task, and are in any case essentially 
based on an implicit computational understanding of the task. it is unclear that 
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the ad hoccery has been removed. 

Consider, for example, Sejnowski and Rosenberg's NETtalk [140], a favourite 
example of Clark's. This learns a map from an input window of seven letters to 
a representation of how the middle one of those letters should sound. The use 
of the input window is crucial to the success of the network, since it allows it 
to model the fact that the positions of the articulators producing human speech 
may be partially determined by where they have just been (the forward part 
of the input window), and where they are due shortly (the backward part). 
Without this knowledge, either the network would have failed to learn the task, 

or it would have learnt it in an unilluminating fashion. 

In fact, Clark's proposal, far from reducing the odd hackery (to use a spoonerism 

from Dennett), would probably increase it, since the assumptions are obscure in 
the final result. One is entitled to be nervous about the idea that the performance 
of a network with (optimistically) thousands of inputs might be that revealing 
about a cognitive task that is not even known to be modular. 

More worrying is the paucity of computational accounts of connectionist sys-
tems. Although there is substantial work, particularly in statistical analyses, 
many of the systems come suspiciously close to being what Marr [95] would 
classify as Type 2; as involving a 'considerable number of simultaneously active 

processes, whose interaction is its own simplest description.' Too little computa-

tional understanding underlies too many proposals in the areas mentioned 
above, such as the input/output representation, the design of the network, or 
the method by which it will be constructed incrementally, and the selection of 

the training set. 

Concerns about any (latent) empiricist leanings of connectionist research will 

re-emerge in chapter 6. No new answers to the old debate on 'nature' versus 

'nurture' or 'architecture' versus 'absorption' are in evidence, although some 

of the mathematics developed to understand connectionist systems makes the 
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trade-offs rather clearer. 

Symbolic versus Sub-symbolic Processing 

Even if the arguments above succeed in establishing an independent role for 
connectionist systems, this does not imply that symbolic processing is unnec-
essary in cognitive modelling. Indeed, substantial effort in the connectionist 
community is focused on the implementation of totally symbolic processing. 
Again there is confusion about the levels, because there is this possibility that 
exact or partial analogues of symbolic systems can be created using connection-

ist mechanisms, as well as the more heterogeneous links that can arise from 
the implementation of similar functions in different ways (see Foster for a more 
perspicuous account of this). Clark [26] pits against each other a hybrid ac-
count of his own (he calls it a 'rogue' account), the classical cascade downwards 
through Marr's levels that was critically examined above, and a connectionist 
'dam' for the cascade due to Smolensky [143]. A further possibility will also be 

briefly described. 

Smolensky's connectionist dam involves there being a relationship between 
classical and connectionist systems analogous to that between Newtonian and 
quantum mechanics. Phenomena at large scales can be described adequately 
using the techniques and concepts of Newtonian physics, but are really products 
of quantum scale interactions; These in turn have detectably different small 
scale properties. As the saying goes, what you see depends on how closely 
you look. In the Harmony theory [144] embodiment of Smolensky's view 
of connectionism, global optima correspond to logically complete and correct 
inference (within a finite domain). Crucially, the system is guaranteed to find 
such optima if one key parameter is reduced sufficiently slowly, if it is lowered 
more quickly, which is essential in all practical cases, then the guarantees of 

finding the overall optima, and consequently of doing correct and complete 

inference vanish, leaving only some approximation. 

There are two troubles with this picture. Firstly that there should even be an ap- 
proximation to the logical behaviour requires the severe constraints embodied 
in Harmony theory over and above just the annealing schedule on this param- 
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eter. These restrict the architecture, the functions performed by the units, and 

the learning rules. From the independence of the levels of analysis, there is no 
top-down pressure that can force compliance with these constraints. Secondly, 
the way he uses it gives too much to the classicists. In [143] he quotes the 

'Best-Fit Principle: 
Given an input, a subsymbolic system outputs a set of inferences 
that, as a whole, give a best fit to the input, in a statistical sense 
defined by the statistical knowledge stored in the system's connec-
tions.' [143]-Manuscript p26 

which fits very closely with the view on statistical computational theories de-
veloped below. However, in his example of qualitative electrical circuit theory 
[128] the ideal behaviour is describable purely logically and the statistical Ca-
pacity is idle. Also, the semantics of the local optima are unclear. This cannot 
generalise to other intuitive cases, which is what this part of his account is 
aimed at; unlike the case in Physics, the "Newtonian" behaviour is mysterious 
too. There is just no set of logical rules that would be followed in some ideal 
circumstance. In a slightly different context, that of the communication between 
agents with bounded rationality, Cherniak [23] provides an extensive discus-
sion of limited rationality and how once a logical edifice starts to crumble, eg by 

being intractable, it collapses almost completely. More recent work on connec-
tionist grammar (unaccusativity in French) by Smolensky and his colleagues 
[83,84] is essentially an exercise in function fitting, and also neglects learning. 

Clark [26] offers a less stark choice. He imagines an architecture in which an 
exact but slow and serial classical processor trains, as it operates, some form of 
inexact but quick and parallel connectionist system. This system is responsible 
for almost all cognitive processing, except when it faces a problem that it cannot 

immediately solve.4  As an example of this, consider the garden-path sentence 

'The horse raced past the barn fell 1 ,which would give the connectionist 

processor pause. At this point, the classical processor, which normally just 
crunches input idly, intervenes, sorts out the resulting confusion, and possibly 
trains the connectionist system to avoid its error in the future. 

417here is an issue here about second order ignorance - whether or not the system can know 
that it doesn't know an answer. Extra information is available in iterative systems such as the 
time it takes them to settle. 
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Although this is an attractive way of looking at the transition from amateur to 

expert knowledge, and certainly offers succour to both classicists and connec-
tionists, it is not notably parsimonious. Also, it again avoids the main issue of 

which forms of classical processing are actually feasible, and how the interac-

tion between symbolic and subsymbolic might work. An interesting issue that 
Clark does not discuss in detail, is how the systems might communicate and/or 
share a common representation. 

In any case, concentrating on how completely classical processing can be 
achieved, or at least approximately achieved, in connectionist systems is the 
less interesting half of the story. It presupposes competent classical accounts, 
which are at best thin on the ground. There are alternatives, such as [110], 
which looks at the combination of a classical (eg PROLOG-like) inference engine 
with a connectionist memory machine. There, control is shared between the 
memory, which retrieves the rules and facts for the inference engine based on its 
current internal context, and the inference engine, which applies them to create 

new facts, which change the internal context, and therefore the rules that will 
subsequently be retrieved. This is non-committal on the implementation of the 
inference engine, but still results in a system that is unlikely to have a natural 
description in traditional terms. Chapter 6 discusses it in more detail. 

Altogether, connectionism should co-exist with more traditional approaches - 
each adopting its own best focus. With hindsight, it is difficult to credit the fuss. 

1.3 Statistical Computational Theories 

Even if connectionism does co-exist with traditional systems, it may require, or 
indeed permit, different types of analysis from them. There are two forms of 
analysis of the computational tools, referred to above as the 'building blocks', 
which are used in the construction of complete systems. One looks just at their 
generic properties, and deduces generalisations about the systems they can 
comprise. The other considers the process of construction itself. Although this 
last is of as vital interest to the classical as to the connectionist community, in 

such areas as knowledge engineering or database update as well as learning, its 
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subtleties seem not to survive traditional analysis in terms of levels. Marr, and 
most of the other authors, are interested in describing the functioning of a pro-
cessing system, and are less concerned about its ontogenetic and phylogenetic 
history, both of which may provide important clues. Those who do not know 
their history are condemned to repeat it. In traditional terms, there are two sep-
arate systems that can be analysed - the end-product processing system, and 
the learning system which produces this. These must be understood together. 

For an intuitive feel, take the picture of a functioning computational system as 
a collection of embodied symbols pushing each other around on the basis of 

their shapes (the standard processing-based-only-on-syntax restriction).' Con-
sider the complications to the analysis if one of the results of learning is that 

the embodiments of particular symbols change their shapes, and hence change 
the way they push each other around and so the computations they perform. 
At any single moment, one could take a snapshot of the system and construct 
a standard computational account for it (the analysis of the processing system 

above). However, this would ignore the regularities in the changes between 
these accounts during the process of learning. Incidentally, this picture is inter-
esting on other grounds, such as how collections of symbols might progressively 
get grounded in the world [55] by co-operatively changing their shapes. Ap-
preciation of the historical development of a system may make explaining it far 
easier. 

Another issue this account brings into sharp focus is the traditional view on what 

might be termed the narrow content [39, 1231 of machine states. Smith [142] 
describes a widely accepted position in his Knowledge Representation Hypothesis: 

'Any mechanically embodied intelligent process will be comprised 
of structural ingredients that a) we as external observers naturally 
take to represent a propositional account of the knowledge that the 
overall process exhibits, and b) independent of such semantical at-
tribution, play a formal but causal and essential role in engendering 
the behaviour that manifests that knowledge.' 

5For concreteness at the expense of accuracy, a model of this might be the interactions 
of proteins, whose shapes define the reactions they catalyse. Since the reactions themselves 
typically produce new proteins, the whole process can be viewed in computational terms, as in 
the theory of replication. 
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In the occurrent descriptions of systems, the structural ingredients can indeed 
play their roles independent of any semantical attribution. However, learning, 
which is sensitive to the relationship between a system and an environment, can 
determine the nature of this interaction by changing their causal and essential 

properties (their 'shapes' above). - 

Cognitive information processing is only sensible at all because there are reg-
ularities in the world worth computing over. However, this leaves a trade-off 
between encoding the regularities in the structure of the system, and getting 
it to learn them, on the basis of observation of the world, and/or interaction 
with it. Marr's interest was in early visual processing, where such learning 
as may happen (for instance during the formation of the connections between 
the various parts of the brain) is finished by the time the system functions in 
earnest, leaving a regular structure that is amenable to a direct computational 

account. 

Much of the work in classical symbolic Al also considers supposedly isolated 
modules of high-level human cognitive behaviour. Competence in these is 
based on knowledge which is somehow extracted and fed, pre-digested, into 
the system. Here, the motivation for ignoring learning is less easily justified, 
partly because it is unclear that the methods of extraction and subsequent pre-
digestion are bound to be correct and complete, and partly because these are 
precisely the domains in which humans are continually learning and improving. 
More strongly, this continued learning is one important facet of our competence 

in these domains that such models are bound to omit. 

Of course, there is substantial interest in the traditional community in learning 
and induction. The work on statistical inference (eg [1191) fits very neatly 
into the framework discussed below, although the more symbolic work on 
induction seems bound to suffer from the severe context sensitivity problems 
highlighted in chapter 6. A fierce debate rages between the Al and connectionist 
learning communities as to whether the latter really does offer any mechanisms 
with powers over and above the former. In such areas as temporal difference, 
described in chapters 4 and 5, novel and powerful connectionist mechanisms 
are certainly apparent. How far this conclusion extends is unclear. 
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Golden [47,48] pointed the way forward when he provided a unifying proba-
bilistic characterisation for understanding the dynamical retrieval behaviour of 

a wide range of networks, including those satisfying the Cohen-Grossberg Lya-
punov conditions [27], and multi-layer perceptrons under a particular stochas-

tic interpretation. 6  He claimed that 'the primary orientation of .  [his] article 

is to provide a computational level of description following Marr [96], of a 
broad class of neural network models.' It essentially provides a mathematical 

(ie statistical) characterisation of the behaviour of the models, and in a more 
obscure fashion, their learning capabilities. Such an account is an embryonic 
statistical computational theory. On this description, connectionist mechanisms 

have particular statistical performance and learning capabilities, described at 
the computational level. Similarly, the regularities in the world to which they 
should become attuned also have statistical characterisation. if these match, 

then the particular mechanisms are adequate for the task. 

That such analysis is possible is due to the particularly simple form of the com-
putations performed by current connectionist systems. Similar conclusions can 
be derived about traditional statistical inference and learning engines. This 
approach judiciously mixes occurrent and historical analyses of the connection-

1st systems, generalising over the particular and unilluminating form of the 

end-product (eg that some hyperplane is at a rather than b) to its historical 
development. Notions such as the Vapnik-Cervonenkis (VC) dimension [157] 
of a learning system are applicable. This is a measure of how malleable it is to 

the training data. if a connectionist system with a low VC dimension manages 
to capture enough examples, then one can have some statistical confidence that 
it will generalise correctly, since it could not have been bent and twisted to fit 
just those particular inputs. Note however, the success of this whole approach 
and its equivalents depends on the nature of the statistical task faced by the 

networks - it will not have anything illuminating to say about standard back-
propagation confronted with a one-shot learning task, outwith its statistical 

competence. 

6lJnfortunately this interpretation does not naturally extend to provide an understanding 
of generalisation, if the training set is generated according to some underlying distribution, or 
of the relationship between the aithitecture adopted and the resulting error. See Haussler [57] 
and Baum and Haussler [12] for an account of these. 
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Two points remain: inexactitude and representation. It is well known that 
most forms of complete and correct statistical inference are just as intractable 
as their symbolic counterparts - Bayesian inference is non-polynomially hard. 
This means that functioning connectionist systems cannot implement these ex-
actly for other than toy problems, and must be restricted to some inexact and 
'cut-down' forms. In this case, there will be a mis-match between the statistical 
computational level of the connectionist mechanism, and the statistical compu-
tational characterisation of the task it has to solve. The gap between desired and 
actual capabilities should be characterisable statistically. Not only will different 
types of connectionist system perform differently, but also non-connectionist 
methods of computation may be better at realising the statistical models of the 
domains, in which case the replica tive autonomy discussed above would justify 
their adoption in artificial systems. 

There are two notoriously difficult and closely related issues in connectionist 
representation; the codings used both for the inputs and outputs, and for the 
internal workings of the system. In some cases this is complicated by the 
question of how to draw the boundary between the system and its environment. 
For the robotic realists inspired by Brooks [19],  who stress behaviour in the 'real' 
world, and decry simulation, the raw outputs of the available sensors are their 
inputs, and the raw actuators their outputs. However, different sensors have 
dramatically different properties. From what is known about early sensory 
processing, very complicated operations which may well be dependent on 
the particular sensory coding, are performed even before the information is 
fed to the higher, more plastic areas. As in the NETtalk example, where the 
pronunciation of a letter is based on its preceding and succeeding context, 

adopting a particular input/output coding can amount to an implicit theory 

about part of the regularity in the domain. if the requisite information is not 
present in the input (as it would not have been in NETtalk but for the context 
inputs), then the task is impossible. Although there are a number of specific 
solutions in specific domains, there are few general principles. 

The internal aspect of representation is equally complex. A rough, and equally 
nebulous, equivalent of the distinction between process and data in traditional 
systems is that between mechanism and representation. Often, the same connec-
tionist mechanism can be applied to many connectionist representations. Back- 
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propagation, as a stochastic gradient descent minimising mechanism, is a good 
example of this. Two representations often used with back-propagation are suit-
ably connected collections of sigmoidal hyperplane units (so-called multi-layer 
perceptrons), which calculate the distance of an input from a hyperplane and 
pass it through a sigmoid function, and radial basis functions, which calculate 
the distance of the input from some centre, weighted by some radius function. 

Albus' CMAC system [2] is another example. 

Each representation is effectively a method of function approximation, as indeed 

are many non-connectionist representations, such as kd-trees [115], and each 
mechanism can be tailored to the particular function approximation scheme 
employed. Note how the new version of the levels is necessary to capture 
this completely. Analytical studies on statistical learning and generalisation 

theory, such as [12, 28, 57, 156, 1571,  give measures which determine how 

particular representations will perform given the regularities they are trying 
to capture. Some of the these are even distribution-free, and so apply to all 
possible environments; their results are correspondingly weaker. 

As suggested above, the method of function approximation, and its associ-
ated tailoring of the mechanisms, are generally mathematical descriptions at 

the computational level of concreteness, which have multiple possible instan-
tiations in different algorithms. The need for this can be seen even in Marr's 
own example of a cash register, where the account of the task would be very 
different, for instance, were each item to come with a bag containing the same 
number of marbles as it cost. it is hard to reconcile this with Marr's assignment 
of representation as an algorithmic rather than a computational level issue. 

1.4 Introduction to the Thesis 

So far this chapter has described a particular viewpoint on the relationship 
between connectionist and classical systems, and suggested how learning might 
be described in a consonant fashion with this. The possibilities of various 

levels of analysis, and of logical differences between understanding human 
cognitive phenomena and reproducing them on some machine, have given rise 
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to ample confusions. Methodologically, connectionism has already led to new 
and interesting algorithms, even though, philosophically, these can then be 
reproduced in non-connectionist form. Also, since most connectionism is not 

much closer to neuroscience than symbolism, at other than a superficial level, no 
strong claim to biological relevance can bear much weight. Even if traditional 

symbol systems can be implemented using connectionist mechanisms, and 

indeed vice versa, this says nothing about the irrelevance of one or other doctrine. 

Overall, systems have to respond to the regularities in their environments. In 
general it is unrealistic to suppose that these regularities can be introspected, 
so learning will be necessary for any that are not just pre-wired. Sampling 
the world during learning is inherently a statistical process, and so statistical 
theories must enter into the accounts of both descriptions of parts of the world, 
and the descriptions of how computational mechanisms can be suitably attuned 
to them. These are statistical computational theories. The remaining chapters 

of the thesis attempt to work within this framework. 

Chapter 2 develops a statistical computational theory of a form of one-shot 
associative matrix memory, tightly coupled with one form of function approx-
imation based on linear hyperplanes. The memory has real-valued synapses 
as a slightly more accurate idealisation of certain forms of learning than some 
previous work that has concentrated on binary synapses. Using a statistical 
criterion of the quality of recall, the signal to noise ratio, it is possible to char-
acterise statistically how the memory will perform based on a strong condition 

on the nature of the associations it is required to learn. Issues of input/output 
coding are evident as in the conclusion that the sparser the patterns are, the 
more of them that can be stored. 

The model used in this chapter has been incorrectly analysed in the past, and 
also a slightly different and somewhat less felicitous model has been fairly 
prevalent. Although asymptotically optimal learning rules are reminiscent of 
those suggested by the physiological phenomena of long term synaptic poten-
tiation and depression, the model is not biologically plausible. 

Chapter 3 looks at the slightly different case of reinforcement learning. Super- 
vised learning (as in the previous chapter) requires rich information from the 
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environment as to what a system should 	- 	do (with which outputs 
it should respond to which inputs). In many circumstances, the environment 
is only able to criticise a system's response in an unspecific manner, without 
revealing the nature of its error. This is called reinforcement learning, using the 
terminology from behaviourist psychology. Note that in the case of just two 
possible outputs, the two forms of learning differ only in that the supervised 
learning is typically deterministic, whereas in reinforcement learning, there is 
typically a statistical relation which has to be sampled between output and 

reward. 

Rich Sutton introduced an extra term into the equations for reinforcement learn-
ing systems, creating a learning rule which is very similar to the one found opti-
mal in chapter 2. Although the original motivation for the term was essentially 
intuitive, statistical analysis of the performance of the algorithm reveals both 
how it might work, and suggests a possible improvement. Simulations confirm 
the efficacy of the new term, and demonstrate that it performs better than the 
old one in some tasks, and, statistically, is never significantly worse. 

Chapter 4 looks at reinforcement learning in temporally extended tasks. It 
considers how learning to make accurate predictions of performance in cer-
tain problems might aid learning the optimal controls, and focuses on Sutton's 
temporal difference (TD) method of learning the predictions in the first place. 
TD is designed to handle regularities over extended time intervals. Sutton has 
proved the statistical convergence of the algorithm to the correct predictions for 

a special case of the method which involves only one-step time dependencies 
and for a particular representational form. Chris Watkins identified the close 
connections between TD and dynamical programming, and this chapter ap-
plies the resulting understanding of the workings of TD to prove its statistical 
convergence in the general case involving arbitrary time dependencies and the 
same representation. Another of Watkins' results is used to show a stronger 
form of convergence in a further special case. 

The interplay between the TD method and the various representations is partic-

ularly evident in this chapter, as the same mechanism, which is not connection-

ist, can be applied to a number of different function approximation schemes, 
which need not be connectionist either. Proving convergence naturally involves 



CHAPTER 1. CONNECTIONISM IN CONTEXT 	 23 

the properties of both the mechanism and the function approximator. 

Chapter 5 applies the TD prediction-for-control approach to the task of navi-

gating around a small grid. Part of the intent is to test whether the statistical 
characterisation of the problem maps the capabilities of the TD mechanism. The 
method is shown to be robust to different representations of the environment, 
so long as they are not ambiguous. Also, latent learning in the absence of any 
primary reinforcement is accommodated through the self-supervised learning 
of appropriate representations. Again this interplay between representation 
and mechanism is evident, as the various different representations result in 

demonstrably different speeds of learning. The results for the grid task are 
evaluated against those from a similar problem presented to rats - the open 
field water maze - and certain suggestions about rat cognitive mapping are 

reviewed. 

The motivation for incorporating learning in the manner suggested has not yet 
been provided. Chapter 6 considers why learning might be important through 
a consideration of the benefits and drawbacks of context sensitivity in inference, 
and tells a fanciful story about a system that combines both classical and non-

classical components. 

Finally, the key elements of the tale of two paradigms are related in the coda - 

in a more historical setting. 

Hades awaits - nascent potholes pepper this work. A prime example is in 
Watkins' identification that the underlying functioning of the TD mechanism 
is essentially dynamical programming. Dynamical programming is a totally 
general technique for planning, which, like all other similarly general tech-
niques, including Al's, suffers from its own version of exponential intractability.  

Richard Bellman identified this in the present context as the curse of dimen-

sionality. Increasing the number of dimensions in the state space increases the 
number of unique states exponentially (assuming fixed accuracy); calculating 
the appropriate actions for each state is then equally exponentially intractable. 
Using sophisticated function representation, effectively allowing variable accu-
racy, is one approach, but it is only well founded relative to strong assumptions 
about the nature of the prediction and control spaces. Another approach is to 
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use some form of hierarchical structure, in which the dynamical programming 
has to solve a collection of small problems, rather than one large one. Again, 

this requires substantial knowledge about the problem. Connectionism is not 
notably forthcoming about how this meta-level information might be acquired. 

For all the current distance of the armchair goals expressed in the previous 
sections, these chapters indicate that steps along the way are feasible. For 
simple non-dynamical systems such as these, complete statistical computational 
theories beckon. 



Chapter 2 

Optimal Plasticity 

Maths best. 

2.0 Summary 

A statistical computational theory can be constructed for the traditional model 
of connectionist associative memory [167, 1681. A simple extension to this 
model is to allow real valued synapses. Under these circumstances, the learning 
rule that optimises the signal/noise ratio, which is a measure of the potential 
fidelity of recall, turns out to have a covariance form. Two other learning 
rules, which bear loose similarities to ones proposed in the neurophysiology 
literature, are asymptotically optimal in the limit of sparse coding. All three 
have the automatic property that the expected value of a single synapse is zero. 

The results appear to contradict a line of reasoning particularly prevalent in the 

physics community. In fact, it turns out that the apparent conflict is due to the 
adoption of different underlying models. Ironically, they perform identically at 

their co-incident optima. 

tg 
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2.1 Introduction 

The previous chapter concluded that part of the task of understanding a con-
nectionist mechanism is constructing a statistical computational theory for it - 
a statistical theory of what it does faced with which inputs. Unfortunately, the 
state of statistical knowledge does not extend this far for general systems, rather 
derailing the overall programme. However, associative memories have long 

been ripe for such theorising, and there is a distinguished tradition ([170,93] to 
name just two) along these lines. This chapter extends the analysis to a more 

general case. 

More utilitarian motivation comes from trying to understand the theoretical 
implications of certain biological results on synaptic plasticity. For instance, the 
immense body of work on the neurophysiology of synaptic plasticity is severely 
tantalising the theoreticians. The incidence of long term potentiation (LTP) [15] 
in the hippocampus and neocortex is generally thought to support the Hebb 

hypothesis [60] about the facilitation of synapses due to coincident pre- and 
,post-synaptic activity. However, even on theoretical grounds, it is clear that 
there also has to be some mechanism for reducing their efficacies, and the more 
recent discovery of long term depression (LTD) [145] points to this. There are 
various hypotheses about how LTD might work, and the intent of this chapter 
is to analyse the consequence of some of these, based on a highly simplified 

account. 

A slight relaxation of the standard Wilishaw associative network [170, 1671 
will be adopted. As well as having binary inputs and outputs, the Willshaw 
net also has binary synapses, which, once blown (set to be 'on'), are blown 
forever. Although this is a severe restriction, it actually leads to very efficient 
information storage. The obvious relaxation of the constraints is to allow real-
valued rather than binary valued synapses, but to retain the binary input and 
outputs to make the analysis tractable. The most straightforward learning rule 
for these synapses is then a linear one, in which the contributions from each 
association are just summed. This removes any dependency of the synaptic 

values on the order in which the associations are presented, and is a further 

significant simplification. 
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For the saturating (two-state) synapses in the Willshaw net, it is hard to justify 
any learning rule other than the Hebb-like one which blows them on the con-
junction of pre-synaptic and post-synaptic activity. In the linear case, though, 
there is no such intuition. Ignoring the role of time, there are four possible 
conjunctions of activity or quiescence on the input and output fibres, and, in 
principle, the efficacy of the synapse linking them could change by a different 
amount for each of these. These four numbers define a learning rule. The 
obvious questions are which rule is optimal, and how far from the optimum are 

other interesting possibilities. 

However, determining the optimal learning rule requires some way of judg-
ing the quality of the unit. One such metric is the signal/noise ratio (S/N), 
which has its roots in engineering and has proved useful in a large number of 
applications. Consider a single unit that is to discriminate between two classes 
of outputs, the 'lows' and the 'highs', based on a scalar 'return', the dendritic 

sum. if the distributions for the two classes are both approximately Gaussian,' 

9(1, a) and c(h, crj, say, then it willbe easy to separate the two classes if 

the signal, - itt, is large (informally, if the peaks are far apart) and/or if the 
two contributions to the noise, a and o, are small (informally, if the peaks are 
very narrow). Figure 2.1 shows the two distributions. The S/N is defined as: 

- (Ilh - itt)2 =(2.1) 

and so incorporates both these effects. Maximising the S/N should enhance 

separability. 

Note that the S/N is entirely indepehdent of any threshold e the unit might 

actually set to make the discrimination. This is desirable, since it factors out an 
issue which typically arises that one of the classes will occur more frequently 
than the other. Such imbalance might happen, for instance, if the output patterns 
are sparsely coded having many more lows than highs. Then, it may be more 
important to set 8 either to preserve the few of the latter, or to make fewer errors 
by getting the bulk of the former correct. if high and low patterns occur with 

equal frequency, then it is likely to be wise to set 8 (it + p.h)/Z. For very 

lAs they will be for real valued synapses, but are not for the rather anomalous Wilishaw 
model [167]. 
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Ji, 	Dendritic sum 

Figure 2.1: Distributions of 'Low' and 'High' dendritic sums 

large systems, the limit studied in the physics community, the classes will either 
be perfectly discriminated or perfectly confused, so the threshold is essentially 

irrelevant. 

In general, the S/N will be some function of both the learning rule and the input 

and output patterns. Pace a strong statistical assumption about these patterns, 

it is possible to work out a theoretical value for the S/N, and to optimise it with 
respect to the learning rule. It turns out that care is necessary over exactly how 
the S/N is defined. At least one incorrect and two different correct values for it 
are quoted in the literature. 

The next section describes the model due to Palm [116,117], section 2.3 demon-
strates how each of the three possible expressions for the S/N and associated 
optimal rules, arise, and section 2.4 discusses their properties. Section 2.5 
considers how thresholds might be set within the framework of this chapter, 
section 2.6 compares the results with those current in the physics community, 

and section 2.7 locates other, related, work in this area. 
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2.2 The Model 

The underlying model is due to Palm [116, 1171, who developed it from the 
original Willshaw binary, associative, memory in [170,167]. A matrix memory, 
of the form shown in figure 2.2, is intended to store Q associations, indexed by 

w, between the patterns, each component of which can take one of two values: 

at(w) E {c1}, t= 1...in, CE, and 

b(w) E {1.,hl, j = 1 . . . it. 

This is called the {c, 1} model for the low and high values of the input respec-

tively. All the patterns are statistically independent and within each set are 

distributed identically, with probabilities: 

P = 1'[a=1], i — p = 
= P[b=h], I — v = P[b 1 =l]. 

Patterns for which bi = 1(h) will be called low (high). For pattern w, define 

#c(W*) as the number oft E [1, m] for which at(w*) = c, and 

# i (w*) as the number oft E [1,m] for which aj(w*) = 1. 

The jth  unit has synaptic weights, or efficacies, etj € R , i. = 1 ... in, and conse-

quent dendritic sum output in response to pattern w input: 

d(w) = 
	

e;a(w). 	 (2.2) 

The synaptic efficacies are set by the learning rule as: 

eii  = 
W=1 

where &j(w) is given in table 2.1. The linear dependency on the associations 

learnt is clear. Any more interesting case, for instance where the synaptic 
elements saturate, is more difficult to analyse because the effect of a particular 

association can depend on when it is learnt. 

Hence, from equation (2.2), 
0 

d(w*) = Lctt(w*) L ti(w)J . 	 (2.3) 
t=1 	w=1 
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a2(w)—X+—+— 

	

e2n 

d1 w) 	d2 w) 	 d(w) 

eTnn 

01 	02 	 On 

Figure 2.2: The matrix shows the steps taken in the retrieval of the pattern 
b(w) that was previously stored in association with a(w). For good recall, the 
calculated output b', the result of thresholding the dendritic sum output by 9, 
should closely resemble the desired output b(w). 

Output 
b,(w) 

low high 
Input c a: 
at(w) 1 I -y 

Table 2.1: Local synaptic learning rule. 
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Since the learning rule is locL each unit learns separately. The following 

discussion concerns only one such unit, and the subscript j will be dropped. 

For the given pattern uf, equation (2.3) can be separated into two parts: 

M 0 

d(w*) = L at(W*)/t(W*) + 	at(w) 	 . 	(2.4) 
t=1  

The first of these terms, S( w *), determines the signal for pattern w, and the 

second, N(w*), determines the noise. 

The central limit theorem implies that the dendritic sums d( w*) for both classes 

of patterns (those to which the unit should respond low and high) will be 
approximately Gaussian. Figure 2.1 above gives a possible frequency graph 
showing the distribution of the dendritic sums. The two peaks, corresponding 
to the two classes, are clearly evident, as is the fact that there is no threshold 

o that would not result in either errors of commission or errors of omission, 

or both. To see this last point, observe that no vertical line could be drawn 
that entirely separates the two peaks. As discussed in the introduction, the 
signal/noise ratio (S/N), defined in equation 2.1, is a measure of the average 

potential fidelity of recall for the unit. 

Note also that c, the value contributed by a 'low' input, is a parameter of the 
system. This is to allow an evaluation of certain claims being made about 

how dramatically the {O, 1} model (ie c = 0) outperforms the {-1, 1} model 

(ie c = -1) for sparse patterns. A priori, this seems unlikely, since there is a 

formal equivalence between these two models. To see this, consider at  ( w *) = 

Aat ( w*) + p., where a(w *) E {0, I} are the 'canonical' inputs for a pattern. By 

varyingAand p.itispossibletogenerateanyof thesemodels-eg p. = c,A = 1-c, 

gives the {c, I} model. Then 

Tn  d( w*) = 	ejaj ( w*) 

= A{ etât(w*)}  + p.{ et}. 	 (25) 

where ej are the unit's weights. The p. term is purely additive, and so cannot 

affect the S/N. The A term is multiplicative, but expanding the size of the 
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Gaussian curves for both classes also fails to change the S/N. To see this note 
that although the distance between the means goes up by the multiplicative 
factor, so does the breadth of each of the curves. Operationally, for any given 
value of 9 for, say, the {O, 1 } model, there is some other threshold for, say, the 
{ —1, I} model, which allows the unit to make identical errors. Changing c is 
essentially a formal step. The apparent contradiction between these results 
and those enjoying currency in the physics community will be explored in 
section 2.6. 

2.3 The Ugly, the Bad and the Good 

Under normal circumstances, calculating p. the S/N, is fairly straightforward. 
Having separated the dendritic sum for both low and high patterns into Sig-
nal + Noise, as in equation 2.4, the numerator for p (see equation 2.1) would be 
the expected difference between the signals for the two classes: 

gh - P1 = eh[S(W)] - 

and the denominator would be the average variance of their noises 

+ o) = 	 + Vh[N(w)]). 

where gh  implies that the expectation is taken over those patterns for which the 
output b(w) = h, and similarly for Vh. 

This amounts to making two assumptions: 

Expectation of the noise: that Ei[N( w*)] = 

Variance of the noise: 	that it is this quantity rather than some other 
measure of the spread of the dendritic sums 
that determines the ability of the unit to per-
form its discrimination accurately. 

Neither assumption is true, although it is possible to reconstruct results in 

the literature on the S/N using either or both of them. The following three 
subsections demonstrate the effects of accepting and rejecting them. 
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2.3.1 The Ugly 

Consider a high pattern, Wh.  The signal S(wh) is the contribution due to terms 

&(Wh) for all the input lines and so: 

S(wh) = #1(WK) + c(wh) 

The expectation value of the signal is therefore 

= tn[p5+(1 —p)c]. 

Similarly for a signal w1 for which the value of the unit should be t, 

1[S(w1)] = in[py+(1 —p)ccc] 

Assuming that the expectation of the noise is the same for high and low cases, 

- .t1 = in[p( - -y) + (1 - p)c( - cc)]. 	 (2.6) 

For calculating the noise, there is a lemma that if: 

- J 	with probability a, 
' with probability 1 - a, 

where -1,  and 'I' are random variables, then the variance V of r is 

V[I'] = aV[4] + (1 - a)V[W] + a(1 - a)(e[] - £[ I])2 	(2.7) 

Now consider in equation 2.4, the inner sum in the noise term: 

0-1 

w=1,w0w 

This is made up from contributions from each of 11 —1 patterns, where, for each 

pattern, 

	

{ I 
& with probability r, 	

with probability p, 
y with probability 1 - 

A t( W )  

{

13  with probability r, with probability 1 - p. 
cc with probability I- 
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Output 
&(w) 	 b(w) 

low 	 high 
Input c f—g(1 —r+rc) f—g(1 —r)(1 —c) 
a(w) 1 I 	f — g 

Table 2.2: Optimal 0 1  local synaptic learning rule. 

Applying equation 2.7 twice, the variance of z(w) is: 

	

V[&(w)] = p[r(l - r)(6 - ) 2} + ( 1 - p)[r(l - 	- )2] + 

p(l - p)[ib + (1 - r)y - - (1 - i)cc1 2. (2.8) 

Equation 2.4 involves the sum of #(w) copies weighted by c and #1(W*) 

copies weighted by 1. Under the apparently plausible assumption of indepen-
dence between ai( w *) and i(w), over all the patterns, 

V[N(w*)] = ( 2 - 1)(C2#c (W*) + # i ( W *))V[t. t ( W )], (2.9) 

and making the assumption that the variance for each pattern can be averaged 
over all patterns w would produce 

= m(cl - l)[p + c2(1 —p)]v[1(w)} 	 (210) 
= (c2-1)[p+c2(1 —p)]r(1—r)x 

- y)2  ± ( 1 - p)(13 - cx)2 + [r(6 - - r(13_ cc) + (y - 

The S/N, p, can now be calculated from expressions 2.6 and 2.10. Maximising 
it with respect to cc, 13,  -y and 6 determines the conditions for an optimum. 

Table 2.2 sets out the consequent rule, where 6 has been arbitrarily set to f and 

13 to f - g. The optimal S/N is: 

mu 
Pi = Q —1 T i - r 

which, oddly enough, is correct in the general case, as shown later. 
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For p = r, one of the special cases of the rule is the one quoted by Palm [117], 

= cp 	13 = –41--p) 

= —p 5 = i – p. 

Palm [117] also gives the SINs for two rules which are not, in general, instances 
of the optima. They are: 

Hopfield_ 	 1 	1 The Hopfield rule: 	1 	- - 2(1 - p) 1 - 2p(1 - p 
OC = 	1 	13= – i p=r, c=-1 
-y= –1 	5= 	1 

(This is optimal for p = r = 1/2): 

The Hebb rule: 
ml 	1 

ebb  

c2– ipi P 2  
r—

y= 0  
13=0 
5=1 

p=r, c=O 

Although these results are identical to those in [117], it remains unclear to what 
extent this derivation, and the general expression for the SIN, mirrors that of 
Palm. 

That something is amiss may be appreciated by considering the behaviour of 
p° as p = r - 0. One might expect that the S/N should decrease under 
these circumstances, since the learning rule is incorrectly symmetrical in a(w). 

However, p actually increases. Simulations confirm this point; table 2.3 
shows theoretical and empirical values of p'j° and pr for various values 
of p.2  It is apparent both that the simulations diverge substantially from the 
theoretical expression, Pi,  and that the Hopfield rule does indeed get worse 
for smaller p. The Hebb rule is not optimal for any values of p or r, but it is 
asymptotically optimal for sparse patterns, as p = r - 0. 

Interestingly, Palm actually makes the assumption from the very outset that 
the S/N will be unaffected if all of oc, 13,y, and 5 are multiplied by the same 

2For this and the other simulations in this chapter, the n = 20 units have m = 512 input 
lines and are fed 0 = 200 patterns. Figures are averages over 50 runs. The observed values of 
the variance are based on a unit-by-unit calculation. 
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Hebb rule 

p,r C 

Predicted S/N Actual 
P1P2 P3 S/N 	±cr 

0.5 0 6.9 1.7 0.050 0.10 	± 0.11 
0.4 ö 77 2.8 0.12 0.11 	± 0.090 
0.3 0 9.4 4.6 0.32 0.34 	± 0.15 
0.2 ö i 1.1 1.2 	± 0.47 
0.1 0 26 21 7.7 7.1 	± 1.0 
0.05 0 1 52 47 32 28 	± 18 

Hopfield rule 

p,1.  C 

Predicted S/N Actual 
P1 P2 P3 S/N ±a 

0.5 0.5 Tö Tö 10 11 	± 1.3 
0.5 0 5.1 5.1 10 11 	±1.3 
0.5 -0.5 9.3 9.3 10 11 	± 1.3 
0.5 -1 10 10 10 11 	±1.3 
0.4 -1 Tö 9.5 7.5 8.3 	± 1.5 
0.3 -1 11 7 1.4 1.3 	± 0.40 
0.2 -1 12 4.8 0.25 10.32 ± 0.22 

Table 2.3: Theoretical and empirical values of the S/N for the Hebb and Hopfield 
rules. 
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non-zero number, or if the same number is added to them all. A priori, and, 
as indeed is borne out by simulations, the last invariance is most unlikely to 
hold. If a large enough quantity is added to each element in the rule such that 
all the weight values are large and positive, then the signal which determines 
the classification of a particular pattern as low or high is likely to be entirely 
swamped by the noise due to the uncertainty in the number of the inputs that 
are c or 1. Palm uses this incorrect assumption to reduce the number of free 
variables on which the learning rule depends. 

2.3.2 The Bad 

The first assumption given above was that the expected values of the noise 

obscuring high and low patterns are the same. This is not true, and so the 
difference between the expected value of d( w*)  for high and low patterns cannot 
be taken to be equal to the difference between the expected value of the signal 
S( w *) in the two cases. In equation 2.4, the noise term 

1=1 	1W=1 ' W0W *  

excludes pattern w, and there is a difference between excluding a pattern for 
which b(w*) = h and one for which b(w*) = t. if Arhpatterns have b(w) = h. 
and Art  have b( w*) = 1, so E[.AIh] = 12r and E[iV] = Q(1 -  r), then: 

eh[N(w)] = rnEh [ at ( w*)]6[(AIh _ l)(pô+(1 —p))+Nj(p-y+(1 —p)c)}, 
= ntEI [at ( w*)]e[Arh(p6+(1 —p)3)+(Ai.— 1)(p-y+(l —p)c)]. 

and therefore: 

- ei[N(w*)] = —in[p + c(1 - p)][pó + (1 - 	- py - (1 - p)c]. 

Using this contribution to amend the expression for 	- in equation 2.6 
yields 

= m[ p(—y)+c(1—p0—)- 

(p + c(1 - p))(pb + (1 - p) - py - (1 - p)c)] (2.11) 

= m.p(l —p)(l —c)[(&—y)—(—x)]. 
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Output 
(w) 	 b(w) 

low 	high 

I IInput c h — g'T h_gL 

	

a(w) 1 	h — g 	I 	h 

Table 2.4: Optimal 02  local synaptic learning rule. 

Using 2.11 and the old expression 2.10 for the noise gives: 

	

P2 =
p2(1.-p)2(1-c)2[(&-7)-(f3-c)]2 	 (2.12) 

p(5_y) 2 +(1 -p)(i3- x)2 + 1:? 

1 
where & = —1 (p + c2(1 —p))r(l —r) 

Maximising this with respect to c, 0, y and 5 gives the optimal rule shown in 

Table 2.4, where, for comparison, 6 = h and y = It - g. The optimal S/N is 

now: 

	

in. 	1 	p(I —p)(l —c)2  
02 = cl-1r(1—r) p+c2(1—p) 

p(l —p)(l —c) 2  
=Pi p+c2(1—p) 

This derivation has removed the dependence on c of the learning rule, but 
leaves us free to maximise the S/N with respect to c. The maximum occurs at 

ê = —p/(1 - p), where the average value of each input is zero. Then, 02 = 

Not only is this rule somewhat inelegant, but it also violates two empirical 
principles outlined earlier; the S/N should actually be independent of c, the 
numerical value of a low input, and the rule should not be additively invariant, 

ie it should not be the case that any number can be added to the rule without 

affecting its S/N. Table 2.3 also compares the theoretical P2  and actual SINs for 

the Hebb and Hopfield rules for various values of p= T. it is apparent that P2 

is indeed fallacious. Note again that the Hopfield rule is a special case of the 
optimum for p= r = 1/2 and K = 1, g = 2. 
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2.3.3 The Good 

The first pointer to a resolution of these problems came from the simulations. 
There are two possible ways of calculating the mean dendritic low and high 
dendritic sums; either over the whole set of output units, or on an individual, 
output-unit by output-unit basis. The estimated sample variance will obviously 
depend on which of these is adopted, and should be btwr for the first method 
than for the second. However, under the second assumption, that it is the 
variance of the noise that determines the theoretical discriminabiity, they would 
not differ in the limit of large numbers of inputs. Simulations confirmed that 
this was not the case. 

It was then obvious that it is not enough to calculate the variances of the 
dendritic sums - the correlations between two dendritic sums are important too. 
The analysis based solely on the variance ignores the fact that the efficacies e 
are quenched, ie although they are determined during learning by the statistics 
of the patterns, they are fixed by the time of recall. Also, the units can take 

advantage of this by setting their thresholds independently, each according to 
its own quenched weights. The correlations in the dendritic sums come about 
because the synaptic efficacies are determined by the actual numbers of low and 
high patterns the units have learnt rather than just the mean numbers. 

For instance, using the Hebb rule with {O, 1 } patterns, a unit that happens to 
have learnt a large number of high patterns will tend to have dendritic sums 

that are greater than those for a unit that happens to have learnt only a few. The 
variance analysis for P2  just balances these cases out, whereas it is clear that the 
threshold for a unit of the first type will optimally be larger than the threshold 
for one of the second. 

The following simple didactic example of the effects of correlation between 
noise terms demonstrates the class of phenomenon that occurs. Imagine that 
signals 4(t) E {-1, 1) are corrupted by additive noise (t). There are two 
possible processes generating 4(t): 

g((1—), 0.2),.  and 
-- 
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I 	I 

'0.8 
'I 

0.6 
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Dendntic sum 
	

Dendritic sum 

Distribution under *1 	 Distribution under i4 2  

Figure 23: Distributions under iJ.'i  and 4'2  for 7t = 0.1 1  a = 0.25 - dotted lines 
the low signals, solid lines the high ones. Translation is the only difference. 

where each collection is independent and identically distributed. It is not 
known before the experiment which process will generate the noise; all that is 
known is that 

IT = P[i4is given byili],  and 

1—It = P[4is given by42}. 

Figure 2.3 demonstrates the two possibilities. Rather similarly to the effect of 

changing jt in the analysis of the role played by c (see equation 2.5), the only 
difference between the two cases is that the frequency graphs are shifted with 
respect to each other. The SINs are identical, and indeed an appropriate choice 
of threshold would result in no more and no fewer errors being made. 

However, performing the formal analysis as for P2  gives that 

= 0, and 

V[ij(t)] = 	+( 1_IT)2)+(1_ 7r)( cr2 +) 

o1 + 7t(1 71) .  

But this is clearly an overestimate of the 'operative variance', which is here 
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defined as the expected dispersion of the corrupted signals about their actual 

means, rather than their expected means. So long as the unit can set its own 

threshold according to which of liii  and '2  occurred, this is the appropriate 
quantity to calculate, being the factor that disposes it to err. Its value is obviously 

a2, the individual variance of-both 4'i  and 2• 

In the simple example, the noise terms are correlated, because one choice (based 
on the probability it) determines the distributions for them all. Ignoring this, by 
calculating the true variance rather than the dispersion of the corrupted signals, 
leads to an incorrect measure of how well the unit will be able to do its job of 
discriminating between the two possible classes, 4i(t) = —1 and (t) = 1. 

In the case of the associative memory, this issue is slightly more complicated. 
Here, the distribution of the noise terms is also determined in advance of the 
operation of the unit as a discriminator, in this case by the quenched weight 
values that emerge from the particular set of input/output associations it learns. 

However, the effects of the noise are mediated through the actual {c, 1 } input 
values for the patterns, if 

c= — p  
i — p 

then the expected value of any input is zero. This nullifies any effect from 
the differences between the actual efficacies of the synapses and their expected 
values, which are normally the cause of the whole problem. If c does not take 
this value, then there will be an effect due to the quenching, that Will make 
the variance of the dendritic sums diverge from the dispersion. To re-iterate, it 
is the dispersion rather than the variance that determines the unit's ability to 
discriminate, and so it is the dispersion that is the appropriate measure for the 

S/Ni 

The mean dispersion is defined as: 

s = E 	 [d(w)]2 - (I 
{wlb(w)=h} 

d(w) 
)21 
  , 	(2.13) 

{wlb(w)=h) 

Nh (and H) being the number of w for which b(w) = h(1.). s is defined 

similarly as the expected dispersion for low patterns. Symbolically, 
Dispersion= Variance - Correlation, 
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and it is the interaction of the quenched weights with c that introduces the 

correlations. 

Calculating the expected value of the dispersion explicitly by writing out the 
squares of the sums in equation 2.3 and taking expectations produces: 

S 	MP - p)[(l - 	- 2p)2(5 - 	- 2p(1 - p)(1 - c)2(6 - ,)2] + 

mp(1 - p)e[p(l 
- 

p)(I - C)2(.N'h(6 - )2 + .A4(y - x)2)] + 
mp(1 - p)E[2(l - c)2(1 - 2p)(5 - )(A'4 +A(j,)J + 

mp(l - 	- c)2 (Hh +N)2] 	 (2.14) 

where = p6+ (1 - 	is the average contribution to the synaptic efficacy 
from a high pattern, and ij = py + (1 - p)oc the average contribution from a 

low one. 

For large 0, the last of these terms 

E[(Arh4 +A( ,*)2]  = ur(1 - r)( (o - )2 + 02  (T4 + (1 - r)i)2 	(2.15) 

	

will dominate the noise and swamp the signal unless r4 + ( 1 - 	0. In 

practice this removes the additive degree of freedom in the rules for Pi  and P2, 

ensuring that the average value of the efficacy of a synapse must be 0. The 
component that remains arises from the uncertainty in the values A 1h and A4: 

Ignoring the first terms in s, which are dominated by the terms in and £2 2, 

gives 

ss 
- p)(1 - c)2[ p(1 - p)(r(b - ) 2 + ( 1 - 	- 

— 	— .)2 + cl(r4 + ( 1 - 

= 	lTLf2p(1 - p)(l - c) 2 [ r(1 - r)(p(6 - y)2  + ( 1 - 	- c)2 )+ 
p(l - p)(rb + (1 - r)y 	- ( 1 - 
2(r4 + ( 1 - r)i4)2 ] 

and so: 
- 

P3 - 	p(l -p)[r(&- 	+(i _i)(•y-a)l]+rO .T)[$*]2  +O(r4+( 1 _r)*) 2  

Comparing the form of P3  with that of P2,  it turns out that, excluding the term 

in ç 2, they have the same dependence on oc, , y and 6, but that the dependence 

on c has finally been excised. 
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Output 
L(w) 	 b(w) 

low 	high 
Input C 	pr 	— p(l —r) 
at(w) 1 —(l—p)r (1—p)(l—r) 

Table 2.5: Optimal 03 local synaptic learning rule. 

Maximising with respect to x, 13, y and 5, the optimal rule is just as for P2  apart 
from the important constraint that r + (1 - 0. This gives one true 
optimum: 

The Covariance rule RI: 
OC = 	PT 

= —(1—p)r 
13 = 	—P(1 T) 	

Cortaz_ 	
1 

5 = (l—p)(l—r) P3 	0 T1-T 

Two other sub-optimal rules have previously been proposed (see the next 
section for a discussion). As Alessandro Treves has pointed out (personal 
communication), our original classification in [1711 of them as being locally 
optimal was incorrect. In fact, they are not even optimal under the additional 
condition that oc = 0. They are: 

The Heterosynaptic rule RI: 

=0 13= 	—p 

.Y=O S=l — p 
pro 

The Homosynaptic rule R3: 

= 0 13= 	0 
-y=—r 5=1—i- 

mo 
- MI  1 - P 

plO 

__i- 

Table 2.5 gives the covariance rule 03  for comparison with the others. 

- 

Table 2.3 shows the dose agreement between the theoretical prediction, p, of the 
S/N and the empirical result for the Hebb and Hopfield rules. Table 2.6 shows 
the theoretical S/N for the optimal, sub-optimal, and the Hebb and Hopfield 
rules for various values of p = r, based on p. The Hopfield rule is optimal for 
p = r = 1/2, but rapidly tails off as the patterns get more sparse. Even though 
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Signal/NoiseRatios for 
p,r f RI, R3 Hebb Hopfield 
0.5 10 5.1 0.050 10 
0.4 11 6.4 0.12 7.5 
0.3 TT _85 0.32 1.4 
0.2 16 13 1.1 0.25 
0.1 128 	1 26 	17.7 0.045 
0.05154 1 51 	132 0.015 

Table 2.6: Theoretical P3  predictions of the S/N for the optimal (Ri), sub-optimal 
(RI and R3), Hebb, and Hopfleld rules for various values of p = r. Note that 
R2 and R3 are very close to Ri as the sparsity increases, but the Hebb rule is 
significantly worse. 

the Hebb rule is asymptotically optimal as p gets small, it is significantly worse 
than all three optima even for quite tiny but finite values. 

2.4 The Optimal and Sub-Optimal Rules 

The optimal and two sub-optimal rules in the previous section can be identified 
with ones suggested in various places in the literature. The covariance rule was 
originally proposed by Sejnowski [138,139], and has since been widely used in 
connectionist systems. For instance, the Hopfleld rule [167,63] is a special case 
of it when p = T = 1/2. In fact, in the physics models, [155, 21, 120] discussed 
in section 2.6, it is taken as read. The motivation behind it is even clearer from 
the equivalent form 

L(w) c (a(w) - d)(b(w) - i). 

where d is the average value of an input (p + (1 - p)c) and is the average 
value of an output. 

Note that if the environment were stochastic - ie the unit had to work out 
from a number of presentations of an input pattern with contradictory output 
information whether or not it should fire, then this term is no longer optimal. 
This case is treated in the next chapter. None of the P3  rules described is 
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biologically plausible, for reasons discussed below, but p' is particularly 

difficult to justify because x> 0. ct is the change in efficacy of a synapse in 
the absence of either pre- or post-synaptic activity. One could imagine some 
form of decay process, which would tend to eliminate unused synapses, but 
for the efficacy actually to rise is counterintuitive. ct's 'role' is to keep the 
expected value of a synapse zero, which is the non-additivity condition that 
Palm ignored. 

Various parts of the brain show synaptic plasticity,including the visual system 

(during development), the cerebellum and the hippocampus. Different under-
lying mechanisms are believed to be responsible — for instance the analogue 
of long term potentiation (LTP) in the hippocampus seems to be long term de-
pression (LTD) in the cerebellum [66] - and the extent to which the plasticity 
is merely an artefact of the procedure is also in doubt. The hetero- and homo-
synaptic rules are so called because of their similarities with the eponymous 
biological rules for LTD. Heterosynaptic LTD has been known about for some 
time in various parts of the brain, and a theoretical rule like this has been sug-

gested by Stent [1461, Singer [141], and others. The evidence for homosynaptic 
LTD in the hippocampus is rather more recent [145], and disputes remain about 
its reality and properties. Bienenstock, Cooper and Munro [141 made an early 
proposal along the lines of the homosynaptic rule for plasticity in the visual 
system.3  

Both the hetero- and homo-synaptic rules perform worse than the covariance 
rule; p70  by a factor 1 - r, and piou%)  by a factor 1 - p. However, since the regime 
in which any of the rules work well is where the patterns are sparse (ie p and 
T are small), these factors are relatively small. The nervous system is known to 
employ sparse coding. For p = r, p ° and  p°°  are equal. The homosynaptic 
rule has also been used for connectionist systems, such as Kanerva's sparse 
distributed memory (SDM) [72]. The original version of SDM only considers 
patterns with T = 1/2, and for it to be used optimally with different activity 
ratios, the analysis here would suggest that the equivalents of y and 5 ought to 

be suitably juggled. 

Note that the optimal rule under the additional condition that cc =0 specifies decreases in 
efficacy under both hetem- and homo-synaptic conditions. The latter are an order of magnitude 
greater than the former for sparse patterns. 
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One notable feature of all the rules is that for sparse patterns, the absolute value 
of the increment b is an order of magnitude larger than the decrements 0 or y. 

If this were also true of the real rules, it would make LTD significantly more 
difficult to detect than LTR This would require careful experimental design, 
to ensure the frequency of non-stimulation of input and output fibres was 

sufficiently high. 

All the rules involve both increases and decreases in synaptic efficacy. Unfortu-

nately for their biological relevance, they also require the synapse to take both 
positive and negative values. The whole scheme works by ensuring that the 

expected value of every change to a synapse is zero - otherwise the 01  factor 

lurking in equation 2.15 will swamp the signal entirely. Dale's law, that almost 
no synapse can change its spots from being excitatory to inhibitory, or vice-versa, 
has the status almost of a theoretical pons asinorum - one that these rules cannot 
cross. The obvious solution to this, which is adopted in the Hancock, Smith and 
Phillips [54] paper discussed in section 2.7, is to regard each unit as a composite 
of two mutually inhibiting units; one which sums up the excitatory inputs, and 
the other which sums up the inhibitory ones. For this to work in practice, there 
would have to be a high degree of anatomical specificity in connections and 

connection types, for which there is no evidence. 

A further problem with these rules is that they ignore the crucial role of time 
in the learning, and they rely too heavily on the convenient availability of the 
b patterns with which inputs are associated. it is ironic that the hippocampus 
is one of the main regions in which the 'static' phenomena of UP and LTD are 
studied, since it is known to be important for a variety of temporal tasks such 
as delayed matching or non-matching to sample [44]. Any model of learning, 
such as these, that allows no temporal influence, is unlikely to be very accurate. 
However, even given these constraints, and the added fact of the highly complex 

time-course of real UP [127], the model does provide a theoretical maximum 
discriminability for any associative memory built along these lines. 
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2.5 Threshold Setting 

As seen above, the SIN is a threshold-independent measure of the quality 
of the unit. The unit is susceptible to the two types of error (commission and 
omission) and the threshold can be set optimally according to how each of these 
is weighed. Essentially the problem reduces to the standard statistical one of 

class discrimination [36] with so called 'Type 1' and 'Type 2' errors. As an 
example, consider the problem of minimising the probability of the unit erring, 

given that the two distributions are distributed as Gaussians with a common 

variance, c(L, cr2 ) and cr2) respectively, and with the relative frequencies 
of low and high patterns being (1 - r) T. This is a fair approximation, as 
discussed above. Then, for a threshold 8, the overall probability of a mis-

classification is 

	

- 1.JO00 	(z_1) 2 	1• 	(x_)2 

= 	e la' dx + 	J 
e 2o' dx 

where the first term is the probability of getting a low pattern wrong and the 

second is the probability of misclassifying a high one. 

Differentiating PM  with respect to 8 gives 
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where p is the S/N. This makes intuitive sense since limo O = +, ie if 

virtually every pattern is low, the threshold will be large and positive, and so 

almost every pattern will be classed as a low. Equivalently, lim+i O = — 00, 

which arranges for the opposite effect. Note also that the larger the S/N, the 
smaller the effect of any difference between the two frequencies. 

Table 2.7 shows the result of using the Hopfield rule in conjunction with this 
threshold for various values of p = r, demonstrating the close agreement be-
tween theory and simulation. Recall that this rule is only optimal (as an example 

of Ri) for p = r = 1/2. The normal criterion adopted for the Wilishaw associa-
tive net [167] is that the expected number of errors across all the outputs should 
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Hofield rule 

p,r c 
Expect - Actual Expect Actual 
S/N S/N ± a Errors Errors 

0.5 1 —1 110 11 	±1.3 1.1 1.1 
0.4 T 7.5 8.3 	± 1.5 1.7 1.6 
0.3 T 1.4 1 0.25 

1.3 	± 0.40 4.6 45 
0.2 T 0.32 	± 0.22 14.0 4.2 

Table 2.7: Using threshold Ô, the expected and actual numbers of errors across 
ii. = 20 output lines. 

be 1. Since the expected number of errors rises with the number of output units, 
achieving this criterion for a network of units requires a higher S/N than for a 
single output unit; either there will need to be more input lines, or more sparse 
patterns must be used, or else fewer patterns can be stored to the same accuracy. 

One interesting feature of table 2.7 is that the expected and actual number of 

errors both decrease between p = 0.3 and p = 0.2, despite the fact that the S/N 

also decreases, and so the unit might be expected to behave less well This is 
because the expected error rate using the above threshold is 

(— 
2 	V/-P I -T) 	 2 	~,fp-  I - T 

where (x) is the area up to x under a standard Gaussian curve. Figure 2.4 
plots this as a function of r and p, and it is apparent that for small S/N, the unit 
will be expected to make more errors for values of r away from 0 and 1, even 
at the same S/N. An intuitive feel for this is given by the observation that the 

maximum error rate is bounded by min{r, 1 - r}, as the threshold could be set 

at 00 or -CO. Note the waxing and waning bimodality of this function. 

All this analysis is based on the assumption that each unit can set its own 

threshold. Section 2.3 showed that this is only necessary when c 54 -p1(1 
- 

as otherwise the average value of any input is zero, and so the quenching of 
the weights cannot affect the overall positioning of the two distributions. This 

is true for the standard Hopfleld rule (p = r = 0.5, c = —1), but not for any 

10, 1 } version of the Hebb rule. Also, the effect of the different values of c is 

not confined to this particular model of associative memory. Buckingham's [20] 
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Figure 2.4: Expected error rates using the optimal threshold as a function of r 
and the S/N. 

work, following Marr's model of the hippocampus [93],  on sparsely connected 
Wilishaw nets, shows exactly the same phenomenon, and indeed its extinction 
when this particular value of c is used. Marr was apparently not aware of this 
effect. 

2.6 Physics Models 

The physics connectionist community became interested in exactly the sort of 
issues aired in this chapter, at about the same time as Palm was introducing 
his model. They were essentially responding to the poor performance of the 
Hopfleld learning rule (oc = 5 = 1, 0 = y = — 1) for values of p and T (which 
are simply related to a quantity called the magnetisation) other than 1/2. The 
first papers were by Tsodyks and Feigel'man [155] and Buhmann, Divko, and 
Schulten [211, who studied the case of asymptotic sparsity p = r -p 0, fol-
lowed by Perez-Vincente and Amit [120], who published on the case of general 
p = r. Another important contribution came from Gardner [46], who showed 
how many patterns any such network can store, and how this depends on the 
magnetisation. 



CHAPTER 2. OPTIMAL PLASTICITY 	 50 

Having assumed a covariance rule, Tsodyks and Feigel'man claimed that 

It should be borne in mind that the "old" theories of associative 
memory were formulated in terms of the [{O, 1 }] model, which seems 
to be most natural. Then, however, it was replaced by the [{-1, 1)] 
model without careful analysis of their equivalence. The results of 
our paper give rise to an amazing conclusion that in some cases such 
"obvious" simplification may drastically affect the performance of 
the neural networks. [155]-p105 

However, section 2.3 showed that changing the value of c from 0 to —1, which is 

equivalent to changing from the 10, I} to the { —1,1 } model, makes no difference 
in the Palm model to the ability of the unit to discriminate between low and high 
patterns. There is thus something rather uncertain about any such remarkable 
performance in terms of the number of patterns the unit can store. Also, note 
that the mere number of patterns is not necessarily the appropriate way to 
judge a learning rule. Sparse patterns inherently contain less information than 

dense ones (there is less uncertainty as any element is more likely to be a 0), so 
storing more of them may not increase the informational efficiency. Gardner [461 
showed just this - although as p = r - 0, the theoretical maximum increases 
without bound of the number of potentially retrievable patterns that can be 
stored, the total information stored by the network actually decreases whatever 

the learning rule. 

Perez-Vmcente and Amit also assume a covariance rule, and conclude that, in 
the notation of this paper, the variance of the noise is (Amit, personal commu-

nication) 

02 = {p(6 - .)2 + ( 1 - 	- 0c)2 + ':     

that the S/N is essentially p2,  and that it is essential to take c = —p1(1 - p). 
This also seems to contradict the findings above. 

Three possibilities for explaining this divergence spring to mind; the difference 
between heteroassodative and autoassociative nets or between S/N and mean 
field analyses, or the non-isomorphism of the underlying models. Although 
Palm's model is heteroassociative, and the physics models autoassociative, it 
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turns out that this should make no difference so long as the 'identity' synapses, 
ie the diagonal terms in the connection matrix, are absent. In the S/N analysis, 
they introduce correlations that swamp out all the contributions from the other 
synapses, whereas for autoassociation their absence is also required for there to 
be an energy function describing the trajectory of the system as it stabilises to a 
memory. 

S/N studies are generally used as a preliminary to the more exact mean field 
analyses, and also to confirm their results. The mean field analysis itself is only 
true in the limit of very many inputs, whereas the S/N can be calculated for 
finite systems. An example of where this might be important is the threshold; 
in the limit, the two distributions shown in figure 2.1 are either infinitely far 

apart or totally indistinguishable, and so the threshold is essentially irrelevant. 
This turns out to be the case for the mean field analysis too, but is obviously not 
true for any finite system. 

As became evident in a series of discussions with David Wilishaw and Daniel 
Amit, the results really differ because the models do too. The three physics 
papers mentioned above, apart from Gardner's, all consider the effects of in-
putting one pattern into a whole set of output units, each of which has learnt its 
own associations independently of the others, but is entrained to have the same 
threshold as all the others. The Palm model considers the effects of inputting 
many patterns into a single output unit. The rationale behind this is that there 
is no necessary connection between one unit and the next, and so no a priori 
reason to tie the threshold for one unit to that of another. The S/N measures 
the theoretical capability of a single unit to discriminate between its output, not 
the capability of some 'average' unit, which, in principle, cannot exist. 

This difference between the models explains the divergence of the results. 
Lumping together a whole set of output units forces one to measure the variance 
rather than the dispersion of the dendritic sums, and so to ignore the helpful 
correlations between them which would be evident for any single unit in isola-
tion. Setting c = —p/(l - p), the 'optimum' identified by Perez-Vincente and 
Amit, eliminates the helpful correlations, and so makes the Palm and physics 
models perform equally well. Likewise, a common threshold can be set across 

all the units, determined only by the statistics of the associations, rather than 
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their actual values. The 'amazing conclusion' has been reduced to something 
more mundane. Equivalently, it is well known that the 10, 11 model can appar-
ently store roughly half as many patterns as the { —1, I} model in the standard 
Hopfield case (where p = = 1/2), but again this is almost an artifact. 

Furthermore, the original Wilishaw net [167] uses the same threshold for all the 

units, namely the number of on bits in the input. This is again due to its rather 
anomalous form. 

Tsodyks and Feigel'man analyse the case in which p -p 0. For this case, the 
results here would predict the optimal value of c to be —p/(l - p), which also 
tends to 0. As seen in the quotation, they actually use 10, 1 } patterns, which are 
only asymptotically optimal, but find that this is adequate given the particular 
manner in which the limit is approached. 

Interestingly, Gardner used the Palm model for her analysis. She therefore 
also treats the threshold in a different manner from Perez-Vincente and Amit, 
not needing to introduce it in the first instance. This allowed her rather more 
elegant results. 

2.7 Further Developments 

This work is being extended in two main directions. As mentioned above, 
Buckingham and Willshaw [169, 201 are applying similar methods to Marr's 
model of the hippocampus [93],  and Hancock, Smith, and Phillips [54] have 
developed an error-correcting version of it based on a biological learning rule 
suggested for the visual cortex by Artola, Bröcher, and Singer [4]. 

Marr's was the first, and is still the most complete, model of the hippocampus. 
Although it willfully ignores neuroanatomical and neurophysiological detail 

that was known in his day [169], Marr's analysis indicates quite precisely both 
how and for what inputs and outputs it should work, and how and why it 
should fail. The model specifies a three-layer associative net, with the deepest 
layer being autoassociative, and the others heteroassociative. The process of 
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recall is for a (possibly noisy) pattern to be presented to the first layer, for it to be 
processed by the second layer, and fed through to the third layer, which would 
remove any errors and fill in any gaps through its iterative process. Each layer 
is just like the Wilishaw net, with binary synapses that remain blown when once 

blown. However, they are only sparsely connected, and there are no explicit b 
patterns for training. Instead, some unspecified competitive process generates 
the targets. 

The interest in Marr's proposal really lies in the sparse connecfivity. As men-
tioned above, for a fully connected Wilishaw net with patterns with a fixed 
number of inputs set to 1 (rather than having this number determined randomly 
based on probability p, as in the Palm model) the distribution of dendritic sums 
for the high patterns is anomalous, being just a single spike. Once the network 
is sparsely connected though, ie some of the synapses are missing, this upper 
distribution becomes approximately Gaussian. However, unlike figure 2.1, the 
variances of the two distributions will not generally be the same. 

The key point that Marr missed is that the quenching of the weights after 
presentation of the associations leads to important correlations in the dendritic 
sums, just as in the Palm model. This affects the settings of the thresholds, an 
issue which Marr anyway rather sidestepped. Just as in the previous sections; 
the system can perform far better if each unit can set its own threshold based 
on the patterns it alone has learnt. Once again, setting c = —p/(1 - p) would 
statistically eliminate this but this option was not open to Marr, since he used 

the {O, I} model. Buckingham [20] has confirmed this, and has developed ways 
of setting thresholds in this sparse case. 

Marr allowed a more complicated threshold mechanism than the one discussed 
above. He assumed that each unit could measure not only the dendritic sum 
due to an input, but also the total activity impinging on it from that input. This 
information is provided by a biologically unrealistic feed-forward inhibitory 
mechanism. In the case of binary patterns and weights and sparse coding, this 
is useful, since it allows the unit to estimate more accurately the likelihood that 
it has learnt something like the input pattern, based on the fraction of active 
synapses have been modified. There is no simple analogue of this for the case 
of real valued inputs and synapses. 
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Synaptic change 

ic sum 

Lower threshold 
threshold 

Figure 25: Hancock, Smith and Phillips' synaptic learning rule. 

One other possible criterion for setting the threshold is the information content 
of the output. Following [105], the entropy of the output has two contributions; 
a positive one 

—rinr — (l —r)ln(1 -T) 

from the initial uncertainty in whether an output is on or off, and a negative one 
arising from the possibility that the unit might err. The threshold appears in this 
last term, and an optimal value for it can be found through differentiation. In 
this case, for sparse patterns, there is a penalty incurred for setting the threshold 
towards +00 (to reduce the number of errors amongst the more numerous 
lows), as a substantial fraction of the information would be lost if the system 
underestimates the (small) number of highs. 

Artola, Bröcher and Singer [4] found a learning rule in the development of visual 
cortex which specifies the heterosynaptic changes in synaptic efficacy shown in 
figure 2.5. For very low dendritic sums, below the lower threshold, no synapses 
change; for very large dendritic sums, above the upper threshold, the efficacies 

of activated synapses increase, whereas for sums of an intermediate size, the 
efficacies of activated synapses decrease. Hancock, Smith and Phillips speculate 
that this can execute a simple form of heterosynaptic error correction. 

Imagine that the training signal is delivered to the output units in the form of a 
large depolarisation (ie a large positive contribution to the dendritic sum). Then 
imagine presenting an input pattern to one unit that should and one that should 
not fire. For the former, the teaching depolarisation is supposed to be sufficient 
to force the changes to the synaptic efficacies to be in the positive region of 
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Figure 2.6: Effect of the Hancock, Smith and Phillips learning rule on the 
distribution of the lows. 

figure 2.5. This will increase the likelihood that the unit will fire in response to 
a subsequent presentation of the input pattern, this time without the teaching 

signal. For the unit that should not fire, there are two choices. if it is only 

barely excited (ie it has a low dendritic sum), then there will be no change in the 

efficacy of any synapse. If, however, it is slightly more excited, so the dendritic 
sum is in the middle region of figure 2.5, then the efficacies of all activated 
synapses will actually decrease, making the unit less likely to respond to that 
particular input pattern in the future. Figure 2.6 shows how the frequency 
graph of dendritic sums will change from the original in figure 2.1. The marked 
skew in the distribution of the lows aids the unit's powers of discrimination. 

Note that it also invalidates the use of the S/N, as one of the curves is no longer 

approximately Gaussian. 

The rule implements a form of error correction, because it is differentially sen-
sitive to false firing. it is not complete error correction, since it is not sensitive 
to correct firing, and will continue to increase the efficacies of synapses even 
when the unit is performing perfectly. Hancock, Smith and Phillips present 
results to show how well it outperforms the covariance rule, but they only 
present the patterns a few times, and so would not run into this problem. They 
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Figure 2.7: Distributions of the paired Hancock, Smith and Phillips learning 
rule. 

also claim (personal communication) that it works very much faster than back-
propagation [160, 118, 131, 821, since its underlying associative nature allows 
it to get the weights vector approximately correct very quickly, before its error 
correcting aspect takes over to perfect the memorisation. 

This rule still requires synapses to be alternately excitatory and inhibitory, which 
was one reason for concern as to the biological plausibility of the previous 
optimal rules. In an attempt to improve on this, Hancock, Smith and Phillips 

considered the paired architecture, discussed above, in which two mutually 
inhibiting units combine to have the effect of one. If both units adopt the 
error-correcting learning rule, the resulting frequency distributions of dendritic 
sums will look rather like those in figure 2.7. This improves the performance 
of the rule still further, because both the curves are skewed. Unfortunately, the 
required degree of specificity is extremely unlikely to occur naturally. 
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2.8 Conclusions 

Adopting the criterion of maximising the signal/noise ratio (S/N) for a class 
of very simple associative matrix memories, leads to one optimal, and two 
sub-optimal learning rules. Each of these, a covariance, a heterosynaptic, and a 
homosynaptic rule, has previously been proposed, but they have not previously 
been analysed in a common fashion. The covariance rule performs better than 
the other two, but only negligibly so in the limit of sparse coding. Unlike the 
other two rules, it also requires synapses to increase in efficacy even if their pre-

and post-synaptic units are silent. All the rules have the automatic consequence 

that the average value of a synapse should be zero, to suppress noise, and so 
require synapses to take both positive and negative values. The threshold may 
be set according to an additional criterion, such as minimising the probability 
of an error, but certain of these criteria may not be monotonic in the S/N. 

The rules here, and the lack of dependency of the S/N on the input values for 
patterns, differ from previous analyses. Some of these analyses are incorrect, 
ignoring vital correlations in the noise terms. Other analyses are correct, but 
are based on a different model. The key characteristic discussed here is that 
each unit is evaluated independently, and so can set its own threshold to allow 
for its particular quenched weights. Other analyses have lumped collections 
of output units together, and awarded them the same thresholds. This reduces 
the apparent quality of the memory quite markedly, unless one particular rela-
tionship holds between the high and low values of the input patterns. In that 
case they perform identically. 

Deliberately, neither the model, nor the rules it suggests are biologically plau-
sible - of particular concern is their violation of Dale's law. The models are 
suggestive though, as in the difference of an order of magnitude between the 

effects of LIP and LTD. Natural processing is by no means constrained to 
follow an optimal path, but it is nevertheless instructive to understand the con-
sequences of suggested synaptic mechanisms, as providing theoretical limits to 
performance. 



Chapter 3 

Reinforcement Comparison 

The reason we try that hard to keep up with the Jones is because they are so accurately 
the reflection of ourselves. 

A Smith 

3.0 Summary 

In this chapter, efficient rules for a second type of learning scheme, reinforce-
ment learning, are examined. Sutton [147] introduced a reinforcement compar-
ison term into the equations governing the development of certain stochastic 

learning automata, the traditional mechanisms addressing this scheme. He 
argued that it should speed up learning, particularly for unbalanced reinforce-

ment tasks. Williams' subsequent extensions [165] to the class of algorithms 
demonstrated that they were all performing approximate on-line, stochastic, 

gradient ascent, but that, in terms of expectations, the comparison term has no 
first order effect. 

This chapter analyses the second order contribution, and uses the criterion 
that its modulus should be minimised to determine an optimal value for the 
comparison term. This value turns out to be different from the one Sutton used, 
and simulations confirm its efficacy. 
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3.1 Introduction 

For most purposes, reinforcement learning is defined operationally, in terms 
of the nature of the judgement visited by the environment on the output of a 

learning system. For the case of supervised learning, as seen in the previous 

chapter on associative memories, the system is told which response it should 
make (the b patterns) to which input. In reinforcement learning, though, it 
is only given some reward, which at most may indicate whether or not it 
was correct. Reinforcement learning therefore appears to be more general. 
However, as Mackintosh [88] points out in his discussion about the differences 
between classical and instrumental conditioning, the system need not be quite 
so entrained to the experimenter's view. 

For only two outputs (and, strictly, two possible rewards), Barto and Sutton 
[9] pointed out that the information provided by the environment is essentially 
the same for both reinforcement learning and the supervised associative learn-
ing described in the previous chapter. Unlike the cases studied there, though, 
reinforcement learning systems (equivalently stochastic learning automata) al-
most always operate in stochastic environments. Although these systems also 
build weight matrices that determine which outputs their units associate with 
which inputs, they have to sample the statistics of the environment rather than 
becoming set on the first sight of a pattern. For the associative memories, there 
was a tacit assumption of some training or 'now-(im)print' signal that selects 
between storage and retrieval. 

That such reinforcement learning systems depend on their input makes them 
associative, an extension to the traditional range of stochastic learning automata 
due to Barto and Sutton [9, 7, 1471. Albeit with some interesting anomalies, 
animals are capable of learning under stochastic classical and instrumental 
conditioning paradigms [31,88]. The question addressed here is which learning 
rules make the systems learn more accurately and faster. Signal to noise analysis 
is no longer appropriate as a way of judging the rules, because the 'correct' 

output value can only be determined by sampling. An alternative criterion 
is adopted which judges the rules on how much they increase the expected 
amount of reinforcement. 
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Sutton [147] introduced the notion of reinforcement prediction as a way of 
speeding up the learning of a class of stochastic learning automata. Most pre-
vious methods made assumptions about the independence of the learning of 
the automata from all aspects of their reinforcement history that were not 'com-
piled' into their current action probabilities. This is a particular kind of Markov 

property which makes analysis more straightforward, since it obviates the need• 
for handling different possible histories. Sutton reasoned that comparing the 
amount of reinforcement a system has just received with some function of its 
frequency of delivery in the past, might be helpful for determining whether or 
not its actions were making things worse or better. He expected particular util-
ity for such comparisons in the difficult cases in which reinforcement delivery is 
unbalanced - for instance when all actions tend to be rewarded or all punished. 

Williams [165] analysed a related set of algorithms, which includes Sutton's, 
and demonstrated that they all perform on-line stochastic gradient ascent in 
the expected amount of reinforcement. The surprising part of this paper is 
that, for the case treated by Sutton, the comparison term may be eliminated 
from the analysis at an early stage. The result on stochastic gradient ascent 
is unaffected by its value. Sutton's simulations, however, demonstrated that 
different comparison terms perform very differently. 

Williams essentially looked at the first order term in the Taylor expansion of 
the function that relates expected reinforcement to the weights determining the 
probability of performing the actions. Since the comparison term vanishes to 
first order, it is essential to examine higher order terms to detect its effects. 
Second order analysis might reveal a role for it, and, potentially, an optimal 
value. 

The next section looks at Williams' theory,and the derivation of the optimal 
second-order comparison term, section 3.3 compares the empirical performance 
of the new term with that of the old one, and section 3.4 considers recent 
developments in the field of associative reinforcement learning. 
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3.2 Theory 

3.2.1 Williams' Analysis 

Williams treats a very general problem. At any time, each of a collection of 
TL units receives an input X E RP , 1 < i. < it from some environment, and 
uses its weight vector wt E W' to determine whether to fire or not; ih = 1 or 
vt = 0 respectively. Before it chooses its actions, and before the environment 
evaluates the combined set of actions, every unit also chooses a reinforcement 
comparison value bti , 1 < t < it, 1 < i :5 p, for each component of each weight. 
The environment returns a global reinforcement value r that is stochastically 
related to the quality of the actions of the units, and each unit then updates 
its weight vector according to the reinforcement, its chosen action, and its 
reinforcement comparison values. 

A simple example of such a reinforcement learning system is the two armed 
bandit problem, which will be discussed later. For this, the automaton has no 
inputs, but chooses, stochastically on the basis of a stored weight, to pull either 
the left arm (y = 0) of the bandit or the right arm (Y = 1). The machine delivers 
reinforcement of r = ± 1 with different probabilities for the two arms, and the 
automaton has to learn, by changing the weight, which arm it is best to pull. 

More formally, Williams proves that if: 

Awij = 	- bt; )e, 	 (3.1) 

where, 

T is the reinforcement (E ), 

ocij is the learning rate parameter for w13 , 

bij  are reinforcement baselines, which are conditionally independent of 
the actions Vi given the weights W [wi] [w] and the inputs xi, 



CHAPTER 3. REINFORCEMENT COMPARISON 	 62 

g(L,, wt,xt) = 	= 	is the probability the j.th  unit emits action 
& given its weights Wi  and its input x'. 

ejj = 	 is the so-called eligibility of the weight 
a measure of how influential it was 

in choosing the action, 

then: 

[r WJ 
[wt  1W] = 	

6E
. 	 (3.2) bwjj 

where W is the matrix of all wt. 

One attractive feature of Williams' analysis is the way in which he teases apart 
the rule and the representation. This arises from the form of his eligibility 
term e1;, which incorporates the latter automatically through the process of 
differentiation. Were a different representation or a different activation function 
to be adopted, then eij would depend differently on x and W, but the properties 
of the underlying rule would not change. 

Equation 3.2 implies that these algorithms are all performing stochastic gradient 
ascent in an averaged sense. The dependence on the values of the b ij  drops out 
at an early stage, since: 

= 	 [t = tIwt,xu] 
b  

{nP [Yt = &t ;wt,xt}} 

 ocijbij- 
- 	_____________ 

i  = wi,xi] 5wij { [ = 

= otijbij 5 
 ij 

=aijbij 	{1} 

=0. 

However, looking at equation 3.1, it is apparent that changing the b ij  is likely to 
affect at very least the stability of the algorithm. Consider what would happen 

if bij  were large and positive; Awij would also tend to be large, but alternately 
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positive and negative, based on the sign of eii . Therefore, although Williams' 
proof guarantees that the average behaviour will be suitable, it can provide no 
such comforting assurance about the particular behaviour that will be observed. 
Sutton [147] empirically compared his algorithm with existing ones, and found 
faster convergence across a range of problems for b ij  as estimators of the average 
amount of reinforcement received, than for b, = 0. 

3.2.2 The Second Order Term 

Unfortunately, treating higher order terms at the same level of generality as 
Williams is not fruitful. Consider instead one of the simpler cases that Sutton 
takes: there is just one unit, weights w, inputs xi, reinforcement r, and: 

AWi = x(r - b)(y - 

where 7t = E[y Ix, w]. b can depend on x and w, but not on the output y. Note 
that in general 

(y - 71)Xi  0 	{ln P [j = 1 1w, x]} 

as required for this analysis. However, as Williams points out, it is proportional 
when 

1 
(3.3) 1 + e.wx 

In any case, as shown below, e [w1  1w, x] still does not depend on b. 

A rather different way of looking at his result is through the Taylor expansion 
of E[r' 1w, x], using the prime ' to indicate that it is the expected value of the 

reinforcement that will be received at the next time step, just given the statistics 
of the possible happenings at the current time step. 

e[r'Iw,x] = E[rlw] + + 6w 

ii 	
+.... 	(3.4) 

Williams deals with the first order term, showing that the first term in the prod- 
uct is proportional to the second, and that b makes no contribution whatsoever.  
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Just as above, 

	

5e[rlw] 	5I[rlw] 
- 7t)XIw,x] 

Sw• 	
= cxi, 	xe [y - E[jfw,x]w,x] 

1 	 j• 	oWt 

=0. 

because E [i - Eftw,xw,x] = 0. 

Setting .F(z) = E[rlz], the second order term is: 

	

XtXj 2  P[V = 	= pI&,x](p - b)2(& - f) 2 . 	(35) 
ii w t  'vv 

Note that the inner sum does not depend on the value of torj. This is a positive 
quadratic in b, and differentiating to find the value, , at which it is a minimum 
gives: 

P[y = 	= 	- it) 2  

E.,p 

- E[r(j —7r) 2  1w, x] 

	

 
- 	V[ylw,x] 

However, y can only take on two values; 0 or 1. Let p be the probability that 
= 1, and ro and Ti be the expected rewards for choosing actions 0 and 1 

respectively, so 

P = 
= e[rft,=0,w,x], 

ri = E[Tft=l,w,x]. 

Then it = p, and 
- p(l —p) 2 ri +(1 —p)p 2ro 
- 	p(l — p) 
= (1 —p)ri +PTo. 

in which, counterintuitively, the expected reward for emitting action 1 is paired 
with the probability of emitting action 0, and vice-versa. Williams (personal com-
munication) derived the same expression for 1 on the grounds of minimising 
the variance of the 

The reinforcement comparison algorithm favoured by Sutton involves teaching 
an extra unit to predict the future reinforcement level. He defines s = v1x1, 

where v are the prediction weights. These are changed according to: 

AVj = 	- S)Xt. 
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This makes s an estimator of sorts of e[rlw, x], or b*,  where: 

b* = PT1 +(1 —p)r0. 

which, a priori, is the more natural pairing. Symbolically, the rule that results 
from Sutton's expression has 

Awi = cx(r - 	- 

where F b is the long term average of the reinforcement, and J it is the 
expected value of the action y. This is just the equivalent of the covariance rule 
Ri from chapter 2 (see table 2.5), which was seen there to be optimal in the 
associative memory case. 

The difference here lies in the ( - 7t)2  contribution in equation 3.5 - if this were 
not there, then the optimal value of b would indeed be E[rjw, x]. However, 
the weight change rule would not work properly without it, as, amongst other 
things, it cures the imbalance caused by the agent choosing one action more 
frequently than the other. 

3.2.3 Choosing b 

Although minimises the inner sum in the second order term of equation 3.5, 
it is not yet clear that this is appropriate. Indeed, Williams, who also derived , 
decided that minimising the variance of the Aw i, which was his modus operandi, 

was unwise. He reasoned that one of the contributions to this variance arises 
from the weight change being of the correct sign, but being possibly either 
small or large. It would be most unwise to minimise this contribution through 
introducing 1, if it were at the expense of forcing some of the changes to be of 
the wrong sign. 

The derivation above, however, provides a different reason for choosing & 
This is particularly clear in the one dimensional case. Since the reinforcement is 
bounded both above and below, the second derivative 2 /5w2  in equation 3.5 
is likely to be positive for some values of w and negative for others. Since the 
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optimal weight is either ±00,1 according as the optimal action is 0 or 1, the 
contribution from this term is bound both to speed and hinder the learning 
on occasion. Setting b = minimises, the second half of equation 3.5, and so 
minimises both the harmful and helpful contributions of this term. 

Another way to look at this is that gradient ascent works perfectly on linear 
functions - whose second and higher order derivatives are all zero. Under 
the assumption that the significance of the derivatives decreases with order, 
choosing to minimise the contribution of the second, makes the function 'as 
linear as possible'. Therefore it makes as appropriate as possible the stochastic 
gradient ascent that Williams himself shows the algorithm to be performing. 

The same will be true in higher dimensions too, in that the second order term 
will be alternately a hindrance and a help. Minimising its modulus should 
therefore increase the overall efficiency of the stochastic gradient ascent. 

Note, though, that it is less clear that maximising the expected amount of rein-
forcement at the next time step is itself appropriate. For instance, under certain 
circumstances exploring to improve the statistical certainty of the estimate of the 
reinforcement comparison term might be wiser than exploiting the current situ-
ation to maximise immediate reinforcement. Too much premature exploitation 

could harm the chances of the system ever learning the optimal action at all. 
This issue is also related to the distinction Watkins makes in his thesis [159] 
between learning optimal behaviour by any means, and learning it optimally 
(eg as quickly as possible). 

As an example of the effect of the second order term, consider the first task 
Sutton investigated, which is one example of a two-armed bandit problem. In 
this case, there are two possible actions j = 0, 1, and based on these: 

	

j=0 = P[r=1] = 0.8 	P[r=-1] = 0.2 

	

= P[r=l] = 0.9 	P[r=-1] = 0.1 

so the optimal action is ij = 1. Choose P[y = 1 1w] f(w) = 1 1(1 + C_w),  then: 

e[rlw] = 0.6 + 0.2f(w) 

ii P[ij 1w, x] depends in a natural way on was, for instance, through the logistic function in 
equation 3.3. 
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= 0.2f(w)(1 - f(w)) 

= 0.2f(w)(1 - f(w))(1 - 2f(w)) 

So, with Lw = 	- b)(y - 7r), the changes are: 

O -1 0.2(1 —f(w)) (1 +b)f(w) 

O 1 0.8(1 - f(w)) —(1 - b)f(w) 

1 -1 0.1f(w) —(1 + b)(1 - f(w)) 

1 1 0.9f(w) (1 - b)(1 - f(w)) 

Then £[w] = ot x 0.2f(w)(1 - f(w)), which, as expected, is independent of b. 

However, let g(w) = e[rlw] = 0.6 + 0.2f(w), then: 

e[r'Iw] = 0.2(1 - f(w))g(w + f(w)(1 + b)) + 

0.8(1 - f(w))g(w - cxf(w)(1 - b)) + 

0.1f(w)g(w - 41 - f(w))(1 + b)) + 

0.9f(w)g(w + c(1 - f(w))(1 - 

where r' is the reinforcement received after the automaton's next choice. b will 

not drop out of this. Figure 3.1 shows a graph of the second order term, for 

three values of b. It is apparent that it helps learning for w < 0 and hinders it 

for w > 0. Setting b = b minimises both these effects, although it is apparent 

just how close b and b*  are. 

There are two types of imbalance that can afflict problems like the two-armed 

bandit 

• Imbalance in the probabilities - in which both the better and the worse 

action usually lead to the same value of reinforcement, the only difference 

being in the precise frequency it is difficult to select the optimal action, 

since, as Barto [7] says 'an action can more frequently appear to be the 
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Figure 3.1: Second order contribution to the change in weights 
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desired action just because it is being performed more [or less] often than 
the other action' with the more or less depending on whether the actions 
usually lead to positive or negative reinforcement. 

• Imbalance in the reinforcement values - in which the actual reinforcement 
values received are not centred around 0. This can make learning sub-

stantially more difficult by making the sign of the changes in the weights 
on any one occasion independent of the reinforcement received. 

Reinforcement comparison deals specially with the second type of imbalance. 
Williams (personal communication) has pointed out that the term r - in the 
formula for the weight change, equation 3.1, will take both positive and negative 
values if the bij lie between the maximum and minimum reinforcement values. 
Barto [7] provides some reasons why the term j - it in the learning rule helps 
mitigate the effects of the imbalance in the probabilities. 

3.3 Results 

Calculating the 'optimal' b is more difficult than calculating Sutton's b, because 
of the cross-pairing of the average reinforcement for action 1 with the probability 
of doing action 0. It is possible to develop an estimator s t(x) = T vf xi  with 
weights v, as in Sutton's algorithm, and to change them according to: 

Av ~ = IT 
{1 - 	 t itt I +(1 _t)1_s]xt. 

itt 

where it is an approximation to e[ytlwt]. st then estimates 1 = (1 - p)r i  + pr0. 
Since j is never 1 if it = 0, the first term is never infinite - similarly for the 
second term. 

Unfortunately, this scheme would not be expected to converge. Consider what 
happens as it -+ 1, for example. Most frequently, jt = 1, in which case the 
changes tOVt  Will be very small (as the y t(  1— itt)/irt 0). Rarely, though, y  = 0, 
in which case the change to v t  will be very large. This is the mechanism by 
which the cross-pairings can balance out, but it introduces significant instability. 
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Task 
Number 

Reinforcement 
Type 

r range r condition 
 Action 1 	Action 0 

I Binary {1, —1 
} 

0.90 0.80 
2 Binary {1,-1} 0.20 0.10 
3 Binary {1,-1} 0.55 0.45 
4 Continuous R 0.90 0.80 
5 Continuous R —0.80 —0.90 
6 Continuous  0.05 —0.05 

Table 3.1: The Tasks (From Sutton [1471-pl8). 

The alternative way, suggested by, but not discussed in, Sutton's thesis, is to 

develop separate predictions of r 0  and r1, using two sets of weights. 2  These 

would then be combined with as (1 - itt)r1 + Both methods were 

simulated. 

The problems that Sutton developed for his thesis [147] will be adopted. Those 
used here are the non-associative ones from his Chapter II, although the new 
comparison term will work for associative tasks too. Table 3.1, copied from 
P18, shows the problems. The binary tasks produce reinforcement of ±1, with 
the probability that it is +I given for each action in the last two columns of the 
table. The continuous tasks produce reinforcement spread uniformly within 
± 0.1 of the means given in the last two columns. 

Formal descriptions of the algorithms compared are given in table 3.2, using 

Sutton's notation. Algorithms A and A' are Sutton's algorithms 8 and 9, which 

he found to be the best. 13, 5', C and C' all make sl estimate the quantity 

recommended by the analysis above. B and 5' do this through a single term, 

whereas C and C' also employ ul and 14, which are designed to predict r1 and 

r0  respectively. Sutton's caveat that it is dangerous to extrapolate from only a 

few values of cx should be remembered. 

Figures 3.2-3.7 show how the algorithms performed on each of the various 
tasks, for differing values of the learning rate cL Figure 3.8 shows how the 

2He considered using these for his estimator b*  rather than 6. 
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Table 3.2: The Algorithms (After Sutton [1471-p2l). 

Algorithm 	 Update Rule 

A 	w[t + 1] = w[t] + a(r[t + 1] - S, [t]) x ('y [t] - 

A' w[t + 1] = w[t] + c(r[t + 1] - sA'[t]) x 	([t] - ir[t]) 

B w[t+ 1 ]=w[t]+(r[t+ 1 ] — s8[t]) x 	(y[t]—) 

13' w[t + 1] = w[t] + x(r[t + 1] - s 8s[t]) x 	(y [t] - lr[t]) 

C w[t + 1] = w[t] + 	(r[t + 1] - S[t]) x 	(V[t] - 

C' w[t + 1] = w[t] + cx(r[t + 1] - s'[t]) x 	(y [t] - 7r[t]) 

Where: w[0] = 0, 7r[0] = 1 ,'Y [t] e { 1, 0}, oc > 0, 
and 7r[t] is the probability that y [t] = 1. 

For all algorithms, y[t]=I 1, 
0, otherwise, 

where T1[t]  is distributed as a Gaussian 9 [0, 0.3]. 

For A and equivalently A', SA[0] = r[1], and 
sA[t+ 1 ] = SA[t}+ 13(r[t+ 1 ] — sA[t]), 

For B and equivalently 5', s 8 [0] = r[1], and 
s 8 [t + 1] = s 6 [t] + 0 {t + ii ((l..[tpt[t] + tX1[_nEtD) - s8 [t}}', 

For C and equivalently C', s[0] = r[1], u [0] = r[1], uo[0] = r[1], and 
s[t + 1] = s[t] + 13(u.i [t + ]](1 - 71[t]) + u.o[t + 1]71[t] - S[t]), 

Ui [t + 1] = Ui [t] + (r[t + 1] - Ui [t])ij[t] ,  

u.[t+1] = u[t]+f3(r[t+ ] } — uo[t])( 1 — [t]) ,  

and 0 = 0.2. 

All algorithms are run for 200 iterations, and each mark on the graphs in figures 
1-7 is the average over 500 runs. 
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algorithms performed across the entire range of tasks, choosing for each its best 
result. The y-axis shows the terminal probability of choosing action 1, which is 
the better action for all of the tasks. It is apparent that C which uses the new 
estimator, does indeed perform better than A and A' which use the original 
one, although not by much. The differences between C and A are statistically 
significant using the one-tailed t—test at the 5% level for tasks 2, 3, 4, 5 and 6, 
but the algorithms are statistically indistinguishable for task 1. B and 8' are 
particularly bad on the two tasks for which reinforcement is generally negative 
whichever action is taken. It is unclear why the instability mentioned above 
should affect these particular tasks more than the others. Figures 3.5-3.7 are 
particularly striking on how C differs from the other algorithms, as it achieves 
better terminal probabilities for far lower values of the learning rate 

It is also unclear why C should outperform C', since Sutton generally found 
algorithms with eligibility terms of the form j - 7r were preferable to those 
employing y - 1/2. Williams (personal communication) has some results to 
suggest that it is preferable to use the sample mean of y  in the learning rule, 
rather than it or 1/2. This may just be because by being less accurate, it allows 
the weight to change faster. 

An alternative to the methods used for algorithms C and C is to develop explicit 
estimators of (1 - p)ri and pr o, and to use their sum. In the non-associative 
case the resulting algorithms would not differ greatly from C and C'. They 
would differ in the associative case, however, since the learning rule for these 
estimators would not change, whereas the equivalents of C and C' would involve 
estimators of r1 (x), r o(x) and p(x), the probability of choosing output 1 for input 
x, which do depend on the input x. 

In a further experiment, the standard deviation if of the distribution of i[t] 
was set to 0.5. This value determines the balance between the exploitation 
of the current weight w[t], and the exploration for a better one. Figure 3.9 is 
the equivalent of figure 3.8 for this case, showing the best performance of the 
algorithms, and again algorithm C can be seen to be somewhat superior. Indeed, 
it affords enough improvement in this case to make C significantly better than 
A and A' in the first task. 
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3.4 Further Developments 

Kaelbling, in her thesis [71], adopts a still more statistical approach to rein-
forcement learning problems. Consider the two-armed bandit problem. If the 
learning system can record how often it has tried each of the arms as well as 
some measure of how well it has done in puffing them, then, given a model of 
the environment, it can calculate the statistical certainty of this measure. This 
would allow it explicitly to trade off exploration and exploitation. Kaelbling de-
velops and extends such an algorithm, and shows that it out-performs Sutton's 

reinforcement comparison algorithm. 3  

The focus of most of the rest of the work in reinforcement learning has shifted 
either to showing how it relates to supervised learning, or to the case of tem-
porally extended tasks, as discussed in the chapters that follow. Additionally, 
Gullapalli [501 has developed an extension (called SRV) of Barto's A [7] to 
the case of real-valued outputs. Gullapaffi has demonstrated the power of the 
SRV in a number of applications, including a version of the pole balancer and a 
replication [49] of some results due to Zipser and Anderson [174] which show 
how the firing of computational units can match those measured from nerve 

cells. 

Both the SRV and the temporal difference (TD) reinforcement learning algo-
rithms, which will be discussed in the next chapter, use something akin to re-
inforcement comparison. The SRV operates by manipulating two parameters; 
the mean and variance of a normally distributed random variable, which it uses 
as its action. It adjusts the mean according to the reinforcement received, and 
alters the variance according to how well the unit is doing, measured against 

an absolute standard which is known a priori. The variance acts as an explicit 

arbiter between exploration and exploitation for the unit. The formula which 
Gullapaffi uses for changing the mean is exactly like the one described above, 

ie (r - b*)(J - it). Using iE in place of b*  should improve SRV too, for the same 

reason. 	) 

3Her method of judging the algorithms is actually slightly different from the one here, in 
that it includes the choices the system makes on the way to deciding which arm is optimal, and 
so favours fast learning. 
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Reinforcement comparison plays a somewhat more complex role in TD. For 
secondary reinforcement, in which the system tries to 'associate stimuli with 

forthcoming reinforcement and then use the information provided by their oc-

currence to better [sic] assign temporal credit' ([147] p  121), the key quantity 

is the difference between the predicted reinforcements at two successive time 

steps. Here, it is important that the predicted quantities really are expected rein-
forcements rather than the 'cross-paired' equivalents of , so the improvements 
obtained in this chapter would not be expected to be available. 

The links between reinforcement learning and supervised learning are rather 
complex. Consider a task such as teaching a computer with a parametrically 
controlled voicebox to speak. It used to be a commonplace that this could only 

be done using a form of reinforcement learning; the system could attempt to 
produce some appropriate sounds, but because it was unclear exactly how the 
inputs produced the outputs, the information about exactly how (eg in which 

frequencies) the actual output differed from the desired output was useless. It 

was mysterious how this distal error could be related to the proximal choice of 
parameters. The alternative is just 'plain' reinforcement learning, in which the 
system gets criticised for making the wrong noise, but has to figure out for itself 
what is amiss. This self-imposed impoverishment of the available information 

seems bound to slow learning down. 

Particularly through the work of Jordan [68, 701, it has since become dear that 
the conclusion that no characteristics can be used of the distal error other than 
its mere presence, is too pessimistic. it is possible to learn a forward model of 
the voicebox, and to use this as the supervisor for an inverse model which is 
trained so that the composition of the two models is the identit 4  The forward 
model provides the mapping from proximal to distal coordinate schemes that 

allows fully supervised learning to function. 

Such methods erode the traditional boundary between reinforcement and su- 
pervised learning, and indeed have been demonstrated to be superior in cer - 

tain applications; Unfortunately, learning the forward model, and particularly 

4  A Jordan and Rumelhart [70] point out, learning an identity map in this way avoids 
some of the pitfalls of attempting to acquire a direct inverse model as described in Jordan and 
Rosenbaum [69]. 
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learning it in such a way that error propagation is meaningful 5  is not always 
easy. In any case, temporally extended tasks still require reinforcement learning 
methods. 

3.5 Conclusions 

Reinforcement learning occupies the middle ground between unsupervised and 
supervised learning techniques. In the simple case covered in this chapter it acts 
like a supervised learning technique under a particularly difficult condition for 
learning - noise in the teaching signal. Sutton developed the method of rein-
forcement comparison as a way of speeding up learning, and demonstrated its 
efficacy. Williams' subsequent result that the algorithm is performing stochas-
tic gradient ascent, whatever the comparison term, was based solely on a first 
order term. 

Adopting the criterion that the second order term should be minimised as 
a way of optimising the efficacy of stochastic gradient ascent, it is possible 
to derive an optimal value for the comparison term. This is justified both 
empirically, although not strikingly so, and theoretically, since the second order 
term can be seen to be harmful in certain cases. Rather than being an average 
of the reinforcement received in the past, which is similar to the covariance rule 
discussed in the previous chapter, the new term pairs the average reinforcement 
for doing one action with the probability of doing the other. 

This analysis, like Williams', says nothing at all about the convergence of the 
algorithms. Not only is stochastic gradient ascent merely an average criterion, 
but also the algorithm cannot be guaranteed to avoid terminating in some 
local optimum. Gullapaffi [51] proved a theorem about the convergence to the 
correct values of a slight modification of the SRV algorithm. This depends on 
certain assumptions about decreasing learning rates and regularity conditions. 

51t is essential that the forward model depends on the system's action selection system and 
not just its state, otherwise the path between action and model is uninformative for the error 
propagation. This is non-trivial (Brody, personal communication) if the actions are essentially 
deterministic functions of the state of the system. 
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It would be surprising if some such result were not true of these algorithms 
too. SRV should benefit from the new reinforcement term as well, although it 
is unclear what impact this would have upon Gullapalli's proof. 

Previous assumptions that reinforcement and supervised learning techniques 

are distinct are being overturned - there are ways of re-casting problems that 
appear designed for one in terms of the other. The advantages lie with the su-
pervised methods, but only if the environment can provide sufficiently fulsome 
criticism. In any case there are circumstances, such as temporally extended 
tasks, in which reinforcement methods are essential. These are the focus of the 
succeeding chapters. 



Chapter 4 

Temporal Difference: TD(A) for 
General A 

I Obfuscating by numbers, 
"Academic Mathematics": Numbing by degrees. 

4.0 Summary 

The work in the previous chapter ignored the role of time in reinforcement 
learning. One facet of this issue is making consistent predictions about the fu-
ture - this lies at the heart of dynamical programming. Watkins [159] analyses 
Sutton's [148] temporal difference (TD) methods as ways of doing dynamical 
programming in an incremental fashion. Sutton proves a weak form of con-
vergence for a special case of prediction learning, TD(0), which only involves 

adjacent time steps. This chapter puts these two pieces of analysis together 
to prove the same weak form of convergence, but in the general case. This 
involves arbitrary time steps, but weights more distant ones exponentially less. 

Watkins further proves that Q-learning, his closely related prediction and action 
learning mechanism, converges with probability one. This proof can be applied 

to show convergence with probability one for TD(0) prediction under slightly 
different conditions, but only for one particular representation. 

91 
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4.1 Introduction 

Many systems act in temporally extended circumstances, where whole se-

quences of actions may be performed or states observed. They face three 

related problems. The first is prediction; how they can foresee what some fu-

ture outcome might be, given some (possibly stochastic) relationship between 

it and the current state. The second is temporal credit assignment; how they can 

learn exactly which actions are deleterious, if it only becomes apparent after an 
extended time that some unspecified ones out of an extended sequence were 

mistaken. The third is action selection; if one out of a set of actions can be chosen 

at the current time step, and, depending on which is selected, one out of a dif-
ferent set of actions can be chosen at the next time step, and so on, then there is 
an explosion in possible choices. Acting appropriately in such a domain would 

seem to be computationally intractable. 

The associations between these problems may not be obvious. However, the 
engineering method of dynamical programming (DP) [131 solves them all to-
gether. DP comes in many different forms, but it essentially involves two key 

tricks; the consistency of a value function which assigns numerical values to 

the states, and the evaluation of c wlAc 4Q 1 frJit.iC ckQtt7 L UC-J&. 

o_fi4: 	Dwns 4 Q6zjr1 ct 	 ic4,ve ic6cv. 	 Each of these forces 

a restriction on the scope of the method. 

Consider a reinforcement learning system wending its way through some 
Markovian state space collecting rewards and/or punishments as it moves 
to a goal. For concreteness, consider the task (which is described in detail in 
the next chapter) for an agent moving about a finite, but possibly complicated, 
world trying to get to a terminal position in the shortest time. Given any policy 
the agent might have, the value function at any state is just the amount of re-

ward/punishment the agent will get on the way to the goal. So if it is punished 
one unit for every step it makes until it reaches the goal, for instance, then the 
value of any state is just the number of steps between it and the goal. Crucially, 
the value function will be consistent between states; imagine the case in which 
the agent and its environment are deterministic (and furthermore that it always 
gets to the goal). Each time it enters a state it always makes the same move 
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to the same destination. Therefore, if it happens to go from state S1 to state 

S2, then the value of S1 should be exactly one more than that of S2. This is the 

notion of consistency that is employed. 

Were the agent's choices of actions and/or the environment's responses to them 

stochastic (and stationary), then the value of a state would be the mean number 

of steps from it to the goal- 

Note that it is unnecessary for the policy to be represented explicitly, or indeed 
be available to the agent in any represented form over which computations are 
possible. The policy obviously affects the value function in a holistic manner, 
but if this function is accurate, then it contains all the information about the 

policy that is relevant to getting to the goal. 

Conventional DP consists of a set of methods for calculating value functions and 
improving policies on the basis of them. For instance, given a value function 

for a policy, consider the agent trying action B at some state where the policy 

specifies action A. Consider further if action B takes it to a state whose value is 
unexpectedly greater than before. Even though this value is based on the exist-
ing, sub-optimal, policy, a new policy which is the same as the old one, except 

suggesting action B rather than A at the original state, will be an improvement. 

This links the prediction problem, which is to work out the value function, to 
the other problems; temporal credit assignment and action selection. If the 
evaluations of states are appropriately related to the actions that can be chosen, 
then they can act like secondary reinforcement values to solve the temporal 

credit assignment problem. Even if the agent is far from a goal, an action can be 

Judged at the time it is made according to whether it moves the agent to states 
which are more or less highly valued. Similarly, an agent pondering a number 
of actions can choose to go to the state that is evaluated as closest to the goal. 

This is discussed in more extensive detail in Watkins' thesis [159], where the 
links between Al tree-searching techniques and DP are also highlighted. The 
value function can be seen as cache-ing the results of tree searches, obviating 

the need for new ones to be done on each occasion. 

Unfortunately, it is difficult to represent multiple goals in one value function, 
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except by some more or less ad hoc numerical combination or chicanery with the 

state space. This results from the two 'tricks' mentioned above; consistency in 

the value function requires it to be unique, and the merely implicit presence of 
the policy in the value function makes it hard to factor out the different goals. It 
leads to problems in domains such as navigation, as seen in the next chapter. A 
further difficulty with DP is that it is too general. It is well known that general 
methods will be too slow to solve reasonably sized problems. Also, although 
it is easy to incorporate certain sorts of prior information, such as rough initial 

estimates of distances from the goal, information about the structure of the 

environment is harder to code. The next chapter shows one approach at this, 
through the representation of the states and value function. 

The remaining task is prediction, which is the focus of temporal difference 
methods. Reinforcement comparison, discussed in the previous chapter, is 
based on something like consistency across trials - the quality of an action is 
judged relative to how well actions generally do. Temporal difference, though, 
concentrates on consistency across time within one trial - using the difference 

between the predictions at one state and the predictions at the next to provide an 
error. Generally, this error is used to tailor the parameters governing the repre-
sentation of the value function. Consistency is therefore used as the instrument 
of instruction. This learning can happen incrementally, as the system observes 
its environment and its rewards and punishments, and need not be based on a 

model of the transition structure of the world. By contrast, traditional methods 
of DP require such a model, and calculate their value functions in iterative fell 

swoops. 

Watkins calls the resulting method (and variants, such as Q-learning, which 
is discussed below) Incremental Dynamic Programming (IDP). Sutton calls it 

(QtoX planning, since such systems handle the exponential complexities of 
planning in such a way that they can react instantaneously (if possibly incor-

rectly) at all times. They are never lost in garbage collection and/or thought. 

Some of the earliest work in temporal difference and reactive planning is due 
to Samuel [132,133]. His checkers (draughts) playing program tried to learn a 
consistent value function for board positions, using the discrepancy between the 
predicted values at each state based on limited depth games-tree searches, and 
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the subsequently predicted values after those numbers of moves had elapsed. 

A particularly interesting feature of this is the possibility of a trade-off between 

the complexity of the value function, which might be considered a sub-symbolic 
issue, and the size of the look-ahead search, which is more symbolic. Samuel 
was obviously limited in both these domains by the hardware of his day. 

Many other proposals along similar lines have been made; Sutton acknowledges 
the influence of Klopf [74, 751 and in [148] discusses Holland's bucket brigade 
method for classifier systems [62], and a procedure by Witten [172]. Hampson 
[52,53] presents empirical results for a quite similar navigation task to the one 

described above and in chapter 5. Barto, Sutton and Anderson [101 describe 

an early TD system which learns how to balance an upended pole, a problem 

introduced in a further related paper by Michie and Chambers [98]. Watkins 

[1591 also gives further references. 

The next section defines TD(A), shows how to use Watkins' analysis of its 
relationship with DP to extend Sutton's theorem, and makes some comments 
about unhelpful state representations. Section 4.3 looks at Q-learning, and uses 
a version of Watkins' convergence theorem to demonstrate in a particular case 

the strongest guarantee known for the behaviour of TD(0). 

4.2 TD (A) 

Sutton [148] develops the rationale behind TD methods for prediction, and 
proves that TD(0), a special case with a time horizon of only one step, converges 
in the mean for observations of an absorbing Markov chain. Although his 

theorem applies generally, he illustrates the case in point with the example 
shown in figure 4.1. Here, the chain always starts at state D, and moves left or 
right with equal probabilities from each state until it reaches the left absorbing 
barrier A or the right absorbing barrier G. The problem facing TD is predicting 
the probability it absorbs at the right hand barrier rather than the left hand one, 

given any of the, states as a current location. 

The raw information available to the system is sets of sequences of states and 
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Start 

Figure 4.1: Sutton's Markov example. Transition probabilities given above 
(right to left) and below (left to right) the arrows. 

their terminal locations - it initially has no knowledge of the transition proba-
bilities. Sutton describes the supervised Widrow-Hoff [164] technique, which 
learns to evaluate the states by making the estimates of the probabilities for 
each place visited on a sequence closer to 1 -if that sequence ended up at the 
right hand barrier, and closer to 0 if it ended up at the left hand one. He shows 
that this technique is exactly TD(1), one special case of TD, and contrasts it 
with TD(A) and particularly TD(0), which tries to make the estimate of proba-
bility from one state closer to the estimate from the next, without waiting to see 
where the sequence might terminate. The discounting parameter A in TD(A) 
determines exponentially the weights of future states based on their temporal 
distance - smoothly interpolating between A = 0, for which only the next state 
is relevant, and A = 1, the Widrow-Hoff case, for which all states are equally 
weighted. As described in the introduction, it is its obeisance to the temporal 
order of the sequence that marks out TD. 

The following subsections describe Sutton's result for TD(0) and separate out 
the algorithm from the vector representation of states. They then show how 
Watkins' analysis provides the wherewithal to extend it to TD(A), and finally 

re-incorporate the original representation. 

4.2.1 Sutton's Theorem 

Following Sutton [148] we consider the case of an absorbing Markov chain, 

defined by sets and values: 
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T 	 the terminal states 

H 	 the non-terminal states 

qtj E [0,1] 1. € H,j E Is/uT the transition probabilities 

Xt E Wc 	1. E H 	 the vectors representing non-terminal states. 

zi 	i € T 	 the expected return for ending at state j 

Ii 	1. E H 	 the probabilities of starting at state t, 

where Et€N j.4 = 1. 

The chain described above is particularly simple; the returns from the terminal 
states A and C are deterministically 0 and 1 respectively. This makes the 
expected return from any state just the probability of absorbing at C. 

The estimation system is fed complete sequences x 1  ,Xt,. . . Xim  of observation 

vectors, together with their scalar terminal return z.. It has to generate for every 

non-terminal state 1. € Ar a prediction of the expected return ([zit]  for starting 

from that state. If the transition matrix of the Markov chain were completely 

known, these predictions could be computed as: 

F qt; + T qj Y qjkk + Y qtJ Y qjk qkz1 +. 
ET 	jEll 	kET 	jEll 	kE)! 	t€T 

Again, following Sutton, let [M]ab  denote the abth entry of any matrix M, [u] 

denote the ath  component of any vector u, Q denote the square matrix with 

components [QJ at, = q ab, a, b E H, and with It, the vector whose components 

are [hJ 0  = EbET 9 0t,zt,, for a € H, then: 

00 

	

E[zli] = 1Qkh] = [( I - Q)_lh] 	 (4.1) 

where the existence of the limit and the equation are proved by Sutton's Ap-
pendix A.1. As he states there, they follow from the fact that Q is the transition 
matrix for the non-terminal states of an absorbing Markov chain, which, with 
probability one will ultimately terminate. 

During the learning phase, linear TD(A) generates successive vectors WI , w2,..., 

changing w after each complete observation sequence. Define V(t) = w, .xi as 

the prediction of the terminal reward starting from state 1 1  at stage n in learning. 

Then, during one such sequence, V(t) are the intermediate predictions of these 

terminal values, and, abusing notation somewhat, define also Vn(tm+i) = ; the 
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observed terminal reward. Note that in [1481, Sutton uses PI for V(t). TD(A) 

changes w according to: 

TTI. 	 t 

w +1  = w. + F c4V(tt+i) - V(t)J At VV(t) 	(4.2) 
t=1 	 k=1 

where oc is the learning rate. 

Sutton shows that TD(1) is just the normal Widrow-Hoff estimator [164], and 
also proves the following theorem (theorem 2 in his paper): 

Theorem For any absorbing Markov chain, for any distribution of 
starting probabilities , for any outcome distributions with finite 
expected values i j, and for any linearly independent set of obser -
vation vectors {xIt E N}, there exists an € > 0 such that, for all 
positive oc < e and for any initial weight vector, the predictions of 
linear TD(0) (with weight updates after each sequence) converge in 
expected value to the ideal predictions (4.1); that is, if w denotes 
the weight vector after n sequences have been experienced, then 

urn e[w .xj] = E[zIi} = [(I - Q ) 1j] ,Vt E H. 
Tt -+ 00 

4.2.2 Subtracting the Representation 

Equation 4.2 rather conflates two facets of TD(A); the underlying temporal 

algorithm and the representation of the prediction functions V. Even though 
these will remain tangled in the ultimate proof of convergence, it is beneficial 
to separate them out, since it makes the Operation of the algorithm clearer. 

The easiest way to do this is to represent V as a look-up table, with one entry 

for each state. This is equivalent to choosing a set of vectors x for which just 
one component is 1 and all the others are 0 for each state, and no state has the 
same representation. This trivially satisfies the conditions of Sutton's theorem, 

and also makes the wn  easy to interpret, as each component is the prediction 
for just one state. In this circumstance, the terms VW Vfl(tk) in the sums 

At'vwvn(tk) 
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just reduce to counting the number of times the chain has visited each state, 

exponentially weighted in recency by A. In this case, as in the full linear case, 

these terms do not depend on it, only on the states the chain visits. So define 

the characteristic function for state j: 

x(k) 
11 'ftk=3 

= 
1.. 0 otherwise 

and the prediction function V(t) as the entry in the look-up table for state t 

at stage it during learning. Then equation 4.2 can be reduced to its elemental 

pieces 

rm t  V +1(t) = V(t) + 	x[Vfl(ti 1) - V(t)] 	At xj(k) 	(4.3) 

in which the value for each state is updated separately. 

To illustrate this process, consider the punctate representation of the states B, 
C, D, t and F in figure 4.1:1 

X8 xC X0 XE X 

1 0 Ô 0 0 

o 1 0 0 0 

o o 1 0 0 

o 0 0 1 0 

o 0 0 0 1 

Then if the observed sequenced is D, C, D, E, F, F, F, G, then the sums 

t 
L At_k VWV(tk) 

after each step are: 

D c D E F E F 

o 0 0 0 0 0 0 

o 1 A A2 A3 A4  

1 A 1+A2  A+A3  A2 +A4  A 3 -fA 5  A4 +A 6  

o 0 0 1 A 1+A2  

o 0 0 0 1 A 14-A 2  

'States A and G are absorbing and so are not represented. 
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and component tin this sum is dearly 

at time t. 

4.2.3 Watkins' Analysis 

Watkins [159] shows that a fruitful way of looking at TI) estimators is through 
dynamical programming and its associated contraction mappings. The method 

starts from the current prediction function V(t),Vi. E H and shows how to 

define a whole collection of statistically better estimators V1(t), Vi e H based 

on an observed sequence. Imagine the chain starts at some state L), and runs 

forward through states ii, t 2 ,..., ultimately absorbing. Define the v-state esti-

mate of L,, as either the estimate V(t) of state t v., if the chain has not absorbed 

after r steps and so t E H, or the terminal value z of the sequence, if the chain 

has absorbed before this time. 

Formally, define the random variables 

{

v(ti) if ti E H 

	

z 	otherwise 

v2 - f V(t2) ift2EH 
n,t0 - 

	

1. z 	otherwise 

V'r  J0 	

{ V(t) if t E H 	 (4.4) 

	

z 	otherwise 

where t 1  is the first state accessed by the Markov chain in one particular. sequence 

starting from to, t2 is the second and so on, and z is the actual return delivered 
if the chain gets absorbed before state r is reached. These are random variables, 
since they depend on the particular sequence of states which will be observed. 
This is obviously undetermined at to. Naturally, they also depend on the initial 

values V(i). 
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Then, 

E 1V' 	= L qiOtl 	+ 	Qtt 1 	qt12 i + . . . + 
t1ET 	 ii EA( 	t2ET 

	

+ 	1 0  101- r
iT_lEA( 	tET 

whereas it can easily be shown that 

eizii-ol= L qt 0 t1t1 + 	Q01 	qt122  + .. . + 
ti ET 	 ii EA( 	t2ET 

Q O _, 	q 1_ 1 ,z + 	Qr011E[zIi.]. 
t1-1EN 	tTET 

So, 

e [v,0] - e[zIoJ = 	(Vn(i.r) - 	 (45) 
iTEJ/ 

Watkins actually discusses a slightly different case, in which the target values 

of the predictors are based on discounted future returns whose contribution 
diminishes exponentially with the time until they happen. In this case it is 
easier to see how the reduction in error is brought about. His analogue of 
equation 4.5 is effectively 

e I  1v 1 
,toJ - 6[0-01] = Y" 	 Qt . (V(t) - n 4 

tE.AI 

where y < 1 is the discount factor. Since Lt€N Qlo ir 15 1, as Q is the matrix of 
a Markov chain, Watkins can guarantee that 

max le 1V 1 - e[zIto] I <yT  max V(t) 
to 	I 	I fl*tO) 	 tr 

which provides a guarantee that the error of Vnr will be less than that of V in 
this weak sense. 

The same is not quite true in the non-discounted case, when -y = 1. The use of 
the predictor here is motivated by the non-zero probability that the chain will 
absorb before finishing r further steps from i. In this case, the value of 
being z, will be unbiased, and so should provide for error reduction. Even if it - 
does not absorb, its value can be no further from what it should be than is the 
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most inaccurate component of V,. So now, although there is no error reduction 

due to -y, it is guaranteed that 

tr E/! 

with inequality for all those states from which it is possible to absorb within r 

steps. This does not ensure that 

max Ie [VTt 
1 - e[zIto]I <max IV(t) - e[zlt] I 

t0 	
,toj 	

tr 

since it could be that the maximum is achieved pathologically. However, the 
estimates for the states that are within r steps of absorption will, on average, 
improve, and this should, again on average, filter back through to the states 
that are 'hidden' from termination. In the special case that there is a non-zero 
probability that the chain can absorb in one step from any non-terminal state, 

using the norm 

qIIQII= max  IQxI< 1  
{x:1x11} 

implies that: 

max I [v0 ] - e[zIio] :5qtnax IV(t) - e[zIt]I 
to 	I 	 1. 

Following Watkins, we see that if, for 0 <A < 1, we define a further random 

variable: 
00 

VnA
.j0 - ( 1 - A) 	Ac_l V 0 	 (4.6) 

- 

a=1 

then, in the special case, 

1—A 
qA 

<q 	< max IE [v,0] - e[zIi.,]I - 1 - 
	q. 

Watkins points out that in choosing the value of A, there is a trade off between 

the bias caused by the error in V,., and the variance of the real return z. The 

higher A, the more significant are the VI, for higher values of r, and the more 
effect the unbiased terminal values will have. This leads to higher variance and 
lower bias. Conversely, the lower A, the less significant are the contributions 

from higher values of r, and the less the effect of the unbiased terminal values. 

This leads to smaller variance and greater bias. 
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Now, expanding out the sum in equation 4.6, 

V 0  - V(t0) = [V(t1) - V(io)l + 

	

A [V(t2) - V(i1)] + 	 (4.8) 

A 2  [V(t3) - V(i2)] + 

defining V(t 5 ) = zfor s > max{tltt E N}. 

The whole point of defining V 0  is so that it can be used to make V more 

accurate. The obvious incremental update rule to achieve this has 

Vn+i(to) = Vn(to) + CC [V ,O  - Vn (to)] (4.9) 

Now, from equation (4.8) we can see that the changes to Vn(i.o) involve summing 

future values of V(t +1) - V(t) weighted by ever larger powers of A. Again 

following Watkins, this can be calculated through an activity trace based on the 

characteristic functions X(t) that were defined earlier as a way of counting how 

often and how recently the chain has entered particular states. 

Then, using index t for the members of the observed sequence, the on-line 

version of the TD(A) rule has 

= V(t) + Ot [V(t+1) - V(t)] 	X kx. (k). 	(4.10) 

Note that Watkins' expression on page 91 of his thesis is identical, except that 

he defines the activity traces explicitly by C(x, t) = 	At_ kx(k). 

For the problem that Sutton treats, the change to V is applied off-line, after a 

complete sequence through the chain. Therefore, if the states through which 

the chain passes on one sequence are to, ti,... , i..i E N, and t E 7, it absorbs 

with return Vn(tm ) z, and V+i is the new estimator after experiencing the 

sequence, then 
m 	 t 

V1(i0) 	= Vn(to) 	+ 	cx[V(tt+i) - V(t)] 	At_kx10(k) 
k=1 

Tfl 	 t 
V + 1(t1) 	= V(t1) 	+L x[V(t+1) - V(t)] F At'x1(k) 

t=2 

Vn+i(tm_i) 	Vn(tm_i) + 	t[iVn(tm_i)] LAt_kXtm_(k) 
k=1 
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summing over terms where t 0  = tb (so xQ Xt b ). Note that these expressions 

are exactly the same as the TD(A) weight change formula in equation 4.3. 

Thus, the actual TD(A) algorithm is based on the exponentially weighted sum 
defined in equation 4.6 of the outcomes of the V( random variables. The mean 

contraction properties of these variables will therefore determine the mean 

contraction properties of the overall TD(A) estimator. 

4.2.4 RePresentation 

The previous subsection considered the TD(A) algorithm isolated from the rep-
resentation Sutton used. Although a number of different representations might 

be employed, the simplest is the linear one he adopted. Identifying the vectors 

x with the states they represent gives 

V(x) = w .x 

where w is the weight vector at stage it of learning. 

The basic algorithm is concerned with the V I  predictor random variables rather 

than how their values can be used to change the initial predictor V. Under the 

new representation, equation 4.9 no longer makes sense since the states cannot 
be separated in the appropriate manner. Rather, the information about the error 

has to be used to update all the weights on which it depends. The appropriate 

formula, derived from the delta-rule is 

w1 = w + a 	- V(to)J Vw Vn(to) 

weighting the error due to state t o  by the vector representation of t o. Then the 

equivalent of equation 4.10 is just Sutton's main TD(A) equation 4.2. 

4.2.5 Proving TD(A) for General A 

The strategy for proving TD(A) for general A in the case of the linear representa- 
tion is to follow Sutton in considering the expected value of the new prediction 
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weight vector given the observation of a complete sequence, and to follow 
Watkins in splitting this change into the components due to the equivalents of 

the V' random variables, and then summing them. 

So define the V' random variables as in equation 4.4 as 

Yr 	
fw.xj,, ifx,.EA( 

Tt40 - 	 otherwise 

where xi  are identified with the states in the observed sequence, w is the 

current weight vector defining the estimated return, and z is the actual return. 

Then, after observing a whole sequence of values, w is updated as: 

w ~ 1  = w + 	 [V - V(t)] VV(t) 
x€g visited 

= w + c 	 [V - w.x1]x1 . 	 (4.11) 
XLEN visited 

An exact parallel of Sutton's proof procedure turns out to apply to W. Define 

as the number of times the s-step transition 

Xt -+ X 1  -4 Xk 2.  ... -+ 	.-+ xi  

occurs, for any intermediate states Xk, E A1. We can then regroup the sum in 

equation (4.11) in terms of source and destination states of the transitions: 

w;+ 1 = w;. + 	tEArZJ T Eg ir1 	 - W:IL .x] X + 

cx 	EJTET 
	

1111 f  [zj I - w.x1]  Y-' 	+ 

ET ii 	[z_ 1  - W.Xi] Xt + 	(4.12) 

LtEArZj1€T 	[z1, - w.x]x 	+ 

where Zj indicates that the return is generated from the distribution due to state 

j, and the extra terms are generated by the possibility that, from visiting any 

Xt E N, the chain absorbs before taking r further steps. 

Taking expected values over sequences, we have, for t E N 

= dQ 1 	for j E N 

= IICEN djQ 1  qkj for j E T tj 	

= LCEA( d(Q 2 qkJ for j E T 

= dj qij 	for jET 
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where di is the expected number of tithes the Markov chain is in state I. in one 
sequence. For an absorbing Markov chain, it is known that the dependency of 

this on the probabilities of starting in the various states is: 

cl = 	- Q)•i' 
= 	

- Q)_ 1 ]i 	 (4.13) 
iE)/ 

So, substituting into equation (4.12), after taking expectations on both sides, 

noting that the dependence of E[w ~1  1w] on w is linear, and using * to 

denote expected values, we get: 

= + 	dx IJ,EAr  L Q(x;.* 
 

i1ET 

Q 2 q 	+ ... + 	q11i. 
j1ET 	j 

Now, define X to be the matrix whose columns are xi, so 	= EX aib, and 

D to be the diagonal matrix [D] ab = óabda, where 6ab is the Kronecker delta. 

Remembering that hj = T— jET qtj, and converting to matrix form, we have 

fVT = * + cXD [QTXT - XT* + (Q 1  + Q'2 + ... + I)h] (4.14) 
n+1 	n 

since 

L QrT + F Q 1 qk;T + ....+ 	qj 1  = 1 
hEN 	 hEr 

kEN 

as this covers all the possible options for r—step moves from state t. 

Now define [*]t = e[zlt], then, from equation 4.1, we also have that 

= [E[zlt]] 

= h+Qh+Q211+... 

TL+l 

(x.*) J L 	+ L 

I JT€T, 

kE.W 

L Q'qij+ 

iET, 	 j_iET, 

kEN 	 kEN 
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= (I+Q+Q2 + . ..+Qt 1 )h+QT(l+Q+Q2 +...+QTJ)h+... 
00 

= 

= (I_Qt)(I+Q+Q2 +...+QT_l)h 	 (4.15) 

where the sum converges by the argument in Sutton's appendix A.1. 

Now multiplying equation (4.14) on the left by XT,  we get 

- vT-i 
I W 	- , wn  

OCXT 

= [i - TXD(I - QT)] XT*T + 
OCXT 

So, subtracting from both sides of the equation, and noting that from equa-
tion 4.15(I.QT)e*=(I+Q+Q 2 +...+QT_i)1l,weget 

xTfVr -  es] = - 	 TXD(I 
- Q')} XT 	+ cxXTXD(I - QT)e 

= 	[i - 	 TXD(I 
- Q')} [XT   

Now the Watkins construction of TD(A) discussed in the previous section tells 

us that, starting from w = w, Yr, 

w ~ 1  =(1 _A)LAT _ i w +i  

Therefore, since (1 —A) 1 A = 1, 

- ] = {çi - A)L1 Ar_i - 	
- 

QT)]} [XTI -  O(XT 

{I - TxJ (i -( I - A)Q [I - AQ]1)} [XT - e*} 

where fvI  are the expected weights from the TD(A) procedure. The sum 

(1_A)LAT_ 1 Qt  = (1—A)Q[I—AQ] 1 	(4.16) 

converges since 0< A < 1.2 

2Note also the similarity between equations 4.7 and 4.16. The latter is just the matrix 
equivalent of the former. 
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Define 
= I  - TXD (I— (I —A)Q [I - AQ] - ')} 

then the convergence of TD(A) in the mean will be shown, if it can be demon-

strated that 3e > 0 such that for 0 < oc < c, lim = 0. In the case that 
A = 0 (for which this formula remains correct), and X has full rank, Sutton 
proves this on pages 26-28 of [148], by showing successively that D(I - Q) is 

positive, and that XTXD(I - Q) has a full set of eigenvalues all of whose real 
parts are positive, and finally that oc can thus be chosen such that all eigenvalues 
ofl_&(TXD(I_ Q) are less than linmodulus. 

Almost all of Sutton's proof applies mutatis inutandis to the case in which ;k 0 0. 
However, to make this chapter complete, a full account of the proof will be 
given, highlighting the single altered section. 

The equivalent of D(I - Q)is D (I - (1 - A)Q [I - AQ]j. This will be positive 
definite, according to a lemma by Varga [158] and an observation by Sutton, if 

S = D (i —(1 - A)Q [I - AQ]') + {D (i —(1 - A)Q [I - 

can be shown to be strictly diagonally dominant with positive diagonal entries. 
This is the part of the proof that differs from Sutton, but even here, its structure 
is rather similar. 

Define 
S r = D(I - QT) + {D(I - QT)}T 

Then 

= [D(I - Q 1 )]tt + [{D(I - QT)}] 

= 2d[I - Qt]u 

= 2d(1 - [QTJtt) 

>0, 

since Q is the matrix of an absorbing Markov chain, and so Qt has no diagonal 
elements > 1. Therefore Srhas positive diagonal elements. 

Similarly, 

= d[I - QT] + d[I - QTljt 
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- 	 A. FC%t1 	A rrr1 
- - '4t L'. JiJ - U.j [ 	Jjt 

~ 0, toj 

since all the elements of Q, and hence also those of QT,  are positive. 

S will be strictly diagonally dominant if Lj[Sr]tj ~! 0, with strict inequality for 
some t. 

= Ej  d[I 
- Q']tj + Fj  d[I 

- Q T ]jt 
= cit [I 

- Qiti + [dT(I - Q')]t 
= dt(1 - Ej[Q T]ij) + [11T(I 

- Q)1(I 
- 

 Ql)] t  by equation (4.13) 
= d(1 - j[Q T]ti) + 

[T(L  + Q + Q2 
 + ... + QT-.l )] 

since I_Q T =(I_Q)(I+Q+Q2 +...+Q) 

>0 

since j[QT]t  :5 1, as the chain is absorbing, and [Qs]t;  ~! 0,Vs. Also, since 

p.t > 0, the inequality is strict for that t. 

Now, since S is strictly diagonally dominant for all r > 1, 

Sx = 

= D(I_(1 _.A)Q[I_AQ] - ') +{D(I_(1 _A)Q[I_AQ]_1)}T 

is strictly diagonally dominant too, and therefore D (i - (1 - A)Q [I - AQ] -1 ) 
is positive definite. 

Next, XT  XD (i - (1 - A)Q [I - AQ]') should have a full set of eigenvalues all 
of whose real parts are positive. XT  X, D and (i - (1 - A)Q [I - AQ]') are all 

non-singular, which ensures that the set is full. So, let and ube any eigenvalue-
eigenvector pair, with u = a + bt and v = (XTX)_lU ~ 

0,  So u = (XTX)v. Then 

U*D (i - (1 - A)Q [I - AQ]') u = V*XTXD (i 
- (1 - A)Q [I - AQ] - ') u 

= v*.LI)u 

= 

= 4,(Xv)*Xv 
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where "'  indicates the conjugate transpose. This implies that 

Re (u*D(I—.(1  _A)Q[I_AQ] 1 )u) =Re (14,(Xv)*Xv) 

or equivalently, 

{(Xv)*Xv} Re (4,) = aTD (i - ( 1 - A)Q [I - AQI - ') a + 

b T  D (i - (1 - A)Q [I - AQ] 1 ) b. 

Since the right side (by positive definiteness) and (Xv)*Xv  are strictly positive, 

the real part of4 must be too. 

Furthermore, u must also be an eigenvector of 

- Q TxJ (i - (1 - A)Q [I - AQ]') 

since 

1I_TXD(I_(1 _A)Q[I_AQ]')Ju = u — xu 

= (1—c)u. 

Therefore, all the eigenvalues of! - 0CXTXD (i - (1 - A)Q [I - AQ] -1 ) are of the 
form 1— cwhere4 u+ t has positive u. Take 

0< tx< 2v 4)2 

for all eigenvalues and then all the eigenvalues 1 - mp of the iteration matrix 
are guaranteed to have modulus less than one. So, by another theorem of Varga 

[158] 
urn [I_ 	TXD (i —(1 - A)Q [I - AQ]')] = 0. 

This implies that the expected values of the estimates will converge to their 
desired values as more sequences are observed. 

4.2.6 Non-Independence of the x 

In moving from Watkins' representation-free proof to Sutton's treatment of the 
linear case, one key assumption was that the x, the vectors representing the 
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states, were all independent. In the case that they are not, ie matrix X does not 

have full rank, the proof breaks down. Even though  (i -(1 - A)Q[I - AQ]') 

is still positive, XT  XD (i -(1 - A)Q [I - AQ] 1 ) will no longer have a full set of 

eigenvalues with positive real parts, since 

Y={iJIXD(I - ( 1  -A)Q[I-AQ]')p=O}0{O}. 

Saying what will happen to the expected values of the weights turns out to be 

easier than understanding it. Choose a basis: 

with bjeY, for l < t < p being a basis for Y. 

Then the proof above applies exactly to b+i , . .. , b, 1 ; that is there exists some 

0 < oc < 1 such that: 

urn [j - 	TXD(I -(1 - A)Q[I - AQ] - ')] 1't b = 0, for  <i <  it. 
Tt-+OO I 

Also, 

[i 	,(T XD (i -(1 - A)Q [I -;kQl-,)]  bi = b, for 1 < tSp 

by the definition of Y. 

So, writing 

XT* - = Y  P ibt  

we have that 

XTl -= [i - 	- QT)]fl [XT* - e*]  aXT 

= [i - xXTXD(I - QT)}fl It t31b1J 

-4 	 tbt, as it - oo 

and so 

XD (I-_(1 - A)Q[I _AQ]1) [XTl - ë] - 0asrt- co. 	(4.17) 
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To help understand this result, consider the equivalent for the Widrow-Hoff 

estimator, TD( 1). There we have 

XD [XT% — 	
—4 0 as ii. - 00. 	 (4.18) 

and so, since D is symmetric, 

[XP, — e*] T D [XT* — 	= X(D + DT) [XT.P1 — *] (4.19) 

= 2XD [XT1 ,  — 	 (4.20) 

--4 Oasit —ioo, 	 (4.21) 

by equation 4.18. For weights w, the square error for state t is [XTW 	and 
the expected number of visits to tin one sequence is d i . Therefore the quadratic 

form 
[XTW - s}T D [xTw — e*] 

is just the loaded square error between the predictions at each state and their 
desired values, where the loading factors are just the expected frequencies with 
which the Markov chain hits those states. The condition in equation 4.21 implies 
that the expected values of the weights tend to be so as to minimise this error. 
This seems ideal behaviour. 

This is false in general for A 54 1. Intuitively, the problem is that the trade-off 
between bias and variance has returned to haunt. For the case where X is full 
rank, Sutton shows that it is harmless to use the inaccurate estimates from the 

next state x,,+  , .w to criticise the estimates for the current state x .w. Where X 

is not full rank, these successive estimates become biased on account of what 
might be deemed their 'shared' representation. The amount of extra bias is then 
related to the amount of sharing, and the frequency with which the transitions 

happen from one state to the next. 

Formalising this leads to a second problem; the interaction between the two 
statistical processes of calculating the mean weight and calculating the expected 
number of transitions. Comparing equations 4.17 and 4.18, one might expect 

[XT , _ë*] T D(I_(1 _A)Q[I_AQ]1) [XTfVnll 	0 (4 .22) 
n~oo

However, the key step in proving equation 4.21 was the transition between 
equations 4.19 and 4.20, which relied on the symmetry of D. Since Q is not in 
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general symmetric, this will not happen. Defining 

	

g(w') = 	; [
XTw - 

1T 
D (i —(1 - A)Q [I - AQ]1) [xTw - 

= XD (i - (1 - A)Q [I - AQ]') [XTW1  - e*] 	 (4.23) 

all that will actually happen is that g() -+ 0 as r. - 00. 

One could arrange for equation 4.22 to hold by completing the derivative, ie by 

having a learning rule whose effect is 

	

[XT +1 - 	= 

{I - XXTX (t - !
2

2 [DQ(I - AQ)' + ( I - AQT)_ 1 QTDT])} [XT - 

The QT  term effectively arranges for backwards as well as forwards learning to 
occur, so that not only would state t adjust its estimate to make it more like 

state t+,, but also state t 4.i would adjust its estimate to make it more like state 

tt. 

Werbos [161] and Sutton (personal communication) both discuss this point 

in the context of the gradient descent of TD(A) rather than its convergence 

for non-independent Xt. Werbos presents an example based on a learning 
technique very similar to TD(0), in which completing the derivative in this 
manner makes the rule converge away from the true solution. He faults this 

procedure for introducing the unhelpful correlations between the learning rule 
and the random moves from one state to the next which were mentioned above. 
He pointed out the convergence in terms of functions g in equation 4.23 in 

which the w' weights are fixed. 

Sutton presents an example as an intuition pump to help explain the result. At 
first sight, augmenting TD(A) seems quite reasonable; after all it could quite 
easily happen by random chance of the training sequences that the predic-
tions for one state are more accurate than the predictions for the next at some 

point. Therefore, training the second to be more like the first would be helpful. 
However, Sutton points out that time and choices always move forward, not 
backwards. Imagine the case shown in figure 4.2, where the numbers over the 

arrows represent the transition probabilities, and the numbers at the terminal 

nodes represent terminal absorbing values. 
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Figure 4.2: Didactic example of the pitfalls of backwards training. If Y and Z are 
terminal states with values 1 and 0 respectively, what value should be assigned 
to states A and B respectively? 

Here, the value of state A is reasonably 1/2, as there is 50% probability of 
ending up at either Y or Z. The value of state B, though should be 1, as the 
chain is certain to end up at Y. Training forwards will give this, but training 
backwards too will make the value of B tend to 3/4. In Werbos' terms, there are 
correlations between the weights and the possible transitions that count against 
the augmented term. Incidentally, this result does not affect TD( 1), because the 
training values, being just the terminal value for the sequence, bear no relation 
to the transitions themselves, just the number of times each state is visited. 

Coming back to the case where X is not full rank. TD(A) for A $ 1 will converge, 
but away from the 'best' value, to a degree that is determined by the matrix 

( - (1 - A)Q [I - AQ] 1 ) 

4.3 Q-Learning 

Both Sutton's proof and the proofs in the previous section are weak. They 
accomplish only the nadir of stochastic convergence, viz convergence of the 
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mean, rather than the zenith, viz convergence with probability one. Watkins 

[159] was able to prove the latter form of convergence for a form of prediction 

and action learning he called Q-learning. Fortunately, his theorem applies 
almost directly to the discounted predictive version of TD(0), albeit without the 
representation, and so provides the first strong proof for a temporal difference 

method. 

Q-learning wraps up prediction and control, rather like the case described in the 

introduction to this chapter, and the navigation example in the next. A TD-like 
method is used to estimate the value, called the Q-value, of doing a particular 
action in a particular state. These are learnt on the basis of exploration through 
the space of actions and states. Once they have been acquired, the optimal 
action is just the one whose Q-value is highest in a state. Control using TD 
directly is slightly different, as will be described in the next chapter. However, 
Watkins' proof can be applied directly to prediction, by imagining the special 
case in which the Markov chain described in the previous section is controlled, 
but there is only one action possible in every state. This makes the value of 
doing that action in that state just the prediction value of the state itself. 

Theorem (after Watkins [1591) 

If N is a finite set of non-terminal states of an absorbing Markov process, T is a 

set of terminal states with rewards with expected values ii, 5 E T, V0(t) E R , t E 
Al is a collection of starting values, 0 < -y < 1 is a discount rate, qjj =Qtj is the 
transition matrix, and V(t) is the optimal value function for state t e Al,  where 

	

V(t) = 	qv(j) + L 	= E[zlt]. 
jEAr 	 JET 

Then for any sequence of observations {t, j, z,}, n. > 1 during learning, where 

the chain starts at state tn  € /i, ends up at i n  E N U T, and 

Jo ifj€Ji 

- Z if in E T, where z is the actual terminal value 

define recursively 

V(t){ (1 
cc)V_1(t) + x[z  + yV_1(j)] if t = 

	

- V_1(t) 	 otherwise, 
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where oc, E R, and let n.t(a),  a > 1 be the ath  time at which t 1. 1  = t. 

Then, if the z have finite variance, 0< oc n  < 1, Vii., and 
00 	 00 

n(a) = 00, Y a 1  <Oo,Vi. E H, 	 (4.24) 

then, with probability one, 

urn Y(t) exists, and equals V). n—+oo 

There are various differences between this version of TD prediction and the one 
discussed in the previous section. Here, learning is on-line, that is the V values 
are changed for every observation. Also, learning need not proceed along an 
observed sequence - there is no requirement that in = t +1 , and so uncoupled 
or disembodied moves can be used .3  The conditions in equation 4.24 have 
as a consequence that every state must be visited infinitely often. Also note 
that Sutton's proof, since it is confined to showing convergence in the mean 
works for a fixed learning rate c, whereas Watkins', in common with all other 
stochastic convergence proofs, requires oc n  to tend to 0. The discount factor 
y < 1 plays a very central role in Watkins proof, in ensuring that bounds can be 
placed on the effects of early Vn values. The proof should still work, though, 
for an absorbing Markov chain with -y = 1, as the ever increasing probability of 
absorption should achieve the same effect. 

4.4 Further Developments 

Watkins' proof requires two principal extensions; to the case of TD(A) for A 0 0, 
and to the case of more interesting representations. Neither of these looks ob-
vious; the first because altering A will bring back sequence-based rather than 
transition-based observation, and will disrupt Watkins' proof method. Proving 
convergence with even the simplest forms of more powerful representations, 
such as Sutton's linear one, will also require more complicated methods, per-
haps along the lines of Kushner and Clark [77] or White [162]. 

3This was one of Watkins' main motivations, as it allows his system to learn about the effects 
of actions it believes to be sub-optimaL 
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Given this, though, TD(A) will 'inherit' a similar theoretical base to other meth-

ods of stochastic approximation. For these also there are proofs of convergence 
in special cases under more or less restrictive conditions, most of which are 
violated for practical purposes. For example, on account of its harmful effects 
on time to convergence, it is rare for applications to use decreasing values of the 
learning rate oc, even though this is a key condition for convergence. Also, it is 
possible to use more sophisticated representations, such as general non-linear 

approximators (for example back-propagation networks), or exotic computer 
science techniques, such as kd-trees [115], even though again there may be no 

proofs of convergence. 

Coming back to how an agent should act in a temporally extended domain, 
Williams and Baird [1661 have recently done some work on other asynchronous 
forms of JDP. Under Q-learning the policy the agent will follow, ie the function 
relating states to actions is (possibly stochastically) determined by the values 
of the states. Williams and Baird consider the circumstance in which policy 
and value function are separately represented, and define two kinds of update 
operator; one for the value function, which makes it closer to evaluating the 
current policy at the current state, and one for the policy, which tends to make it 

more optimal with respect to the current value function at the current state. The 
second of these is the asynchronous form of another traditional method of DP 
called policy iteration, which finds the optimal policy by iteratively calculating 
the value function for the current one and - choosing better local actions. These 
operators can potentially be applied in different orders in different states. 

Unfortunately this process is prone to cycling - it is only guaranteed to converge 
under fairly strong conditions, whose satisfaction would be hard to determine 

a priori. If it does converge, though, then it will be correct. It may simply be too 

general a decomposition of the prediction and action problems. In terms of this 
chapter, there is nothing essentially new about the prediction method Williams 
and Baird use, their focus is rather on the interaction during learning between 

the value function and the policy. 
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4.5 Conclusions 

Watkins' original analysis in his thesis of the relationship between temporal 
difference (TD) estimation and dynamic programming has been used to extend 
Sutton's proof that TD(0) prediction converges in the mean to the case of TD(A) 

for general A. The linear function approximation that Sutton used does not 

function correctly if the states are represented by non-independent vectors, and 
indeed only the Widrow-Hoff predictor TD(1) gives well motivated answers in 

this case. TD(A) still converges, but to a sub-optimal value. 

Sutton's proof and the extension here are only of convergence in the mean; 
Watkins proved that Q-learning, his method of incremental dynamical pro-
gramming, converges with probability one, and this proof has been applied to 

a special case of TD(0). It is unclear how to alter it further to prove convergence 
for TD(A) or for more complicated representations of the state-space. 



Chapter 5 

Temporal Difference in Spatial 
Learning 

"Maze": A diversionary tool for finding and finding out. 

5.0 Summary 

This chapter applies temporal difference (TD) methods to navigation. The 
traditional emphasis on map building is criticised for ignoring the implicit and 

notoriously intractable planning problem, and the TD method for relaxation 
planning is motivated and described. A task due to Barto, Sutton and Watkins 

[11] is shown to be similar to Morris' open field water maze [1011, and the 
solution to the former is pondered in the light of the latter. Extensions are 

discussed in the areas of goal-free learning and alternate representations of the 
world, including ones that code places differently according to the orientation 

of the agent. 

5.1 Introduction 

A computational agent's map-building and navigation system faces two key 

questions: 

109 
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where are the agent and the things it needs to find in its environment, 

how can it get to them? 

Representations neglecting one of these in favour of the other are unlikely to 
suffice. As is very well described in [113], philosophy has traditionally con-
centrated on notions of the 'where', trying to choose between relative space, 
constructed from the relationships between objects, and absolute space, in 
which locations exist independently of the objects they may contain. From 
the experience of Al, on the other hand, it is apparent that the 'how' will be 

computationally very difficult to address. It suffers from essentially all the 
problems of computationally intractable planning. This problem is particularly 
acute when the agent has to learn the map which it is to use for navigation. 

We can delude ourselves into overlooking the close connection between these 
two questions because of the way in which we seem able to use maps. Not only 
do they provide a very compact representation of the contents of space, helping 
answer the 'where', but also they permit us to use an apparently special form 
of visual inference, with which we have particular facility. Unfortunately, the 
mechanistic grounding of this skill is still mysterious, and in any case, for many 
tasks, the problem remains of learning such a rich representation by exploration, 

as opposed to just using a pre-existing map. 

The mammalian hippocampus has long been suspected of being involved in 
mapping and navigation. The initial evidence was the discovery of place cells 
in this structure in the rat [1121. These are cells that fire when the rat is at 

particular locations in its environment. The hypotheses about the role of the 
hippocampus have been both empirically and theoretically honed since then, 

resulting, on the way, in O'Keefe and Nadel's monumental book [113]. They 
reviewed almost all the then available evidence on the hippocampus, and fitted 
it into their theory that it is a cognitive mapping system. They considered data 
from many different species; for instance bats, who are able to construct and use 

maps of their living areas, have large hippocampi. Incidentally, O'Keefe and 
Nadel also suggested that in humans, the right half of this structure performs 
this spatial mapping function, whereas the left half is responsible for semantic 

mapping. Gallistel in a seminal tome on animal representation, presents 

substantial bodies of evidence that many species have the ability to construct 
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Dentate 
Cyrus 

Entorhinal 1 	Extra 	I 

Cortex 	
CA3 

To and from 

Neocortex 	
CA1 

Figure 5.1: Schematic diagram of the hippocampus showing dual inputs 

and use maps. 

For reference, figure 5.1 shows a block diagram of the structure and some of 
the connections of the hippocampus. It receives input from all the sensory 
modalities, and sends its output to neocortex. Place cells are seen in the CA 3  
and CA, regions, and the entorhinal cortex. The tn-synaptic loop, which has 
long been known, is augmented on the diagram by an additional path from the 
entorhinal cortex to CA 3 . 

Unfortunately, the content of the O'Keefe and Nadel's theory, and the repre-
sentation of space it supposes, are aimed almost exclusively at answering the 
'where', ignoring the 'how'. For instance, on the latter, they suggest that: 

'Let us imagine our animal has explored an environment containing 
food, while sated, and has built a map of that environment including 
the location of the food. At a later time the animal, now hungry, finds 
itself in the same environment... How might the map guide the an-
imal's behaviour towards the food? Let us assume that, in addition 
to a generalised subliminal excitation of all place representations 
connected together into one map which ensues whenever two or 
more parts of a map are excited, hunger specifically excites those 
place representations where food has been experienced. These two 
will sum, bringing the representation of the place containing food in 
that environment close to activation. Since the place that the animal 
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occupies will also be receiving afferent drive [the place cells will 
be firing based on the animal's current location] there will be two 
sets of place representations which are potentiated. The program-
ming system can now search for the appropriate motor programme 
which activates both of these representations simultaneously; this 
programme will take the animal from where it is to where the food 
is.' [113]-p227 

This rather overlooks the complexity of the 'how'. Just starting from arbitrary 
distributions of firing over two sets of place cells - one representing the current 
location, the other the goal location - it is unclear how the whole sequence of 
actions that may be necessary to get from one to the other may be programmed. 
There may well be many alternative choices for each element of the sequence, 

each choice opening some further possibilities and closing others. The complex-
ity of these issues, even for a simple maze task, seems to render such theories 
unmechanisable. At issue is how the rat might avoid being caught in Guthrie's 
trap - being left buried in thought because the planning problem underlying 
navigation is too difficult to solve - representation of space is not all. Gallistel's 
theory is similarly reticent on the subject of the 'how'. 

O'Keefe and Nadel consider animals to have two systems for navigation; the 

locale system, their role for the hippocampus, with its place cells, and the taxon 
system, which is elsewhere in the brain, and which generates lists of guidance 
and orientation hypotheses, which determine routes. Guidance involves the 

animal associating positive or negative valences with cues Or items, and choos-
ing actions to approach or avoid them appropriately. Orientations are more 
specific hypotheses about the types of behaviours appropriate in the presence 
of particular cues, for example 'right turn at the corner'. 

A more recent proposal concerning the function of the hippocampus is due to 
McNaughton [901. His 'Hebb-Marr' theory has this structure learn a function 

of the form: 
place x action --+ next place. 

based on place cell representations of locations. For this function to be well 
defined, the same place must be represented differently according to which 
direction the animal is facing in it - a purely allocentric coding of space could 
not be used with ategocentric coding of actions. McNaughton consistently finds 
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this - eg in [89], when rats run through a maze with radial arms, different place 
cells fire when they run inwards from when they run outwards. However, 
O'Keefe's evidence, eg [1141, does not support this conclusion. 

Two problems are apparent with McNaughton's proposal; firstly there are tech-
nical difficulties in persuading the particular Hebb-Marr memories he posits to 
learn such a conjunctive function, in which many places are associated with the 
same action, and many actions, each with different consequences, with the same 
place. Secondly, and more seriously, the planning side of navigation has also 

been overlooked. At most, the map can directly tell its owner how to get from 
Start to Goal only if some single action performs this step. How a sequence 
of actions might be compiled together is still undetermined. Sutton's DYNA 
systems, described in section 5.5, show one way that this might be done, but 
his is more an engineering than a neurobiological proposal. 

From the discussion above, it would seem that some combination of systems 
that carry out locale and taxon functions might be appropriate for handling both 
the 'where' and the 'how, to the extent, of course, that O'Keefe and Nadel's 
distinction carves the world at some natural joint. This was the initial impetus 
for considering temporal difference (TD) methods. Independent motivation 
comes from their emphasis on the role of time, and also from the TD model 
Sutton and Barto present of general classical conditioning [151]. As far as the 
mechanisms of a general classical conditioning model are capable of solving 
a navigation problem, one is forced to reconsider the oft mooted suggestion 
that the spatial mapping system has radically different properties from the ones 
underlying other complex forms of learning and memory. 

One paradigmatic example of a spatial learning task is the open field water 
maze, devised by Richard Morris [1011. Rats are placed in a large circular pool 
of water, to which some milk powder has been added to make it opaque. A 
platform is hidden under the surface, and the rats must learn how to get to it 
from wherever they are initially placed in the pool. Although the strains of rats 
used are powerful swimmers, they prefer dry land, and so have an incentive 
to get to the platform as quickly as possible. When first put in the pool, the 
rats swim rather randomly, but they rapidly learn fast paths to the platform. 
One attractive feature of the water maze is that it severely hinders the use of 
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olfactory cues, to which rats are far more sensitive than humans. 

Since the pool itself is as radially symmetrical as possible, the salient cues to 
which the rats can attend to navigate by are external to it. Indeed, when the 
pool is surrounded by uniform curtains, which obscure the rats' views of the 
rest of the room, they are either unable to find the platform reliably, or use 
interestingly different strategies, such as circling at the distance from the walls 
of the pool at which the platforms are always to be found. 

Barto, Sutton and Watkins [11] developed a system that learns using TD to 

navigate to a goal in a grid. Although their intent was to demonstrate and 
discuss the workings of reactive planning, their example actually makes plain 
the sheer complexity of both the task and the decisions underlying theoretical 
models of map making and map use. These apply to biological systems as 
much as the engineering ones that are developed below. Among the issues that 
unavoidably arise are the manner of exploration, the nature of the rewards and 
punishments for reaching or failing to reach the goal, and the representation of 
the environment. This chapter focuses mainly on representations, but all these 
concerns impinge on observable behaviour. 

The next section looks at Barto, Sutton and Watkins' navigation example and 
describes some of its choices on these issues, section 5.3 evaluates the effects 
of changing the representation of the environment, section 5.4 considers what 
might be learnt in the absence of reinforcement, and section 5.5 reviews some 
of the recent work related to this in connectionist planning and mapping. 

5.2 Barto, Sutton and Watkins' Model 

As a didactic example of TD methods and their relation to dynamical program-
ming, Barto, Sutton and Watkins [111 present a system which learns how to find 
a goal point in a small grid. The task is shown in figure 5.2. Unless prevented by 
the barrier (represented by the thick lines), or the edge of the grid, the agent can 
move in any of the four directions. The 'blob' at grid location (2,2) is the goal, 
but its location is not known to the agent at the start. There are some similarities 
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Barrier 

Coal  

Figure 5.2: The Grid Task. 

between this and the open field water maze - in both, there is a goal whose 
location is unknown, and the agent or rat has to work out how to navigate there 
from anywhere, based on attaining it repeatedly during exploration. However, 
it would, of course, be unsupportable to claim that rats solve the water maze 
using TD methods, and the mechanisms and representations developed below 
are more of engineering than biological interest. 

The model and the flow of information through it are shown in figure 5.3. The 
environment provides the agent with two sources of information - the thick 
line representing a stimulus vector, which is a function of the agent's location 
in the grid, and the thin line representing a scalar reinforcement value. The 
agent is awarded a reinforcement of —1 every time it moves in the grid, unless 
it moves onto the goal, in which case it receives no reinforcement at all. Once it 
has moved onto the goal, the next trial begins. Its task is to choose actions so as 
to maximise total reinforcement, ie to minimise the lengths of the paths to the 
goal (since the reinforcement is negative). 

The obvious problem is that the reinforcement provided by the environment 
is very uninformative between particular actions - it is almost always —1. As 

was evident in chapter 4, the system could try to overcome this handicap by 

Agent 
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The Agent 

Figure 53: Barto, Sutton and Watkins' agent. 

learning the function that relates locations in the grid to their distances from 
the goal. If this were possible, then the selection of an action could be rewarded 
if it leads from a location believed to be far from the goal to one thought to be 
close, and punished otherwise. 

For this particular case, one could dispense with they discount factor altogether, 
since the grid is so small, but it will be retained for convenience. The desired 
discounted distance function should satisfy: 

VA(X) = Tt+1 + yvx(xt+i ) 

where y is the discount factor, is the TD learning decay rate, Xt is the repre-
sentation of the location of the agent at time t, x+i is the representation at time 
t + 1, and rt+1 is the reinforcement awarded for the intervening move. This 

can be seen by looking at a complete path to the goal - the system ought to 
evaluate each location as being one step farther away than the next. Again as 
in the previous chapter, the inequality in this expression is turned into an error 
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measure: 

£t+1 =Tt+1 
yVA(xl)_VA(x) 

and this is used to alter the parameters generating VA. 

Barto, Sutton and Watkins use the simplest possible representation - a punctate 

one for which each of the 96 locations in the grid is represented by the firing of 
a single unit. Coupled with a linear form for Vj'(x) = v.x, this amounts to a 
table look-up for the distance from the goal. vA  is changed according to: 

cx 	 (5.1) 

where 

t+1 =(1 — A)+Ax 

is the usual TD trace function.' 

The action selection system operates similarly. Associated with each of the four 
possible actions (North, South, East or West) is a vector (flt, St, et, and wt). At 
time t, the system chooses the largest of: 

flt.Xt 	St.Xt + 11, et.xt +ii and Wt.Xt +ii' 

where the ut are identically distributed random variables, and then tries to 
move in that direction. VA is used to criticise the action according to the dif-
ference between the estimated value (or equivalently cost) of the move and the 
estimated value of the current location. The cost of the move is: 

Tt+J +yVA(xt+ i) 

which is the sum of the reinforcement actually received and the estimated value 
of the new location. The estimated value of the current location xt  is VA(X) 

The difference between these two is just 6t+1,  the same quantity that was used 
in equation 5.1 for learning yA  itself. The action vectors are then updated 
according to: 

cx 

1For consistency with Sutton and Barto's formulation of TD for classical conditioning [150], 
which is cited in Barto, Sutton and Watkins [111, the definition of the trace decay term is slightly 
different from the one adopted in chapter 4. That would have been: 

Z+j xvt 
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(using et as an example), where each action has its own trace decay eligibility 

term, which is updated according to 

- J (1 - A') + A'x if East was the chosen action at time t, 
tfl - 1( 1   — A') 	otherwise 

All equations for this section and section 5.4 are given in appendix A, along 
with the values of the parameters that were used in the simulations. 

Note that in this representation, the environment does not explicitly tell the 
agent about the barrier or the sides of the grid. It has to find these by trying 
invalid actions, which still earn a reinforcement of —1 but leave it fixed. This 
swiftly causes the action selection system to prefer some alternative. 

A typical learning curve for this system is shown in figure 5•4•2  Points on the 
graph are averages over 200 complete runs, and are calculated by switching off 
the learning after the number of runs given on the x—axis, starting the agent 
from every location on the grid, and recording how many more steps it takes to 

reach the goal from there than the optimal strategy would. it is apparent that 
the system rapidly learns fast paths to the goal, despite the relative paucity of 
the information it receives. Figure 5.5 shows the development of VA  across the 
grid as the system learns to solve the task. The barrier can clearly be seen in the 
sharp jump in this value function. Figure 5.6 shows the final actions the system 
chose at every location, for one particular run of the program. 

Three key issues identified in the introduction for theoretical models like this 

are the manner of exploration, the nature of the rewards and punishment, and 
the representation of the environment. The randomness provided by the T1 is 
responsible for the balance between exploitation of the existing set of actions 
and exploration for new and better sets. As the agent learns appropriate actions, 
the effect of the 11t  smoothly diminishes, since these quantities are outweighed 
by the differences between the evaluations of the actions. 

This is a form of implicit and incomplete annealing. In normal annealing [73], 
the randomness, governed by a computational temperature, is explicitly re- 

duced as the system learns. Once the temperature is reduced to zero, the system 

2The axes of the graphs differ fmm those in [111. 
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Figure 5.4: Average learning curve for BSW. Note the log-linear scale. 
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Figure 5.5: Development of VA  after 1, 10, 100, and 1000 iterations. 
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Figure 5.6: The favoured actions at every grid point. Note the error at (6,9). 

solidifies, and is incapable of responding to manipulations in the environment. 
Here, the solidity is controlled by the magnitude of the differences between the 
evaluations of the actions. If anything happens to change these evaluations (for 
instance, if a path becomes blocked) then the randomness, which was lurking 
under the surface, typically re-emerges to continue the search for the best ac-
tion under the new circumstances. The process only works in this case because 
there are convenient automatic bounds on the value function which, in normal 
circumstances, stop it growing without bound. 

On the structure of the rewards, 3  there is an interesting trade off between. the 
initial estimates of the VA  and the reinforcement values awarded after each 
move. An alternative reward schedule to the one described above is to award 
no reinforcement for any move, until the agent moves onto the goal, and then 

for that last step to set i+i = 1. if the discount factor is y < 1, then the ideal 
value of any location is y",  where m is the number of steps it takes to get to the 
goal. The incentive on the agent to produce shorter paths is provided by the 

ever decreasing .yTt. 

This system is not obviously equivalent to the one Barto, Sutton and Watkins 

'This arose during a discussion with Tony Prescott. 
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used. Consider what happens if V' starts out at 0 when the agent is moving 
around the grid without having ever reached the goal. If the reinforcement 
values are all 0, then all its evaluations of V' will appear to be correct, and so 
it will not alter the evaluation of grid points it has been through. Contrast this 
with what happens when the reinforcements are —1. Now, passing through a 
grid point is immediately deleterious, and the agent will learn to avoid places it 
has already visited, even before it has ever reached the goal. One way to restore 

the equivalence is to arrange for the 0 reinforcement case that the initial values 
of the V' are constant, but not zero, as then the 

yVA(x+1) - VA(x t ) 

component to Ct+1 will have the same avoidance effect. Although giving cer-
tain locations higher initial evaluations is one way to bias the exploration of 
the agent4  it is difficult to do in general, depending on the nature of the rep-
resentation (or equivalently function approximation scheme) adopted. In this 
particular case, the table look-up makes it easy, but this will not be true of all 
representations, eg R, which is discussed below. 

The representation of the environment employed makes this way of doing nav-

igation something of a hybrid between locale and taxon systems. On one hand 
the punctate, position-coded, units somewhat resemble place cells (however, 
although they fire only at certain locations in the environment, the representa-
tion is not distributed across the firing of a number of units, as seems actually 
to be the case) and the action system is not based on the evaluation of any 
particular cue. On the other, the agent does not construct a map which is 
meaningful independent of the particular goal at (2,2), and so would have to 
relearn, painfully, were the goal to be moved. Section 5.3 considers alternative 
representations that are more closely related to the information directly avail-
able from the environment. Section 5.4 considers how latent learning, in the 

initial absence of a goal, can be used to develop 'hidden-unit' representations 
that speed subsequent goal-based learning. 

Sutton [149] calls the stimulus-response map that the system generates a 'com- 
piled plan' in honour of the absence in this method of any interpretation process 

4lndeed, as described below, this is the means by which the 'imagination' of Sutton's DYNA 
system [149] ensures that alternative paths are continually revisited to see if they are better, 
even when the agent has already settled on a good path. 
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on a map. His advocacy of such approaches is based on their continually swift 
responses, and the incremental nature of their learning - the agent does not have 
to stop and crunch substantial dynamic programs as it learns, which would be 
computationally unwise early on in learning and for a continually changing 

world. In fact, in a rather different problem, Barto and Singh [8] found exactly 
this; Watkins' Q-learning system, which uses compiled plans, substantially 
outperformed an alternative system due to Sato, Abe and Takeda [134] that 
continually improves a complete Markov model, and calculates, using DP, the 
optimal actions this model would specify. 

The similarities between the grid task and the open field water maze should be 
clear. In both, the problem solvers are placed at various locations in an initially 
unknown environment, and have to learn how to get to one particular location 
in it in the shortest time. Some differences should also be clear - particularly 
in that there are no cues in the grid task, rather, the punctate representation is 
provided at the outset. Also, whereas other experiments would suggest the rats 
in the water maze would have the capacity to learn about the environment in 
the absence of the platform, this would not happen in the present model. 5  The 
next sections look at these two issues. 

Other manipulations are also possible - for instance partial barriers could be 
installed, which the agent would just be penalised for breaching. Experimen-
tally, the system handles these admirably, choosing to breach barriers only if it 
would benefit from doing so. 

5.3 Alternative Stimulus Representations 

Stimulus representations, the means by which the agent finds out from the 
environment where it is, can be classified along two dimensions; whether they 
are punctate or distributed, and whether they are directionally sensitive or 
in register with the world. Over most of the grid, a 'sensible' distributed 
representation, such as a coarse-coded one would be expected to make learning 

5Apparently, technical difficulties have prevented this experiment from being done, but such 
'latent' learning is well established in more conventional, dry, mazes [161. 
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faster. It would allow adjacent grid points to share information for the yA•  This 

is appropriate since points that are near each other are nearly the same distance 
from the goal. Information could also be shared for the ii, S, e and w vectors 
which determine the action selection. This is frequently wise given the simple 
set of possible moves. There are points of discontinuity in the actions, as in the 

region above the right hand arm of the barrier, but they are few. 

In his thesis [159], Watkins considers a rather similar problem to this, and solves 
it using Q-learning (see chapter 4) based on a CMAC representation of the space. 
CMACs were developed by Albus [2] from his model of the cerebellum, but for 
Watkins' purposes they act just like a coarse coding of the environment. Since 
his agent moves in a continuous bounded space, rather than being confined 
merely to discrete grid points, something of this sort is anyway essential. After 
the initial learning, Watkins arbitrarily makes the agent move ten times more 
slowly in a dosed section of the space. This has a similar effect to the barrier 
in inducing a discontinuity in the action space. Despite the CMACs forcing the 
system to share information across such discontinuities, they were able to learn 

the task quickly. 

The other dimension over which representations may vary involves the extent 
to which they are sensitive to the direction in which the agent is facing. As 
mentioned above, it is an unresolved empirical issue whether or not place cells 
are directionally independent. Certainly other cells responsive more directly to 
the input stimuli will be directionally sensitive. 

Note also that rather than moving North, South, East or West, which are actions 

registered with the world, the agent should only move Ahead, Left or Right 
(Behind is disabled as an additional constraint). The effects of these actions are 
also orientation dependent This, together with the fact that the representation 

is likely to be less compact (ie having a larger input dimensionality) should 
make learning slower. Dynamical programming (DP) is notoriously subject 
to Bellman's curse of dimensionality, which is the engineering equivalent of 

exponential explosion in search. TD methods, although they provide a natural 
and incremental way of doing DP, will not be able to stave off degradation in 

the face of this problem. At best, they may improve its grace. 
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Directionally 

Coarseness 
Punctate 	Distributed 

Sensitive 

Insensitive R'SSW RCMAC 

Table 5.1: Representations. 

Table 5.1 shows four possible representations classified along these two di-

mensions. 1?.ww  is the representation Barto, Sutton and Watkins used, and is 

discussed in the previous section. R. is punctate and directionally sensitive; 
just like R only one unit fires at any one time, but R devotes four units to 
each grid point, one of which fires for each possible orientation of the agent. 
7Z was not simulated because in a task with so few discontinuities, its ca-
pabilities would be very similar to those of the mapping-based representation 

developed in the next section. 

RA is rather different from the other representations. Even apart from the dis-
pute mentioned above about the directional sensitivity of place cells, it seemed 
important to test a representation which is more closely associated with the 
sensory information that might be available directly from the cues. Figure 5.7 

shows how RA works. Various identifiable cues (C l  . . . C) are scattered around 
the outside of the grid, and the agent has a fictitious 'retina' which rotates with 
it. This retina is divided into a number of angular buckets (8 in the figure), and 

each bucket has c units, the 1. t1  one of which responds if the cue C i  is visible in 

that bucket. This representation is dearly directionally sensitive (if the agent is 
facing a different way, then so is its retina, and so no cue will be visible in the 
same bucket as it was before), and also distributed, since in general more than 
one cue will be visible from every location. 

There are various things of note about 1A•  First, there is no restriction on the 
number of units that can fire in each bucket at any time - more than one will 
fire if more than one cue is visible there. Second, it will in general not work 
if it is ambiguous, and so one can still regard the stimulus as labelling the 
place directly. This issue is treated in section 5.5. Third, it should be dear that 
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7A is not remotely biologically plausible, either as a basis for navigation, or 
in terms of the assumptions it makes about object recognition. Finally, during 
experiments with RA it became apparent that the paths taken early on in learning 
are qualitatively different from those with the other representations - a form of 
dervish-like circling /spiraling behaviour is often seen. This arises because the 
control is crudely of the form: 

• . . carry on until cue C2 changes from being on the right and ahead 
to being on the right and behind, then turn... 

Only later on in learning will the finer points of the differences in the represen-
tations of each point be fully utilised. 

Figure 5.8 shows the learning curves for the three representations simulated. 
It is apparent that R x  is substantially worse, but, surprisingly, that 7A  is ac-
tually slightly better than This implies that the added advantage from 
its distributed nature more than outweighs its disadvantages of having more 
components and being directionally sensitive. 

5.4 Goal-Free Learning 

One of the problems with the TD system as described is that it is incapable 
of learning in the absence of reinforcement or a goal. If the goal is taken 
away, but the —1 reinforcements are still applied at each step, then the values 
assigned to each location will tend to —1/(1 - y) (or —oo if -y = 1). If both 
are removed, then although the agent will wander about its environment with 
random gay abandon, it will not pick up anything that could be used to speed 
subsequent learning. Latent learning experiments in dry-land mazes [16] prove 

fairly condusively that rats running in the absence of rewards and punishments 
learn almost as much as rats that are reinforced. 

One way to solve this problem is suggested by Sutton's DYNA architecture, 

6 11e differences are statistically significant at at least the 2.5% level until 90 learning 
iterations. 
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which is described in detail the next section. Briefly, it constructs a map of 

the McNaughton form, but suggests a way that the 'how' question can be 
addressed. Unfortunately, its operation relies on a rather unintuitive process of 
'imagination' - in between taking real steps in the real world, the agent has to 
take random imaginary steps in an imaginary world constructed from its map. 

If a complete map is not to be constructed, one might seek an intermediate 
way, not dependent on reinforcement, of incorporating information from the 
world. The only remaining repository for this is the representation of the envi-
ronment used for learning the value function and optimal actions. The section 
on representations concluded that coarse-coded representations are generally 
better than punctate ones, since information can be shared between neighbour-
ing points. However, not all neighbouring points are amenable to this sharing, 
because of discontinuities in the value and action functions. If there were a way 
of generating a coarse coded representation that is sensitive to the structure of 
the task (generally from a punctate one), rather than being arbitrarily assigned 
by the environment, it should provide the base for fast learning. In this case, 
neighbouring points should not be coded together if they are separated by the 
barrier. The initial exploration would allow the agent to learn this much about 
the structure of the environment. 

It turns out that this can be accomplished using exactly the learning mechanisms 
already discussed. Although any claim to neurobiological plausibility would 
be entirely spurious, the method was originally motivated by the connections 
shown in the block diagram of the hippocampus in figure 5.1 between the 

entorhinal cortex and CA 3, which augment the well known tn-synaptic loop. 
In the computational equivalent of this, one could imagine these additional 

fibres to play a different rOle from the ones feeding in from the dentate gyrus - 
a role more akin to that played by the environmental reinforcement path whose 

future activation VA  is intended to predict. 

If this were so, the units in the modelled version of CA 3  would have the job of 
predicting the future discounted sum of firings of the raw input lines. This is 
just what is required. Consider 1 and the initial stage of learning when the 
actions are still random. if the agent is at location (3,3) of the grid, say, then 
the discounted prediction of how often it will be in (3,4) will be high, since this 
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location is close. However, the prediction for (7,11) will be low, because it is 

very unlikely to get there in a hurry. Consider the effect of the barrier; locations 
on opposite sides of it, eg (1,6) and (2,6), though close in the Euclidean (or 
Manhattan) metric on the grid, are far apart in the task. This means that the 

discounted prediction of how often the agent will be at (1,6) given that it starts 
at (2,6), will be proportionately lower. Overall, the prediction units should 

act like a coarse code, sensitive to the structure of the task. As required, this 
information about the environment is entirely independent of whether or not 
the agent is reinforced during its exploration. In fact, the 'map' will be more 
accurate if it is not, as its exploration will be more random. 

The modifications to the agent's architecture are shown in figure 5.9. Each of 
the prediction or mapping units has two sources of input from the environment; 

a 'privileged' one, whose discounted future firing it has to predict, based on 
the other 'normal' ones, which are just the same as before. Relying for the 

ultimate control learning solely on the prediction units would be unwise, since 
they take a number of iterations to produce meaningful outputs. They are 
used as an additional source of information for the value and action functions. 
Appendix A gives the learning rules and the values of the parameters used in 
the experiments. 

Since their main aim is to create intelligently distributed representations from 
punctate ones, it is only appropriate to use these prediction units for 1Z. and 
R. Figures 5.10 and 5.11 compare average learning curves for Rbs, and 7Z x  

respectively with and without these extra mapping units, and with and without 
6000 steps of latent learning in the absence of any reinforcement. A significant 
improvement is apparent. 

Figure 5.12 shows how two sets of predictions for the R s,, representation 
develop,7  one on each side of the barrier. After 6000 un-reinforced steps, the 
predictions are fairly well developed and smooth - a predictable exponentially 
decaying hump. The only deviations from this are at the barrier and along 
the edges, where the effects of impermeability and immobility are apparent. 
Introducing the mapping units increases by an order of magnitude the corn- 

Note that these axe normalised to a maximum value of 10, for graphical convenience. 
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putational load of the system based on the number of weights available to it - 

however, as can be seen from figure 5.12, most of them end up at zero. 

The striking feature of figure 5.12 is that as learning continues and the paths of 
the agent become increasingly optimal, the predictions degenerate from being 
roughly radially symmetric (bar the barrier) to being highly asymmetric. This 
is only to be expected given the job they are trying to do. Once the agent has 
learnt how to get to the goal from some place, the only locations to which it will 

subsequently go are those on the direct path to the goal. The asymptotic values 
of the predictions will therefore be 0 for units not on the path, and y' for those 

on the path, where r is the number of steps since the agent's start point. This is a 
severe limitation since it implies that the topological information present in the 
early stages of learning quite evaporates, and with it almost all the benefits of the 
prediction units. In fact it can be positively harmful; if the goal is moved once 
this degeneration is complete, the system finds it significantly more difficult to 
learn its new location than it did to learn its original one. 

There is a close relationship between these predictions and those learnt by 
Sutton and Pinette's [152] world modelling scheme. Their system is based on 
a recurrent network whose connections are essentially the Markov matrix for 
a task. When fed with a persistent input, the punctate representation of the 

current state, the network calculates the discounted sum of future expected 
occupancy of all the other states. The network can also be augmented so as to 
predict the discounted sum of future reinforcement, if some states and actions 
lead to reinforcement from the environment. Just like the systems described 
here, the world model is learnt using the discrepancies between the predictions 
at adjacent time steps as errors for adjusting the weights. The formula for the 
weight change is based on an analogy; Sutton and Pinette give no guarantees 
that it will learn correctly. It should be pointed out that CA3 has recurrent 

connections. 

Under normal circumstances, Sutton and Pinette's predictions are identical to 

the ones learnt by the system described in this section; however those here are 
easier to calculate, since only feedforward connections are involved, and they 
also can, in principle at least, work with non-punctate representations of the 
state. Sutton and Pinette's system suffers from the same handicap that possible 
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Figure 5.12: Predictions starting from (1,6) and (5,6) after 1 and 2000 learning 
iterations. 
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action choices are only known implicitly, and so, for instance, would show the 
same degeneration in its map as is evident in figure 5.12. The advantage the 

recurrence should give is that a small change in the model (eg a slight extension 

to the barrier) can instantaneously lead to dramatic changes in the predictions. 
The system here would have to relearn all the affected predictions explicitly. 

This capacity was not tested in the original paper. 

Certain interesting parallels between the prediction units and place cells present 

themselves. Foremost, the predictions will often be far more place-like than the 
inputs on which they are based. Imagine an input unit that fires at some location 
when the agent is at a given orientation. The predictor of the firing of this input 
should be somewhat active over a complete neighbourhood of it, formed of 
the places which are relatively dose in terms of the task. The activation of the 
prediction unit will therefore be more distributed and less orientation sensitive 

than the original input. 

Secondly, the outputs of the prediction units will be sensitive to the introduction 
of barriers in the environment that actually force the agent to change its course. 
They will not, in general, respond to barriers that merely alter the stimuli 
without changing the agent's course. Muller and Kubie [104] found precisely 
this effect when they tried adding dear plastic barriers to an environment which 

rats had previously experienced. 

Figure 5.13 compares the best learning curve for each representation. it is ap-
parent that the extra units and the latent learning benefit both representations, 

making preferable to 1?A. All the visible differences are statistically signifi-
cant at better than the 5% level, however the parameters (given in Appendix A) 

are not necessarily optimal. 

5.5 Further Developments 

The problems of mapping and navigation using connectionist systems have 
recently come to the fore. Three foci of the work are ambiguous stimulus 
representations (essentially a 'where' issue), more effective planning (a 'how' 
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one), and computationally better representations (a 'what' one). 

5.5.1 'Where' 

On the ambiguity of input, there are a number of recent proposals (eg [24,137]) 

for solving the problem of constructing unique maps from non-unique stimuli, 
when many locations in the world look the same. All of them are based on 
the use of recurrent networks. These develop a 'context' that can disambiguate 
such locations based on the sequence of places the agent visits. Consider what 

might happen if the environment delivers stimulus b in two locations, but in 
one it happens never to follow stimulus a, whereas in the other it does. Then, 
observing the sequence a, b would serve to distinguish the two. Recurrence is 
necessary for the classification system to be sensitive to such sequences. This 
method is rather similar to a traditional one in the theory of Markov chains. If 
a particular process is non-Markovian - its state transitions depend partially 
on its history - then it can be made Markovian by wrapping up into a state the 

entire history of the process. 

Chrisley [24] makes one such proposal for resolving the ambiguity, using the 
simple recurrent architecture due to Jordan [67] and Elman [37]. His system 
can use dead-reckoning - the agent's estimation of the distance and directions it 
thinks it has travelled - as one of its sources of data. There is empirical evidence 
that this information may be available to the navigation system. For instance 
O'Keefe [111] found that the appropriate place cells fired when some rats were 
moving through a previously learnt environment even if all the visual cues were 
absent as they ran. They were given an initial glimpse of the environment so that 

they could orient themselves. In general, and particularly in environments like 
the water maze, artificial dead reckoning systems are very prone to error. They 
need continual correction on the basis of externally registered information such 

as cues. it is also very hard to simulate the errors of dead reckoning systems 
convincingly, since they may be apparently systematic in some dimensions, yet 

apparently random in others. 

Building on Rivest and Schapire's [129,130] update graphs, Mozer and Bachrach 
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[102, 1031 provide another method of using stochastic exploration to learn the 
structure of an environment whose state representations are ambiguous. An 
update graph is a particular representation of a finite environment, which is 
normally compact compared with the equivalent description as a finite state 
machine. It works by representing only the equivalence classes of the results of 
executing sequences of actions; for example in the grid, moving North is almost 
always the same as moving East, West, then North, except at the boundaries 

and the barrier. Such equivalences lead to the parsimony of the update graphs. 
Mozer and Bachrach show how a recurrent connectionist system, with an archi-
tecture very similar to Chrisley's can be encouraged to learn the update graph, 
and discuss the circumstances under which it might be useful. Unlike Chris-
ley's, this method explicitly decouples the actions, by providing a different set 
of weights for each one. 

It is unclear that ambiguity is much of a problem for animals in realistic envi-
ronments. Facets of the stimulus array such as the distance of the agent from 
the cues (which representation 1?,, ignores), or the different appearance of the 
same cue from a different part of the environment, will help create the desired 
uniqueness. In fact, the problem is more likely to be of the opposite character 
- places look different each time the animal visits. This would make the task 
for the recurrent networks radically more difficult, as they would be trying 
to satisfy impossible demands. By contrast, static networks do not make the 
attempt, and so would not find it so difficult. 

Whitehead and Ballard [163] deliberately create an ambiguous representation to 
permit fast processing, and then provide a method for disambiguation. Inspired 

by Agre and Chapman's system Péngi [1], described in chapter 6, they adopt 
indexical representations as the stimulus input to a reinforcement learning 

system. Such representations are based on only part of the available state 
information, and are hence compact. However, omitting this information tends 
to make them ambiguous. Whitehead and Ballard define a set of 'internal' 
actions the agent can do (such as turning its head) to collect more and different 
information that is available at its current location in the environment so as 
to resolve the ambiguity, if this is causing the agent to .fail. if its actions are 
successful in accordance with its predictions, then any ambiguity is not harming 
the agent and can be tolerated. This is an attractive way of resolving the 
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computational concerns about DP, but depends on there being appropriate 
indexical representations. The alternative approach is to try to learn which 

of the stimulus inputs available at a location are significant - ie to learn an 

appropriate input transformation. 

5.5.2 'How' 

The field of planning is in constant foment - impossible demands unsatisfied 
by inadequate programs based on unreal theories. The residue left after the 
evaporation of Al's optimism suggests that no general method will be able to 
tackle anything other than toy-sized problems, and that bespoke tailoring of 
methods will always be necessary. DP and TD are both general methods, and 

so can be criticised along these lines. 

Sutton has further developed the architecture described in section 5.2 into the 
DYNA range of systems, which was briefly mentioned above. These continue 
the tradition of fast incremental learning (which he calls relaxation planning) 
and compiled plans, but additionally consider possible ways of using a world 
model. Sutton's premise is that it costs little extra to learn a McNaughton-style 

world model of: 
place x action—' next place 

as the agent explores its environment. This is more true from an engineering 
perspective, given no restrictions on the memory architecture, than from a con-
nectionist one, where such conjunctive maps are difficult to learn. The criticism 
above of McNaughton is that he ignores the lack of compelling methods of 
inference over such one step maps. Sutton gets his agent repeatedly to 'day-
dream' starting at random locations in the map, to 'imagine' making a random 
move, and to evaluate and learn about that move according to the current value 

and action systems. 

Initially, the map is empty, so the imaginary moves are useless. As the agent's 
model of the world improves, though, the imaginary moves can increase the 

speed of learning. To see this, consider that at any intermediate stage of the TD 
learning, there are two sources of error. One is that not every action has been 
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tried in every location, so their consequences are uncertain - this is unchanged 
by the map. The other is that there can be inconsistencies in the value and 
action systems. As a contingent fact of its history, the agent might evaluate two 
adjacent locations dramatically differently, or its value function might evaluate 

one as being better than the other whilst its action selection system favours 
a move in the opposite direction. The imaginary moves can iron out these 
computational bumps. 

Paradoxically, for a purely simulated system, doing the extra imaginary steps 
actually slows learning down. For in the early stages, when the map is still in-
complete, the extra relaxation is practically useless, and throughout, the imag-
inary actions cost just the same as the real ones. Were the agent moving in the 
real world, though, it is reasonable to assume that the cost of an imagined move 

would be much less than that for a real one, and DYNA would prove its worth. 

Having constructed the map, DYNA turns it to the task of handling changing 
environments. Two types of changes can be significant; existing paths may 
be blocked, and new paths may be opened. Sutton concentrates on the use 
of Q-learning rather than the value function learning system described above, 
and he also introduces an extra measure of how long it is since the agent tried 
each action in each location. Q-learning helps with the first concern, since it is 
possible neatly to try out the effects of actions which the agent actually believes 
to be sub-optimal. The extra measure helps with the second concern, because, 
during its day-dreaming, it can plan to try actions whose consequences it has 

not observed for a long time. This will work even if the actions are available at 
states that are some way off the current path. 

In practice, the system described in section 5.2 does not seem to have difficulty 
with the first problem in a domain as simple as the grid. If a path is blocked, then 
the incomplete annealing in the system, which was discussed above, typically 
allows it to learn an alternative route without great difficulty, Sutton does 
present other domains which are substantially more difficult. The troubles with 
the DYNA solution to the second problem are that the parameters governing 
the relative importance of exploration (driving it to try out 'stale' actions) and 
exploitation (driving it to get to the goal) are very sensitive to the size of the 
problem, and that the extra data structure may need to contain very large 
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numbers. 

Chrisley [24] also discusses an alternative to relaxation planning. His system, 
which was mentioned above, learns a forward map, from current state and 
action to next state. Using Jordan's techniques [701 for inverse modelling dis-
cussed in chapter 3, the system could learn an inverse map from this forward 
map, relating current state and desired next state to action. There being no 
buckshee lunches, this method will not be capable of automatically handling 
the exponential intractabifities in action planning. A further, incremental, al-
ternative Chrisley suggests involves damping the current state and the desired 
next state (or at least its perceptual properties, given the mechanics of his 
net), choosing a random action, and then backpropagating the resulting error 
to criticise the choice of action, rather than the choice of weights. This is an 
application of Linden and Kindermann's method of inverting a network [85]. 
Unfortunately, not only is it subject to the usual exponential explosion, but also 
the resulting choice will only make sense under strong conditions on the metric 
on the space of possible actions. 

Although an update graph maybe a compact representation of an environment, 
this does not guarantee efficient planning. in practice, Bachrach (personal 
communication), in the work following [102], uses TD methods for navigation, 
possibly augmented by a dead-reckoning heuristic method which would not 
appear to be fruitful in the grid task with the barrier. 

5.5.3 'What' 

The third strand of work in this area covers the nature of the function represen-
tation used. Earlier in the thesis the two different roles that connectionism was 
playing were discussed - the methodological one of encouraging the search for 

alternative algorithms, and the practical one of offering old methods of function 

approximation in new and easy-to-use guises. The linear method that Barto, 
Sutton and Watkins used, has simplicity to recommend it - other schemes might 
be expected to perform better. 
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Andrew Moore [100] has used kd-trees (see Omohundro [115] for a description 
of these and their application to connectionist function approximation) to pre-

cisely this end. They combine many of the desirable properties of connectionist 
systems (particularly local access and generalisation, at least under particular 
norms) with speed of use and economy of storage. Moore applied them suc-
cessfully to a variety of control problems, including ones far more difficult than 
this. 

In terms of section 5.3, which looked at alternative representations, kd-trees 
are essentially distributed representations, allowing neighbouring grid points 

to share information. They are not, however, sensitive to the nature of the task, 
and so would happily mix together points on either side of the barrier. 

A further approach which is quite similar to the prediction units is to feed the 
raw stimulus vectors into a Kohonen-style mapping device [761.  The outputs 
of this would then be 'topographically' organised in the task rather than the 
world (so coping appropriately with the barrier), and might make for faster 
learning. In principle, the Kohonen map would suffer from the same problem 

as the prediction units in that once the agent starts running regularly on good 
paths to the goal, the topography will lose almost all connection to the spatial 
layout of the grid. This is again because proximity along a path is being used 
as a surrogate for proximity in the world. The dimension, size, and speed of 
annealing of the Kohonen map will all be problem dependent. 

5.6 Conclusions 

Map building and navigation are very complex interrelated problems. There 
has been a tendency to ignore the latter in favour of the former, although the 
planning involved in navigation seems to be computationally tractable only if 
it is based on a known model. Notably, the existence of place cells, while in 
itself a remarkable, finding, does not establish a complete theory of cognitive 
mapping. 

Temporal difference methods provide a general way of addressing such plan- 
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ning problems. In particular they can be used neatly to solve Barto, Sutton and 
Watkins' didactic grid task, which bears certain similarities with the open field 
water maze. TD is able to work with whatever representation it is fed, and the 
different effects of the two dimensions on which representations can vary (dis-
tributedness and orientation dependence) have been teased apart. Distributed 
representations prove better - especially in a task like this for which the optimal 
choice of actions is continuous almost everywhere. Representations that are 
sensitive to the orientation of the agent are generally worse; however one based 
on scattering recognisable cues around the environment is adequate to the task, 
and indeed its distributed nature makes it perform rather well. 

Intermediate between having a complete map and having no map at all, it is 
possible to use a representation which is sensitive to the structure of the task. 
The representation need not necessarily be isomorphic with the task (in the cases 
where this would even make sense). Parsimoniously, the same mechanisms that 
enable the agent to learn how far away any location is from the goal, enable it 
also to learn such a representation, based on so-called prediction units. In this 
case, their use does indeed hasten the overall solving of the problem. 

Despite ostensible advances in this and related areas, modeling the current state 
of neurobiological and psychological knowledge is still far too taxing. Although 
the evidence is quite compelling that rats really do have some form of a map, it 
is far less dear under what circumstances they use it, what methods they have 
for solving the planning problem, and indeed how much navigation their more 

general cognitive systems can cope with. Also, essentially arbitrary decisions 
were made for the model described here in the experimentally important issues 
of the method of exploration and the reward structure. 

The use of recurrent networks to overcome potential ambiguity of stimuli seems 
to carry certain risks. Particularly worrying are the question of stability of 
the environment, and the uniqueness problem in navigating based on inverse 
models. Apart from this, though, the recent extensions to relaxation planning 
and the use of more appropriate representations augur well for development, 
at least in pure engineering terms. 



Chapter 6 

Context in Connectionism 

"lEpilogia": The end of the academic beginning. 

6.0 Summary 

Although chapter 1 discusses the relationship between learning and levels-
based accounts of computational systems, it does not justify why learning is 
important. This chapter considers the role context might play in making infer-
ence tractable, briefly reviews the development of knowledge representation 
and inference techniques as trying to take advantage of ever larger 'chunks' of 

context, and suggests that contextual dependency can never be fully captured 
through introspection and calculation - learning will be necessary. Finally, in 

an attempt to motivate alternatives for context sensitive inference, it paints a 
caricature of a von Neumann computer as a finite state machine. 

6.1 Introduction 

Knowing, from chapter 1, how learning can be incorporated into a levels-based 
description of connectionist and classical systems, and seeing in the rest of the 
thesis theoretical and empirical analysis undertaken in this framework, may 
not have sufficiently justified the importance of learning. In addition, no notion 

145 
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of the link between symbolic and connectionist systems has been presented. 

Two arguments support the importance of learning; one extolling sloth in in-
vestigating the regularities in the world, and the other denying our sleuthing 
capacities to do this at all. Neither is tied to connectionism. A conclusion of 

the discussion in chapter 1 was that it is partly the statistical regularities in 
the world that make computation worthwhile. The argument for sloth says 
that it is wasteful to try to calculate ahead of time all the regularities a system 
should be sensitive to. Rather, it should be equipped to learn them directly 
from its environment, perhaps starting from some prior knowledge garnered 
from previous learning experiences by it or other systems. 

The considerations telling against human sleuthing abilities are rather more 
speculative. The only alternative proposed to some form of explicit learning 
of the regularities is some form of indirect learning mediated by introspection 
and calculation. This is normal practice in one section of traditional Al, in 
which knowledge engineers elicit expertise from experts, typically using ver-
bal protocols. This learning is indirect because the experts and knowledge 
engineers had to learn about and/or seek out the regularities in the first place 
before regurgitating it.' Wherein lies the guaranteed power of introspection 
though? Repeated attempts at making an analogy between scientific theories 
in such areas as quantum physics and folk psychological theories in such areas 
as restaurants have failed (see [109] for a discussion of this and [107] for an 
even stronger conclusion). It would be to make a very strong and unsupport-
able claim about the organisation of human cognition to require experts in a 

domain to have introspectable or at least calculable access to all the details of 
their expertise. Anything less, and the sleuthing will fail. 

The issue of effective calculability is where this all bites. For instance, I can report 
how I perform a particular analytic integration,  but my account is radically 
enthymematic. At every stage I am faced with a multitude of options, many of 
which may appear promising. As an expert, I can report why I chose option A 

over option B, but not why I never even considered choosing options c-z. The 
devil lies in the details of the choice. 

'Ignoring the stronger (pbilo)sophist claims [401 that everything is innate in any case. 
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It seems that this is exactly where attempts to increase the size of knowledge 
bases founder. More knowledge means more possibilities for every inference, 
and the expertise lies as much in the heuristics of the choice as to which should 
even be contemplated as in the facts themselves. I can find no evidence that 
these heuristics are introspectable or calculable. Acquisition of them is one way 
of looking at how experts transcend novice behaviour with its rigid, step-by-step 
consideration of all possibilities. In fact, domains such as integration in which 

there is even any semblance of decision between choices are not ubiquitous. Our 
abilities in abduction (inference to the best explanation) are quite mysterious - 

the whole task lies in the choice. 

This chapter takes a rather sideways look at these concerns through context. 
Its answer to the question of how expert choices are made is that prior expe-
rience in the particular inferential context determines which options are best, 
and that the all-pervasive and delicate nature of context-sensitivity provides a 
strong constraint on the mechanisms that can represent it adequately. Attempts 
in traditional Alto capture this have lead to the more interesting species of 
knowledge representational methods, but ultimately to little avail. 

The next section looks at various notions of context, from the all-embracing 

views of Dreyfus to the rather more limited ones that have influenced the 
development of A!, section 63 looks at how one aspect of context, defeasi-
ble inheritance and inference, has been successively (but hardly successfully) 
incorporated into traditional Al knowledge representation techniques such as 
semantic networks, frames and scripts, and section 6.4 develops a rather fanciful 
account that ties together a connectionist method of handling context together 
with combined connectionist and classical processing. The latter is not intended 

to be a definitive proposal, merely a hint for the far future. 

A slight scent of empiricism, a rather discredited doctrine, might be thought 
to pervade this and some of the previous chapters. Although the mechanisms 
might seem so simple as to exclude prior organisation, this is not in fact the 

case. Consider the mapping system in chapter 5; it learns about arbitrary 
environments only given its very particular structure. Generally there must 
be a balance between 'nature' and 'nurture', but nothing is said beyond this 
platitude. This chapter is intended to be unconstrained by the mechanisms 
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discussed above; rather just to roam fancy-free. 

6.2 Context 

"The passages before and after a sentence that determine its meaning." 
Oxford English Dictionary 

Context is an issue that has long taxed traditional A!, because it seems at 
the heart of three crucial computational and psychological issues - 'common-
sensible' reasoning, tractability and learning. Despite the rather narrow dictio-

nary definition above, Putnam [124], amongst innumerable others, has pointed 
out just how deeply context affects our entire interaction with the world, in a 
way that cannot be captured purely linguistically. Here, it is taken as defining 
the cognitive milieu in which observations, utterances, and behaviour, are to 
be understood. Context affects both conscious and sub-conscious processing; 
examples of the latter coming from priming effects in syntax and memory tasks. 

At its most basic, context can determine expectations for resolving ambiguities, 
predicting properties or behaviour, and divining what in a situation is unusual, 
deserving of comment, or worth remembering. However, there are more all-
embracing versions. In the rest of this chapter, it is these expectations that are 
important, since they offer a glimmer of hope of making defeasible inference 
tractable. Three notions will be barely more than sketched; grounded context in 
the sense of Heidegger, Lakoff's more restricted view of how metaphor based 
on our prepositions governs our cognitive economy, and finally 'typicality', the 
grin left after the departure of the contextual cat. 

6.2.1 Grounded Context 

Hubert Dreyfus' initially almost solitary banshee wail against Al [32, 33] con- 
tains a claim that it is impossible to encode explicitly enough of the essential 
facts about the universe, and human beings' place in it, for a machine actually 
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to understand, in our sense, the same entities as us - we are fundamentally 
grounded in the world, whereas computers are not. In [32], an attack on frame 
theory (which itself is discussed in the next section), Dreyfus discusses pre-
computational attempts by such figures as Husserl [65] to categorise objects 
rigorously, and cites Husserl's pessimistic conclusion that phenomenology is 
an 'infinite' task, since any enquiry into the nature of an object always leads to 
ever deeper questions (an adult version of a child's relentless "Why?"). Dreyfus 
paraphrases Heidegger's conclusion on the matter as: 

• since the outer horizon or background of cultural practices was 
the condition of the possibility of determining relevant facts and 
features and thus prerequisite for structuring the inner horizon, as 
long as the cultural context has not been clarified the proposed anal-
ysis of the inner horizon of the ncema2  [caninot even claim progress.' 
[32]-pl82 

Dreyfus illustrates this view by considering some of the ingredients for a com-
putationally useful definition of a chair: 

'What makes an object a chair is its function, and what makes possible 
its role as equipment for sitting is its place in a total practical context. 
This presupposes certain facts about human beings (fatigue, the 
way the body bends) and a network of other culturally determined 
equipment (tables, floors, lamps) and skills (eating, writing, going 
to conferences, giving lectures, etc). Chairs would not be equipment 
for sitting if our knees bent backwards like those of flamingos, or 
if we had no tables, as in traditional Japan, or the Australian bush.' 
[32]-pl83 

He thus delineates a (literal) view of common sense, and claims that only 
those things that experience the world in the way we do, can conceive it in 
the way we do - there is a very dose relationship between our experience, 
conception and perception of the world. This objection has particular force 
against those knowledge representations that are hand-crafted on the basis of 

introspection and conscious reports, since understanding them presupposes 
this vast shared cultural background - the reports experts might make are 

2Mental representation. 



CHAPTER 6. CONTEXT IN CONNECTIONJSM 	 150 

merely the accessible tip of the iceberg of their meaning. This criticism is less 
damning to those systems, such as Brooks' insects [191 that do at least operate in 
the real world, even if they cannot currently learn from it, and those others, such 
as connectionist systems, that can learn from their experience, even if it is not 
like ours. This is only very weak reassurance for the programme in this chapter. 

Dreyfus' conclusion is essentially that although humans have the competence 

to recognise and categorise chairs, no computational theory that can describe 
this competence in isolation from a computational theory of almost everything 
- a strong holism. 

6.2.2 Metaphorical Context 

Lakoff states a view accordant with this [78]. He argues that our concepts 
are at the centre of our understanding and are crucially determined by our 
uniquely human experience. For instance, the prepositions 'up' and 'down' 
have expressive power outside their narrow (classical) dictionary definitions, 
eg in describing feelings and status, precisely because we have notions of them 
situated with respect to our bodies. This common background again tells 
against the usefulness of only the tip of the expert's iceberg above. Lakoff battles 
strongly against the classical symbolic approach to understanding language, 
and concludes, like Dreyfus, that since machines do not situate their concepts 
like us, they cannot 'understand' like us either. 

In a later paper entitled 'A suggestion for a linguistics with connectionist foun-
dations' [79],  Lakoff discusses the possibility of understanding metaphor and 
metonymy and the construction of concepts in terms of topographic maps be-
tween the sensory systems and the brain. He argues that we can only learn from 
what we understand, that we understand by structuring novel experience in 
terms of our existing cognitive framework, and that at the base of this inductive 
process is our physical constitution, and the way it is represented in the brain. 
This is obviously closer to a mechanisable proposal; once again it is the learning 
that is key. 
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6.2.3 Typicality 

Agre and Chapman, in their work on Pengi [1], have recently made an at-
tempt to grasp Dreyfus' nettle and mechanise a small part of the extravagantly 
unmechanisable proposals in Heidegger's Weltanschauung. They built a finite 
state machine for playing a video game in (almost) real time. It controls a 
penguin which moves around a simple environment, avoiding attacks from 
malicious bumble-bees whilst trying to squash them. Agre and Chapman's so-
lution to the computational intractabifities inherent in handling large numbers 
of bees; the 'bee-31a', 'bee-31b' etc of a traditional system, is to adopt indexical 
representations, of the character of 'the-bee-that-is-currently-attacking-me' or 
'the-bee-I-am-trying-to-squash'. This takes advantage of background condi-

tions (such as only one bee can attack at once) to save substantial unnecessary 
inference (such as asking and answering questions like 'Is bee-31a attacking?', 
'Is bee-31b attacking?'). Of course, such a representation hinders some tasks, 
as for instance if arbitrary numbers of bees might be squashed simultaneously. 
Their wider claim must therefore be that our environments also only require a 
restricted competence, which can be serviced by restricted representations. 

Similar benefits might be available from an equally impoverished notion of con-
text, essentially capturing typicalities of various sorts - eg the 'normal' properties 
of objects in complex circumstances, and the habitual behaviour appropriate to 
people with various goals or motives. The crux of the problem below is that the 
full complexity of a context can be relevant to these typicalities - for example 
a typical restaurant would have waiters, a paradigmatic hamburger restaurant 
would not, but a normal posh hamburger restaurant would. Again, expert 
knowledge in some domain also involves sensitivity to the complete context 
- expert drivers tend not to change gear when turning corners at high speed, 
even if this contravenes usual practice based on the engine note. Traditional 
Al systems are led to their intractability by the difficulties of representing and 
manipulating these intricacies, which are essential for flexibility rather than 
brittleness. Having to introspect them makes matters even worse. 

Psychological experiments on prototypicality (see [5,6] and references therein 
for some examples) reveal a plethora of related effects such as the time taken 
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for us to judge whether some object is a member of a class and the degree to 
which we consider it to be representative of that class. Contextual effects are 

seen in the biasing of these results that occurs if appropriate prior information 
is provided. Other experiments such as those on priming also show how even 
very limited contexts can affect our memory retrieval. 

6.3 Knowledge Representation and Context 

These typicalities are genuine regularities in the world, albeit ones which have 
resisted folk psychological formalisation. As with Agre and Chapman's index-
ical representations, their potential value seems to lie in restricting the amount 
of complete and correct inference it is necessary to do on the fly. Even if our 
sensitivity to them simply arises from a failing in our computational substrate, 
they are still psychologically interesting, and they may actually helpfully con-
strain explanations of our methods of knowledge representation and inference 
(KR!). 

Those involved in trying to build Al systems are faced with a similar problem 
- how to produce usefully correct answers in adequately short times from 
limited computational resources. it is possible to view the development of KR! 
techniques in Al, from classical and then non-classical logics through semantic 
networks to frames, scripts, and production systems, in terms of the increasing 
sensitivity to larger 'chunks' of context. As will become apparent, each of 
these developments has a common pattern - increasing the size of the chunks 

increases the speed of inference in cases that are regular with respect to the 
encoded context. However, computational intractability irrepressibly pops up 
again in the irregular cases, and yet more fiercely, the larger the chunks. 

There is an ongoing debate about the, use of logics of various sorts for KR!. 
Part of the confusion arises from infelicities over levels of analysis; as discussed 
in chapter 1 the 'neat' logicians (eg [581) pieced together a computational level 
theory of semantic networks, which showed the nature of its partial equiva-
lence to first order logic. Also the advent of logic programming languages such 
as PROLOG makes computational level theories appear algorithmic. However, 
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particularly in the light of the Pauline conversion of one of its strongest propo-
nents [87],  and as persuasively argued by Oaksford and Chater [108] amongst 
others, the main criticism of the direct use of logics is the radical intractability of 
their theorem provers. Inference over formal logics with reasonable represen-
tational power is unacceptably difficult, being computationally NP. Classical 

logic, even though forming part of our repertoire in restricted circumstances, 
fails to capture aspects of our KRI, and more exotic forms better equipped in this 
direction, such as non-monotonic and fuzzy logics, are either more or equally 
intractable, or have associated undesirable computational properties, such as 
awarding some likelihood to the proposition p A fi. Pure' logics generally 
use no context, and defeasible logics typically only license unacceptably weak 
conclusions [87]. 

Semantic networks were the first attempt to use context to speed inference. They 
are designed to represent hierarchical knowledge, for which all information 
should be located at the most appropriate place. So, for instance, the fact that 
restaurants tend to have waiters is attached at a position close to restaurants 
in the hierarchy, whereas that fast-food emporia tend to serve fries is attached 
further down, as it is not true of all restaurants. This is effectively wrapping 
up a very impoverished set of typicalities (ie regularities in the world), in such 
a way that inference respecting them can be speeded up - it is not necessary to 
search exhaustively through a complete database of facts to determine one set of 
employees of Maxims. Indeed, in suitably restricted domains, and depending on 
the way the inheritance hierarchies are constructed, Quillian [1261 demonstrated 
that semantic networks can reproduce certain results about how long it takes 
humans to decide whether an object has a particular property, or is a member 
of a particular class. 

Unfortunately, as the size of the domain is increased, it rapidly becomes ap-

parent that handling knowledge in such small chunks - items are individually 
positioned in hierarchies - is untenable. Worse, when atypicalities plague the 

prior expectations from the hierarchy, as in the example of the posh hamburger 
restaurant which does have waiters, intractability re-emerges. Once again it 
becomes necessary for the system to manipulate each piece of knowledge ex-
plicitly. 
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Expanding the small size of the unit of representation in semantic networks was 
the spur to developing frames and scripts. Minsky first posited frame theory 
[99] more as a methodology than a mechanism. As Marr [961 points out, and 
indeed as happened with semantic networks, Minsky also introduced frames 
more at an algorithmic than a computational level of concreteness. Minsky 
wrote: 

'It seems to me that the ingredients of most theories both in Ar-
tificial Intelligence and Psychology have been on the whole too 
minute, local, and unstructured to account - either practically or phe-
nomenologically - for the effectiveness of common-sense thought. 
The 'chunks' of reasoning, language, memory and perception ought 
to be larger and more structured; their factual and procedural con-
tents must be more intimately connected in order to explain the 
apparent power and speed of mental activities. 

Here is the essence of the theory: When one encounters a new 
situation (or makes a substantial change in one's view of the present 
problem), one selects from memory a structure called a frame. This 
is a remembered framework to be adapted to reality by changing 
details as necessary.' 

Interestingly, Minsky does make a computational level proposal in the ap-
pendix to this paper, albeit a purely negative one. He attacks logic-based 
approaches to KRI, apparently the only computational straw accessible to the 
traditionalists, on various counts, including monotonicity, the impossibility of 
formalising common-sense (or typicality-based) knowledge, and the resulting 
combinatorial explosion and intractabffity. He concludes that formal logics are 
not appropriate for KRI, and, since logical completeness is essentially trivial, that 
logical consistency ought to be sacrificed. 

In practice, this last suggestion has proved too difficult to follow up. There is 
almost a slippery slope to logical consistency. For an initially logical framework, 
there is no obvious way to decide exactly where consistency can be abandoned. 
In the absence of a computational alternative, therefore, implementors pro-
duced systems that the 'neats' [591 could once again attack. They demonstrated 
the same mixture as for semantic networks of essential computational equiv-
alence to some formal logic, coupled with delinquency in permitting absurd 
conclusions. Note that logical completeness is far from trivial in connectionist 
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systems, and that statistical methods can eliminate at least some forms of absurd 
conclusions (although possibly introducing some new ones of their own). 

Minsky's frames are algorithmically useful because they improve tractability in 
the same two ways as semantic networks, although acting on larger chunks: 

• They contain default information, ie expectations of the values (fillers) of 
attributes (slots). 

• The slots are attached at 'appropriate levels' in the knowledge representa- 

tion hierarchy, so, for instance, the information that birds breathe could be 
stored as a fact about animals, rather than cluttering up the frame dealing 
specifically with birds. 

Unfortunately, also just like semantic networks, they can only represent an im-
poverished form of context (consider once more the posh fast-food restaurant), 

and the combination of atypicality with default expectations is intractabffity. 

Schank and Abelson [136], who were thinking along similar lines to Minsky, 
developed a slightly different notion called scripts. The similarity comes in the 
use of larger chunks, but scripts wrap up knowledge about expected trains of 
events in particular circumstances rather than frame theory's object attributes. 
The paradigmatic example is the restaurant script, which contains the default 
expectation that customers enter, may be shown to their tables by a hostess, 
get given menus by a waiter, read the menu, order, get served, etc. Schank 
and Abelson explicitly recognised the problem of richer context dependencies, 
allowing different tracks as adaptations of the basic script to particular circum-
stances, such as fast-food restaurants. However, just as for frames, the tracks 
can only cope with impoverished contexts, and their combination can lead to 
intractability. Script theory is also essentially algorithmic rather than computa-
tional, but it has proved harder to translate into formal logics than frame theory, 
given its emphasis on temporally ordered trains of events. 

Schank subsequently moved away from scripts towards dynamic memory and 

Memory Organisation Packets (MOPs) in [135], and it is possible to interpret his 
dissatisfaction with scripts in the light of inadequate representation of context. 
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At least, this book is mainly concerned with learning. However, it focuses 
particularly on episodic rather than semantic memory, and the notion of context 
underlying episodic memory exhibits much more this 'one-shot' nature. The 
problem Schank addresses is how our vast memory for particular events can 
be indexed so that we can be reminded appropriately at just the right moment, 
and he concludes that the way an event differs from the expectations held in 
semantic structures like scripts is the key. Unfortunately, the scheme seems to 
require underpinning with something akin to the old semantic memory scripts, 

and the new theory does not extend to show how the old context problems can 

be solved. 

In conclusion, although it is possible to view the development of classical mech-
anisms of knowledge representation as attempts to represent and use more 
sophisticated notions of context, none of them is particularly successful. To 
borrow a phrase from Chater and Oaksford (personal communication), context 
sensitivity is fractal - it re-emerges at every grain of representation. This is what 

destroys these valiant attempts. 

6.4 Epilogue 

Bluntly, no connectionist mechanisms fully solve the problems or grasp the 
opportunities of context either. One advantage they have is that their notion of 

parallel processing fits more naturally with context sensitivity, another is that 
they may be better equipped to learn the regularities for themselves, avoiding 
the problems Dreyfus and Lakoff pointed out about the cultural background 
inherent in understanding experts' reports. The classical systems described 
above had difficulty in grasping the joint significance of the two adjectives 
'fast-food' and 'posh'; giving all such facts their due effect led to infractability.  

Are there alternatives? 

One rather fanciful account was developed in [110]. It starts from the trivial 
observation that von Neumann machines are finite, sketches an alternative 
picture of them as finite state machines, and then relaxes the von Neumann 

constraints on transitions between states. This is a simple route to allowing 
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holistic context effects, and rather radical revision of the contents of memory. It 

does not solve any of the problems raised - it is merely a thought experiment 
to show that the range of possibilities is not exhausted by traditional systems, 
and that a simple redescription of a familiar system suggests how very different 

properties might readily be available. 

There is always a slight prestidigitation in regarding the finite von Neumann 
machines (vNMs), our work-a-day computers, as infinite Turing Machines 
(TMs). The obvious evolutionary path from Turing to von Neumann machines 
is to leave unchanged the nature and rOle of the central processor (the reader) 
and its states, and to regard the memory of the vNM as a finite tape. Arbitrary 
locations on this virtual tape can be accessed in 0(1) rather than 0(N) time, 
where N is its virtual length. The ability to write to or read from arbitrary loca-

tions simply makes a vNM considerably easier to program than a TM, and the 
(almost) size-independent read/write times, make a large class of algorithms 
computationally feasible. However, the recent debate pitting Reduced Instruc-

tion Set (Risc) against Complex Instruction Set (cisc) microprocessors points to 
an obvious trade off between the complexity of the set of states and state tran-
sitions of the central processor, and the complexity and length of the programs 
that perform a task. This is rather hidden in the details of Turing universality. 

Since the memory of a vNM is finite, one can take this view on complexity even 
further and draw the 'state versus tape' boundary around not only the central 
processor, but also some or all of the memory. Under the new description, 
states represent not only the contents of the internal flags and registers of 
the microprocessor, but also the entire contents of memory - roughly, all the 
transistors that comprise the operation of the machine. This new description is 
just that of the entire computer as a finite state machine (FSM), which of course 
is all its finite memory permits it to be. State transitions are instigated as before 
by the operation of the central processor, but now the state transition diagram 
is extremely rich and complex. The way that vNM machines are designed has 
the effect of enforcing what might be described as locality in this state transition 
diagram, since were some form of metric assigned to the states in an appropriate 
way (based the 'invisible' values of the program counter, the registers and flags, 

the possible values of the memory location pointed to by that program counter 
and then all the other possible values of all the other memory locations), most 
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of the next states would be local. 

The complexity and richness of the set of states and the state transition diagram 
in this alternative viewpoint (which account for the infrequency of its adoption) 
are precisely its attractions here. The distinctions between program and storage 
appear considerably eroded, and can be eroded further. Note that at this stage 
this is only an alternative perspective of exactly the same machine, which is 
condemned to traverse exactly the same states and execute in exactly the same 
way exactly the same programs. 

Various key properties of computation look very different on this alternative 

picture of the vNM, particularly symbolic representation and the potentially 
holistic influence of memory. What could previously be identified as separate 
contents of memory can only be found, if at all, in the labels of a whole set 
of states, and the labels of course have no causal role in engendering the be-
haviour of the system. It is therefore no longer even sensible to try to isolate out 
particular symbol structures stored at particular places in memory or to deter-
mine the nature and provenance of their logical effects. The symbol processing 
properties of the entire machine are entirely emergent from the dynamics of the 
simple low level entities in this picture. 

In addition, the whole of memory is wrapped up in a state, so moving from 
one state to another could correspond to a radical change in its entire contents. 
Of course, the vNM architecture prevents such transitions from happening - 
memory is like tape, inviolate except serially. One justification for this severe 
constraint is that such radical changes are potentially dangerous in the absence 
of any well-founded method of policing them. However, different mechanisms 
for state transition need not necessarily labour under such constraints. Remov -
ing another such bar could allow the whole contents of memory not only to be 
changed by such a state transition, but also to determine which state transition 
occurs. This new picture naturally encompasses a much richer theory of the 
interaction between memory and inference, mediated in a complex fashion by 
the hardware of the machine. It would also appear to be more commensurable 
with the views on cognition of Maturana and Varela [97]. They consider the 
nervous system less as a machine responding via some program with a set of 
outputs to a set of inputs, and more as a system whose states and dynami- 
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cal state transitions are affected by all its components, including ones whose 
characteristics are determined by and determine events in the external world. 

The hardware of the machine yokes the permissible state transitions, and hence 
its entire behaviour. One possible change is to consider the states as the lo-
cal minima of some function (an energy function, for want of a better term), 

and the state transitions as movements from one local minimum to another (cf 
[63, 61]). The hardware can be considered as moving the system around the 
energy surface, according to its principles, landing up in states at the local min-
ima. Learning changes the energy surface so as to alter either the minima, or the 
traversable paths from one minimum to another, and consequently the states 
actually entered ('s.' the behaviour produced) by the machine under given con-
ditions. This, as advertised, licenses state transitions other than those allowed 
by the vNM, in which the whole contents of memory are causally implicated in 
every move. In [1101, partly influenced by Anderson's ACT* [3], we considered 
a hybrid of a traditional structure-sensitive inference engine coupled with a 
non-standard memory which stores the database of rules and facts. 

Thus, contextual flexibility enters the picture. In the old, von Neumann, ma-
chine, the problems arose in explaining how whole sets of modifiers ('fast-food', 
"Posh', etc) could influence the conclusions about the presence or absence of 
waiters, without each one and its consequences being painfully considered in 
turn. Under the new account, these facts are all wrapped up together in the 
energy function, allowing them a holistic effect. Of course, since the energy 
function is unspecified, and currently unspeciflable, this whole description is 
no more than just an intuition pump about how altering the mechanism might 
alter the behaviour. The real solution will lie in the hidden details. 

Returning to the introduction to this chapter, how might learning work on this 
picture - which laws should govern the shaping of the energy function? There 
is ample evidence that associative principles in the traditional sense will be 
important, with items retrieved on the basis of their content. Reinforcement 
learning will also be necessary to criticise particular retrievals in particular 
contexts, modifying the associative links on the basis of performance. 

More significantly, much of the inference has the same character as the maze 
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task in chapter 5 - the system will retrieve many rules and facts on the way 
to solutions, some of which will ultimately be irrelevant or positively harmful. 
It was suggested above that one part of the transition from novice to expert 
behaviour lies in moving from considering and/or retrieving explicitly every 
piece of information and every rule to which it might be relevant, to consider-
ing or retrieving only the appropriate facts and rules for a particular context. 
Experts find this process of selection very difficult to explain, since it is almost 
literally wired in as part of the expertise, and is never explicitly performed. Be-
coming an expert may be such a painful process precisely because these context 
sensitivities have to be built into the retrieval system in such a deep and holistic 
fashion. 

Since now the problem is like that in chapter 5, where the information from the 
environment is impoverished in terms of its criticism of rule or fact retrieval 
(equivalent to action selection), perhaps the solution may not be too dissimilar 
either. The agent in the grid task learns to associate particular contexts with 
particular actions, based on the quality of its performance over whole sequences. 
In the same way, experts might be learning to associate particular contexts 
with the particular rules or facts appropriate there, based on slower and faster 
inferential performance (ie more and fewer retrievals respectively). Of course, 
this says little to the issue of the representation of the rules and facts - some 
structure sensitive method will definitely still be required, as indeed will the 
structure sensitive inference engine. However it does suggest a way that semi-
supervised learning can be used for these symbolic tasks. 

Even though it includes principles rooted in behaviourism - the associative 
memories from chapter 2, and the reinforcement and secondary reinforcement 
principles from chapters 3 - 5 - this proposal is clearly not behaviourist it-

self. Qualitatively, the system can combine compositionality and systematicity, 
Fodor and Pylyshyn's [42] sine qua non for structure-dependent symbolic pro-
cessing, together with the capacity to handle radical context sensitivities. It has 
the power to learn these sensitivities by observing the regularities in its envi-
ronment and to use them to reduce the exponential intractabilities of inference. 
Fantastic? 



Coda 

Much Ado About Not a LoT 

Dramatis Personae 

The House of Arragon 	The Symbolic Paradigm 

Don Pedro: 

Benedick 	 Symbolic computations 
Claudio 	 Symbolic mechanisms 

Don John 	 Jerry Fodor 
Borachio 	 Biological nirvana 

The House of Messina 	The Connectionist Paradigm 

Duke Leonato: 
Beatrice 	 Connectionist computations 
Hero 	 Connectionist mechanisms 

Dogberry 	
Shallow fools 

Verges 
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The Plot' 

The Prince of Arragon, with Claudia and Benedick in his suite, visits Leonato, Duke of 
Messina, father of Hero and uncle of Beatrice. 

The sprightly Beatrice has a teasing relationship with the sworn bachelor Benedick. 

The teasing tradition between connectionism and traditional Al is well estab-
lished. The former is often decried as an amorphous collection of half-baked 
ideas stolen, possibly unknowingly, from the creative ovens of more serious 
sciences, and applied indiscriminately either with malice aforethought, or, and 
more likelily, without aforethought at all. Additionally, it is accused of being 
a technique whose contribution is irrelevant to the heartland mechanisms of 
cognitive science. At best it provides a way of implementing existing insights 
in passably efficient ways. Connectionism's prolix enthusiasms to explain ev-
erything are seen as repeating the errors of the past. 

Conversely, symbolic Al is pilloried for its evident failure to produce adaptable 
systems at a large scale. Introspection and traditional knowledge engineer-
ing are not adequate to the task of divining delicate context sensitivities, and 
traditional methods are incapable of representing them and using them for in-
ference. Secession from the doctrines is becoming more frequent, in areas such 

as behaviour-based robotics. 

Beatrice and Benedick are each tricked into believing the other in love, and this brings 
about a genuine sympathy between them. 

A few people, particularly in the machine learning and robotics/control com-
munities are trying to trick connectionism and traditional Al into working 
together - as described above, they should not be in theoretical combat at all. 
Each provides a set of computational techniques and mechanisms that has its 
own qualities and they ought to be brought together for best effect. Implemen-
tation is an irrelevant issue, since either can be implemented unperspicuously 

As taken from Drabble, M, editor (1985). The Oxford Companion to English Literature. Oxford, 
England: Oxford University Press. 
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in the other. 

Meanwhile Don John, the malcontented brother of the prince, thwarts Claudio's mar-
riage by arranging for him to see Hero apparently wooed by his friend Borachio on her 
balcony - it is really her maidservant Margaret in disguise. 

Although Fodor is often associated with symbolic Al, he is notoriously dis-
contented with it [41].  His recent article with Pylyshyn [42] spread confusion 
through the ranks by taking insufficient note of the relationship between levels 
of explanation and replication, and by associating connectionism directly with 
biological neural networks. Their arguments for structured representations do 
not rule out connectionist mechanisms, which seem to be different from those 
available traditionally. In addition, these mechanisms must stand or fall on 
their own computational merits; basking in reflected microscope envy is hardly 
safe given the very weak relationship between most connectionist and most 
biological systems. 

Hero is publicly denounced by Claudio on her wedding day, falls into a swoon, and 
apparently dies. 

Benedick proves his love for Beatrice by challenging Claudio to a duel. 

Confusions over the levels abound even without malign influences. Within the 
traditional community, the 'neats', coming from a logical perspective, attack the 
'scruffies', who have a more algorithmic bent. Indeed, there are many similari-
ties of content and intent between traditional and connectionist computational 
levels. As an example, there are just starting to be suggestions in the litera-

ture that connectionism's computational contrivances can be divorced from its 
function approximators, and so be applied more easily in a non-connectionist 
fashion. This is highly appropriate given the historical lack of emphasis on 
choosing high quality function approximators in connectionism, and the lack 
of suitable hardware. 

The plot by Don John and Borachio is unmasked by the 'shallow fools' Dogberry and 
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Verges, the local constables. 

Statistical computational theories play the role of discovering the true hetero-
and homo-geneous links between the connectionist and symbolic computa-
tional and mechanistic accounts. Learning from the example of biology is 
different from aping it in every respect. 

Claudio promises to make Leonato amends for his daughter's death, and is asked to 
marry a cousin of Hero's; the veiled lady turns out to be Hero herself. Benedick asks to 
be married at the same time; 

Beatrice [agrees], 'upon great persuasion; and partly to save your life, for I was told you 
were in a consumption.' 



Appendix A 

Parameters for Chapter 5 

Where: 

Xt E {O, 1 }C 	 is the representation of the agent's location at time t, 

It+i E R 	is the reinforcement received for the move at time t, 

lflt+1 E {n.,s,e,w} is the move at time t, 

lit, St, et, Wt 	 are the weight vectors determining the choice of action, 

ii 	 is a typical random variable for the action choice, 

Vt 	 is the weight vector generating the evaluation function 
at time t according to V'(x) = v .x, 

define 

t+1 	 X)Rt  

as the eligibility (equivalently trace decay) for learning the evaluation function, 
and 

- J (1 - A') + Vx t  if East was the chosen action at time t, 

- 1( 1  —A') 	otherwise 

as the eligibility for action vector e, and similarly for the other actions. 

Also, define 

Ct+1 =Tt+1 +yY(x+i) — Y(x) 
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where -y is the discount factor, as simultaneously the error in the prediction 
and the amount by which executing the chosen action was unexpectedly good. 
Then 

A 	 O 	e 
= p Ct+ 1A.t+l 

and similarly for the other actions. 

For mapping, define: 

Pt E KC as the mapping weights, 

= Pt xt as the vector of activations of the prediction units, 

v 	 as the weights from the prediction units to the value function, 

er 	as the weights from the prediction units to the East action 
function (and similarly). 

Then 
= V.Xt +V.P t  

and action choice operates on the basis of 

e t .xt + + ilet  

and similarly for the other action vectors. 

Also define 

= 

and 

&)Tcpt  

as the trace decay for the weights from input units to prediction units, and 

t1 = 0 Ap)t+ApPt 

as the trace decay from the prediction units to the value function, and 

(1 - + 	if East was the chosen action at time t, 
Pt+i - 

 

0 - 	 otherwise 
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as the eligibility from the prediction units to the East action function, and 

similarly for the others. 

Then, update V2't and et etc using the same formulm as before, and 

tt 	
- 	t -p AP 41 - PCt+iXt+i 

Ap 
= ppewpw 

AP 	- ai 	-e 
- IJP€t+lpt+1 

and similarly. 
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In sum, the twelve parameters are: 

13 learning rate input - value 
13' learning rate input - actions 
Op learning rate predictions - value 

13, learning rate predictions - actions 

-y discount rate for the value function 

-yr, discount rate for the predictions 
A trace decay rate for input - value 
A' trace decay rate for input - actions 
A1, trace decay rate for predictions - value 
A1 1, trace decay rate for predictions —actions 
& trace decay rate for input - prediction 
p learning rate for input - predictions 

In addition, the random variables i  are exponentially distributed, with unit 
mean. All the results from the simulations are based on averages over 200 runs, 
and the graphs in chapter 5 also show standard error bars. The values of the 
parameters are: 

• 1 

- 
A 
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