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This is the second installment of a series of three papers in which we describe a method

to determine higher-point correlation functions in one-loop open-superstring amplitudes

from first principles. In this second part, we study worldsheet functions defined on a genus-

one surface built from the coefficient functions of the Kronecker–Einsenstein series. We

construct two classes of worldsheet functions whose properties lead to several simplifying

features within our description of one-loop correlators with the pure-spinor formalism.

The first class is described by functions with prescribed monodromies, whose characteristic

shuffle-symmetry property leads to a Lie-polynomial structure when multiplied by the local

superfields from part I of this series. The second class is given by so-called generalized

elliptic integrands (GEIs) that are constructed using the same combinatorial patterns of

the BRST pseudo-invariant superfields from part I. Both of them lead to compact and

combinatorially rich expressions for the correlators in part III. The identities obeyed by

the two classes of worldsheet functions exhibit striking parallels with those of the superfield

kinematics. We will refer to this phenomenon as a duality between worldsheet functions

and kinematics.
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1. Introduction

This is the second part of a series of papers [1] (henceforth referred to as part I, II and III)

in the quest of deriving the one-loop correlators of massless open- and closed-superstring

states using the pure-spinor formalism [2,3]. As detailed in the introduction of part I, the

goal of these papers is to determine the correlators from first principles including gauge

invariance, supersymmetry, locality and single-valuedness. The present work is dedicated

to the implication of single-valuedness on how the correlators may depend meromorphically

on the punctures on a genus-one worldsheet. The key results are the following

i) We present a bootstrap program to construct worldsheet functions for the correla-

tors that share the differential structure and relations of their superspace kinematics.

These parallels will be referred to as a duality between kinematics and worldsheet func-

tions, and they endow one-loop amplitudes of the open superstring with a double-copy

structure [4].

ii) We establish the notion of generalized elliptic integrands (GEIs) which mirror the

combinatorics of BRST invariant kinematic factors in the spirit of the duality between

kinematics and worldsheet functions.

These results will come to fruition in the assembly of one-loop correlators in part III,

also see appendix C for their representation that manifests their double-copy structure.

Since we will often refer to section and equation numbers from the papers I and III, these

numbers will be prefixed by the roman numerals I and III accordingly.

2. Worldsheet functions at one loop

This section introduces the elementary worldsheet functions used in part III as building

blocks of multiparticle genus-one amplitudes. These functions are meromorphic and defined

as the coefficients of a recent expansion [5] of the classical Kronecker–Eisenstein series [6,7].

They are quasi-periodic under z → z + τ and therefore live on the universal cover of an

elliptic curve.

However, our goal is to study string scattering amplitudes that require functions on

an elliptic curve. For this purpose, we will later on consider meromorphic functions defined

on an enlarged space parameterized by the standard vertex-insertion coordinates zi and

the loop momentum ℓm (with vector indices m,n, p, . . . = 0, 1, . . . , 9 of the ten-dimensional
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Lorentz group). Following the chiral-splitting formalism [8,9,10], ℓm represents certain zero

modes associated with the worldsheet field xm(z, z), cf. (I.2.24). The interplay between zj

and ℓm will then lead to the definition of generalized elliptic integrands (GEIs) [4], which

become doubly-periodic under z → z+1 and z → z+τ upon integration of loop momenta.

The properties and explicit construction of GEIs will be the subject of the subsequent

discussions.

As reviewed in more detail in section I.2.2, chiral splitting allows to derive open- and

closed-string amplitudes from the same function Kn(ℓ) of the kinematic data. Open string

n-point amplitudes at one loop descend from worldsheets of cylinder- and Moebius-strip

topologies with punctures zj on the boundary,

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn

∫
dDℓ |In(ℓ)| 〈Kn(ℓ)〉 , (2.1)

see [11] for the integration domains Dtop and the associated color factors Ctop. Closed-

string one-loop amplitudes in turn are given by

Mn =

∫

F

d2τ d2z2 d
2z3 . . . d2zn

∫
dDℓ |In(ℓ)|

2 〈Kn(ℓ)〉 〈K̃n(−ℓ)〉 , (2.2)

where F denotes the fundamental domain for the modular parameters τ of the torus

worldsheet. As a universal part of the underlying correlation functions, both (2.1) and

(2.2) involve the Koba–Nielsen factor (with sij ≡ ki ·kj and conventions where 2α′ = 1 for

open and α′ = 2 for closed strings)

In(ℓ) ≡ exp
( n∑

i<j

sij log θ1(zij , τ) +

n∑

j=1

zj(ℓ · kj) +
τ

4πi
ℓ2
)
. (2.3)

The leftover factors of Kn(ℓ) in the loop integrands carry the dependence on the superspace

polarizations and are referred to as correlators, see part III for their construction. The

brackets 〈. . .〉 in the above integrands denote the zero-mode integration of the spinor

variables λα and θα of the pure-spinor formalism [2], and the odd Jacobi theta function in

(2.3) is defined by (q ≡ e2πiτ )

θ1(z, τ) ≡ 2q1/8 sin(πz)
∞∏

n=1

(1− qn)
(
1− qne2πiz

)(
1− qne−2πiz

)
. (2.4)

Note that the open-string worldsheets relevant to (2.1) can be obtained from a torus via

suitable involutions [12,12], that is why the subsequent periodicity requirements will be

tailored to the torus topology.
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2.1. The Kronecker–Eisenstein series

Our starting point to describe the dependence of the correlators Kn(ℓ) on the worldsheet

punctures is the Kronecker–Eisenstein series F (z, α, τ) [6,7]. Its Laurent series in the second

variable defines meromorphic functions g(n)(z, τ) [5],

F (z, α, τ) ≡
θ′1(0, τ)θ1(z + α, τ)

θ1(α, τ)θ1(z, τ)
≡

∞∑

n=0

αn−1g(n)(z, τ) . (2.5)

The simplest instances of these functions are g(0)(z, τ) = 1 and (∂ ≡ ∂
∂z )

g(1)(z, τ) = ∂ log θ1(z, τ) , g(2)(z, τ) =
1

2

[
(∂ log θ1(z, τ))

2 − ℘(z, τ)
]
, (2.6)

where ℘(z, τ) = −∂2 log θ1(z, τ) − G2(τ) is the Weierstrass function and G2k(τ) denotes

the holomorphic Eisenstein series1

G2k(τ) =
∑

(m,n)∈Z×Z\{(0,0)}

1

(mτ + n)2k
= −g(2k)(0, τ) . (2.7)

See the appendix B for the explicit expansions of g(n)(z, τ) for n ≤ 5 in terms of Jacobi

theta functions.

It is important to note that the function g(1)(z, τ) has a simple pole ∼ 1
z at the origin

while all g(n)(z, τ) for n ≥ 2 are non-singular2 as z → 0. Furthermore, the heat equation

4πi∂τθ1(z, τ) = ∂2θ1(z, τ) implies that

∂

∂τ
log θ1(z, τ) =

1

2πi

{
g(2)(z, τ)−

1

2
G2(τ)

}
. (2.8)

Similarly, one can obtain the τ -derivatives of the above g(n) from the mixed heat equation

∂

∂τ
F (z, α, τ) =

1

2πi

∂2F (z, α, τ)

∂z ∂α
,

∂

∂τ
g(n)(z, τ) =

n

2πi
∂g(n+1)(z, τ) , (2.9)

and these relations will be instrumental when analyzing boundary terms with respect to

τ in one-loop correlators later on.

2.1.1. Monodromies of the g(n)-functions

1 Note that the lattice-sum representation (2.7) of G2 is not absolutely convergent and requires

the specification of a summation prescription G2(τ) =
∑

n∈Z\{0}
1
n2 +

∑
m∈Z\{0}

∑
n∈Z

1
(mτ+n)2

.
2 Note, however, that g(k)(z, τ) for k ≥ 2 have a simple pole at z = τ and in fact at all lattice

points z = mτ + n with m, n ∈ Z and m 6= 0.
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Fig. 1 Parameterization of the torus through the lattice C/(Z+τZ) with an identification of

points z with their translates z+1 and z+τ along the A- and B-cycle.

In the parameterization of the torus depicted in fig. 1, translations around the A- and

B-cycle amount to shifts by 1 and τ , respectively. The quasi-periodicity of the Jacobi theta

function (2.4),

θ(z+1, τ) = −θ(z, τ) , θ(z+τ, τ) = −e−iπτ−2πizθ(z, τ) , (2.10)

results in the following monodromies of the Kronecker–Eisenstein series (2.5) [6,7]

F (z + 1, α, τ) = F (z, α, τ) , (2.11)

F (z + τ, α, τ) = e−2πiαF (z, α, τ) .

It then follows from the expansion (2.5) that the functions g(n)(z, τ) are single-valued

around the A-cycle but have non-trivial B-cycle monodromy,

g(n)(z + 1, τ) = g(n)(z, τ) , (2.12)

g(n)(z + τ, τ) =
n∑

k=0

(−2πi)k

k!
g(n−k)(z, τ) .

For instance,

g(1)(z + τ, τ) = −2πi , g(2)(z + τ, τ) = −2πig(1)(z, τ) +
1

2
(2πi)2 . (2.13)

From now on, in order to compactly represent the dependence on the external punctures

z1, z2, . . . , zn in string correlators, we will use the shorthand

g
(n)
ij ≡ g(n)(zi − zj , τ) . (2.14)

2.1.2. Weight counting

The integrand of n-point one-loop open-string amplitudes (2.1) can be written in terms of

loop momenta, holomorphic Eisenstein series (2.7) excluding G2 and the above g
(m)
ij (pos-

sibly including their z-derivatives) [13,14]. As a necessary condition for modular invariance
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of the closed-string amplitude (2.2), the overall powers of ℓ, g
(m)
ij and Gk have to obey the

following selection rule: Once we assign the following weights to these constituents,

term 2πi ℓ ∂zj Gk g
(m)
ij

weight 1 1 1 k m

each term in the n-point open-string correlator Kn(ℓ) must have weight n−4. The notion

of weight in the table is conserved in each term of the monodromies (2.12), and the same

will hold in the subsequent Fay relations and total derivatives.

2.2. Fay identities

In the subsequent discussions of one-loop open-string correlators, the Fay identity [15]

F (z1, α1, τ)F (z2, α2, τ) = F (z1, α1 + α2, τ)F (z2 − z1, α2, τ) + (1↔ 2) (2.15)

plays a crucial role when expanded in terms of its coefficient functions from (2.5) [14],

g
(n)
12 g

(m)
23 = −g

(m+n)
13 +

n∑

j=0

(−1)j
(
m− 1 + j

j

)
g
(n−j)
13 g

(m+j)
23

+

m∑

j=0

(−1)j
(
n− 1 + j

j

)
g
(m−j)
13 g

(n+j)
12 . (2.16)

Its simplest instance can be viewed as the one-loop counterpart of the tree-level partial

fraction identity (z12z23)
−1 + cyc(1, 2, 3) = 0,

g
(1)
12 g

(1)
23 + g

(2)
12 + cyc(1, 2, 3) = 0 . (2.17)

Additional instances relevant to the worldsheet functions that appear in one-loop correla-

tors for up to and including nine points are given by

g
(1)
12 g

(2)
23 = g

(1)
13 g

(2)
23 + g

(1)
12 g

(2)
13 − g

(1)
13 g

(2)
12 + g

(3)
12 − g

(3)
13 − 2g

(3)
23 , (2.18)

g
(2)
12 g

(2)
23 = g

(2)
12 g

(2)
13 + g

(2)
13 g

(2)
23 − 2g

(1)
13 g

(3)
12 − 2g

(1)
13 g

(3)
23 + 3g

(4)
12 − g

(4)
13 + 3g

(4)
23 ,

g
(1)
12 g

(3)
23 = −g

(2)
12 g

(2)
13 + g

(1)
13 g

(3)
12 + g

(1)
12 g

(3)
13 + g

(1)
13 g

(3)
23 − g

(4)
12 − g

(4)
13 − 3g

(4)
23 ,

g
(2)
12 g

(3)
23 = −g

(5)
13 + 6g

(5)
23 − 4g

(5)
12 + g

(2)
13 g

(3)
23 − 3g

(1)
13 g

(4)
23 + g

(3)
13 g

(2)
12 − 2g

(2)
13 g

(3)
12 + 3g

(1)
13 g

(4)
12 ,

g
(1)
12 g

(4)
23 = −g

(5)
13 − 4g

(5)
23 + g

(5)
12 + g

(1)
13 g

(4)
23 + g

(4)
13 g

(1)
12 − g

(3)
13 g

(2)
12 + g

(2)
13 g

(3)
12 − g

(1)
13 g

(4)
12 .
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Note that the label 2 (corresponding to z2) appears twice in the monomials of the left-hand

side in the above identities while appearing at most once in the monomials of the right-

hand side. This property can be exploited to rewrite arbitrary products of g
(n)
ij -functions

in a canonical way. Since any repeated label can be eliminated this way, for convenience

in a product g
(n)
ij g

(m)
jk one can use the Fay identities if the repeated label j is the smallest

among i, j and k (which can be obtained from a relabeling of (2.18)). In addition, Fay

identities involving z-derivatives of g(n)(z, τ) are easy to obtain from (2.17) and (2.18),

and can be similarly written in a canonical way.

Linear combinations of the above Fay identities can be used to derive identities in-

volving Eisenstein series Gn. For instance, from g
(3)
ii = 0 and g

(4)
ii = −G4, the limit z3 → z1

of the expressions (2.18) for g
(2)
12 g

(2)
23 + 2g

(1)
12 g

(3)
23 and g

(2)
12 g

(3)
23 + 3g

(1)
12 g

(4)
23 implies

2g
(4)
12 + g

(2)
12 g

(2)
12 − 2g

(1)
12 g

(3)
12 − 3G4 = 0 , 5g

(5)
12 + g

(2)
12 g

(3)
12 − 3g

(1)
12 g

(4)
12 − 3G4g

(1)
12 = 0 , (2.19)

and similar relations can be obtained at higher weights. The weight-four identity in (2.19)

will often be used in proposing an expression for the eight-point correlator, see section

III.3.5.

2.3. Total derivatives

Correlators Kn(ℓ) are always accompanied by the Koba–Nielsen factor In(ℓ) given by (2.3),

when they enter open- and closed-string amplitudes, see (2.1) and (2.2). One can show that

its derivatives with respect to worldsheet positions zi and modulus τ are given by

∂

∂zi
In(ℓ) =

(
ℓ · ki +

n∑

j 6=i

sijg
(1)
ij

)
In(ℓ) , (2.20)

∂

∂τ
In(ℓ) =

1

2πi

(1
2
ℓ2 +

n∑

i<j

sijg
(2)
ij

)
In(ℓ) , (2.21)

where (2.8) and
∑n

i<j sij = 0 have been used in (2.21). Given the integrations over zj and

τ in the amplitudes (2.1) and (2.2), one can therefore set the following total derivatives to

zero within one-loop correlators,

(
ℓ · ki +

n∑

j 6=i

sijg
(1)
ij

)
f(z, τ, . . .) +

∂f(z, τ, . . .)

∂zi
∼= 0 , ∀ f(z, τ, . . .) , (2.22)

(1
2
ℓ2 +

n∑

1≤i<j

sijg
(2)
ij

)
f(z, τ, . . .) + 2πi

∂f(z, τ, . . .)

∂τ
∼= 0, ∀ f(z, τ, . . .) , (2.23)
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where f(z, τ, . . .) is an arbitrary function on the worldsheet.

The absence of boundary terms w.r.t. zj follows from the short-distance behavior3

|In(ℓ)| → |zij |
sij of the Koba–Nielsen factor (2.3) as zi → zj . It is well known from

discussions of the anomaly cancellation in the open superstring that the boundaries of

moduli space can give non-vanishing contributions from individual worldsheet topologies

[16,17]. Hence, blindly discarding total derivatives w.r.t. the modulus τ would generically

lead to inconsistencies. However, when summing over the different worldsheet topologies

these inconsistencies are canceled for the gauge group SO(32); since this will always be

the case for the open superstring we may freely discard total derivatives in τ .

3. Generalized elliptic integrands

When using the chiral-splitting method [8,9,10] to handle the joint zero mode ℓm of4

∂xm(z) and ∂xm(z), superstring scattering integrands of (2.1) and (2.2) involve a loop-

momentum dependent Koba–Nielsen factor (2.3). As explained in [10], the integrands of

superstring amplitudes containing the loop momentum ℓm do not need to be single-valued

as functions of zi. Instead, it is sufficient to attain single-valuedness after the loop mo-

mentum is integrated out. Here “single-valued” is used in its conventional sense; it refers

to functions f(zi) left invariant as the coordinates zi are transported around the A and

B homology cycles of fig. 1. In this work, the chiral-splitting method will be used but the

concept of single-valuedness will be extended to invariant functions of (zi, ℓ
m) under a si-

multaneous variation of both zi and ℓm along the cycles. Let us now present the reasoning

that motivated this idea.

3.1. Motivating and defining generalized elliptic integrands

As we will see in section III.3.2, the evaluation of the five-point one-loop amplitude of the

open superstring using the standard rules of the pure-spinor formalism (and some mild

assumptions) gives rise to the following integrand:

K5(ℓ) = ℓmV1T
m
2,3,4,5+

[
V12T3,4,5g

(1)
12 +(2↔ 3, 4, 5)

]
+
[
V1T23,4,5g

(1)
23 +(2, 3|2, 3, 4, 5)

]
. (3.1)

3 The cancellation of |zij|
sij as zi → zj is obvious in the kinematic region where Re(sij) > 0

and otherwise follows from analytic continuation.
4 In the pure-spinor formalism, the worldsheet fields ∂xm(z) and ∂xm(z) enter the vertex

operators in their spacetime-supersymmetric combinations Πm(z) and Π
m
(z) [2].
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The kinematic factors V1, V12, T
m
2,3,4,5, T3,4,5 in pure-spinor superspace [18] are reviewed

in section I.4. Throughout this work, the notation +(a1, . . . , ap|a1, . . . , ap+q) instructs to

sum over all ordered combinations of p the labels ai taken from the set {a1, a2, . . . , ap+q},

leading for instance to a total of six permutations of V1T23,4,5g
(1)
23 in (3.1).

Having obtained (3.1), it was natural to ask about its B-cycle monodromies using the

relations (2.13). Ignoring the term with the loop momentum for a moment, it is easy to

see that the correlator (3.1) changes by −2πi
[
V12T3,4,5 + (2 ↔ 3, 4, 5)] as z1 goes around

the B-cycle. Recalling the vanishing of km1 V1T
m
2,3,4,5 +

[
V12T3,4,5 + (2 ↔ 3, 4, 5)

]
in the

BRST cohomology, see (I.4.23), suggests the following speculation: if the loop momentum

changed as ℓm → ℓm − 2πikm1 at the same time as z1 goes around the B-cycle, then the

integrand (3.1) would be single valued as a function of both z1 and ℓm.

As it stands the above speculation is not compelling enough as we did not consider how

the Koba–Nielsen factor (2.3) behaves under these changes. Luckily, the quasi-periodicity

θ1(z+τ, τ) = −e−iπτ−2πizθ1(z, τ) of the odd Jacobi theta function (2.4) implies that the

absolute value of the Koba–Nielsen factor is invariant under the simultaneous transforma-

tion of z1 → z1+τ and ℓm → ℓm − 2πikm1 ,

∣∣In(ℓ− 2πik1)
∣∣
z1→z1+τ

=
∣∣In(ℓ)

∣∣ . (3.2)

Hence, the loop-integrated open- and closed-string expressions
∫
dDℓ |In(ℓ)|〈K5(ℓ)〉 and∫

dDℓ |In(ℓ)|
2〈K5(ℓ)〉〈K̃5(−ℓ)〉 will still lead to single-valued functions of the punctures in

the conventional sense of [10]. But the above reasoning suggests that one can even talk

about single-valued chirally-split superstring integrands by also letting the loop momentum

change along the B-cycle. Furthermore, the same analysis can be performed for shifts along

the A-cycle (without any modification of the loop momentum as z1 → z1 +1), motivating

the following definition:

Definition 1 (GEI). A generalized elliptic integrand (GEI) is a single-valued function

f(zi, ℓ, τ, kj) of the lattice coordinates zj , j = 1, . . . , n, the loop momentum ℓm, the modular

parameter τ and the external momenta kmj such that

f(z′j, ℓ
′, τ, kj) = f(zj , ℓ, τ, kj) (3.3)

as zj and ℓm go around the A and B cycles

A-cycle : (z′j , ℓ
′) = (zj + 1, ℓ) , (3.4)

B-cycle : (z′j , ℓ
′) = (zj + τ, ℓ− 2πikj) .
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By their dependence on ℓm and kmj , GEIs may have free vector indices fm1m2...(zj , ℓ, τ, kj).

As the absolute value of the Koba–Nielsen factor is by itself a GEI, the five-point

example (3.1) suggests that superstring correlators are given by GEIs in the above sense,

Kn(ℓ− 2πikj)
∣∣
zj→zj+τ

= Kn(ℓ) . (3.5)

We will see that this observation harbors valuable constructive input to the derivation

of correlators from first principles. Furthermore, the argument above suggests a deeper

connection between BRST invariance of pure-spinor superspace expressions and GEIs. As

we will see in the following sections, this synergy is quite powerful and leads to many

interesting results.

Integrands depending on ℓ, k, z and τ satisfying the key property (3.3) were used for

the first time in [4], where the acronym GEI was coined. As detailed in section 7, integrating

the GEIs in n-point closed-string integrands over
∫
dDℓ |In(ℓ)|

2 yields modular forms of

weight (n−4, n−4) and leads to modular invariant closed-string amplitudes (2.2).

3.2. The linearized-monodromy operator

Given a monomial in g
(n)
ij , the monodromies as zj → zj + τ are polynomials in 2πi by

(2.12). We will be interested in combinations of g
(n)
ij and the loop momentum such that

the monodromies are compensated by shifts ℓ→ ℓ− 2πikj and the defining property (3.5)

of GEIs is attained. In order to efficiently identify GEIs, we formally truncate the combined

transformations of g
(n)
ij and ℓ to the linear order in 2πi and study the operator

δjℓ = −2πikj , δjg
(n)
jm = −2πig

(n−1)
jm , n ≥ 1 , (3.6)

where δjg
(0)
jm = 0 and δjg

(n)
im = 0 for all i,m 6= j. This operator probes the linearized

monodromy w.r.t. a given puncture δj : zj → zj + τ with the accompanying shift ℓ →

ℓ− 2πikj . Accordingly, it is understood to obey a Leibniz property

δj
(
f1(ℓ, zj)f2(ℓ, zj)

)
= f1(ℓ, zj)

(
δjf2(ℓ, zj)

)
+ f2(ℓ, zj)

(
δjf1(ℓ, zj)

)
(3.7)

for arbitrary functions fi of the loop momentum and the punctures. It is convenient to

assemble the linearized monodromies w.r.t. all of z1, z2, . . . , zn into a single operator as

D = −
1

2πi

n∑

j=1

Ωjδj , (3.8)
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where we have introduced formal variables Ωj to track the contribution of the jth puncture.

Then, (3.6) and the shorthand notation Ωij ≡ Ωi − Ωj give rise to

Dg
(n)
ij = Ωijg

(n−1)
ij , Dℓm =

n∑

j=1

Ωjk
m
j =

n∑

j=2

Ωj1k
m
j , (3.9)

where momentum conservation km1 = −km2 − · · · − kmn has been used in the last relation.

For example,

Dg
(1)
12 = Ω12 , Dg

(2)
12 = Ω12g

(1)
12 , D

(
g
(1)
12 ℓ

m
)
= Ω12ℓ

m + g
(1)
12

n∑

j=2

Ωj1k
m
j . (3.10)

Note that D will be later on argued to play a role similar to the BRST operator Q of the

pure-spinor formalism. One can enforce that D shares the nilpotency Q2 = 0 by defining

the formal variables Ωj to be fermionic5. However, the choice of statistics for the Ωj won’t

affect any calculation done in this work, so we defer this decision to follow-up research.

Since the linearized monodromy operator D only picks the terms linear in 2πi that

arise from the transformation zj → zj + τ and ℓ→ ℓ− 2πikj, invariance DE = 0 is only a

necessary condition for E to be a GEI. It remains to check if the higher orders in 2πi also

drop out from the image of E under the above shift of zj and ℓ. For all solutions to DE = 0

studied in this work, we have checked that they constitute a GEI on a case-by-case basis,

and it would be interesting to find a general argument. In many cases, single-valuedness

can be seen from the generating-function techniques in later sections.

4. Bootstrapping shuffle-symmetric worldsheet functions

In this section we will construct a system of worldsheet functions Z for superstring correla-

tors on a genus-one Riemann surface by analogies with kinematic factors. When the latter

are organized in terms of Berends–Giele superfields as detailed in part I, their variation

under the pure-spinor BRST operator will be used as a prototype to prescribe monodromy

variations for the Z-functions. As a consequence, the combinatorics of BRST-invariant

5 The conditional nilpotency of D for fermionic formal variables Ωj follows from the fact that

linearized monodromies (3.6) w.r.t. different punctures commute, δiδj = δjδi. This commutativity

property follows from (3.6) and (3.7).
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kinematic factors can be borrowed to anticipate D-invariant combinations of Z-functions,

i.e. GEIs.

The correspondence between the pure-spinor BRST charge Q acting on superfields

and the monodromy operator D acting on functions is the first facet of a duality between

kinematics and worldsheet functions. Further aspects of the duality will be presented in

section 5 that lead to a variety of applications. In particular, the duality between kinematics

and worldsheet functions implies a double-copy structure of open-superstring one-loop

amplitudes discussed in [4] and expanded in part III.

4.1. Shuffle-symmetric worldsheet functions

In the computation of tree-level correlators for n-point open-string amplitudes [19], the

nested OPE singularities were captured by worldsheet functions of the following form6

Ztree
123...p ≡

1

z12z23 . . . zp−1,p
. (4.1)

It follows from partial-fraction relations such as (z12z23)
−1 + cyc(1, 2, 3) = 0 that the

tree-level functions satisfy shuffle symmetries7 (e.g. Ztree
1�23 = Ztree

123 +Z
tree
213 +Z

tree
231 = 0) [22]

Ztree
A�B = 0, ∀ A,B 6= ∅ . (4.2)

Since the appearance of shuffle-symmetric worldsheet functions (4.1) at tree level can be

traced back to the short-distance behavior of vertex operators, the same structure must

persist at higher genus. Therefore we assume that the short-distance singularities at one

loop arise from analogous chains built from functions g(1)(z, τ) = 1
z +O(z)

g
(1)
12 g

(1)
23 . . . g

(1)
p−1,p . (4.3)

As a fundamental starting point in obtaining one-loop n-point correlators of the open

superstring, the worldsheet functions associated with nested OPE singularities will be

required to obey shuffle symmetries like their tree-level counterparts, i.e.,

Z1−loop
...,A�B,... = 0 , ∀ A,B 6= ∅ . (4.4)

6 Note that the worldsheet functions (z12z23 . . . zp−1,p)
−1 at tree level arise from cyclic Parke–

Taylor factors (z12z23 . . . zp−1,pzp,nzn,1)
−1 in an SL2-frame where zn → ∞.

7 The shuffle product of words A and B of length n and m generates all (n+m)!
n!m!

possible ways

to interleave the letters of A and B without changing their orderings within A and B, see (I.3.2)

for a recursive definition. A more elaborate account on the combinatorics on words can be found

in section I.3.1, based on the mathematics literature [20,21].
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At multiplicity p = 2, antisymmetry of g
(1)
12 = −g

(1)
21 suffices to make it shuffle-symmetric.

However, for the tentative one-loop counterpart g
(1)
12 g

(1)
23 of Ztree

123 it is easy to see that the

Fay identity (2.17) prevents the shuffle relation Ztree
1�23 = 0 from generalizing. Luckily, the

same Fay identity also suggests how to restore the shuffle symmetry without altering the

pole at zi → zj by adding non-singular g
(2)
ij -functions. One can check via (2.17) that both of

Z
(i)
123 ≡ g

(1)
12 g

(1)
23 +

1

2
(g

(2)
12 + g

(2)
23 ) , Z

(ii)
123 ≡ g

(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13 (4.5)

share the desired shuffle symmetry of Ztree
123 . Also at higher multiplicity, the non-singular

functions g
(n)
ij with n ≥ 2 admit various shuffle symmetric completions of g

(1)
12 g

(1)
23 . . . g

(1)
p−1,p

which reproduce the singularity structure of (4.1) and qualify as one-loop counterparts

of Ztree
123...p. From the availability of two shuffle-symmetric multiplicity-three candidates in

(4.5), one can anticipate that many more options arise at higher multiplicities. In the next

subsection we will identify a guiding principle to prefer Z
(ii)
123 over Z

(i)
123 in our representa-

tions of one-loop correlators and to select higher-multiplicity generalizations.

4.2. Duality between monodromy and BRST variations

We will now prescribe the monodromy variation DZ12...p of shuffle-symmetric worldsheet

functions by analogies with Berends–Giele superfields M12...p that share the shuffle sym-

metry and are reviewed in section I.5. The idea is to impose the combinatorics of the BRST

variation QM12...p to carry over to the worldsheet functions, Z12...p ↔ M12...p. This rela-

tionship is at the heart of an emerging proposal for a duality between worldsheet functions

kinematics – monodromy variations are taken to be dual to BRST variations.

4.2.1. Scalar monodromy variations

The Berends–Giele superfields at one loop have multiple slots, starting with the scalar

kinematicsMAMB,C,D of section I.5.1. Accordingly, the simplest one-loop worldsheet func-

tions should inherit the slot structure ZA,B,C,D with shuffle symmetries in all of A,B,C,D.

Throughout this work, whenever multiparticle labels A,B, . . . in a subscript are separated

by a comma rather than a vertical bar, then they are understood to be freely interchange-

able, ZA,B,... = ZB,A,....

The BRST variation (I.5.18) of MB,C,D can be written as linear combinations of the

BRST invariants Ci|P,Q,R [23] reviewed in section I.5.2. Accordingly, the corresponding

13



D-variations of ZA,B,C,D should be written in terms of GEIs Ei|A,B,C,D, i.e. D-invariant

combinations of simpler Z-functions. More explicitly, the parallel is taken to be

QMA,B,C = Ca1|a2...a|A|,B,C − Ca|A||a1...a|A|−1,B,C + (A↔ B,C) , (4.6)

DZA,B,C,D = Ωa1
Ea1|a2...a|A|,B,C,D − Ωa|A|

Ea|A||a1...a|A|−1,B,C,D + (A↔ B,C,D) , (4.7)

where the length of the word A = a1a2 . . . a|A| is denoted by |A|, and the bookkeeping

variables Ωj of (3.8) always follow the special label of Ej|..., e.g.

QM1,2,3 = 0 ,

DZ1,2,3,4 = 0 ,

QM12,3,4 = C1|2,3,4 − C2|1,3,4 ,

DZ12,3,4,5 = Ω1E1|2,3,4,5 − Ω2E2|1,3,4,5 .
(4.8)

The Ei|... on the right-hand sides will be defined in analogy8 with Ci|..., and this analogy will

be reflected by the notation: The duality between superfields and ZA,B,C,D as well as the

resulting correspondence between Q and D imply that BRST invariants Ci|A,B,C should

be dualized to GEIs. By the vertical-bar notation, the symmetries Ci|A,B,... = Ci|B,A,...

Ei|A,B,... = Ei|B,A,... do not extend to the external-state label i in the first entry.

At this point, we can identify a preferred choice among the two multiplicity-three

candidates (4.5). Based on (3.10), we have

DZ
(i)
123 = Ω1(g

(1)
23 +

1

2
g
(1)
12 ) +

1

2
Ω2g

(1)
12 + (1↔3) , DZ

(ii)
123 = Ω13(g

(1)
12 +g

(1)
23 +g

(1)
31 ) , (4.9)

where the second variation will later be shown to be equal to Ω13E1|23,4,5. Since it is easy

to see that DZ
(i)
123 is not single-valued, only the second option has the required structure

(4.7) on the right-hand side. In order to reconcile the expression for Z
(ii)
123 with the slot

structure of scalar worldsheet functions ZA,B,C,D in (4.7), from now on we use the notation

Z123,4,5,6 = Z
(ii)
123, also see section 4.4.3.

8 We note the mismatch between the slots of Ei|A,B,C defined in analogy with the BRST

invariants and the slots of Ei|A,B,C,D appearing in the right-hand side of (4.7). This difference is

inconsequential for functions up to multiplicity nine and can be bypassed by defining the extension

of scalar GEIs by Ei|A,B,C,D ≡ Ei|A,B,C and by adding extra permutations to the tensorial GEIs.
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4.2.2. Tensorial monodromy variations

The same ideas can be reused at higher tensor ranks r to infer tensorial worldsheet functions

Zm1...mr

A,B,C,.. involving loop momenta, external momenta and g
(n)
ij , with shuffle symmetries in

multiple slots A,B, . . .. These tensorial functions will be constructed by imposing their

linearized monodromies to follow the BRST variation of tensorial kinematic building blocks

Mm1...mr

A,B,C,... in pure-spinor superspace. Explicitly, the map is

QMm1...mr

A,B,C,... ←→ DZm1...mr

A,B,C,... , (4.10)

and we will use the following results for the left-hand side [23],

QMm1m2...mr

A,B,C,... = δ(m1m2Y
m3...mr)
A,B,C,... (4.11)

+ Cm1m2...mr

a1|a2...a|A|,B,C,... − Cm1m2...mr

a|A||a1...a|A|−1,B,C,... + (A↔ B,C, . . .)

+ δ|A|,1rk
(m1
a1

C
m2...mr)
a1|B,C,... + (A↔ B,C, . . .) ,

with tensorial anomaly superfields Ym1m2...
A,B,... and (pseudo-)invariants9 Cm1m2...

1|A,B,... [23], e.g.

QMm
1,2,3,4 = km1 C1|2,3,4 + (1↔ 2, 3, 4) (4.12)

QMm
12,3,4,5 = Cm

1|2,3,4,5 − Cm
2|1,3,4,5 +

[
km3 C3|12,4,5 + (3↔ 4, 5)

]
.

Here and in the following, Lorentz indices are (anti)symmetrized such that each inequiva-

lent term has unit coefficient, e.g. k
(m1

1 km2
2 . . . k

mr)
r ≡ km1

1 km2
2 . . . kmr

r +perm(m1, . . . , mr),

for a total of r! terms. In case of symmetric tensors, imposing unit coefficients leads to

fewer terms such as δ(mnkp) ≡ δmnkp+δmpkn+δnpkm, and expanding the symmetrization

of δ(m1m2Y
m3...mr)
A,B,C,... in (4.11) yields

(
r
2

)
terms.

The vectorial BRST invariants Cm
i|A,... on the right-hand sides of (4.11) and (4.12) are

composed of MA,B,C , M
m
A,B,C,D and external momenta. Similarly, we will later on obtain

vectorial GEIs Em
i|A,B,... involving ℓ

m, kmj and g
(n)
ij by following the same composition rules.

According to the duality (4.10), the defining property of Zm1...mr

A,B,C,.. is

DZm1m2...mr

A,B,C,... =
[
Ωa1

Em1m2...mr

a1|a2...a|A|,B,C,... − Ωa|A|
Em1m2...mr

a|A||a1...a|A|−1,B,C,...

+ δ|A|,1Ωa1
k(m1
a1

E
m2...mr)
a1|B,C,... + (A↔ B,C, . . .)

]
, (4.13)

9 The defining property of pseudo-invariants is that their BRST variation is entirely expressible

in terms of anomaly superfields [23].
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where the anomalous superfield in the first line of (4.11) does not have any worldsheet

counterpart. The examples in (4.12) then translate into

DZm
1,2,3,4,5 = Ω1k

m
1 E1|2,3,4,5 + (1↔ 2, 3, 4, 5) (4.14)

DZm
12,3,4,5,6 = Ω1E

m
1|2,3,4,5,6 − Ω2E

m
2|1,3,4,5,6 +

[
Ω3k

m
3 E3|12,4,5,6 + (3↔ 4, 5, 6)

]
.

4.2.3. Refined bootstrap equations

The duality between superspace kinematics and worldsheet functions suggests to introduce

a notion of refined Z-functions defined via monodromies

QJm1...mr

A1,...,Ad|B1,B2,...
←→ DZm1...mr

A1,...,Ad|B1,B2,...
, (4.15)

where the Berends–Giele superfields J are derived from the refined building blocks of

section I.4.4. The number d ≥ 1 of slots on the left of the vertical bar is referred to as

the degree of refinement. The left-hand side of (4.15) is given in terms of refined anomaly

superfields Ym1m2...
A1,...,Ad|B,... and (pseudo-)invariants Pm1...mr

1|A1,...,Ad|B,... [23],

QJm1...mr

A1,...,Ad|B1,B2,...
= δ(m1m2Y

m3...mr)
A1,...,Ad|B1,...,

(4.16)

+
[
Ym1...mr

A2,...,Ad|A1,B1,...,
+ (A1↔A2, . . . , Ad)

]

+
[
δ|A1|,1k

p
a1
P pm1...mr

a1|A2,...,Ad|B1,...
+ (A1↔A2, . . . , Ad)

]

+
[
δ|B1|,1k

(m1

b1
P

m2...mr)
b1|A1,...,Ad|B2,...

+ (B1↔B2, . . .)
]

+
[
Pm1...mr

a1|a2...a|A1|,A2,...,Ad|B1,...
− Pm1...mr

a|A1||a1...a|A1|−1,A2,...,Ad|B1,...
+ (A1↔A2, . . . , Ad)

]

+
[
Pm1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...
− Pm1...mr

b|B1||A1,...,Ad|b1...b|B1|−1,B2,...
+ (B1 ↔ B2, . . .)

]
,

for instance,

QJm
1|23,4,5,6,7 = Y

m
1,23,4,5,6,7 + kp1C

mp
1|23,4,5,6,7 (4.17)

+
[
km4 P4|1|23,5,6,7 + (4↔ 5, 6, 7)

]
+ Pm

2|1|3,4,5,6,7 − Pm
3|1|2,4,5,6,7 .

Accordingly, the refined versions of the worldsheet functions comprising ℓ, kmj and g
(n)
ij are

characterized by the following monodromies

DZm1...mr

A1,...,Ad|B1,B2,...
=

[
δ|A1|,1Ωa1

kpa1
Epm1...mr

a1|A2,...,Ad|B1,...
+ (A1↔A2, . . . , Ad)

]
(4.18)

+
[
δ|B1|,1Ωb1k

(m1

b1
E

m2...mr)
b1|A1,...,Ad|B2,...

+ (B1 ↔ B2, . . .)
]

+
[
Ωa1

Em1...mr

a1|a2...a|A1|,A2,...,Ad|B1,...
− Ωa|A1|

Em1...mr

a|A1||a1...a|A1|−1,A2,...,Ad|B1,...
+ (A1↔A2, . . . , Ad)

]

+
[
Ωb1E

m1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...
− Ωb|B1|

Em1...mr

b|B1||A1,...,Ad|b1...b|B1|−1,B2,...
+ (B1 ↔ B2, . . .)

]
,
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where the anomalous superfields in the first line of (4.16) do not have any worldsheet

counterpart. The right-hand side of (4.18) features refined GEIs Em1...
i|A1,...,Ad|B1,...

which

will enter the correlators discussed in part III as the coefficients of refined superfields. For

example, the monodromy variation dual to (4.17) reads

DZm
1|23,4,...,8 = Ω1k

p
1E

mp
1|23,4,...,8 (4.19)

+
[
km4 Ω4E4|1|23,5,...,8 + (4↔ 5, . . . , 8)

]
+Em

2|1|3,4,...,8 −Em
3|1|2,4,...,8 .

The above patterns were discovered upon studying correlators previously obtained by

various other considerations at multiplicities four, five and six. At higher multiplicities, the

existence of worldsheet functions subject to (4.13) and (4.18) is a working hypothesis—so

far confirmed by explicit construction up to and including eight points.

4.2.4. An ambiguity caused by Eisenstein series

Given a solution ZA,B,... to monodromy-variation equations, it is always possible to deform

it by an arbitrary GEI. A partial resolution to this ambiguity is quite natural in view of the

defining properties of one-loop correlators: We require the words A,B, . . . of ZA,B,... to re-

flect tree-level-like singularities (za1a2
za2a3

. . . za|A|−1a|A|
)−1(zb1b2zb2b3 . . . zb|B|−1b|B|

)−1, cf.

(4.1). This requirement fixes the most singular term to be (g
(1)
a1a2g

(1)
a2a3 . . . g

(1)
a|A|−1a|A|) and

should prevent the addition of non-constant functions with vanishing monodromies, as they

would necessarily modify this singularity structure. At the level of unrefined scalar GEIs,

this follows from the fact that non-constant elliptic functions always involve singularities

as zi → zj , and we expect this property to carry over to tensorial and refined GEIs.

However, this requirement cannot determine the presence (or absence) of terms propor-

tional to a holomorphic Eisenstein series Gn, for they are monodromy invariant (DGn = 0)

as well as constant functions on the worldsheet (∂Gn

∂zj
= 0). The construction of ZA,B,... and

GEIs from g
(n)
ij automatically qualifies holomorphic Eisenstein series Gn = −g

(n)
ii as pos-

sible constituents. Moreover, Gn are known to arise in (n ≥ 8)-point one-loop correlators

from the spin sums in the RNS formalism [13,14].

By the weight counting of section 2.1.2, the first instance where the above ambiguity

may affect the expressions for shuffle-symmetric functions happens at eight points. And

indeed, we will see in section III.3.5 that the eight-point correlator is plagued by unwanted

appearances of G4 whose kinematic coefficient remains undetermined in this work.
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4.2.5. Lie-symmetric worldsheet functions

From the discussion in section I.5.1, Berends–Giele superfields MA,B,C subject to shuffle

symmetries can be translated to local building blocks TA,B,C that satisfy Lie symmetries

(cf. section I.3.4). The dictionary in (I.5.8) boils down to the KLT-matrix S(·|·)i [24] (also

known as the momentum kernel [25]) that cancels the kinematic poles of the Berends–Giele

currents and is recursively defined by

S(P, j|Q, j, R)i = (kiQ · kj)S(P |Q,R)i, S(∅|∅)i = 1 , (4.20)

for instance

S(2|2)1 = (k1 ·k2), S(23|23)1 = (k12 ·k3)(k1 ·k2), S(23|32)1 = (k1 ·k3)(k1 ·k2) . (4.21)

In analogous fashion, one can also define worldsheet functions that satisfy Lie symmetries.

To this effect we define, in analogy with (I.5.8),

Z
(s)m1...
aA,bB,... ≡

∑

A′,B′,...

S(A|A′)aS(B|B
′)b · · · Z

m1...
aA′,bB′,... , (4.22)

E
(s)m1...
1|aA,bB,... ≡

∑

A′,B′,...

S(A|A′)aS(B|B
′)b · · ·E

m1...
1|aA′,bB′,... , (4.23)

where the matrix S(A|A′)a defined in (4.20) contributes |A| powers of sij = ki · kj . For

example,

Z
(s)
1,2,3,4 = Z1,2,3,4, Z

(s)
12,3,4,5 = s12Z12,3,4,5 (4.24)

Z
(s)
12,34,5,6 = s12s34Z12,34,5,6, Z

(s)
123,4,5,6 = (s13 + s23)s12Z123,4,5,6 + s13s12Z132,4,5,6 .

One can explicitly check that Z
(s)
123,4,5,6 indeed obeys the Lie symmetries in A = 123;

Z
(s)
123,4,5,6 + Z

(s)
213,4,5,6 = 0, and Z

(s)
123,4,5,6 + Z

(s)
231,4,5,6 + Z

(s)
321,4,5,6 = 0. Similarly, one may

verify the Lie symmetries at higher multiplicities. The superscript in Z(s) reminds of the

presence of monomials in sij .

4.3. Worldsheet dual expansions of BRST pseudo-invariants

In this section we will see the first non-trivial consequence of the conjectural duality be-

tween worldsheet functions and kinematics: the systematic construction of GEIs. This is

done by exploiting the analogy between monodromy variations of Z-functions and the

BRST variations of Berends–Giele currents put forward in section 4.2. The tentative idea
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is to assemble GEIs or “worldsheet invariants” following the same combinatorics used in

building kinematic BRST invariants C1|A,B,C and Cm
1|A,B,C,D in (I.5.20) and (I.5.21) from

Berends–Giele currents. It turns out that the worldsheet invariants constructed in this way

give rise to GEIs as defined in section 3, i.e., their monodromy variations vanish.

At four and five points, the expressions for C1|2,3,4, C1|23,4,5 and Cm
1|2,3,4,5 in (I.5.20)

and (I.5.21) translate into

E1|2,3,4 = Z1,2,3,4 , (4.25)

E1|23,4,5 = Z1,23,4,5 +Z12,3,4,5 − Z13,2,4,5 ,

Em
1|2,3,4,5 = Z

m
1,2,3,4,5 +

[
km2 Z12,3,4,5 + (2↔ 3, 4, 5)

]
,

while at six points we have the unrefined GEIs,

E1|234,5,6 = Z1,234,5,6 +Z12,34,5,6 + Z123,4,5,6 + Z412,3,5,6 − Z14,23,5,6 + Z143,2,5,6 ,

E1|23,45,6 = Z1,23,45,6 +Z12,45,3,6 − Z13,45,2,6 + Z14,23,5,6 − Z15,23,4,6

− Z412,3,5,6 + Z314,2,5,6 + Z215,3,4,6 −Z315,2,4,6 , (4.26)

Em
1|23,4,5,6 = Z

m
1,23,4,5,6 + Z

m
12,3,4,5,6 − Z

m
13,2,4,5,6 + km3 Z123,4,5,6 − km2 Z132,4,5,6

+
[
km4 Z14,23,5,6 − km4 Z214,3,5,6 + km4 Z314,2,5,6 + (4↔ 5, 6)

]
,

Emn
1|2,3,4,5,6 = Z

mn
1,2,3,4,5,6 +

[
km2 Z

n
12,3,4,5,6 + kn2Z

m
12,3,4,5,6 + (2↔ 3, 4, 5, 6)

]

−
[
(km2 kn3 + kn2 k

m
3 )Z213,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
,

see (I.5.22) for the superspace counterpart of the tensor. Moreover, six points admit one

instance of a refined GEI dual to the P1|2|3,4,5,6 superfield (I.5.24),

E1|2|3,4,5,6 = Z2|1,3,4,5,6 + km2 Z
m
12,3,4,5,6 +

[
s23Z123,4,5,6 + (3↔ 4, 5, 6)

]
. (4.27)

The analogous seven-point expansions are displayed in Appendix A.2.3.

Based on the D-variations from section 4.2, it is straightforward to verify that all of

(4.25) and (4.26) are indeed GEIs upon using momentum conservation10. As we will see

in the next section, the above GEIs have obvious extensions by one extra word (slot) to

match the slot structure on the right-hand side of the above D-variations. For instance,

E1|23,4,5,6 ≡ E1|23,4,5 will be needed for DZ123,4,5,6 = Ω1E1|23,4,5,6 − Ω3E3|12,4,5,6.

10 In order to see that (4.27) defines a GEI as well, one can either employ the explicit represen-

tation assembled in (4.37) or insert the integration-by-parts identity (5.1) among GEIs into the

D variation obtained from (4.18).
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4.4. The bootstrap

At first glance, the discussion in sections 4.2 and 4.3 seems to suffer from a chicken-and-

egg dilemma; in section 4.2, to obtain the monodromy variations of the shuffle symmetric

functions one needs the associated GEIs from section 4.3, while the expressions of the GEIs

require the shuffle-symmetric functions from section 4.2.

The way out of this conundrum is to note that this self-recursive structure can be

exploited to bootstrap the shuffle-symmetric Z-functions order by order in multiplicity,

starting with the four-point solution which is taken to be a constant. We will see how this

works in practice in the following subsections.

Note that the functions obtained below will be used inside one-loop correlators of the

open superstring, and as such, are considered to be multiplied by the overall Koba–Nielsen

factor (2.3). Therefore functions that differ by derivatives of the Koba–Nielsen factor given

in (2.22) and (2.23) are considered equivalent as will be indicated by the symbol ∼=.

4.4.1. Four-point worldsheet functions

From the computation of the four-point correlator in [26,3], it follows that the four-point

shuffle-symmetric worldsheet function is a constant. Similarly, the expansion (4.25) implies

that also its corresponding GEI is a constant. Both are normalized to one,

Z1,2,3,4 ≡ 1 , E1|2,3,4 ≡ 1 . (4.28)

To proceed to the next level we define the slot extension of (4.28) as E1|2,3,4,5 ≡ 1.

4.4.2. Five-point worldsheet functions

According to (4.7) and (4.13), the monodromy variations of the shuffle-symmetric functions

Z12,3,4,5 and Zm
1,2,3,4,5 at five points are given by

DZ12,3,4,5 = Ω1E1|2,3,4,5 − Ω2E2|1,3,4,5 = Ω12 (4.29)

DZm
1,2,3,4,5 = Ω1k

m
1 E1|2,3,4,5 + (1↔ 2, 3, 4, 5) =

5∑

j=1

Ωjk
m
j .

A closer inspection of the linearized monodromies (3.9) naturally leads to the following

solutions of (4.29),

Z12,3,4,5 = g
(1)
12 , Zm

1,2,3,4,5 = ℓm . (4.30)

These expressions reproduce the desired singularity structure Z12,3,4,5 = z−1
12 +O(z12) and

regularity of Zm
1,2,3,4,5, cf. section 4.2.4.
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4.4.2.1. Assembling five-point GEIs

We can now assemble associated GEIs from the expansions in (4.25),

E1|23,4,5 = Z1,23,4,5 +Z12,3,4,5 − Z13,2,4,5 (4.31)

= g
(1)
23 + g

(1)
12 − g

(1)
13 ,

Em
1|2,3,4,5 = Z

m
1,2,3,4,5 +

[
km2 Z12,3,4,5 + (2↔ 3, 4, 5)

]
(4.32)

= ℓm +
[
km2 g

(1)
12 + (2↔ 3, 4, 5)

]
.

It is easy to check that (4.31) and (4.32) are indeed invariant under monodromy varia-

tions (using momentum conservation in the latter case). Before proceeding to the next

multiplicity, we define the slot extension of (4.31) and (4.32),

E1|23,4,5,6 ≡ E1|23,4,5 , Em
1|2,3,4,5,6 ≡ ℓm +

[
km2 g

(1)
12 + (2↔ 3, 4, 5, 6)

]
, (4.33)

including an extra permutation 2 ↔ 6 in the vector GEI. These extensions are natural

from the generating functions for GEIs to be given in a later work and they will be used

on the right-hand sides of the monodromy variations of six-point Z-functions below.

4.4.3. Six-point worldsheet functions

According to (4.13) and (4.18), the six-point shuffle-symmetric worldsheet functions satisfy

the following monodromy variations:

DZ123,4,5,6 = Ω1E1|23,4,5,6 − Ω3E3|12,4,5,6 , (4.34)

DZ12,34,5,6 = Ω1E1|2,34,5,6 − Ω2E2|1,34,5,6 + Ω3E3|12,4,5,6 − Ω4E4|12,3,5,6 ,

DZm
12,3,4,5,6 = Ω1E

m
1|2,3,4,5,6 − Ω2E

m
2|1,3,4,5,6 +

[
km3 Ω3E3|12,4,5,6 + (3↔ 4, 5, 6)

]
,

DZmn
1,2,3,4,5,6 = km1 Ω1E

n
1|2,3,4,5,6 + kn1Ω1E

m
1|2,3,4,5,6 + (1↔ 2, 3, 4, 5, 6) ,

DZ2|1,3,4,5,6 = Ω2k
m
2 Em

2|1,3,4,5,6 .

In the appendix A.1 we will obtain the following solutions,

Z123,4,5,6 = g
(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13 , (4.35)

Z12,34,5,6 = g
(1)
12 g

(1)
34 + g

(2)
13 + g

(2)
24 − g

(2)
14 − g

(2)
23 ,

Zm
12,3,4,5,6 = ℓmg

(1)
12 + (km2 − km1 )g

(2)
12 +

[
km3 (g

(2)
13 − g

(2)
23 ) + (3↔ 4, 5, 6)

]
,

Zmn
1,2,3,4,5,6 = ℓmℓn +

[
(km1 kn2 + kn1 k

m
2 )g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]
,

Z2|1,3,4,5,6 = 0 .

In accordance with the discussion in section 4.1, their behavior as the vertex insertions col-

lide corresponds to their tree-level counterparts. For instance, the short-distance behavior

Z123,4,5,6 → (z12z23)
−1 is the same as that of Ztree

123 .
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4.4.3.1. Assembling six-point GEIs

Plugging the above solutions into the expansions (4.26) of six-point GEIs leads to

E1|234,5,6 = g
(1)
12 g

(1)
23 − g

(1)
12 g

(1)
24 + g

(1)
12 g

(1)
34 − g

(1)
14 g

(1)
23 + g

(1)
14 g

(1)
24 − g

(1)
14 g

(1)
34 (4.36)

+ g
(1)
23 g

(1)
34 + g

(2)
23 − g

(2)
24 + g

(2)
34 ,

E1|23,45,6 =
(
g
(1)
12 + g

(1)
23 + g

(1)
31

)(
g
(1)
14 + g

(1)
45 + g

(1)
51

)
,

Em
1|23,4,5,6 =

(
ℓm + km4 g

(1)
14 + km5 g

(1)
15 + km6 g

(1)
16

)(
g
(1)
12 + g

(1)
23 + g

(1)
31

)

+
[
km2 (g

(1)
13 g

(1)
23 + g

(2)
12 − g

(2)
13 − g

(2)
23 )− (2↔ 3)

]
,

Emn
1|2,3,4,5,6 = ℓmℓn +

[
k
(m
2 k

n)
3 g

(1)
12 g

(1)
13 + (2, 3|2, 3, 4, 5, 6)

]

+
[
ℓ(mk

n)
2 g

(1)
12 + 2km2 kn2 g

(2)
12 + (2↔ 3, 4, 5, 6)

]
,

as well as

E1|2|3,4,5,6 = −2s12g
(2)
12 + g

(1)
12 (ℓ · k2 + s23g

(1)
23 + s24g

(1)
24 + s25g

(1)
25 + s26g

(1)
26 )

∼= ∂g
(1)
12 + s12(g

(1)
12 )

2 − 2s12g
(2)
12 . (4.37)

The second line follows from the first one via integration by parts according to (2.20).

The slot-extensions of the above GEIs are given by

E1|234,5,6,7 ≡ E1|234,5,6 , E1|23,45,6,7 ≡ E1|23,45,6 ,

Em
1|23,4,5,6,7 ≡ Em

1|23,4,5,6 + km7 g
(1)
17

(
g
(1)
12 + g

(1)
23 + g

(1)
31

)
, (4.38)

Emn
1|2,3,4,5,6,7 ≡ ℓmℓn +

[
k
(m
2 k

n)
3 g

(1)
12 g

(1)
13 + (2, 3|2, . . . , 7)

]

+
[
ℓ(mk

n)
2 g

(1)
12 + 2km2 kn2 g

(2)
12 + (2↔ 3, 4, 5, 6, 7)

]
,

E1|2|3,4,5,6,7 ≡ −2s12g
(2)
12 + g

(1)
12 (ℓ · k2 + s23g

(1)
23 + s24g

(1)
24 + . . .+ s27g

(1)
27 )

∼= ∂g
(1)
12 + s12(g

(1)
12 )

2 − 2s12g
(2)
12 ,

and they will be used to bootstrap the shuffle-symmetric functions at seven points.

4.4.4. Seven-point worldsheet functions

At seven points, the monodromy variations for the scalar shuffle-symmetric functions fol-

lowing from (4.13) and (4.38) are given by

DZ1234,5,6,7 = Ω1E1|234,5,6,7 − Ω4E4|123,5,6,7 , (4.39)

DZ123,45,6,7 = Ω1E1|23,45,6,7 − Ω3E3|12,45,6,7 + Ω4E4|123,5,6,7 − Ω5E5|123,4,6,7 ,

DZ12,34,56,7 = Ω1E1|2,34,56,7 − Ω2E2|1,34,56,7 + (12↔ 34, 56) ,
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and admit the following solutions:

Z1234,5,6,7 = g
(1)
12 g

(1)
23 g

(1)
34 + g

(3)
12 + g

(3)
23 + g

(3)
34 − 2g

(3)
41 (4.40)

+ g
(1)
12

(
g
(2)
23 + g

(2)
34 − g

(2)
41

)
+ g

(1)
23

(
g
(2)
12 + g

(2)
34 − g

(2)
41

)
+ g

(1)
34

(
g
(2)
12 + g

(2)
23 − g

(2)
41

)
,

Z123,45,6,7 = g
(1)
12 g

(1)
23 g

(1)
45 + g

(1)
45

(
g
(2)
12 + g

(2)
23 − g

(2)
13

)

+
(
g
(1)
12 + g

(1)
23 + g

(1)
31

)(
g
(2)
14 − g

(2)
15 + g

(2)
35 − g

(2)
34

)
,

Z12,34,56,7 = g
(1)
12 g

(1)
34 g

(1)
56 + g

(1)
12

(
g
(2)
35 − g

(2)
36 − g

(2)
45 + g

(2)
46

)

+ g
(1)
34

(
g
(2)
15 − g

(2)
16 − g

(2)
25 + g

(2)
26

)
+ g

(1)
56

(
g
(2)
13 − g

(2)
14 − g

(2)
23 + g

(2)
24

)

+ g
(1)
15

(
g
(2)
13 − g

(2)
14 − g

(2)
35 + g

(2)
45

)
+ g

(1)
16

(
g
(2)
14 − g

(2)
13 + g

(2)
36 − g

(2)
46

)

+ g
(1)
25

(
g
(2)
24 − g

(2)
23 − g

(2)
45 + g

(2)
35

)
+ g

(1)
26

(
g
(2)
23 − g

(2)
24 − g

(2)
36 + g

(2)
46

)
,

The solutions for the tensorial functions will be presented in Appendix A.2, see in particular

(A.26), (A.29) and (A.30).

In addition to the above unrefined solutions, the monodromy variations of the three

seven-point topologies of refined worldsheet functions following from (4.18) read

DZ12|3,4,5,6,7 = Ω1E1|2|3,4,5,6,7− Ω2E2|1|3,4,5,6,7 , (4.41)

DZ1|23,4,5,6,7 = Ω1k
p
1E

p
1|23,4,5,6,7 +Ω2E2|1|3,4,5,6,7 − Ω3E3|1|2,4,5,6,7 ,

DZm
1|2,3,4,5,6,7 = Ω1k

p
1E

pm
1|2,3,4,5,6,7 +

[
Ω2k

m
2 E2|1|3,4,5,6,7 + (2↔ 3, 4, 5, 6, 7)

]
,

where the extended GEI above were defined in (4.38), with solutions

Z12|3,4,5,6,7 = ∂g
(2)
12 + s12g

(1)
12 g

(2)
12 − 3s12g

(3)
12 , (4.42)

Z1|23,4,5,6,7 = Z13|2,4,5,6,7 − Z12|3,4,5,6,7 ,

Zm
1|2,3,4,5,6,7 = −

[
km2 Z12|3,4,5,6,7 + (2↔ 3, 4, 5, 6, 7)

]
.

Although not manifest, the worldsheet singularities of the above functions are the ones

expected from their labeling according to the discussion in section 4.1. For instance, the

function Z12,34,56,7 can only have singularities as z1 → z2 (corresponding to the word

12) and similarly for 34 and 56. However, its expansion contains certain factors of g
(1)
ij

that suggest the presence of “forbidden” singularities; like g
(1)
15

(
g
(2)
13 − g

(2)
14 − g

(2)
35 + g

(2)
45

)

as z1 → z5. But a careful analysis using the Laurent expansions (B.6) shows that it is in

fact non-singular as z1 → z5 (similar conclusions apply for the other terms). Note that

functions which involve Mandelstam variables such as s12g
(1)
12 are considered non-singular
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as they don’t generate kinematic poles when integrated along with the Koba–Nielsen factor.

Therefore all functions in (4.42) are in fact non-singular upon integration over zj .

Having the shuffle-symmetric worldsheet functions we can now assemble seven-point

GEIs as discussed in the previous section. The results are displayed in Appendix A, see in

particular (A.31) to (A.34). Also, the building blocks of section 6 turn out to admit the

compact representations (6.22) or (6.23).

4.4.5. Eight-point shuffle-symmetric worldsheet functions

The system of monodromy variations can be solved explicitly at eight points following the

bootstrap approach. This will be done in the appendix A.3.

5. Duality between worldsheet functions and kinematics

In this section, we will illustrate various further facets of the duality between worldsheet

functions and kinematics. It will be exemplified that GEIs E...
1|... share the relations and

symmetries of the kinematic factors C...
1|... and P ...

1|... discussed in part I. Some of these

relations will be shown to have an echo at the level of the Z-functions. We spell out

the concrete evidence for the duality and formulate conjectures for the all-multiplicity

patterns. If these conjectures are correct, the kinematic and worldsheet ingredients of

the open-string correlators Kn in (C.1) to (C.4) enter on completely symmetric footing.

Like this, we support the double-copy structure of one-loop open-string amplitudes [4]

up to and including seven points. At eight points we will sometimes encounter terms

proportional to the holomorphic Eisenstein series G4 that do not have a corresponding

kinematic companion. Accommodating these terms with the duality between worldsheet

functions and kinematics is left for a future work.

5.1. The GEI dual to BRST-cohomology identities

The appearance of the correlatorsKn(ℓ) in open- and closed-string amplitudes is insensitive

to BRST-exact terms. This has been exploited in [23] to derive so-called Jacobi identities

in the BRST cohomology that relate momentum contractions km1 Cm...
1|A,B,... and kmACm...

1|A,B,...

to (pseudo-)invariants of lower tensor rank, see section I.5.4. We will now exemplify that

GEIs Em...
1|A,B,... obey the same Jacobi identities between different tensor rank and degree

of refinement, where BRST-exact terms translate into total derivatives.
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5.1.1. Five points

Based on momentum conservation, one can show that the following combinations of five-

point GEIs (4.31) and (4.32) conspire to total Koba–Nielsen derivatives (2.20)

km1 Em
1|2,3,4,5 = ∂1 log I5 (5.1)

km2 Em
1|2,3,4,5 +

[
s23E1|23,4,5 + (3↔ 4, 5)

]
= ∂2 log I5

and can therefore be dropped from open- and closed-string amplitudes. The first relation

is in one-to-one correspondence with the cohomology identity QJ1|2,3,4,5 = km1 Cm
1|2,3,4,5 +

∆1|2,3,4,5 after dropping the BRST-exact anomaly factor ∆1|2,3,4,5 (cf. section I.5.3). Simi-

larly, the second line of (5.1) has the kinematic counterpart (I.5.41) involving km2 Cm
1|2,3,4,5.

5.1.2. Six points

Similarly, at six points we find Jacobi relations among the GEIs in (4.36) and (4.37) which

exactly match the kinematic identities listed in (I.5.42) (cf. section 10 of [23]),

km4 Em
1|23,4,5,6

∼= −s24E1|324,5,6 + s34E1|234,5,6 − s45E1|23,45,6 − s46E1|23,46,5 ,

km23E
m
1|23,4,5,6

∼=
[
s24E1|324,5,6 − s34E1|234,5,6 + (4↔ 5, 6)

]
+E1|2|3,4,5,6 −E1|3|2,4,5,6 ,

km1 Em
1|23,4,5,6

∼= E1|3|2,4,5,6 − E1|2|3,4,5,6 , (5.2)

km2 Emn
1|2,3,4,5,6

∼= kn2E1|2|3,4,5,6 −
[
s23E

n
1|23,4,5,6 + (3↔ 4, 5, 6)

]
,

km1 Emn
1|2,3,4,5,6

∼= −
[
kn2E1|2|3,4,5,6 + (2↔ 3, 4, 5, 6)

]
.

As in (2.22), the ∼= notation is a reminder that zj-derivatives have been discarded in

passing to the right-hand side. Note that momentum conservation reduces the identities

for contraction with k1 to combinations of the remaining ones involving kmAEm...
1|A,....

5.1.3. Higher multiplicity

More generally, the elliptic identities that are dual to the BRST-cohomology identities in

section 9 of [23] can be written as

kpA1
Ep

1|A1,...,A4
= −

[
E1|S[A1,A2],A3,...,A4

+ (A2 ↔ A3, . . . , A4)
]

(5.3)

+
∑

XY =A1

[
E1|X|Y,A2,...,A4

− (X ↔ Y )
]
,

kpA1
Epm

1|A1,...,A5
= kmA1

E1|A1|A2,...,A5
−
[
Em

1|S[A1,A2],A3,...,A5
+ (A2 ↔ A3, . . . , A5)

]

+
∑

XY =A1

[
Em

1|X|Y,A2,...,A5
− (X ↔ Y )

]
,
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where the S[A,B] map is defined in section I.5.1.1 and yields E1|S[2,3],4,5 = s23E1|23,4,5

as well as E1|S[23,4],5,6 = s34E1|234,5,6 − s24E1|324,5,6 in the simplest cases. Given a word

A = a1a2 . . . a|A|, the sum over deconcatenations XY = A is understood to comprise

all non-empty X = a1a2 . . . aj and Y = aj+1 . . . a|A| with j = 1, 2, . . . , |A|−1. We have

verified all of (5.3) up to and including eight points, and their higher-point generalizations

are plausible by the dual kinematic identities given in (I.5.43) and [23]. Note the absence

of elliptic-function duals to the BRST-exact anomaly terms ∆m1...
1|A1,...

without refined slots.

Following the worldsheet duals of the higher-rank identities in section 9 of [23], one

arrives at

kpA1
Epmn

1|A1,...,A6
= k

(m
A1

E
n)
1|A1|A2,...,A6

−
[
Emn

1|S[A1,A2],A3,...,A6
+ (A2 ↔ A3, . . . , A6)

]

+
∑

XY =A1

[
Emn

1|X|Y,A2,...,A6
− (X ↔ Y )

]
+ δmnG1|A1|A2,...,A6

(5.4)

kpA1
Epm1...mr

1|A1,...,Ar+4
= k

(m1

A1
E

m2...mr)
1|A1|A2,...,Ar+4

−
[
Em1...mr

1|S[A1,A2],A3,...,Ar+4
+ (A2 ↔ A3, . . . , Ar+4)

]

+
∑

XY =A1

[
Em1...mr

1|X|Y,A2,...,Ar+4
− (X ↔ Y )

]
+ δ(m1m2G

m3...mr)
1|A1|A2,...,Ar+4

,

for some a priori undetermined GEIs G1|... in the trace component. The latter can be

thought of as a tentative GEI dual of the refined anomaly superfields ∆m1...
1|A1,...,Ad|B,... that

are no longer BRST-exact if d ≥ 1, see section I.5.3. The representations of GEIs up to

and including eight points given in this work yield Gm1...
1|A1|A2,...

= 0, e.g. the seven-point

GEIs in (A.31) to (A.34) can be checked to obey

kp2E
mnp
1|2,3,...,7 = k

(m
2 E

n)
1|2|3,...,7 −

[
s23E

mn
1|23,4,...,7 + (3↔ 4, . . . , 7)

]
(5.5)

which amounts to G1|2|3,4,5,6,7 = 0 in (5.4). Still, it is worthwhile to keep in mind that

non-zero choices of Gm1...
1|A1|A2,...

are still compatible with the duality between kinematics

and worldsheet functions.

Finally, the above identities generalize straightforwardly to slot-extensions of GEIs

such as E1|A,B,C → E1|A,B,C,D and its generalizations in the DZ-variations, namely

kpA1
Epm1...mr

1|A1,...,Ar+5
= k

(m1

A1
E

m2...mr)
1|A1|A2,...,Ar+5

−
[
Em1...mr

1|S[A1,A2],A3,...,Ar+5
+ (A2 ↔ A3, . . . , Ar+5)

]

+
∑

XY =A1

[
Em1...mr

1|X|Y,A2,...,Ar+5
− (X ↔ Y )

]
+ δ(m1m2G

m3...mr)
1|A1|A2,...,Ar+5

. (5.6)
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At higher degree of refinement, appropriate choices of GEIs should obey the dual of the

most general Jacobi identity (I.5.45) on the kinematic side

0 =
[
Gm1...mr

1|A2,...,Ad|A1,B1,...,Br+d+2
+ (A1 ↔ A2, . . . , Ad)

]
+ δ(m1m2G

m3...mr)
1|A1,...,Ad|B1,...,Br+d+2

+
[
kpA1

Epm1...mr

1|A2,...,Ad|A1,B1,...,Br+d+2
+ (A1 ↔ A2, . . . , Ad)

]
− k

(m1

A1A2...Ad
E

m2...mr)
1|A1,...,Ad|B1,...,Br+d+2

+
([

Em1...mr

1|A2,...,Ad|S[A1,B1],B2,...,Br+d+2
+ (B1 ↔ B2, . . . , Br+d+2)

]
(5.7)

−
∑

XY =A1

(Em1...mr

1|X,A2,...,Ad|Y,B1,...,Br+d+2
−Em1...mr

1|Y,A2,...,Ad|X,B1,...,Br+d+2
) + (A1 ↔ A2, . . . , Ad)

)
,

that are checked up to and including eight points. These proposals will serve as a key input

for the all-multiplicity construction of GEIs from generating series. Note that the first term

Gm1...mr

1|A2,...,Ad|A1,B1,...,Br+d+2
does not have any refined slots at d = 1 and should vanish by

the duality with the BRST-exact unrefined anomaly superfields. In fact, we even observe

stronger identities among seven- and eight-point GEIs such as

0 ∼= km3 Em
1|2|3,4,5,6,7 − s23E1|23|4,5,6,7 +

[
s34E1|2|34,5,6,7 + (4↔ 5, 6, 7)

]
(5.8)

with a single momentum contraction, which implies (5.7) upon symmetrization in 2 ↔ 3.

The kinematic dual of (5.8) involving km3 Pm
1|2|3,4,5,6,7+∆1|3|2,4,5,6,7 can be found in (I.5.44).

As detailed in section III.4.4.4, identities like (5.8) that involve just a single momentum

contraction kpA1
Epm1...

1|A2,...,Ad|A1,B1,...
play a key role for the path towards local and BRST-

invariant n-point correlators in future work.

5.2. The GEI dual to BRST change-of-basis identities

In section 11 of [23] several identities among (pseudo-)invariants were derived using BRST-

cohomology manipulations that implement a change of basis11. The simplest examples are

C3|12,4,5 = C1|23,4,5 +Q(. . .) , (5.9)

C2|1,34,5 = C1|2,34,5 + C1|23,4,5 − C1|24,3,5 +Q(. . .) ,

Cm
2|1,3,4,5 = Cm

1|2,3,4,5 +
[
km3 C1|23,4,5 + (3↔ 4, 5)

]
+Q(. . .) ,

P2|1|3,4,5,6 = P1|2|3,4,5,6 + Y12,3,4,5,6 +Q(. . .) ,

where the right-hand side is written in terms of the canonical basis of C1|A,B,C and

P1|A|B,C,D,E with leg 1 in the first position of the subscript. The BRST-exact terms in

the ellipses are spelled out in [23]. Naturally, these identities have an elliptic dual under

C → E as well as its “refined” version12 P → E.

11 They were referred to as “BRST-canonicalization” identities in [23].
12 The pseudo-invariant Pi|A|B,... should really be denoted Ci|A|B,..., as it would unify this and

countless other formulas.
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5.2.1. Five points

It is straightforward to show that the five-point GEIs in (6.16) obey change-of-basis iden-

tities dual to (5.9),

E3|12,4,5 = E1|23,4,5 , (5.10)

E2|1,34,5 = E1|2,34,5 +E1|23,4,5 −E1|24,3,5 ,

Em
2|1,3,4,5 = Em

1|2,3,4,5 +
[
km3 E1|23,4,5 + (3↔ 4, 5)

]
.

As detailed in appendix A, similar change-of-basis identities involving GEIs play a major

role in the solution of the monodromy-variation equations. On the right-hand sides of the

monodromy variations DZ in section 4.2, however, the GEIs are “extended” to have one

additional word. While the scalar identities in (5.10) hold in identical form for E1|23,4,5,6 =

E1|23,4,5, the vector identity is extended by an obvious extra permutation involving leg 6,

i.e. Em
2|1,3,4,5,6 = Em

1|2,3,4,5,6 +
[
km3 E1|23,4,5,6 + (3↔ 4, 5, 6)

]
.

5.2.2. Six points

Change-of-basis identities among six-point GEIs take the identical form as compared to

the relations among (pseudo-)invariants in section 11 and appendix F of [23],

E2|134,5,6 = E1|342,5,6 (5.11)

E2|13,45,6 = E1|32,45,6 + E1|324,5,6 −E1|325,4,6

E2|1,345,6 = E1|2,345,6 + E1|234,5,6 +E1|254,3,6 + E1|325,4,6 + E1|23,45,6 + E1|25,43,6

E2|1,34,56 = E1|2,34,56 + E1|23,56,4 −E1|24,56,3 + E1|25,34,6 − E1|26,34,5

− E1|325,6,4 +E1|326,5,4 + E1|425,6,3 − E1|426,5,3

Em
2|13,4,5,6 = Em

1|32,4,5,6 +
[
km4 E1|324,5,6 + (4↔ 5, 6)

]

Em
2|1,34,5,6 = Em

1|2,34,5,6 + Em
1|23,4,5,6 − Em

1|24,3,5,6 + km4 E1|234,5,6 − km3 E1|243,5,6

+
[
km5 (E1|25,34,6 −E1|325,4,6 + E1|425,3,6) + (5↔ 6)

]
.

Similar to the translation of BRST variations to DZ-variations in the previous section,

the Y-superfield in the pseudo-invariant identity of (5.9) has no GEI analogue,

E2|1|3,4,5,6 = E1|2|3,4,5,6 (5.12)

E2|3|1,4,5,6 = E1|3|2,4,5,6 + km3 Em
1|23,4,5,6 +

[
s34E1|234,5,6 + (4↔ 5, 6)

]

Emn
2|1,3,4,5,6 = Emn

1|2,3,4,5,6 +
[
k
(m
3 E

n)
1|23,4,5,6 + (3↔ 4, 5, 6)

]

−
[
k
(m
3 k

n)
4 E1|324,5,6 + (3, 4|3, 4, 5, 6)

]
.
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More general cases such as expanding E2|13,45,67,89 in terms of E1|... have no matching

analogous identities in terms of C1|A,B,C , so the required change-of-basis identities are not

readily available from [23]. These identities can, however, be generated using the general

algorithm described in the appendix I.A.3.

5.3. The worldsheet analogue of kinematic trace relations

We have seen in section I.4.4.4 that the kinematic building blocks satisfy certain identities

that relate traces of tensorial building blocks at refinement d to sums of building blocks13

of refinement d+1. For instance, (I.4.47) at the level of Berends–Giele currents reads [23]
1

2
δnpJ

npm1...mr

A1,...,Ad|B1,...,Bd+r+5
= Jm1...mr

A1,...,Ad,B1|B2,...,Bd+r+5
+ (B1↔B2, . . . , Bd+r+5) , (5.13)

and it is natural to ask what is the corresponding statement in terms of worldsheet func-

tions. Given that this identity relates BRST-covariant Berends–Giele superfields rather

than (pseudo-)invariants, their worldsheet analogues should concern the Z-functions sub-

ject to non-vanishing D-variations. Note that the worldsheet functions depend on one

additional word when compared to their kinematic counterpart (ZA,B,C,D ↔ MA,B,C),

therefore their trace relations will also have one extra permutation.

5.3.1. Six points

At six points one can show from the explicit solutions (4.35) for the Z-functions that the

following trace relation is satisfied up to a total derivative (2.23) in τ :
1

2
δmnZ

mn
1,2,3,4,5,6

∼= Z1|2,3,4,5,6 + (1↔ 2, 3, 4, 5, 6) . (5.14)

In order so see this, we note that the functions Z1|2,3,4,5,6 on the right-hand side vanish

(see (4.35) and appendix A.1), and the trace of the tensor in (4.35) yields the τ -derivative

(2.21) of the Koba–Nielsen factor,

1

2
δmnZ

mn
1,2,3,4,5,6 =

1

2
ℓ2 +

[
s12g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]
= 2πi

∂

∂τ
log I6(ℓ) . (5.15)

5.3.2. Seven points

Similarly, the solutions of the seven-point monodromy variations in section 4.4.4 satisfy
1

2
Zmpp

1,2,3,4,5,6,7 −
[
Zm

2|1,3,4,5,6,7 + (2↔ 3, . . . , 7)
]
∼= Zm

1|2,3,4,5,6,7 , (5.16)

1

2
Zpp

12,3,4,5,6,7 −
[
Z3|12,4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
∼= Z12|3,4,5,6,7 ,

in accordance with the expectation from the analogy with kinematic building blocks (5.13).

Note that τ -derivatives acting on both the Koba–Nielsen factor and ℓm or g
(1)
12 have been

discarded in (5.16), using the mixed heat equation (2.9) for the latter.

13 Note that the building blocks with d = 0 are denoted by M rather than J .
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5.3.3. Eight points

From the discussion in section 4.2.4 we know that the solutions of the eight-point mon-

odromy variations are slightly ambiguous due to the Eisenstein series G4. This freedom can

be exploited to yield two sets of solutions differing by terms proportional to G4, depending

on whether they satisfy the trace relations or not. On the one hand, the naive solutions to

the monodromy equations in the appendix A.3 fail to satisfy all but one of the dual trace

relations,

1

2
Zpp

12,34,5,...,8 −
[
Z12|34,5,...,8 + (12↔ 34, 5, . . . , 8)

]
∼= −R12,34,5,6,7,8 , (5.17)

1

2
Zpp

123,4,5,6,7,8 −
[
Z123|4,5,6,...,8 + (123↔ 4, . . . , 8)

]
∼= −R123,4,5,6,7,8 ,

1

2
Zmpp

12,3,4,5,6,7,8 −
[
Zm

12|3,4,5,6,...,8 + (12↔ 3, . . . , 8)
]
∼= −Rm

12,3,4,5,6,7,8 ,

1

2
Zmnpp

1,2,3,4,5,6,7,8−
[
Zmn

1|2,4,5,6,7,8 + (1↔ 2, 3, . . . , 8)
]
∼= −Rmn

1,2,3,4,5,6,7,8 ,

1

2
Zpp

1|2,3,4,5,6,7,8 −
[
Z1,2|3,4,5,6,7,8 + (2↔ 3, . . . , 8)

]
∼= 0 ,

where

R12,34,5,6,7,8 = 3G4

(
s13 − s14 − s23 + s24

)
, (5.18)

R123,4,5,6,7,8 = 3G4

(
s12 − 2s13 + s23

)
,

Rm
12,3,4,5,6,7,8 = 3G4

(
s12(k

m
2 − km1 ) +

[
km3 (s13 − s23) + (3↔ 4, 5, 6, 7, 8)

])
,

Rmn
1,2,3,4,5,6,7,8 = 3G4k

(m
1 k

n)
2 s12 + (1, 2|1, 2, . . . , 8) .

But note that these failed trace relations are a peculiarity of certain eight-point Z-functions

that will be used in the eight-point correlator in section III.3.5. Since these functions will be

multiplying local kinematic building blocks, one may exploit the kinematic trace relations

reviewed in section I.4.4.4 to add deformations

Ẑ ≡ Z + δZ , (5.19)

while keeping the overall eight-point correlator unchanged. Starting from the naive solu-

tions Z of the monodromy variations in the appendix A.3, the deformed functions Ẑ in

(5.19) can be made to satisfy all trace relations by adding14

δZmn
12,34,5,6,7,8 = −δ

mnR12,34,5,6,7,8 , δZmn
123,4,5,6,7,8 = −δ

mnR123,4,5,6,7,8 ,

δZmnp
12,3,4,5,6,7,8 = −δ

(mnR
p)
12,3,4,5,6,7,8 , (5.20)

δZmnpq
1,2,3,4,5,6,7,8 = −δ

(mnR
pq)
1,2,3,4,5,6,7,8 +

1

4
δ(mnδpq)Raa

1,2,3,4,5,6,7,8 ,

14 Beware of the definition (I.2.3), in particular, δ(mnδpq) = δmnδpq + δmpδnq + δmqδpn.
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in the unrefined cases, while the deformations of the refined functions read,

δZ123|4,5,6,7,8 = −R123,4,5,6,7,8 ,

δZm
1|23,4,5,6,7,8 = −R

m
23,1,4,5,6,7,8 ,

δZm
12|3,4,5,6,7,8 = −R

m
12,3,4,5,6,7,8 ,

δZmn
1|2,3,4,5,6,7,8 = −R

mn
1,2,3,4,5,6,7,8−

1

4
δmnRaa

1,2,3,4,5,6,7,8 .

δZ1|23,45,6,7,8 = −R23,45,1,6,7,8 ,

δZ1|234,5,6,7,8 = −R234,1,5,6,7,8 ,

δZ12|34,5,6,7,8 = −R12,34,5,6,7,8 ,

(5.21)

In addition, in order to preserve the last trace relation of (5.17), we have

δZ1,2|3,4,5,6,7,8 = −
1

4
Raa

1,2,3,4,5,6,7,8 , (5.22)

where the shorthands R proportional to G4 were defined in (5.18). Once we present the

eight-point correlator in section III.3.5, it will be straightforward to verify that the above

deformations (5.19) keep it invariant.

5.4. The worldsheet analogue of kinematic anomaly invariants

The vanishing of the six-point function Z1|2,3,4,5,6 can be understood as a correspondence

between refined worldsheet functions at multiplicity n and unrefined Y superfields at multi-

plicity n−1. More precisely, the BRST-exact linear combinations ∆1|... of unrefined anom-

aly superfields [23] reviewed in section I.5.3 are observed to match the vanishing of the

corresponding linear combinations of refined worldsheet functions under the map

Ym...
1A,B1,...

↔ Zm...
1A|B1,...

. (5.23)

In the following we will use the notation Z∆
1|A,B,C,D,E to denote the worldsheet counter-

part of ∆1|A,B,C,D,E that follows the same combinatorics (with obvious generalizations to

tensors and refined cases). We will see that the six- and seven-point Z∆ vanish up to total

derivatives (confirming the suggested duality) whereas subtle contributions ∼ G4 may arise

at eight points.

5.4.1. Six points

At six points, the vanishing of the components 〈∆1|2,3,4,5〉 = 〈Y1,2,3,4,5〉 suggests that its

worldsheet analogue under the map (5.23) also vanishes. Indeed, as anticipated in (4.35)

and detailed in appendix A.1,

Z∆
1|2,3,4,5,6 ≡ Z1|2,3,4,5,6

∼= 0 . (5.24)
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5.4.2. Seven points

The natural next step is to check whether the seven-point refined functions following from

the combinatorics of the six-point BRST-exact superfields [23],

∆1|23,4,5,6 = Y1,23,4,5,6 + Y12,3,4,5,6 −Y13,2,4,5,6 , (5.25)

∆m
1|2,3,4,5,6 = Y

m
1,2,3,4,5,6 +

[
km2 Y12,3,4,5,6 + (2↔ 3, . . . , 6)

]
,

also vanish. This is indeed the case, as the solutions (4.42) for the refined Z-functions

imply the vanishing of

Z∆
1|23,4,5,6,7 ≡ Z1|23,4,5,6,7 +Z12|3,4,5,6,7 −Z13|2,4,5,6,7

∼= 0 , (5.26)

Z∆,m
1|2,3,4,5,6,7 ≡ Z

m
1|2,3,4,5,6,7 +

[
km2 Z12|3,4,5,6,7 + (2↔ 3, 4, . . . , 7)

]
∼= 0 .

Therefore, the pattern established in the six-point vanishing of Z1|2,3,4,5,6 in (5.24) extends

to seven points; worldsheet functions that correspond to BRST-exact superfields ∆1|...

vanish up to total derivatives.

5.4.3. Eight points

However, at eight points something peculiar happens. From the superfield expansions of

the BRST-exact anomaly building blocks, the map (5.23) leads to

Z∆
1|234,5,6,7,8 = Z1|234,5,6,7,8 + Z12|34,5,6,7,8 + Z123|4,5,6,7,8 − Z124|3,5,6,7,8

− Z14|23,5,6,7,8 − Z142|3,5,6,7,8 + Z143|2,5,6,7,8 , (5.27)

Z∆
1|23,45,6,7,8 = Z1|23,45,6,7,8 + Z12|45,3,6,7,8 − Z13|45,2,6,7,8 + Z14|23,5,6,7,8 − Z15|23,4,6,7,8

− Z412|3,5,6,7,8 + Z314|2,5,6,7,8 + Z215|3,4,6,7,8 − Z315|2,4,6,7,8 ,

Z∆,m
1|23,4,5,6,7,8 = Z

m
1|23,4,...,8 +Z

m
12|3,...,8 − Z

m
13|2,4,...,8 + km3 Z123|4,5,6,7,8 − km2 Z132|4,5,6,7,8

+
[
km4 Z14|23,5,6,7,8 − km4 Z214|3,5,6,7,8 + km4 Z314|2,5,6,7,8 + (4↔ 5, 6, 7, 8)

]
,

Z∆,mn
1|2,3,4,5,6,7,8 = Z

mn
1|2,3,4,5,6,7,8 +

[
km2 Z

n
12|3,4,5,6,7,8 + kn2Z

m
12|3,4,5,6,7,8 + (2↔ 3, . . . , 8)

]

−
[
(km2 kn3 + kn2 k

m
3 )Z213|4,5,6,7,8 + (2, 3|2, . . . , 8)

]
.

In addition, the worldsheet analogue of the non-BRST-exact building block ∆1|2|3,4,5,6,7 in

(I.5.35) gives rise to

Z∆
1|2|3,...,8 = Z1,2|3,...,8 + km2 Z

m
12|3,...,8 +

[
s23Z123|4,...,8 + (3↔ 4, 5, . . . , 8)

]
. (5.28)
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Given that the monodromy variations used to obtain the eight-point functions Z cannot

detect explicit appearances of the modular form G4, we have two possible scenarios:

i) use Z-functions without G4 corrections that do not satisfy the trace relations;

ii) use Ẑ-functions in (5.19) with G4 corrections that satisfy the trace relations.

It turns out that the functions from option i) lead to vanishing Z∆, including (5.28):

Z∆
1|234,5,6,7,8

∼= 0 ,

Z∆
1|23,45,6,7,8

∼= 0 ,

Z∆m
1|23,4,5,6,7,8

∼= 0 ,

Z∆mn
1|2,3,4,5,6,7,8

∼= 0 .

Z∆
1|2|3,...,8

∼= 0 ,
(5.29)

The trace-satisfying functions Ẑ from option ii), however, lead to non-vanishing analogues

Ẑ∆ that are defined by replying Z → Ẑ in (5.27) and (5.28),

Ẑ∆
1|234,5,6,7,8 = 3G4

(
2s13 − s12 − s14 + 2s24 − s23 − s34

)
, (5.30)

Ẑ∆
1|23,45,6,7,8 = 3G4

(
s25 + s34 − s24 − s35

)
,

Ẑ∆,m
1|23,4,5,6,7,8 = 3G4

[
s23k

m
2 − s12(2k

m
2 + km3 )−

[
km4 s24 + (4↔ 5, 6, 7, 8)

]
− (2↔ 3)

]
,

Ẑ∆,mn
1|2,3,4,5,6,7,8 = 3G4s23

(
k
(m
2 k

n)
2 + k

(m
3 k

n)
3 − k

(m
2 k

n)
3 +

1

2
δmn(s12 + s13 − s23)

)
+ (2, 3|2, . . . , 8) ,

Ẑ∆
1|2|3,4,5,6,7,8 = 3G4

(
3s23s24 + s13s14 − s34(s23 + s24 +

1

2
s34 +

1

2
s12)

)
+ (3, 4|3, . . . , 8) .

As will become clear in the discussion of the eight-point correlator in section III.3.5, the

subtleties associated to the presence or absence of G4 terms are responsible for the diffi-

culties in obtaining a BRST-closed eight-point correlator.

5.5. The GEI dual to trace relations

Also the trace relations among pseudo-invariants such as 1
2δmnC

mn
1|2,3,4,5,6 = P1|2|3,...,6

+(2↔ 3, 4, 5, 6) and its generalizations in (I.5.29) have an echo at the level of GEIs.

5.5.1. Six points

At six points, the GEIs (4.36) and (4.37) are related by

1

2
δmnE

mn
1|2,3,4,5,6 =

1

2
ℓ2 +

[
s12g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]
+

[
E1|2|3,4,5,6 + (2↔ 3, 4, 5, 6)

]

=
[
E1|2|3,4,5,6 + (2↔ 3, 4, 5, 6)

]
+ 2πi

∂

∂τ
log I6(ℓ) , (5.31)

where we have used (2.21) to identify 1
2
ℓ2 +

∑
i<j sijg

(2)
ij as a τ -derivative of the Koba–

Nielsen factor. Note that this trace relation has a Z-function counterpart given in (5.15).
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5.5.2. Seven points

Similarly, we have checked that the seven-point tensor traces of GEIs obey relations anal-

ogous to the dual (pseudo-)invariants,

1

2
δmnE

mn
1|23,4,5,6,7

∼= E1|23|4,5,6,7 +
[
E1|4|23,5,6,7 + (4↔ 5, 6, 7)

]

1

2
δnpE

mnp
1|2,3,4,5,6,7

∼=
[
Em

1|2|3,4,5,6,7 + (2↔ 3, . . . , 7)
]
. (5.32)

Similar to the Z-function counterparts (5.16), the equivalence ∼= refers to τ -derivatives

that have been discarded.

5.5.3. Eight points

At eight points, however, the GEI-duals of the kinematic trace relations (I.5.29) exhibit

deviations proportional to G4. After expanding the GEIs in terms of Ẑ-functions (obtained

from the Berends–Giele expansion of their corresponding pseudo BRST invariants, see

appendix A) one can show that

1

2
δmnE

mn
1|234,5,6,7,8 −

[
E1|234|5,6,7,8 + (234↔ 5, 6, 7, 8)

]
∼= Ẑ∆

1|234,5,6,7,8 (5.33)

1

2
δmnE

mn
1|23,45,6,7,8 −

[
E1|23|45,6,7,8 + (23↔ 45, 6, 7, 8)

]
∼= Ẑ∆

1|23,45,6,7,8

1

2
δnpE

mnp
1|23,4,5,6,7,8 −

[
Em

1|23|4,5,6,7,8 + (23↔ 4, 5, 6, 7, 8)
]
∼= Ẑ

∆,m
1|23,4,5,6,7,8

1

2
δpqE

mnpq
1|2,3,...,8 −

[
Emn

1|2|3,4,...,8 + (2↔ 3, . . . , 8)
]
∼= Ẑ

∆,mn
1|2,3,4,5,6,7,8

1

2
δmnE

mn
1|2|3,...,8 −

[
E1|2,3|4,...,8 + (3↔ 4, . . . , 8)

]
∼= Ẑ∆

1|2|3,4,5,6,7,8 ,

where the various functions Ẑ∆ are described in section 5.4.3 and defined in (5.30). The

above results were obtained using the trace-satisfying representation Ẑ in the expansions

of the GEIs. We know from (5.29) that all Z∆-functions vanish if we use the representation

of shuffle-symmetric functions that do not satisfy the trace relations, so one could wonder

if the above elliptic traces would vanish in that case. Unfortunately, this does not happen.

In fact, the first three relations of (5.33) are independent on the choice of Z or Ẑ, while

the other two change (but do not vanish in either case).
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5.5.4. Higher multiplicities

At higher multiplicity, suitable choices of the GEIs are expected to admit the dual of the

kinematic relation (I.5.29),

δnpÊ
npm1...mr

1|B1,...,Br+5
= 2Êm1...mr

1|B1|B2,...,Br+5
+ (B1 ↔ B2, . . . , Br+5) , (5.34)

or more generally, the dual of the higher-refinement relation (I.5.30),

δnpÊ
npm1...mr

1|A1,...,Ad|B1,...,Bd+r+5
= 2Êm1...mr

1|A1,...,Ad,B1|B2,...,Bd+r+5
+(B1 ↔ B2, . . . , Bd+r+5) . (5.35)

The hat notation in (5.34) and (5.35) is used to indicate that, beyond seven points, the

expressions for E presented in this work do not necessarily match the trace-satisfying GEIs

Ê. We leave it to the future to identify the missing redefinitions by Gk≥4 relating the GEIs

E of this work to the trace-satisfying GEIs Ê in (5.34) and (5.35).

6. Simplified representations of GEIs

In this section, we review and extend the construction of elliptic functions from the

Kronecker–Eisenstein series [27,28] and identify ubiquitous building blocks for GEIs. These

building blocks turn out to yield compact expressions for the GEIs in section 4.4 and will

be used to present explicit all-multiplicity formulae for unrefined GEI of tensor rank r ≤ 2.

6.1. Elliptic functions and their extensions

One can show via (2.11) that the cyclic product F (z12, α)F (z23, α) . . . F (zn−1,n, α)F (zn,1, α)

of Kronecker–Eisenstein series (2.5) is an elliptic function of the punctures z1, z2, . . . , zn [27],

F (z12, α)F (z23, α) . . .F (zn−1,n, α)F (zn,1, α) =
∞∑

w=0

α−n+wVw(1, 2, . . . , n) , (6.1)

where the dependence on τ is kept implicit for ease of notation. Since this property is

independent on α, each term on the right-hand side of (6.1) is an elliptic function Vw in

n punctures z1, z2, . . . , zn by itself. At the level of linearized monodromies (3.8), we have

DF (zij , α) = αΩijF (zij , α) and therefore

DVw(1, 2, . . . , n) = 0 . (6.2)
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The simplest examples of the elliptic functions Vw in (6.1) are V0(1, 2, . . . , n) = 1 and

V1(1, 2, . . . , n) =

n∑

j=1

g
(1)
j,j+1 , V2(1, 2, . . . , n) =

n∑

j=1

g
(2)
j,j+1 +

n∑

1≤i<j

g
(1)
i,i+1g

(1)
j,j+1 , (6.3)

subject to cyclic identification zn+1 ≡ z1. Their generating series in (6.1) and the reflection

properties

F (−z,−α, τ) = −F (z, α, τ) , g(n)(−z, τ) = (−1)ng(n)(z, τ) (6.4)

imply cyclicity and reflection (anti-)symmetry for the functions Vw,

Vw(1, 2, 3, . . . , n) = Vw(2, 3, . . . , n, 1) = (−1)wVw(1, n, . . . , 3, 2) . (6.5)

Moreover, one can show via Fay relations (2.15) or (2.16) that the functions Vw(1, 2, . . . , n)

with w = n−2 obey the shuffle symmetry

Vn−2(1, (2, 3, . . . , j)�(j+1, . . . , n)) = 0 , j = 2, 3, . . . , n−1 . (6.6)

Given that shuffle symmetry is shared by Berends–Giele currents and (pseudo-)invariant

kinematic factors, the Vw(1, 2, . . . , n) with w = n−2 will play a key role for the duality

between worldsheet functions and kinematics.

6.1.1. Derivative extension of elliptic functions

Compact representations of vectorial and tensorial GEIs will require extensions of the set of

Vw-functions (6.1) that are covariant rather than invariant under linearized monodromies.

Functions with these properties can be constructed by inserting a derivative with respect

to the bookkeeping variable α into their generating series:

F (z12, α)F (z23, α) . . . F (zn−1,n, α)∂αF (zn,1, α) ≡
∞∑

w=−1

α−n+w∂Vw(1, 2, . . . , n) . (6.7)

The notation ∂Vw for the functions on the right-hand side reminds of the α-derivative

on the left-hand side and should not be confused with ∂
∂zj

. Based on D∂αF (zij , α) =

Ωij

[
α∂αF (zij , α)+F (zij, α)

]
, the monodromy variations of the ∂Vw-functions in (6.7) can

be written as

D∂Vw(1, 2, . . . , n) = Ωn1Vw(1, 2, . . . , n) . (6.8)
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Given that their D-variation is expressible in terms of the elliptic Vw-functions of (6.1),

the ∂Vw-functions are said to be monodromy-covariant.

The desired expressions for the Z-functions and GEIs turn out to only involve

∂Vw(1, 2, . . . , n) with w = n−2. The simplest examples admit the following expansions

∂V0(1, 2) = g
(1)
21 (6.9)

∂V1(1, 2, 3) = g
(2)
31 − g

(1)
12 g

(1)
23 − g

(2)
12 − g

(2)
23 = g

(1)
31

(
g
(1)
12 + g

(1)
23

)
+ 2g

(2)
31

∂V2(1, 2, 3, 4) = g
(1)
41

(
g
(1)
12 g

(1)
23 + g

(1)
12 g

(1)
34 + g

(1)
23 g

(1)
34 + g

(2)
12 + g

(2)
23 + g

(2)
34

)

+ 2g
(2)
41

(
g
(1)
12 + g

(1)
23 + g

(1)
34

)
+ 3g

(3)
41 ,

∂V3(1, 2, 3, 4, 5) = g
(1)
51

(
g
(1)
12 g

(1)
23 g

(1)
34 + g

(1)
12 g

(1)
23 g

(1)
45 + g

(1)
12 g

(1)
34 g

(1)
45 + g

(1)
23 g

(1)
34 g

(1)
45 + g

(1)
12 g

(2)
23

+ g
(1)
12 g

(2)
34 + g

(1)
12 g

(2)
45 + g

(1)
23 g

(2)
12 + g

(1)
23 g

(2)
34 + g

(1)
23 g

(2)
45 + g

(1)
34 g

(2)
12 + g

(1)
34 g

(2)
23

+ g
(1)
34 g

(2)
45 + g

(1)
45 g

(2)
12 + g

(1)
45 g

(2)
23 + g

(1)
45 g

(2)
34 + g

(3)
12 + g

(3)
23 + g

(3)
34 + g

(3)
45

)

+ 2g
(2)
51

(
g
(1)
12 g

(1)
23 + g

(1)
12 g

(1)
34 + g

(1)
12 g

(1)
45 + g

(1)
23 g

(1)
34 + g

(1)
23 g

(1)
45 + g

(1)
34 g

(1)
45

+ g
(2)
12 + g

(2)
23 + g

(2)
34 + g

(2)
45

)

+ 3g
(3)
51

(
g
(1)
12 + g

(1)
23 + g

(1)
34 + g

(1)
45

)
+ 4g

(4)
51 ,

as one can check via ∂αF (z, α) = − 1
α2 +

∑∞
n=1 nα

n−1g(n+1)(z). Alternatively, the expan-

sions (6.9) can be written using the definition Vp(/1, 2, 3, . . . , /q) ≡ Vp(1, 2, 3, . . . , q)
∣∣
g
(k)
1q →0

as

∂Vw(1, . . . , n) =
∑w+1

p=1 pg
(p)
1n Vw+1−p(/1, 2, 3, . . . , /n) when w = n−2.

Note that the cyclicity of Vw does not extend to the ∂Vw, but the shuffle symmetry

(6.6) at w = n−2 reappears in a modified form:

∂Vn−2((1, 2, . . . , j)�(j+1, . . . , n)) = 0 , j = 1, 2, . . . , n−1 . (6.10)

Also, the generating series (6.7) immediately implies the reflection property (valid for

general w and n)

∂Vw(1, 2, . . . , n) = (−1)w+1∂Vw(n, . . . , 2, 1) . (6.11)

6.1.2. Higher-derivative extension of elliptic functions

By extending (6.7) to involve higher derivatives in α, we are led to monodromy covariant

functions ∂MVw in

F (z12, α)F (z23, α) . . .F (zn−1,n, α)∂
M
α F (zn,1, α) ≡

∞∑

w=−M

α−n+w∂MVw(1, 2, . . . , n) ,

(6.12)
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where D∂M
α F (zij , α) = Ωij [α∂

M
α F (zij , α) +M∂M−1

α F (zij , α)] implies that

D∂MVw(1, 2, . . . , n) = MΩn1∂
M−1Vw(1, 2, . . . , n) . (6.13)

The expansion of ∂M
α F (zn,1, α) in terms of g

(n)
ij gives rise to expressions such as

∂MV0(1, 2) = M ! g
(M)
21 (6.14)

∂2V1(1, 2, 3) = 2g
(2)
31

(
g
(1)
12 + g

(1)
23

)
+ 6g

(3)
31

∂2V2(1, 2, 3, 4) = 2g
(2)
41

(
g
(1)
12 g

(1)
23 + g

(1)
12 g

(1)
34 + g

(1)
23 g

(1)
34 + g

(2)
12 + g

(2)
23 + g

(2)
34

)

+ 6g
(3)
41

(
g
(1)
12 + g

(1)
23 + g

(1)
34

)
+ 12g

(4)
41 .

Again, the cyclic symmetry of Vw is lost for ∂MVw with M ≥ 1, and there is no analogue

of the shuffle symmetries (6.6) and (6.10) at M ≥ 2. Still, the reflection property in (6.5)

generalizes to

∂MVw(1, 2, . . . , n) = (−1)w+M∂MVw(n, . . . , 2, 1) . (6.15)

6.2. Explicit examples of GEIs

In this section, we apply the elliptic functions Vw and their derivative-extensions ∂MVw

to cast the GEIs from the bootstrap procedure into compact form. Given the trivial GEI

E1|2,3,4 = 1 at four points, the simplest example of the Vw-functions occurs at five points,

where the GEIs (4.31) and (4.32) can be rewritten as

E1|23,4,... = V1(1, 2, 3) , Em
1|2,3,4,... = ℓm +

∑

j≥2

kmj g
(1)
1j , (6.16)

see (6.3) for V1. Here and in the following, the number of slots (i.e. the upper bound on

the summation range for j ≥ 2) is kept unspecified in order to account for the extensions

as in (4.33).

6.2.1. Six points

At six points, the definitions in (6.3) and (6.9) can be used to condense the scalars and

the vector GEI in (4.36) to

E1|234,5,... = V2(1, 2, 3, 4) , (6.17)

E1|23,45,... = V1(1, 2, 3)V1(1, 4, 5) ,

Em
1|23,4,5,... =

(
ℓm +

∑

j≥4

kmj g
(1)
1j

)
V1(1, 2, 3) + km2 ∂V1(2, 3, 1)− km3 ∂V1(3, 2, 1) ,

Emn
1|2,3,4,5,... = ℓmℓn +

∑

j≥2

ℓ(mk
n)
j g

(1)
1j + 2

∑

j≥2

kmj knj g
(2)
1j +

∑

2≤i<j

k
(m
i k

n)
j g

(1)
1i g

(1)
1j ,
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where the unspecified summation range automatically accounts for the extensions in (4.38).

With the covariant monodromy variation (6.8) of ∂V1 at hand, it is easy to verify that

DEm
1|23,4,5,... = 0. One may identify the above g

(1)
1j and g

(2)
1j as −∂V0(1, j) and

1
2∂

2V0(1, j),

respectively, to arrive at a uniform presentation for the coefficients of kmj .

In view of ∂1g
(1)
12 = V2(1, 2) − G2, the refined GEI (4.37) is also expressible in terms

of elliptic functions

E1|2|3,4,5,... = (1− s12)V2(1, 2)−G2 (6.18)

∼= −2s12g
(2)
12 + g

(1)
12

(
ℓ · k2 +

∑

j≥3

s2jg
(1)
2j

)
,

where the last line again follows from integration by parts.

6.2.2. Seven points

At seven points, the scalar GEIs in (A.31) can be compactly written as

E1|2345,6,7,... = V3(1, 2, 3, 4, 5) , (6.19)

E1|234,56,7,... = V2(1, 2, 3, 4)V1(1, 5, 6) ,

E1|23,45,67,... = V1(1, 2, 3)V1(1, 4, 5)V1(1, 6, 7) ,

and the vectors (A.32) simplify as well when expressed in terms of Vw- and ∂Vw-functions,

Em
1|234,5,6,... =

(
ℓm +

∑

j≥5

g
(1)
1j k

m
j

)
V2(1, 2, 3, 4) + km2 ∂V2(2, 3, 4, 1) (6.20)

+ km4 ∂V2(4, 3, 2, 1)− km3
[
∂V2(3, 2, 4, 1) + ∂V2(3, 4, 2, 1)

]
,

Em
1|23,45,6,... =

(
ℓm +

∑

j≥6

g
(1)
1j k

m
j

)
V1(1, 2, 3)V1(1, 4, 5)

+ V1(1, 4, 5)
[
km2 ∂V1(2, 3, 1)− km3 ∂V1(3, 2, 1)

]

+ V1(1, 2, 3)
[
km4 ∂V1(4, 5, 1)− km5 ∂V1(5, 4, 1)

]
.

Similarly, the ∂2Vw-functions in (6.12) allow for compact representations of the two- and

three-tensors in (A.33)15,

Emn
1|23,4,5,... =

(
ℓmℓn +

∑

j≥4

g
(1)
1j ℓ

(mk
n)
j

)
V1(1, 2, 3) (6.21)

15 Note that our conventions lead to ℓ(mℓnk
p)
j = ℓmℓnkp

j + ℓmℓpkn
j + ℓnℓpkm

j .
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+ ∂V1(2, 3, 1)
(
ℓ(mk

n)
2 +

∑

j≥4

k
(m
2 k

n)
j g

(1)
1j

)
+ ∂2V1(2, 3, 1)k

m
2 kn2

− ∂V1(3, 2, 1)
(
ℓ(mk

n)
3 +

∑

j≥4

k
(m
3 k

n)
j g

(1)
1j

)
− ∂2V1(3, 2, 1)k

m
3 kn3

+ 2V1(1, 2, 3)
∑

j≥4

kmj knj g
(2)
1j + V1(1, 2, 3)

∑

4≤i<j

k
(m
i k

n)
j g

(1)
1i g

(1)
1j

+
1

2
k
(m
2 k

n)
3

[
∂2V1(1, 2, 3)− ∂2V1(1, 3, 2) + ∂2V1(2, 1, 3)

]
,

Emnp
1|2,3,4,5,... = ℓmℓnℓp +

∑

j≥2

ℓ(mℓnk
p)
j g

(1)
1j +

∑

2≤i<j

ℓ(mkni k
p)
j g

(1)
1i g

(1)
1j

+ 2
∑

j≥2

ℓ(mknj k
p)
j g

(2)
1j +

∑

2≤i<j<l

k
(m
i knj k

p)
l g

(1)
1i g

(1)
1j g

(1)
1l

+ 6
∑

j≥2

kmj knj k
p
j g

(3)
1j + 2

∑

2≤i<j

[
k
(m
i kni k

p)
j g

(2)
1i g

(1)
1j + (i↔ j)

]
.

Using the monodromy variation (6.13) of ∂MVw and the shuffle symmetries (6.6) and

(6.10) of Vn−2 and ∂Vn−2, all the above E...
1|... can be verified to be GEIs with pen-and-

paper effort. Similarly, one can show that the refined GEIs (A.34) whose combinatorics

mimic the Berends–Giele expansion of the refined superfields P from [23] can be rewritten

more compactly as

E1|23|4,5,... = −s123V3(1, 2, 3) + (g
(1)
12 + g

(1)
31 )∂g

(1)
23 + ∂g

(2)
23 (6.22)

E1|4|23,5,... =
[
∂g

(1)
14 − s14V2(1, 4)

]
V1(1, 2, 3)− s24V3(1, 2, 4) + s34V3(1, 3, 4)

Em
1|2|3,4,5,... =

[
∂g

(1)
12 − s12V2(1, 2)

](
ℓm +

∑

j≥3

kmj g
(1)
1j

)
+

∑

j≥3

kmj s2jV3(1, 2, j)

+ km2
[
∂g

(2)
12 + s12(g

(1)
12 g

(2)
12 − 3g

(3)
12 )

]
.

Alternatively, using integration-by-parts identities leads to

E1|23|4,5,... =
(
g
(1)
12 g

(1)
23 + 1

2 (g
(2)
12 + g

(2)
23 )

)(
ℓ · k3 +

∑

j≥4

s3jg
(1)
3j

)
(6.23)

−
(
g
(1)
13 g

(1)
32 + 1

2(g
(2)
13 + g

(2)
32 )

)(
ℓ · k2 +

∑

j≥4

s2jg
(1)
2j

)

−
(
s23

[
3g

(3)
23 + 2g

(2)
23 (g

(1)
12 + g

(1)
31 ) +

1
2g

(1)
23 (g

(2)
12 + g

(2)
13 )

]
+ cyc(1, 2, 3)

)
,

E1|4|23,5,... = V1(1, 2, 3)
[
g
(1)
14

(
ℓ · k4 − s24g

(1)
24 − s34g

(1)
34 +

∑

j≥5

s4jg
(1)
4j

)
− 2s14g

(2)
14

]

− s24V3(1, 2, 4) + s34V3(1, 3, 4) ,

40



Em
1|2|3,4,5,... =

(
ℓm +

∑

j≥3

kmj g
(1)
1j

)[
g
(1)
12

(
k2 · ℓ+

∑

l≥3

s2lg
(1)
2l

)
− 2s12g

(2)
12

]

+
∑

j≥3

kmj s2jV3(1, 2, j) + km2

[
g
(2)
12

(
k2 · ℓ+

∑

l≥3

s2lg
(1)
2l

)
− 3s12g

(3)
12

]
.

Instead of (6.22), one can also use ∂1g
(1)
12 = V2(1, 2) − G2 and ∂1g

(2)
12 = 3g

(3)
12 − g

(1)
12 g

(2)
12 −

G2g
(1)
12 to write

E1|23|4,5,... = (1− s123)V3(1, 2, 3)−G2V1(1, 2, 3) , (6.24)

and the analogous identities for zj -derivatives of general g
(n)
ij -functions read16

∂zg
(n)(z, τ) = (n+1)g(n+1)(z, τ)− g(1)(z, τ)g(n)(z, τ)−

n+1∑

k=2

Gk g
(n+1−k)(z, τ) . (6.25)

6.3. Closed all-multiplicity formulae for GEIs

6.3.1. Scalars at all multiplicities

The above examples of scalar GEIs in (6.16), (6.17) and (6.19) line up with

E1|A,B,C = V|A|−1(1, A)V|B|−1(1, B)V|C|−1(1, C) . (6.26)

Given that all the Vw(1, 2, . . . , n)-functions on the right-hand side have w = n−2, the

GEIs in (6.26) exhibit the desired shuffle symmetry in each slot by (6.6). Although only

the functions (6.26) with three multiparticle slots enter open-string amplitudes, the later

discussion will benefit from an extension to unspecified numbers of slots,

E1|A1,A2,... =
∏

j≥1

V|Aj |−1(1, Aj) . (6.27)

6.3.2. Closed formulae for vectors and two-tensors

The above examples of vector and two-tensor GEIs can be lined up with the closed formulae

Em
1|A,B,C,... = ℓmV|A|−1(1, A)V|B|−1(1, B)V|C|−1(1, C) . . .

+
[ |A|∑

j=1

(−1)j−1kmaj
∂V|A|−1(aj, (aj−1 . . . a2a1�aj+1 . . . a|A|), 1)

× V|B|−1(1, B)V|C|−1(1, C) . . .+ (A↔ B,C, . . .)
]

(6.28)

16 This follows from the expansion of (∂z − ∂α)F (z, α, τ) = (g(1)(α, τ)− g(1)(z, τ))F (z, α, τ).
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as well as

Emn
1|A,B,C,... = ℓmℓnV|A|−1(1, A)V|B|−1(1, B)V|C|−1(1, C) . . .

+
[ |A|∑

j=1

(−1)j−1ℓ(mkn)aj
∂V|A|−1(aj , (aj−1 . . . a2a1�aj+1 . . . a|A|), 1)

× V|B|−1(1, B)V|C|−1(1, C) . . .+ (A↔ B,C, . . .)
]

+
[ |A|∑

i=1

|B|∑

j=1

(−1)i+jk(mai
k
n)
bj
∂V|A|−1(ai, (ai−1 . . . a2a1�ai+1 . . . a|A|), 1)

× ∂V|B|−1(bj, (bj−1 . . . b1�bj+1 . . . b|B|), 1)

× V|C|−1(1, C)V|D|−1(1, D) . . .+ (A,B|A,B,C,D . . .)
]

(6.29)

+
1

2

[
k
(m
A

|A|∑

j=1

kn)aj
(−1)j−1∂2V|A|−1(aj, (aj−1 . . . a2a1�aj+1 . . . a|A|), 1)

× V|B|−1(1, B)V|C|−1(1, C) . . .+ (A↔ B,C, . . .)
]

−
1

2

[
V|B|−1(1, B)V|C|−1(1, C) . . .

|A|∑

1=i<j

(−1)i+j+|A|k(mai
kn)aj

× ∂2V|A|−1(ai, (ai−1 . . . a2a11a|A| . . . aj+1�ai+1ai+2 . . . aj−1), aj) + (A↔ B,C, . . .)
]
.

Up to multiplicity seven, the complete set of unrefined GEIs is accessible from the above

closed formulae and (6.21). At higher tensor rank, the system of ∂MVw(1, 2, . . . , n)-

functions in (6.12) is no longer sufficient to represent the coefficients of k
(m
i k

n
j k

p)
l and

higher-rank terms. This shortcoming motivates the development of more powerful tools

for all-multiplicity and all-rank constructions of GEIs, which we leave for a future work.

7. Integrating the loop momentum and modular invariance

The purpose of this section is to set the stage for integrating the one-loop correlators of part

III over the loop momentum. We will see below that loop-integrated GEIs yield manifestly

single-valued worldsheet functions that largely conspire to modular weight (n−4, 0). The

loop integrals of individual GEIs at (n≥6) points also feature terms of different modular

weights that (as will be shown in part III) cancel from the amplitude by kinematic identities

among their coefficients. Such modular anomalies will be illustrated to follow the patterns of

BRST anomalies of pseudo-invariants. Like this, we extend the duality between worldsheet

functions and kinematics to anomalies.
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7.1. The non-holomorphic Kronecker–Eisenstein series

As detailed in section 2.1, the meromorphic constituents g(n)(z, τ) of the chirally-split open-

string correlators Kn(ℓ) descend from the Kronecker–Eisenstein series (2.5). The doubly-

periodic counterparts of g(n)(z, τ) that will result from loop integration can be generated

from the non-holomorphic completion [5],

Ω(z, α, τ) ≡ e2πiα
Im z
Im τ F (z, α, τ) ≡

∞∑

n=0

αn−1f (n)(z, τ) , (7.1)

where the exponential factor is tailored to cancel the B-cycle monodromies (2.11),

f (n)(z, τ) = f (n)(z + 1, τ) = f (n)(z + τ, τ) (7.2)

Ω(z, α, τ) = Ω(z + 1, α, τ) = Ω(z + τ, α, τ) .

The doubly-periodic but non-holomorphic functions f (n) in (7.1) are related to the holo-

morphic g(n) with B-cycle monodromies (2.12) via [14]

f (n)(z, τ) ≡
n∑

k=0

νk

k!
g(n−k)(z, τ) , ν ≡ 2πi

Im z

Im τ
, (7.3)

where the simplest examples are f (0) = 1 and

f (1)(z, τ) = g(1)(z, τ) + ν , f (2)(z, τ) = g(2)(z, τ) + νg(1)(z, τ) +
1

2
ν2 . (7.4)

Apart from double-periodicity, the non-holomorphic Kronecker–Eisenstein series and the

functions f (n) exhibit covariant modular transformations with holomorphic weights (1, 0)

and (n, 0), respectively, [7]

Ω

(
z

cτ + d
,

α

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d) Ω(z, α, τ) , (7.5)

f (n)

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)n f (n)(z, τ) ,

where a, b, c, d form an SL2(Z) matrix. Similarly, each holomorphic derivative in z adds

holomorphic weight (1, 0) to the f (n). However, meromorphicity of the g(n) is replaced by

the condition ( ∂

∂τ
+

Im z

Im τ

∂

∂z

)
f (n)(z, τ) = 0 (7.6)
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following from

∂

∂z
f (n)(z, τ) = −

π

Im τ
f (n−1)(z, τ) ,

∂

∂τ
f (n)(z, τ) =

π Im z

(Im τ)2
f (n−1)(z, τ) . (7.7)

It will be convenient to extend the shorthand notation (2.14) for g
(n)
ij to their doubly-

periodic counterparts,

f
(n)
ij ≡ f (n)(zi − zj , τ) , (7.8)

which we will use from now on. The Fay identity (2.15) of the Kronecker–Eisenstein series is

unchanged when replacing F (. . .)→ Ω(. . .). Accordingly, the relations (2.16) to rearrange

products g
(n)
12 g

(m)
23 also hold when globally trading g

(n)
ij → f

(n)
ij . For instance, the simplest

examples (7.4) of f (n) satisfy the analogue f
(1)
12 f

(1)
23 + f

(2)
12 + cyc(1, 2, 3) = 0 of (2.17).

7.2. Integrating out the loop momentum

In this section, we set the stage for loop integrals over both the Koba–Nielsen factor

∣∣In(ℓ)
∣∣2 = exp

( n∑

i<j

sij

{
log

∣∣θ1(zij , τ)
∣∣2 − iπ

τ−τ

[ n∑

j=1

kj(zj−zj)
]2

+
τ−τ

4πi

[
ℓ+ 2πi

n∑

j=1

kj
zj−zj
τ−τ

]2})
(7.9)

and ℓ-dependent open- and closed-string correlators in the amplitudes (2.1) and (2.2). For

closed-string correlators independent on ℓ, the result of the Gaussian loop integral

În ≡

∫
dDℓ

∣∣In(ℓ)
∣∣2 =

(2πi)D

(2 Im τ)
D
2

exp
( n∑

i<j

sij

[
log

∣∣θ1(zij , τ)
∣∣2 − 2π

Im τ
(Im zij)

2
])

(7.10)

has already been spelled out in (I.2.26). Zero-mode integration at n ≥ 5 points, however,

requires generalizations of (7.10) to additional polynomials p(ℓ) in the loop momentum

besides |In(ℓ)|
2. We will use the square-bracket notation

∫
dDℓ

∣∣In(ℓ)
∣∣2 p(ℓ) = În [[p(ℓ)]] (7.11)

to compactly address the net effect [[p(ℓ)]] of the shifts in the Gaussian integration variable

in (7.9). The right-hand side of (7.11) is normalized to [[1]] = 1, and the loop integrals

over polynomials in ℓ are most conveniently written in terms of the shorthands

νij ≡ 2πi
Im zij
Im τ

, Lm
0 ≡ −

n∑

j=1

kmj νj =

n∑

j=2

kmj ν1j , (7.12)
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where momentum conservation has been used to eliminate km1 = −km2 − · · ·− kmn from the

definition of Lm
0 . As a result of straightforward Gaussian integration, we have (recall the

convention (I.2.3) where all terms generated by (anti)symmetrization of indices have unit

coefficient, e.g., δ(mnkp) ≡ δmnkp + δmpkn + δnpkm)

[[ℓm]] = Lm
0 , (7.13)

[[ℓmℓn]] = Lm
0 Ln

0 −
π

Im τ
δmn ,

[[ℓmℓnℓp]] = Lm
0 Ln

0L
p
0 −

π

Im τ
δ(mnL

p)
0 ,

[[ℓmℓnℓpℓq]] = Lm
0 Ln

0L
p
0L

q
0 −

π

Im τ
δ(mnLp

0L
q)
0 +

( π

Im τ

)2

δm(nδpq) ,

which are sufficient to integrate open-string correlators at n ≤ 8 points and closed-string

correlators at n ≤ 6 points. In general, following standard Gaussian integration rules, one

has to sum over all possibilities to perform pairwise contractions ℓmℓn → − π
Im τ

δmn on a

subset of the loop momenta in the integrand while setting the others to ℓm → Lm
0 .

The open-string analogue of (7.11) reads

∫
dDℓ

∣∣In(ℓ)
∣∣ p(ℓ) = Îopenn [[p(ℓ)]] , (7.14)

where Îopenn is defined in (I.2.27), and one can take advantage of the same expressions (7.13)

for [[p(ℓ)]] that apply to the closed string. The imaginary parts in (7.12) then ensure that

the results (7.13) can be specialized to all the open-string topologies by suitable choices of

the integration domains for zj and τ .

In summary, (7.11) and (7.14) are tailored to express the open- and closed-string

amplitudes (2.1) and (2.2) in the following form

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn Î
open
n [[ 〈Kn(ℓ)〉 ]] , (7.15)

Mn =

∫

F

d2τ d2z2 d
2z3 . . . d2zn În [[ 〈Kn(ℓ)〉 〈K̃n(−ℓ)〉 ]] ,

where all the remnants of the loop momenta in the correlators are captured by the Gaussian

brackets [[. . .]] exemplified in (7.13). In the remainder of this section, we will evaluate

[[E1|...]] for various GEIs and elaborate on the modified integration-by-parts rules adapted

to (7.10) instead of |In(ℓ)|
2. This will be applied in section III.4 to provide manifestly single-

valued expressions for open- and closed-string correlators [[Kn(ℓ)]] and [[Kn(ℓ)K̃n(−ℓ)]].
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7.2.1. Integrating unrefined GEIs

In section 3, GEIs E...
1|... have been introduced as meromorphic functions that are doubly-

periodic up to shifts of the loop momentum. Hence, upon integration over ℓ, GEIs are

guaranteed to become doubly-periodic, and the functions f (n) in (7.1) turn out to be the

natural framework to represent the dependence of [[E...
1|...]] on zj .

Unrefined scalar GEIs E1|A,B,C were found to be elliptic functions in the conventional

sense and expressible in terms of the Vw-functions of (6.1), see e.g. (6.16) and (6.17).

Given that the generating series (6.1) of Vw are unchanged when the Kronecker–Eisenstein

series are replaced by their doubly-periodic completions (7.1), one can globally replace

g(n) → f (n) in any Vw, and in fact, in any E1|A,B,C . For instance, all the imaginary parts

νij of (7.12) cancel out from

V1(1, 2, . . . , n) =

n∑

j=1

f
(1)
j,j+1 , V2(1, 2, . . . , n) =

n∑

j=1

f
(2)
j,j+1 +

n∑

1≤i<j

f
(1)
i,i+1f

(1)
j,j+1 , (7.16)

which gives rise to [[E1|2,3,4]] = 1 and

[[E1|23,4,5]] = V1(1, 2, 3) = f
(1)
12 + f

(1)
23 + f

(1)
31 (7.17)

[[E1|234,5,6]] = V2(1, 2, 3, 4) = f
(1)
12 f

(1)
34 + f

(1)
23 f

(1)
41 +

[
f
(1)
12 f

(1)
23 + f

(2)
12 + cyc(1, 2, 3, 4)

]

[[E1|23,45,6]] = V1(1, 2, 3)V1(1, 4, 5) = (f
(1)
12 + f

(1)
23 + f

(1)
31 )(f

(1)
14 + f

(1)
45 + f

(1)
51 ) .

Similarly, the all-multiplicity formula (6.26) for unrefined scalar GEIs generalizes to

[[E1|A,B,C]] = V|A|−1(1, A)V|B|−1(1, B)V|C|−1(1, C) . (7.18)

The [[. . .]] have no effect on these ℓ-independent functions but have been included into

(7.17) and (7.18) to harmonize with the examples below.

For vectorial and tensorial GEIs, the loop momenta integrate to polynomials in νij as

a result of the Gaussian brackets in (7.13). In order to manifest the double-periodicity of

[[Em1...
1|A,B,...]], these factors of νij can be combined with the meromorphic functions g

(n)
ij to

obtain their doubly-periodic completion f
(n)
ij . Based on the conversion (7.3) between g

(n)
ij

and f
(n)
ij as well as the expressions for the GEIs in (4.32) and (4.36), we find

[[Em
1|2,3,4,5]] = km2 f

(1)
12 + (2↔ 3, 4, 5) , (7.19)

[[Em
1|23,4,5,6]] = km3 f

(1)
12 f

(1)
23 + km2 f

(1)
13 f

(1)
23 +

[
km4 f

(1)
14 (f

(1)
23 + f

(1)
12 + f

(1)
31 ) + (4↔ 5, 6)

]

+ km23(f
(2)
12 − f

(2)
13 ) + (km3 − km2 )f

(2)
23 ,

[[Emn
1|2,3,4,5,6]] = −

π

Im τ
δmn + 2

[
km2 kn2 f

(2)
12 + (2↔ 3, 4, 5, 6)

]

+
[
(km2 kn3+km2 kn3 )f

(1)
12 f

(1)
13 + (2, 3|2, 3, 4, 5, 6)

]
,

and higher-multiplicity results will be given below.
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7.2.2. Modular anomalies

By the modular weight (w, 0) of f
(w)
ij , see (7.5), almost all of the examples (7.17) to (7.19)

of integrated n-point GEIs are modular forms of weight (n−4, 0). The only exception is

the first term − π
Im τ

δmn of modular weight (1, 1) in the expression (7.19) for the tensor

[[Emn
1|2,3,4,5,6]] whose remaining terms f

(2)
ij and f

(1)
ij f

(1)
kl carry weight (2, 0). Accordingly,

contributions to [[Em1m2...
1|A,B,...]] at n points that depart from modular weight (n−4, 0) are

referred to as a modular anomalies, the simplest example being the above − π
Im τ

δmn.

For unrefined GEIs, modular anomalies can be conveniently traced back to contrac-

tions ℓmℓn → − π
Im τ δ

mn, so they only arise at tensor rank r≥2 (the situation for refined

GEIs is different, see section 7.2.4). Scalar GEIs [[E1|A,B,C]] = E1|A,B,C reduce to elliptic

Vw-functions of weight (w, 0), and the integral [[Em
1|A,B,C,D]] over vector GEIs follows from

setting ℓm → 0 and g
(n)
ij → f

(n)
ij , see e.g. (7.19). The modular anomalies of the tensorial

seven-points GEIs (6.21) are the contributions ∼ π
Im τ in

[[Emn
1|23,4,5,6,7]] = −

π

Im τ
δmnV1(1, 2, 3) + 2V1(1, 2, 3)

[
km4 kn4 f

(2)
14 + (4↔ 5, 6, 7)

]
(7.20)

+ V1(1, 2, 3)
[
k
(m
4 k

n)
5 f

(1)
14 f

(1)
15 + (4, 5|4, 5, 6, 7)

]

+
([

k
(m
2 k

n)
4 f

(1)
14 + (4↔ 5, 6, 7)

][
2f

(2)
12 + f

(1)
12 (f

(1)
23 +f

(1)
31 )

]
− (2↔ 3)

)

+
(
km2 kn2

[
6f

(3)
12 + 2f

(2)
12 (f

(1)
23 +f

(1)
31 )

]
− (2↔ 3)

)

+ k
(m
2 k

n)
3

[
2f

(3)
12 + 2f

(3)
31 − f

(3)
23 + f

(1)
23 (f

(2)
12 +f

(2)
13 )

]
.

[[Emnp
1|2,3,4,...,7]] = −

π

Im τ
δ(mn

[
k
p)
2 f

(1)
12 + (2↔ 3, 4, . . . , 7)

]
+ 6

[
km2 kn2 k

p
2f

(3)
12 + (2↔ 3, . . . , 7)

]

+ 2
[
k
(m
2 kn2 k

p)
3 f

(2)
12 f

(1)
13 + k

(m
2 kn3 k

p)
3 f

(1)
12 f

(2)
13 + (2, 3|2, 3, 4, . . .)

]

+
[
k
(m
2 kn3 k

p)
4 f

(1)
12 f

(1)
13 f

(1)
14 + (2, 3, 4|2, 3, . . . , 7)

]
.

Before pointing out analogous modular anomalies in the loop integrals of refined GEIs, we

shall elaborate on the integration-by-parts relations relevant to the results for [[Em1...
1|A|B,...]].

7.2.3. Integration by parts

The integration-by-parts relations of meromorphic correlators Kn(ℓ) were governed by the

derivatives of the ℓ-dependent Koba–Nielsen factor In(ℓ), see section 2.3. Accordingly, the

loop-integrated Koba–Nielsen factor În in (7.10) gives rise to a modified set of integration-

by-parts relations. The zj-derivatives (2.22) straightforwardly generalize to

∂

∂zi
În =

( n∑

j 6=i

sijf
(1)
ij

)
În , (7.21)
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while the τ -derivative (2.23) requires more adjustments after integration over ℓ. After mo-

mentum conservation, the Koba–Nielsen exponent in (7.10) has the following τ -derivative

∂

∂τ

n∑

i<j

sij

[
log

∣∣θ1(zij , τ)
∣∣2 − 2π

Im τ
(Im zij)

2
]
=

n∑

i<j

sij

[ 1

2πi
f
(2)
ij −

Im zij
Im τ

f
(1)
ij

]
, (7.22)

where the admixtures of f
(1)
ij cancel from the action of the differential operator

∇τ ≡
∂

∂τ
+

n∑

j=2

Im zj1
Im τ

∂

∂zj
(7.23)

depending on n punctures zj . The operator ∇τ obeys the usual Leibniz property and

appears naturally in the following generalization of the mixed heat equation (2.9),

∇τf
(w)
ij =

w

2πi
∂f

(w+1)
ij −

w

2i Im τ
f
(w)
ij . (7.24)

Then, after taking the prefactor of În ∼ (Im τ)−D/2 in (7.10) into account, a convenient

analogue of the τ -derivative (2.23) after loop integration reads

∇τ În = În
{ 1

2πi

n∑

i<j

sijf
(2)
ij +

iD

4 Im τ

}
, (7.25)

where we will set the number of spacetime dimensions to D = 10 henceforth. The operator

(7.23) can be aligned into the following boundary term

∂

∂τ

(
h(z, τ)În

)
+

n∑

p=2

∂

∂zp

( Im zp1
Im τ

h(z, τ)În
)

(7.26)

= h(z, τ)În
{ 1

2πi

n∑

i<j

sijf
(2)
ij +

n−6

2i Im τ

}
+ În∇τh(z, τ) ,

with h(z, τ) denoting an arbitrary function on the worldsheet. Since both of (7.21) and

(7.26) integrate to zero within string amplitudes, we conclude the following equivalence

classes of integrated correlators [[. . .]],

( n∑

j 6=i

sijf
(1)
ij

)
h(z, τ) +

∂h(z, τ)

∂zi
∼= 0 , ∀h(z, τ) , (7.27)

( n∑

i<j

sijf
(2)
ij

)
h(z, τ) + 2πi

( n−6

2i Im τ
+∇τ

)
h(z, τ) ∼= 0 , ∀h(z, τ) , (7.28)
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see (2.22) and (2.23) for their chirally-split analogues. The simplest example of (7.28) with

h(z, τ) = 1 has been used in [29] to identify the BRST variation of the (n = 6)-point

closed-string amplitude as a boundary term.

Note that the holomorphic derivative ∂
∂zi

in (7.27) acts non-trivially on the contribu-

tions f
(w)

ij from the opposite chiral half in closed-string amplitudes. This follows from the

complex conjugate

∂

∂z
f
(n)

(z, τ) = −
π

Im τ
f
(n−1)

(z, τ) ,
∂

∂τ
f
(n)

(z, τ) =
π Im z

(Im τ)2
f
(n−1)

(z, τ) (7.29)

of (7.7) and gives rise to examples such as [30,31]

f
(1)
12 f

(1)

23
∼=

1

s12

(
f
(1)

23

n∑

j=3

s2jf
(1)
2j −

π

Im τ

)
. (7.30)

The differential operator (7.23) in turn annihilates undifferentiated f
(w)

ij and only acts on

z-derivatives of the f
(w)

ij from the opposite chiral half in closed-string amplitudes

∇τf
(w)

ij = 0 , ∇τ

(∂f (w)

ij

∂z

)
= −

πf
(w−1)

ij

2i (Im τ)2
. (7.31)

On these grounds, the analysis of boundary terms in τ is facilitated when loop-integrated

GEIs [[Em1...
1|A,...]] are expressed in terms of undifferentiated f

(w)
ij .

7.2.4. Integrating refined GEIs

After loop integration, the integration-by-parts equivalent representations of the simplest

refined GEI E1|2|3,4,5,6 in (4.37) translate into

[[E1|2|3,4,5,6]] = −
π

Im τ
+ ∂f

(1)
12 + s12(f

(1)
12 )2 − 2s12f

(2)
12 (7.32)

∼= −
π

Im τ
− 2s12f

(2)
12 + f

(1)
12 (s23f

(1)
23 + s24f

(1)
24 + s25f

(1)
25 + s26f

(1)
26 )

∼= −2s12f
(2)
12 + f

(1)
12

[
s23f

(1)
23 + (3↔ 4, 5, 6)

]
+ ν12

[
s12f

(1)
12 + (1↔ 3, 4, 5, 6)

]
.

The first line follows from inserting ∂g
(1)
12 = ∂f

(1)
12 −

π
Im τ into (4.37), and the sec-

ond and third line result from the integration-by-parts relation (7.27) after discard-

ing ∂2(f
(1)
12 Î6) and ∂2(ν12Î6), respectively. One can also arrive at last line by inserting

[[ℓm]] =
∑6

j=2 k
m
j ν1j into the first line of (4.37) and expressing all the g

(n)
ij in terms of f

(n)
ij

and νij .

49



At seven points, the refined GEIs (6.22) integrate to

[[E1|23|4,5,6,7]] = −
π

Im τ
V1(1, 2, 3)− s123V3(1, 2, 3) + (f

(1)
12 + f

(1)
31 )∂f

(1)
23 + ∂f

(2)
23 (7.33)

[[E1|4|23,5,6,7]] = −
π

Im τ
V1(1, 2, 3)+

[
∂f

(1)
14 −s14V2(1, 4)

]
V1(1, 2, 3)−s24V3(1, 2, 4)+s34V3(1, 3, 4)

[[Em
1|2|3,4,5,6,7]] = −

π

Im τ

[
km2 f

(1)
12 + (2↔ 3, . . . , 7)

]
+ km2

[
∂f

(2)
12 + s12(f

(1)
12 f

(2)
12 − 3f

(3)
12 )

]

+
[
∂f

(1)
12 −s12V2(1, 2)

][
km3 f

(1)
13 +(3↔ 4, . . . , 7)

]
+
[
km3 s23V3(1, 2, 3)+(3↔ 4, . . . , 7)

]
,

where we reiterate that the elliptic Vw-functions are unchanged under the global replace-

ment of g
(n)
ij → f

(n)
ij . One can perform integrations by parts (7.27) similar to (7.32) to avoid

the appearance of ∂f
(n)
ij on the right-hand side. Similar to (7.19) and (7.20), the factors of

π
Im τ

on the right-hand sides of (7.32) and (7.33) signal a modular anomaly: They depart

from the purely holomorphic modular weights (n, 0) and (n+1, 0) of the f
(n)
ij and ∂f

(n)
ij .

Note that the trace relations (5.31) and (5.32) of six- and seven-point GEIs can be

verified at the level of the above expressions for the [[E1|...]]: While

1

2
δmn[[E

mn
1|2,3,4,5,6]]Î6 +

(
[[E1|2|3,4,5,6]] + (2↔ 3, 4, 5, 6)

)
Î6

= 2πi
∂

∂τ
Î6 + 2πi

6∑

p=2

∂

∂zp

( Im zp1
Im τ

Î6
)

(7.34)

is a consequence of (7.26) at n = 6 and h(z, τ) = 1, the seven-point analogues require a

specialization of (7.28) to17

( n−6

2i Im τ
+∇τ

)
f
(1)
ij

∣∣∣
n=7

=
∂f

(2)
ij

2πi
, (7.35)

see (7.24) for the action of ∇τ on f
(w)
ij .

17 More generally, the choices of h(z, τ) in (7.28) relevant to integrated n-point closed-string

correlators [[Kn(ℓ)K̃n(−ℓ)]] have the form 1
(Im τ)m

∏
k
f
(wk)
akbk

f
(wk)

ckdk
with m+

∑
k
wk = n−6. In these

cases, the second line of the following equivalence relation (7.28) vanishes (we are suppressing the

f
(wk)

ckdk
they are annihilated by ∇τ ),

0 ∼=

(
1

(Im τ)m

∏

k

f
(wk)
akbk

( n∑

i<j

sijf
(2)
ij

)
+
∑

r

wr∂f
(wr+1)
arbr

(Im τ)m

∏

k 6=r

f
(wk)
akbk

)

+ 2πi

(
n− 6−m− w1 − w2 − . . .

2i Im τ

)
1

(Im τ)m

∏

k

f
(wk)
akbk

.
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7.2.5. Modular anomalies versus BRST anomalies

The above instances of modular anomalies furnish another incarnation of the duality be-

tween kinematics and worldsheet functions. Modular anomalies are proposed to be the

worldsheet counterpart of anomalous BRST variations such as

QCmn
1|2,3,4,5,6 = −δ

mnΓ1|2,3,4,5,6 , QP1|2|3,4,5,6 = −Γ1|2,3,4,5,6 (7.36)

QCmn
1|23,4,...,7 = −δmnΓ1|23,4,...,7 , QP1|23|4,5,6,7 = QP1|4|23,5,6,7 = −Γ1|23,4,5,6,7

QCmnp
1|2,3,...,7 = −δ(mnΓ

p)
1|2,3,...,7 , QPm

1|2|3,...,7 = −Γm
1|2,3,...,7 ,

where the anomaly invariants Γ1|... are defined in section I.5.2.3, and generalizations of

(7.36) can be found in (I.5.28). The idea is to associate the anomaly invariants with the

slot extensions [[E1|2,3,4,5,6]] = 1 and

[[E1|23,4,5,6,7]] = V1(1, 2, 3) , [[Em
1|2,3,...,7]] = km2 f

(1)
12 + (2↔ 3, . . . , 7) (7.37)

of earlier results according to the general dictionary

Γm1...mr

1|A1,...,Ad|B1,...,Bd+r+5
↔

π

Im τ
[[Em1...mr

1|A1,...,Ad|B1,...,Bd+r+5
]] . (7.38)

Under these identifications, the combinatorics of (7.36) literally translates into the following

modular anomalies at six points

[[Emn
1|2,3,4,5,6]] = −

π

Im τ
δmn +modular weight (2, 0) (7.39)

[[E1|2|3,4,5,6]] = −
π

Im τ
+modular weight (2, 0)

and at seven points

[[Emn
1|23,4,5,6,7]] = −

π

Im τ
δmnV1(1, 2, 3) + modular weight (3, 0) (7.40)

[[Emnp
1|2,3,4,5,6,7]] = −

π

Im τ
δ(mn

[
k
p)
2 f

(1)
12 + (2↔ 3, . . . , 7)

]
+modular weight (3, 0)

[[Em
1|2|3,4,5,6,7]] = −

π

Im τ

[
km2 f

(1)
12 + (2↔ 3, . . . , 7)

]
+modular weight (3, 0)

[[E1|23|4,5,6,7]] = −
π

Im τ
V1(1, 2, 3) + modular weight (3, 0)

[[E1|4|23,5,6,7]] = −
π

Im τ
V1(1, 2, 3) + modular weight (3, 0) ,

where the weight-(n−4, 0) parts can be found in (7.19), (7.20), (7.32) and (7.33). As we

will see in section III.4.2, the above instances of modular anomalies drop out from the

51



integrated six-point correlator [[K6(ℓ)]]. The cancellation of modular anomalies will be

shown to furnish a dual to the localization of BRST anomalies QKn(ℓ) on the boundary

of moduli space.

While the dictionary (7.38) is expected to extend to higher multiplicity, it is not clear

whether it applies to higher powers ( π
Im τ )

m with m ≥ 2. It remains to clarify whether

the absence of tensor structures δm(nδpq) in QCmnpq
1|2,3,...,8 = −δ(mnΓ

pq)
1|2,...,8 can be reconciled

with the contribution [[ℓmℓnℓpℓq]] = ( π
Im τ )

2δm(nδpq) + . . . to [[Emnpq
1|2,...,8]].

8. Conclusions

In this paper we continued setting up the ingredients that will be needed to build up

one-loop correlators for massless open- and closed-string amplitudes in the pure-spinor

formalism. We have introduced two classes of worldsheet functions that will manifest dif-

ferent aspects of the correlators to be assembled in part III. Both of them are constructed

from loop momenta and combinations of Jacobi theta functions g
(n)
ij = g(n)(zi−zj , τ) that

are the coefficients in the Laurent expansion of the Kronecker–Eisenstein series [5].

The first class of worldsheet functions, denoted by Z, is designed to capture the

worldsheet singularities arising when the vertex operators approach each other on a genus-

one surface. These singularities are straightforward to handle via an OPE analysis, and

their behavior when the vertices are close together is the same as products of 1/zij =

1/(zi−zj) functions well-known from the tree-level correlators.

However, the OPE analysis is not enough to completely determine the one-loop Z-

functions as there can be non-singular pieces that do not vanish on a genus-one surface18.

Instead, our starting point to constrain the non-singular pieces is the following observation

on tree-level correlators: The products of singular functions 1/zij at genus zero end up

assembling chains 1/(z12z23 . . . zp−1,p) [19] that obey shuffle symmetries among their labels

1, 2, . . . , p. By imposing the same shuffle symmetries among the labels of their one-loop

counterparts Z and using Fay identities one proves the existence of non-singular pieces in

the one-loop worldsheet functions.

The algorithmic determination of these non-singular pieces follows from another sur-

prising feature of these functions; their properties mimic those of superfield building blocks

18 These non-singular parts are absent at tree level where the knowledge of the singular behavior

is enough to fix the whole function.
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discussed in part I. More precisely, the role of the pure-spinor BRST charge acting on the

superfields is replaced by a monodromy operator acting on the genus-one functions and the

loop momentum. This observation, among others along the same lines, has been interpreted

as a duality between worldsheet functions and kinematics.

The second class of worldsheet functions discussed in this paper concerns the gener-

alized elliptic integrands (GEIs) briefly introduced in [4]. GEIs are monodromy-invariant

combinations of Z-functions, and already their very construction is driven by the du-

ality between worldsheet functions and kinematics: GEIs can be assembled from the

monodromy-covariant functions Z in exactly the same combinatorial manner as kinematic

BRST invariants are assembled from Berends–Giele superfield building blocks (reviewed

in part I). These definitions lead to a plethora of relations that apply in similar if not

identical form to the superfield building blocks, manifesting various further incarnations

of the duality between worldsheet functions and kinematics.

A multitude of identities among Z-functions and GEIs has been discussed in this

paper that support their duality connection with superfield building blocks. However, we

observed that holomorphic Eisenstein series lead to departures from a strict duality between

functions and kinematics starting at eight points. The solution to this puzzling behavior,

for instance through systematic redefinitions of Z-functions and GEIs via Eisenstein series,

will be left for the future. Furthermore, a preliminary analysis indicates that the functions

considered in this paper admit compact generating-series representations whose detailed

presentation we also leave for future work.

The relevance of both the Z-functions as well as GEIs for the assembly of one-loop

correlators will become apparent in the sequel part III of this series of papers.
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Appendix A. Bootstrapping the shuffle-symmetric worldsheet functions

This appendix complements the results of the bootstrap techniques for Z-functions outlined

in section 4.4 with derivations based on the system of monodromy variations. The key

steps will be presented in detail for six points and for some selected seven- and eight-point

functions; the results from the omitted derivations can be obtained with reasonable effort

[32] and do not require any new methods.

In the derivations below we will use the representations of GEIs obtained in section 6

as they lead to considerably shorter results; in some cases, they even suggest pattern-driven

general closed formulæ.

A.1. Six points

The starting point at six points is given by the extended GEIs (4.33) from the five-point

results (4.31) and (4.32), namely

E1|23,4,5,6 = V1(1, 2, 3) , Em
1|2,3,4,5,6 = ℓm −

[
∂V0(1, 2) + (2↔ 3, 4, 5, 6)

]
. (A.1)

They are written in terms of the Vw- and ∂Vw-functions with generating series in (6.1),

(6.7) and (6.12) for convenience. As we have seen in section 4.4, the monodromy variations

of the six-point shuffle-symmetric worldsheet functions are given by

DZ123,4,5,6 = Ω1E1|23,4,5,6 − Ω3E3|12,4,5,6 , (A.2)

DZ12,34,5,6 = Ω1E1|2,34,5,6 − Ω2E2|1,34,5,6 + Ω3E3|12,4,5,6 − Ω4E4|12,3,5,6 ,

DZm
12,3,4,5,6 = Ω1E

m
1|2,3,4,5,6 − Ω2E

m
2|1,3,4,5,6 +

[
km3 Ω3E3|12,4,5,6 + (3↔ 4, 5, 6)

]
,

DZmn
1,2,3,4,5,6 = km1 Ω1E

n
1|2,3,4,5,6 + kn1Ω1E

m
1|2,3,4,5,6 + (1↔ 2, 3, 4, 5, 6) ,

DZ2|1,3,4,5,6 = Ω2k
m
2 Em

2|1,3,4,5,6 .

To solve these equations using the generating-series techniques of section 6 it will be

convenient to rewrite the above GEIs in a basis where leg 1 is in the special slot. This can

be done by exploiting the duality with the BRST invariants and using the identities of

section 5.2.2. In this new basis we have:

DZ123,4,5,6 = Ω13E1|23,4,5,6 , (A.3)

DZ12,34,5,6 = Ω12E1|2,34,5,6 + Ω32E1|23,4,5,6 + Ω24E1|24,3,5,6 , (A.4)

DZm
12,3,4,5,6 = Ω12E

m
1|2,3,4,5,6 −

[
Ω23k

m
3 E1|23,4,5,6 + (3↔ 4, 5, 6)

]
, (A.5)

DZmn
1,2,3,4,5,6 =

[
Ω21(k

m
2 En

1|2,3,4,5,6 + kn2E
m
1|2,3,4,5,6) + (2↔ 3, 4, 5, 6)

]
(A.6)

+
[
(km2 kn3 + kn2 k

m
3 )Ω23E1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
,

DZ2|1,3,4,5,6 = Ω2k
m
2

(
Em

1|2,3,4,5,6 +
[
km3 E1|23,4,5,6 + (3↔ 4, 5, 6)

]
. (A.7)
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The scalar equations are easily solved using cyclic symmetry of Vw(1, 2, . . . , n) and the

monodromy variations D∂Vw(1, 2, . . . , n) = −Ω1nVw(1, 2, . . . , n). We get,

Z123,4,5,6 = −∂V1(1, 2, 3) , (A.8)

Z12,34,5,6 = −∂V0(1, 2)V1(1, 3, 4) + ∂V1(4, 1, 2)− ∂V1(3, 1, 2) ,

whose equivalence with the solutions presented in (4.35) is easily established using Fay

identities. Let us now solve the monodromy variation (A.5) of the vectorial function

DZm
12,3,4,5,6 = Ω12E

m
1|2,3,4,5,6 −

[
Ω23k

m
3 E1|23,4,5,6 + (3↔ 4, 5, 6)

]
(A.9)

= Ω12ℓ
m +Ω12k

m
2 g

(1)
12 +

[
km3 (Ω12g

(1)
13 − Ω23V1(1, 2, 3)) + (3↔ 4, 5, 6)

]
, (A.10)

where the second line follows from (A.1). Noting thatD(g
(1)
12 ℓ

m) = Ω12ℓ
m−g

(1)
12

∑6
j=2 Ω1jk

m
j

one can rewrite (A.10) as follows

DZm
12,3,4,5,6 =

(
Ω12ℓ

m − g
(1)
12

6∑

j=2

Ω1jk
m
j

)
+ 2km2 Ω12g

(1)
12 (A.11)

+
[
km3 (Ω12g

(1)
13 +Ω13g

(1)
12 − Ω23V1(1, 2, 3)) + (3↔ 4, 5, 6)

]
.

The solution to (A.11) can be obtained by inspection and is given by

Zm
12,3,4,5,6 = g

(1)
12 ℓ

m + 2km2 g
(2)
12 +

[
km3

(
g
(1)
12 g

(1)
13 − ∂V1(3, 1, 2)

)
+ (3↔ 4, 5, 6)

]

= ℓmg
(1)
12 + (km2 − km1 )g

(2)
12 +

[
km3 (g

(2)
13 − g

(2)
23 ) + (3↔ 4, 5, 6)

]
, (A.12)

see (4.35). The equality in the last line follows from momentum conservation and

g
(1)
12 g

(1)
13 − ∂V1(3, 1, 2) − g

(2)
12 = g

(2)
13 − g

(2)
23 , which can be shown using Fay identities. As

a side remark, note that one can arrive at (A.12) from (A.10) using an effective “integra-

tion” rule
∫
Ωijg

(n)
ij = (n+1)g

(n+1)
ij , ∀ n ∈ N to “invert” the D operator.

The solution to the tensorial monodromy variation (A.6),

DZmn
1,2,3,4,5,6 =

[
Ω21k

(m
2 E

n)
1|2,3,4,5,6 + (2↔ 3, 4, 5, 6)

]

+
[
k
(m
2 k

n)
3 Ω23E1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

can be found similarly. First one plugs in the vectorial extended GEI from (A.1) to obtain

DZmn
1,2,3,4,5,6 =

[
Ω21k

(m
2 ℓ

n)
+ 2km2 kn2Ω21g

(1)
12 + (2↔ 3, 4, 5, 6)

]
(A.13)

+
[
k
(m
2 k

n)
3

(
Ω21g

(1)
13 + Ω31g

(1)
12 − Ω32V1(3, 1, 2)

)
+ (2, 3|2, 3, 4, 5, 6)

]
,
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whose solution is easily found after noticing that D(ℓmℓn) = Ω21k
(m
2 ℓ

n)
+ (2↔ 3, 4, 5, 6),

Zmn
1,2,3,4,5,6 = ℓmℓn − 2

[
km2 kn2 g

(2)
12 + (2↔ 3, 4, 5, 6)

]
(A.14)

−
[
k
(m
2 k

n)
3

(
g
(1)
12 g

(1)
13 − ∂V1(3, 1, 2)

)
+ (2, 3|2, 3, 4, 5, 6)

]
.

Fay identities imply that (A.14) is equivalent to the expression given in (4.35),

Zmn
1,2,3,4,5,6 = ℓmℓn +

[
k
(m
1 k

n)
2 g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]
. (A.15)

The solution to the refined worldsheet function can be easily found. After plugging in the

extended GEIs on the right-hand side of (A.7), straightforward algebra leads to

DZ2|1,3,4,5,6 = Ω2

(
(ℓ · k2) + s21g

(1)
21 + s23g

(1)
23 + s24g

(1)
24 + s25g

(1)
25 + s26g

(1)
26

)
∼= 0 , (A.16)

which vanishes in view of the total-derivative relation (2.20). Therefore, one can choose

Z2|1,3,4,5,6 = 0 , (A.17)

see (4.35). As mentioned in section 4.4.3, this vanishing is compatible with a duality be-

tween refined worldsheet functions and BRST-exact superfields, see (5.24).

Plugging the results above in the expressions (4.26) and (4.27) leads to the expressions

(4.36), (4.37) and (6.17) for GEIs. Their seven-point extensions (4.38) will be used in the

next step of the bootstrap procedure.

A.2. Seven points

The solution to the scalar monodromy variations

DZ1234,5,6,7 = Ω1E1|234,5,6,7 − Ω4E4|123,5,6,7 , (A.18)

DZ123,45,6,7 = Ω1E1|23,45,6,7 − Ω3E3|12,45,6,7 ,+Ω4E4|123,5,6,7 − Ω5E5|123,4,6,7

DZ12,34,56,7 = Ω1E1|2,34,56,7 − Ω2E2|1,34,56,7 + (12↔ 34, 56) ,

is easily obtained after rewriting the GEIs in the canonical basis and using (6.17),

DZ1234,5,6,7 = Ω14V2(1, 2, 3, 4) (A.19)

DZ123,45,6,7 = Ω13V1(1, 2, 3)V1(1, 4, 5)− Ω34V2(1, 2, 3, 4) + Ω35V2(1, 2, 3, 5)

DZ12,34,56,7 = Ω12V1(1, 3, 4)V1(1, 5, 6)

+
[
Ω23

(
V2(1, 2, 3, 6)− V1(1, 2, 3)V1(1, 5, 6)− V2(1, 2, 3, 5)

)
− (3↔ 4)

]

+
[
Ω25

(
V2(1, 2, 5, 4)− V1(1, 2, 5)V1(1, 3, 4)− V2(1, 2, 5, 3)

)
− (5↔ 6)

]
.
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Noting the fundamental equation (6.8) and cyclicity of Vw(1, . . . , n) we arrive at the fol-

lowing solutions

Z1234,5,6,7 = −∂V2(1, 2, 3, 4) , (A.20)

Z123,45,6,7 = −∂V1(1, 2, 3)V1(1, 4, 5) + ∂V2(5, 1, 2, 3)− ∂V2(4, 1, 2, 3)

Z12,34,56,7 = −∂V0(1, 2)V1(1, 3, 4)V1(1, 5, 6) + ∂V1(4, 1, 2)V1(1, 5, 6)

− ∂V1(5, 1, 2)V1(1, 3, 4)− ∂V1(3, 1, 2)V1(1, 5, 6) + ∂V1(6, 1, 2)V1(1, 3, 4)

+ ∂V2(3, 6, 1, 2)− ∂V2(3, 5, 1, 2) + ∂V2(4, 5, 1, 2)− ∂V2(4, 6, 1, 2)

+ ∂V2(6, 3, 1, 2)− ∂V2(5, 3, 1, 2) + ∂V2(5, 4, 1, 2)− ∂V2(6, 4, 1, 2) .

A long but straightforward application of Fay identities demonstrates the equivalence be-

tween the above solutions and the ones presented in the main text, (4.40). While the above

form of the functions is easy to derive from the monodromy variations, it does not expose

the singularity structure as the vertex positions approach each other. This constitutes a

drawback of the representation in (A.20) and motivates the rewriting in (4.40).

A.2.1. Vectorial seven-point functions

The monodromy variation (4.13) of the vectorial seven-point function Zm
123,4,5,6,7 can be

written in a basis of GEIs as

DZm
123,4,5,6,7 = Ω13E

m
1|23,4,5,6,7 +

[
km4 Ω43E1|234,5,6,7 + (4↔ 5, 6, 7)

]

= Ω13V1(1, 2, 3)ℓ
m + km2 Ω13∂V1(2, 3, 1)− km3 Ω13∂V1(3, 2, 1)

+
[
km4

(
Ω13g

(1)
14 V1(1, 2, 3)− Ω34V2(1, 2, 3, 4)

)
+ (4↔ 5, 6, 7)

]
. (A.21)

Similarly as before, in order to integrate the term containing ℓm in the above variation,

we add and subtract ∂V1(1, 2, 3)
∑7

j=2 Ω1jk
m
j to obtain

DZm
123,4,5,6,7 = Ω13V1(1, 2, 3)ℓ

m + ∂V1(1, 2, 3)
[
Ω12k

m
2 + (2↔ 3, 4, 5, 6, 7)

]
(A.22)

+ km2
(
Ω13∂V1(2, 3, 1)−Ω12∂V1(1, 2, 3)

)
− km3

(
Ω13∂V1(3, 2, 1)+Ω13∂V1(1, 2, 3)

)

+
[
km4

(
Ω13g

(1)
14 V1(1, 2, 3)− Ω14∂V1(1, 2, 3)− Ω34V2(1, 2, 3, 4)

)
+ (4↔ 5, 6, 7)

]
.

One can then show that (A.22) integrates to

Zm
123,4,5,6,7 = −ℓ

m∂V1(1, 2, 3) + km3 ∂2V1(1, 2, 3) (A.23)

+
1

2
km2

[
∂2V1(1, 2, 3) + ∂2V1(2, 3, 1) + ∂2V1(2, 1, 3)

]

−
[
km4

(
∂V2(4, 1, 2, 3) + g

(1)
14 ∂V1(1, 2, 3)

)
+ (4↔ 5, 6, 7)

]
,
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which can be rewritten as

Zm
123,4,5,6,7 = −ℓ

m∂V1(1, 2, 3)−
1

2
km1 ∂2V1(1, 2, 3) +

1

2
km3 ∂2V1(1, 2, 3) (A.24)

+
1

2
km2

[
∂2V1(2, 3, 1) + ∂2V1(2, 1, 3)

]

+
[
km4 V1(1, 2, 3)(g

(2)
14 − g

(2)
34 ) + (4↔ 5, 6, 7)

]
.

To see this one uses momentum conservation and the identity

∂V2(4, 1, 2, 3) + g
(1)
14 ∂V1(1, 2, 3) = −V1(1, 2, 3)(g

(2)
14 − g

(2)
34 )−

1

2
∂2V1(1, 2, 3) . (A.25)

Alternatively, the expression (A.24) can be rewritten in terms of g
(n)
ij -functions in order to

make its singularity structure more evident,

Zm
123,4,5,6,7 = ℓm

[
g
(1)
12 g

(1)
23 + g

(2)
12 − g

(2)
13 + g

(2)
23

]
+ (km3 − km1 )

(
g
(1)
12 g

(2)
13 + g

(1)
23 g

(2)
13 − 3g

(3)
13

)

+ km2
(
g
(1)
13 (g

(2)
12 − g

(2)
23 ) + g

(2)
13 (g

(1)
23 − g

(1)
12 )

)
(A.26)

+
[
km4

(
g
(1)
12 + g

(1)
23 + g

(1)
31

)(
g
(2)
14 − g

(2)
34

)
+ (4↔ 5, 6, 7)

]
.

Similarly, the monodromy variation of Zm
12,34,5,6,7,

DZm
12,34,5,6,7 = Ω12E

m
1|2,34,5,6,7 − Ω23E

m
1|23,4,5,6,7 + Ω24E

m
1|24,3,5,6,7 (A.27)

+ km3 Ω24E1|243,5,6,7 − km4 Ω23E1|234,5,6,7

+
[
km5

(
Ω25E1|254,3,6,7 − Ω25E1|253,4,6,7 − Ω25E1|25,34,6,7

+Ω24E1|245,3,6,7 − Ω23E1|235,4,6,7 + (5↔ 6, 7
]
,

is readily integrated and yields, after using identities similar to (A.25) and momentum

conservation, the following result:

Zm
12,34,5,6,7 = ℓm

[
g
(1)
12 V1(1, 3, 4)− ∂V1(3, 1, 2) + ∂V1(4, 1, 2)

]
(A.28)

−
[
km1

(
g
(2)
12 V1(2, 3, 4) +

1

2
∂2V1(1, 2, 4)−

1

2
∂2V1(1, 2, 3)

)
− (1↔ 2)

]

−
[
km3

(
g
(2)
34 V1(4, 1, 2) +

1

2
∂2V1(3, 4, 2)−

1

2
∂2V1(3, 4, 1)

)
− (3↔ 4)

]

+
[
km5

(
g
(2)
51 V1(1, 3, 4)− g

(2)
52 V1(2, 3, 4) + g

(2)
53 V1(3, 1, 2)− g

(2)
54 V1(4, 1, 2)

)
+ (5↔ 6, 7)

]
.
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Its expansion in terms of g
(n)
ij -functions can be shown to read,

Zm
12,34,5,6,7 = ℓm

(
g
(1)
12 g

(1)
34 + g

(2)
13 − g

(2)
14 + g

(2)
24 − g

(2)
23

)
+ (km12 − km34)

(
g
(3)
14 − g

(3)
13 + g

(3)
23 − g

(3)
24

)

+
[
g
(1)
34 g

(2)
12 (k

m
2 − km1 ) + km1 g

(1)
12

(
g
(2)
23 − g

(2)
24

)
+ km2 g

(1)
12

(
g
(2)
13 − g

(2)
14

)
+ (12↔ 34)

]

+
{
km5

[
g
(1)
15 (g

(2)
13 − g

(2)
14 + g

(2)
45 − g

(2)
35 ) + g

(1)
25 (g

(2)
24 − g

(2)
23 + g

(2)
35 − g

(2)
45 ) (A.29)

+ g
(1)
12 (g

(2)
35 −g

(2)
45 ) + g

(1)
34 (g

(2)
15 −g

(2)
25 ) + g

(3)
14 − g

(3)
13 + g

(3)
23 − g

(3)
24

]
+ (5↔ 6, 7)

}
.

This completes the bootstrapping of the vectorial shuffle-symmetric functions for seven

points.

A.2.2. Tensorial functions

An analogous procedure can be used for solving the tensorial seven-point functions starting

from their monodromy variations given in (4.13). The outcome can be written as

Zmn
12,3,4,5,6,7 = ℓmℓng

(1)
12 +

[
ℓ(mk

n)
3 (g

(2)
13 − g

(2)
23 ) + 2km3 kn3 (g

(3)
13 − g

(3)
23 ) + (3↔ 4, 5, 6, 7)

]

+ g
(2)
12 (ℓ

(mk
n)
2 − ℓ(mk

n)
1 ) + g

(3)
12 (2k

m
1 kn1 + 2km2 kn2 − km1 kn2 − km2 kn1 ) (A.30)

+
[
k
(m
3 k

n)
1 (g

(1)
12 g

(2)
23 −g

(3)
13 +g

(3)
23 ) + k

(m
3 k

n)
2 (g

(1)
12 g

(2)
31 −g

(3)
13 +g

(3)
23 ) + (3↔ 4, 5, 6, 7)

]

+
[
k
(m
3 k

n)
4 (g

(1)
12 g

(2)
34 + g

(1)
34 (g

(2)
13 − g

(2)
23 − g

(2)
14 + g

(2)
24 )

+ g
(3)
13 − g

(3)
23 + g

(3)
14 − g

(3)
24 ) + (3, 4|3, 4, 5, 6, 7)

]
,

Zmnp
1,2,3,4,5,6,7 = ℓmℓnℓp +

[
k
(m
1 kn2 ℓ

p)g
(2)
12 − k

(m
1 (kn1 − kn2 )k

p)
2 g

(3)
12 + (1, 2|1, 2, 3, 4, 5, 6, 7)

]

+
[
k
(m
1 kn2 k

p)
3

(
g
(1)
23 (g

(2)
12 − g

(2)
13 ) + g

(3)
12 + g

(3)
13

)
+ (1, 2, 3|1, 2, 3, 4, 5, 6, 7)

]
.

Note that the coefficient of km1 kn2 k
p
3 in the last line is totally symmetric in 1, 2, 3. Again,

their singularity structure within a given word is the same as in their tree-level counter-

parts, see section 4.1.

A.2.3. Assembling seven-point GEIs

Now that the shuffle-symmetric Z-functions at seven points are known, one can assemble

the GEIs as described in section 4.3. The scalar GEIs follow from the replacement rule
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MAMB,C,D → ZA,B,C,D applied to the Berends–Giele expansion of the BRST invariants

C1|2345,6,7, C1|234,56,7 and C1|23,45,67 from [23],

E1|2345,6,7 = Z1,2345,6,7 + Z512,34,6,7 +Z12,345,6,7 +Z123,45,6,7 +Z1234,5,6,7

+ Z5123,4,6,7 +Z51,234,6,7 +Z451,23,6,7 +Z3451,2,6,7 +Z4512,3,6,7 ,

E1|234,56,7 = Z1,234,56,7 + Z214,3,56,7 +Z15,234,6,7 −Z16,234,5,7 +Z12,34,56,7 (A.31)

+ Z123,4,56,7 +Z14,32,56,7 +Z143,2,56,7 +Z612,34,5,7 +Z6123,4,5,7

+ Z5124,3,6,7 +Z614,32,5,7 +Z6143,2,5,7 +Z5142,3,6,7 −Z512,34,6,7

− Z5123,4,6,7 −Z6124,3,5,7 −Z514,32,6,7 −Z5143,2,6,7 −Z6142,3,5,7 ,

E1|23,45,67 = Z1,23,45,67 + Z12,3,45,67 −Z13,2,45,67 +Z14,5,23,67 −Z15,4,23,67

+ Z16,7,23,45 −Z17,6,23,45 +Z217,3,45,6 −Z317,2,45,6 −Z216,3,45,7

+ Z316,2,45,7 +Z413,5,67,2 −Z513,4,67,2 −Z412,5,67,3 +Z512,4,67,3

+ Z615,7,23,4 −Z715,6,23,4 −Z614,7,23,5 +Z714,6,23,5 +Z7135,2,4,6

+ Z7153,2,4,6 −Z7125,3,4,6 −Z7152,3,4,6 −Z7134,2,5,6 −Z7143,2,5,6

+ Z7124,3,5,6 +Z7142,3,5,6 −Z6135,2,4,7 −Z6153,2,4,7 +Z6125,3,4,7

+ Z6152,3,4,7 +Z6134,2,5,7 +Z6143,2,5,7 −Z6124,3,5,7 −Z6142,3,5,7 ,

and read as in (6.19) after the solutions for Z obtained above are plugged in. Similarly,

the lengthy expansions of the vectorial GEIs

Em
1|234,5,6,7 = Z

m
1,234,5,6,7 + Z

m
123,4,5,6,7 +Z

m
412,3,5,6,7 + Z

m
341,2,5,6,7

+ Zm
12,34,5,6,7 + Z

m
41,23,5,6,7 + km2 Z1432,5,6,7 + km4 Z1234,5,6,7

− km3 (Z1423,5,6,7 +Z1243,5,6,7)−
[
km5 (Z51,234,6,7 + Z512,34,6,7 + Z514,32,6,7

+ Z5123,4,6,7 + Z5143,2,6,7 − Z5124,3,6,7 + Z5142,3,6,7) + (5↔ 6, 7)
]
, (A.32)

Em
1|23,45,6,7 = Z

m
1,23,45,6,7 + Z

m
12,3,45,6,7 −Z

m
13,2,45,6,7 + Z

m
14,23,5,6,7 −Z

m
15,23,4,6,7

+ Zm
413,2,5,6,7 + Z

m
512,3,4,6,7 −Z

m
412,3,5,6,7 − Z

m
513,2,4,6,7

+
[
km3 (Z123,45,6,7 − Z4123,5,6,7 + Z5123,4,6,7)− (2↔ 3)

]

+
[
km5 (Z145,23,6,7 − Z2145,3,6,7 + Z3145,2,6,7)− (4↔ 5)

]

−
[
km6 (Z61,23,45,7 + Z612,3,45,7 − Z613,2,45,7 + Z614,23,5,7 − Z615,23,4,7

− (Z6134,2,5,7 +Z6143,2,5,7)− (Z6125,3,4,7 + Z6152,3,4,7)

+ (Z6135,2,4,7 +Z6153,2,4,7) + (Z6124,3,5,7 + Z6142,3,5,7)) + (6↔ 7)
]
,
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collapse to a few terms (6.20) when rewritten in terms of Vw- and ∂Vw-functions. Similarly,

the tensorial GEIs

Emn
1|23,4,5,6,7 = Z

mn
1,23,4,5,6,7 + Z

mn
12,3,4,5,6,7 − Z

mn
13,2,4,5,6,7 + k

(m
3 Z

n)
123,4,5,6,7 − k

(m
2 Z

n)
132,4,5,6,7

+
[
k
(m
4 k

n)
5

{
− Z514,23,6,7 + (Z1245,3,6,7 + symm(2, 4, 5))

− (Z1345,2,6,7 + symm(3, 4, 5))
}
+ (4, 5|4, 5, 6, 7)

]

+
[
k
(m
4

{
Z

n)
14,23,5,6,7 −Z

n)
214,3,5,6,7 + Z

n)
314,2,5,6,7 (A.33)

+ k
n)
2 Z4132,5,6,7 − k

n)
3 Z4123,5,6,7

}
+ (4↔ 5, 6, 7)

]
,

Emnp
1|2,3,4,5,6,7 = Z

mnp
1,2,3,4,5,6,7 +

[
k
(m
2 Z

np)
12,3,4,5,6,7 + (2↔ 3, 4, 5, 6, 7)

]

−
[
k
(m
2 kn3Z

p)
213,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

]

+
[
k
(m
2 kn3 k

p)
4 (Z1234,5,6,7 + symm(2, 3, 4)) + (2, 3, 4|2, 3, 4, 5, 6, 7)

]
,

become as compact as (6.21).

Moreover, there are three topologies of refined GEIs at seven points,

E1|23|4,5,6,7 = Z23|1,4,5,6,7 +Z3|12,4,5,6,7 − Z2|13,4,5,6,7 + km3 Z
m
123,4,5,6,7

− km2 Z
m
132,4,5,6,7 +

[
(s34Z1234,5,6,7 − s24Z1324,5,6,7) + (4↔ 5, 6, 7)

]

E1|2|34,5,6,7 = Z2|1,34,5,6,7 +Z2|13,4,5,6,7 − Z2|14,3,5,6,7

− s23(Z1243,5,6,7 +Z1423,5,6,7) + s24(Z1234,5,6,7 + Z1324,5,6,7)

+ km2 (Zm
12,34,5,6,7 − Z

m
213,4,5,6,7 +Z

m
214,3,5,6,7) (A.34)

+
[
s25(Z125,34,6,7 − Z3125,4,6,7 + Z4125,3,6,7) + (5↔ 6, 7)

]
,

Em
1|2|3,4,5,6,7 = Z

m
2|1,3,4,5,6,7 +

[
km3

{
Z2|13,4,5,6,7 − kp2Z

p
213,4,5,6,7

}
+ (3↔ 4, 5, 6, 7)

]

+ kp2Z
pm
12,3,4,5,6,7 +

[
s23

{
Zm

123,4,5,6,7 − km4 Z4123,5,6,7 − km5 Z5123,4,6,7

− km6 Z6123,4,5,7 − km7 Z7123,4,5,6

}
+ (3↔ 4, 5, 6, 7)

]
,

and integration-by-parts identities lead to the compact representations (6.22) or (6.23).

The above GEIs, in turn, will be used as input in the monodromy-variation equations

to bootstrap the eight-point shuffle-symmetric functions.
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A.3. Eight points

In a similar fashion, it is possible to find all the solutions to the scalar shuffle-symmetric

functions from the monodromy variations (4.13) using various change-of-basis identities

such as (I.A.21). A long but straightforward analysis leads to,

Z12345,6,7,8 = −∂V3(1, 2, 3, 4, 5) , (A.35)

Z123,456,7,8 = −∂V1(1, 2, 3)V2(1, 4, 5, 6)− ∂V2(4, 1, 2, 3)V1(1, 5, 6)

+ ∂V2(6, 1, 2, 3)V1(1, 4, 5)− ∂V3(4, 5, 1, 2, 3) + ∂V3(4, 6, 1, 2, 3)

+ ∂V3(6, 4, 1, 2, 3)− ∂V3(6, 5, 1, 2, 3) ,

Z1234,56,7,8 = −∂V2(1, 2, 3, 4)V1(1, 5, 6) + ∂V3(6, 1, 2, 3, 4)− ∂V3(5, 1, 2, 3, 4) ,

Z123,45,67,8 = −∂V1(1, 2, 3)V1(1, 4, 5)V1(1, 6, 7) + ∂V2(5, 1, 2, 3)V1(1, 6, 7)

− ∂V2(6, 1, 2, 3)V1(1, 4, 5)− ∂V2(4, 1, 2, 3)V1(1, 6, 7) + ∂V2(7, 1, 2, 3)V1(1, 4, 5)

+ ∂V3(4, 7, 1, 2, 3)− ∂V3(4, 6, 1, 2, 3) + ∂V3(5, 6, 1, 2, 3)− ∂V3(5, 7, 1, 2, 3)

+ ∂V3(7, 4, 1, 2, 3)− ∂V3(6, 4, 1, 2, 3) + ∂V3(6, 5, 1, 2, 3)− ∂V3(7, 5, 1, 2, 3) ,

Z12,34,56,78 = g
(1)
12 V1(1, 3, 4)V1(1, 5, 6)V1(1, 7, 8)

− V1(1, 3, 4)V1(1, 5, 6)∂V1(7, 1, 2) + V1(1, 3, 4)V1(1, 5, 6)∂V1(8, 1, 2)

− V1(1, 3, 4)V1(1, 7, 8)∂V1(5, 1, 2)− V1(1, 5, 6)V1(1, 7, 8)∂V1(3, 1, 2)

+ V1(1, 5, 6)V1(1, 7, 8)∂V1(4, 1, 2) + V1(1, 3, 4)V1(1, 7, 8)∂V1(6, 1, 2)

− V1(1, 3, 4)∂V2(5, 7, 1, 2) + V1(1, 3, 4)∂V2(5, 8, 1, 2) + V1(1, 3, 4)∂V2(6, 7, 1, 2)

− V1(1, 3, 4)∂V2(6, 8, 1, 2)− V1(1, 3, 4)∂V2(7, 5, 1, 2) + V1(1, 3, 4)∂V2(7, 6, 1, 2)

+ V1(1, 3, 4)∂V2(8, 5, 1, 2)− V1(1, 3, 4)∂V2(8, 6, 1, 2)− V1(1, 5, 6)∂V2(3, 7, 1, 2)

+ V1(1, 5, 6)∂V2(3, 8, 1, 2) + V1(1, 5, 6)∂V2(4, 7, 1, 2)− V1(1, 5, 6)∂V2(4, 8, 1, 2)

− V1(1, 5, 6)∂V2(7, 3, 1, 2) + V1(1, 5, 6)∂V2(7, 4, 1, 2) + V1(1, 5, 6)∂V2(8, 3, 1, 2)

− V1(1, 5, 6)∂V2(8, 4, 1, 2)− V1(1, 7, 8)∂V2(3, 5, 1, 2) + V1(1, 7, 8)∂V2(3, 6, 1, 2)

+ V1(1, 7, 8)∂V2(4, 5, 1, 2)− V1(1, 7, 8)∂V2(4, 6, 1, 2)− V1(1, 7, 8)∂V2(5, 3, 1, 2)

+ V1(1, 7, 8)∂V2(5, 4, 1, 2) + V1(1, 7, 8)∂V2(6, 3, 1, 2)− V1(1, 7, 8)∂V2(6, 4, 1, 2)

− ∂V3(3, 5, 7, 1, 2)+ ∂V3(3, 5, 8, 1, 2) + ∂V3(3, 6, 7, 1, 2)− ∂V3(3, 6, 8, 1, 2)

− ∂V3(3, 7, 5, 1, 2)+ ∂V3(3, 7, 6, 1, 2) + ∂V3(3, 8, 5, 1, 2)− ∂V3(3, 8, 6, 1, 2)

+ ∂V3(4, 5, 7, 1, 2)− ∂V3(4, 5, 8, 1, 2)− ∂V3(4, 6, 7, 1, 2) + ∂V3(4, 6, 8, 1, 2)
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+ ∂V3(4, 7, 5, 1, 2)− ∂V3(4, 7, 6, 1, 2)− ∂V3(4, 8, 5, 1, 2) + ∂V3(4, 8, 6, 1, 2)

− ∂V3(5, 3, 7, 1, 2)+ ∂V3(5, 3, 8, 1, 2) + ∂V3(5, 4, 7, 1, 2)− ∂V3(5, 4, 8, 1, 2)

− ∂V3(5, 7, 3, 1, 2)+ ∂V3(5, 7, 4, 1, 2) + ∂V3(5, 8, 3, 1, 2)− ∂V3(5, 8, 4, 1, 2)

+ ∂V3(6, 3, 7, 1, 2)− ∂V3(6, 3, 8, 1, 2)− ∂V3(6, 4, 7, 1, 2) + ∂V3(6, 4, 8, 1, 2)

+ ∂V3(6, 7, 3, 1, 2)− ∂V3(6, 7, 4, 1, 2)− ∂V3(6, 8, 3, 1, 2) + ∂V3(6, 8, 4, 1, 2)

− ∂V3(7, 3, 5, 1, 2)+ ∂V3(7, 3, 6, 1, 2) + ∂V3(7, 4, 5, 1, 2)− ∂V3(7, 4, 6, 1, 2)

− ∂V3(7, 5, 3, 1, 2)+ ∂V3(7, 5, 4, 1, 2) + ∂V3(7, 6, 3, 1, 2)− ∂V3(7, 6, 4, 1, 2)

+ ∂V3(8, 3, 5, 1, 2)− ∂V3(8, 3, 6, 1, 2)− ∂V3(8, 4, 5, 1, 2) + ∂V3(8, 4, 6, 1, 2)

+ ∂V3(8, 5, 3, 1, 2)− ∂V3(8, 5, 4, 1, 2)− ∂V3(8, 6, 3, 1, 2) + ∂V3(8, 6, 4, 1, 2) .

The sheer size of the solution for Z12,34,56,78 can be traced back to the length of the

intermediate identity (I.A.21) used in its derivation. Fortunately, the combinatorics of such

solutions can be understood in terms of the multi-word rhomap (I.A.3), and an efficient

algorithm to generate them at arbitrary multiplicity will be provided below.

A.3.1. Vectorial shuffle-symmetric functions

The monodromy variation of Zm
1234,5,6,7,8 can be written in the canonical basis of GEIs as

DZm
1234,5,6,7,8 = Ω14E

m
1|234,5,6,7,8 −

[
km5 Ω45E1|2345,6,7,8 + (5↔ 6, 7, 8)

]

= Ω14V2(1, 2, 3, 4)ℓ
m + km2 Ω14∂V2(2, 3, 4, 1) (A.36)

− km3 Ω14

(
∂V2(3, 2, 4, 1) + ∂V2(3, 4, 2, 1)

)
+ km4 Ω14∂V2(4, 3, 2, 1)

+
[
km5

(
Ω14V2(1, 2, 3, 4)g

(1)
15 − Ω45V3(1, 2, 3, 4, 5)

)
+ (5↔ 6, 7, 8)

]
.

Note that there is no linear combination of ∂2V2(i, j, k, l)-functions that integrates to

Ω14∂V2(2, 3, 4, 1) as can be checked using D∂2V2(i, j, k, l) = 2Ωli∂V2(i, j, k, l). However,

the integration of Ω14V2(1, 2, 3, 4)ℓ
m produces correction terms since

D(−∂V2(1, 2, 3, 4)ℓ
m) = Ω14V2(1, 2, 3, 4)ℓ

m + ∂V2(1, 2, 3, 4)

8∑

j=2

Ω1jk
m
j . (A.37)

By adding and subtracting the sum on the right-hand side prior to integration produces

corrections to the other terms ∼ kmi . For example, the new km2 terms can be “integrated”

as
∫ (

Ω14∂V2(2, 3, 4, 1)− Ω12∂V2(1, 2, 3, 4)
)
=

1

2

(
∂2V2(1, 4, 3, 2) + ∂2V2(2, 1, 3, 4) (A.38)

+ ∂2V2(2, 3, 1, 4) + ∂2V2(1, 2, 3, 4)
)
.
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Repeating the same steps as in the previous analyses yields,

Zm
1234,5,6,7,8 = −ℓ

m∂V2(1, 2, 3, 4) + km4 ∂2V2(1, 2, 3, 4) (A.39)

+
1

2
km2

[
∂2V2(1, 4, 3, 2) + ∂2V2(2, 1, 3, 4) + ∂2V2(2, 3, 1, 4) + ∂2V2(1, 2, 3, 4)

]

−
1

2
km3

[
∂2V2(1, 4, 2, 3) + ∂2V2(3, 4, 2, 1) + ∂2V2(4, 1, 2, 3)− ∂2V2(1, 2, 3, 4)

]

−
[
km5

(
∂V2(1, 2, 3, 4)g

(1)
15 + ∂V3(5, 1, 2, 3, 4)

)
+ (5↔ 6, 7, 8)

]
,

which can be rewritten as,

Zm
1234,5,6,7,8 = −ℓ

m∂V2(1, 2, 3, 4)−
1

2
km1 ∂2V2(1, 2, 3, 4) +

1

2
km4 ∂2V2(1, 2, 3, 4)

+
1

2
km2

[
∂2V2(1, 4, 3, 2) + ∂2V2(2, 1, 3, 4) + ∂2V2(2, 3, 1, 4)

]

−
1

2
km3

[
∂2V2(1, 4, 2, 3) + ∂2V2(3, 4, 2, 1) + ∂2V2(4, 1, 2, 3)

]

+
[
km5 V2(1, 2, 3, 4)(g

(2)
15 − g

(2)
45 ) + (5↔ 6, 7, 8)

]
(A.40)

after using the weight-four version of (A.25),

∂V2(1, 2, 3, 4)g
(1)
15 +∂V3(5, 1, 2, 3, 4) = −V2(1, 2, 3, 4)(g

(2)
15 −g

(2)
45 )−

1

2
∂2V2(1, 2, 3, 4) . (A.41)

The expression for Zm
123,45,6,7,8 can be obtained similarly and a long analysis leads to

Zm
123,45,6,7,8 = −ℓ

m
(
V1(1, 4, 5)∂V1(1, 2, 3) + ∂V2(4, 1, 2, 3)− ∂V2(5, 1, 2, 3)

)
(A.42)

+
1

2

[
km1

(
−V1(3, 4, 5)∂

2V1(1, 2, 3) + ∂2V2(1, 2, 3, 4)− ∂2V2(1, 2, 3, 5)
)
+ (1↔ 3)

]

+
1

2
km2

(
V1(3, 4, 5)∂

2V1(2, 1, 3)− ∂2V2(2, 1, 3, 4) + ∂2V2(2, 1, 3, 5)

+ V1(1, 4, 5)∂
2V1(2, 3, 1)− ∂2V2(2, 3, 1, 4) + ∂2V2(2, 3, 1, 5)

)

+
[
km4

(
g
(1)
14 ∂V2(5, 1, 2, 3)− ∂V1(1, 2, 3)∂V1(1, 5, 4) + ∂V3(5, 4, 1, 2, 3)

−
1

2

(
V1(3, 4, 5)∂

2V1(1, 2, 3) + ∂2V2(1, 2, 3, 5) + ∂2V2(1, 2, 4, 3)

+ ∂2V2(1, 4, 2, 3) + ∂2V2(3, 2, 1, 4)
))
− (4↔ 5)

]

+
[
km6

(
g
(2)
46 V2(1, 2, 3, 4)− g

(2)
16 V1(1, 3, 2)V1(1, 4, 5)

− g
(2)
36 V1(1, 2, 3)V1(3, 4, 5)− g

(2)
56 V2(1, 2, 3, 5)

)
+ (6↔ 7, 8)

]
.

Solving the monodromy variation of Zm
12,34,56,7,8 along similar lines yields a long formula

which we suppress (it can be downloaded in [33]). This completes the bootstrap procedure

for the vectorial shuffle-symmetric eight-point functions. From the above solutions we can

derive the eight-point vectorial GEIs which in turn allow to bootstrap the vectorial Z-

functions at nine points.
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A.3.2. Tensorial and refined functions

Given their sizes, the tensorial and refined shuffle-symmetric functions will be omitted.

Their explicit expansions are available to download as plain text files in [33], and are ready

to be used with FORM [32].

A.4. A closed formula for scalar shuffle-symmetric functions

The solutions for the scalar shuffle-symmetric functions can be generated via a conjec-

tural closed formula. This empirical observation is based on the word-invariant map I(. . .)

defined in the appendix I.A and is given by

ZA,B,C,D = −A⊙ I(∅|B,C,D) , (A.43)

where the ⊙ operation is defined by

aA⊙ (B,C,D,E) ≡ (BaA|aC, aD, aE)V , (A.44)

(A|B,C,D)V ≡ ∂V|A|−2(A)V|B|−2(B)V|C|−2(C)V|D|−2(D) , (A.45)

with the understanding that V0(i, j) ≡ 1 and ∂V−1(i) ≡ −1.

For example, let us consider Z123,45,67,8 = −123 ⊙ I(∅|45, 67, 8). A straightforward

application of the recursions in appendix I.A leads to,

−I(∅|45, 67, 8) = −(∅|67, 45, 8)− (6|45, 7, 8)− (64|5, 7, 8) + (65|4, 7, 8) (A.46)

+ (7|45, 6, 8) + (74|5, 6, 8)− (75|4, 6, 8)− (4|67, 5, 8)

− (46|7, 5, 8) + (47|6, 5, 8) + (5|67, 4, 8) + (56|7, 4, 8)− (57|6, 4, 8) .

Now, using the definition (A.44) yields

−123⊙ I(∅|45, 67, 8) = −(123|167, 145, 18)V − (6123|145, 17, 18)V − (64123|15, 17, 18)V

+ (65123|14, 17, 18)V + (7123|145, 16, 18)V + (74123|15, 16, 18)V

− (75123|14, 16, 18)V − (4123|167, 15, 18)V − (46123|17, 15, 18)V

+ (47123|16, 15, 18)V + (5123|167, 14, 18)V + (56123|17, 14, 18)V

− (57123|16, 14, 18)V . (A.47)

Finally, the definition (A.45) leads to the correct expression for Z123,45,67,8 from (A.35).
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Two comments are in order. First, one may notice that the combinatorics of the permu-

tations in (A.47) is closely related to the change-of-basis identity expressing −C3|12,45,67,8

in a basis of C1|A,B,C originally derived in [23]. For instance,

−C3|12,45,67 = −C1|23,45,67 − C1|236,7,45 − C1|2364,5,7 (A.48)

+ C1|2365,4,7 + C1|237,6,45 + C1|2374,5,6

− C1|2375,4,6 − C1|234,5,67 − C1|2346,7,5

+ C1|2347,6,5 + C1|235,4,67 + C1|2356,7,4

− C1|2357,6,4 .

Comparing the expressions (A.47) and (A.48) we see that C1|23A,B,C → (A123, 1B, 1C, 18)

maps one expression into the other.

Second, the right-hand side of the algorithm ZA,B,C,D = −A⊙I(∅|B,C,D) is not man-

ifestly symmetric under exchange of the words A ↔ B,C,D. Therefore, it must generate

identities among the various functions Vn(. . .) and their generalizations ∂Vn(. . .). Consider,

for example, the five-point function Z1,23,4,5 and evaluate it in the two inequivalent order-

ings using the algorithm (A.43); we see that −23⊙ I(∅|1, 4, 5) and −1⊙ I(∅|23, 4, 5) give

rise to

Z23,1,4,5 = −∂V0(2, 3) , Z1,23,4,5 = V1(1, 2, 3)− ∂V0(1, 2) + ∂V0(1, 3) , (A.49)

which are, of course, equal. A bit less obvious is the equality of both Z1,234,5,6 and Z234,1,5,6

under the algorithm (A.43), as this implies

V2(1, 2, 3, 4) = V1(1, 2, 3)∂V0(1, 4)− V1(1, 3, 4)∂V0(1, 2)− ∂V1(1, 2, 4) + ∂V1(1, 3, 2)

+ ∂V1(1, 3, 4)− ∂V1(1, 4, 2)− ∂V1(2, 3, 4) .

These observations imply that it is advantageous to write the expansion of the scalar GEIs

in a certain “canonical” order such as: E1|234,5,6 = Z1,234,5,6 + Z12,34,5,6 + Z123,4,5,6 +

Z412,3,5,6 −Z14,23,5,6 +Z143,2,5,6 since it takes the shortest form E1|234,5,6 = V2(1, 2, 3, 4).
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Appendix B. The Jacobi theta expansion of g(n)(z, τ)

In this appendix we will list, for convenience, the explicit expansions of the coefficients of

the Kronecker–Eisenstein series in terms of Jacobi theta functions for the first few cases.

Recall that the functions g(n)(z, τ) admit the following recursive expansion [14]

g(n)(z, τ) =
1

n

n∑

j=1

Ej(z, τ)g
(n−j)(z, τ) , g(1)(z, τ) ≡ E1(z, τ) , g(0)(z, τ) ≡ 1 , (B.1)

where Ej(z, τ) ≡ (−1)j
(
Gj(τ)− Ej(z, τ)

)
and En+1(z, τ) = (−1)n 1

n!
∂n+1 log θ1(z, τ) with

Gj(τ) denoting the Eisenstein series (2.7). It is a matter of tedious algebra to get:

g(1)(z, τ) =
θ
(1)
1 (z, τ)

θ1(z, τ)
(B.2)

g(2)(z, τ) =
1

2!

θ
(2)
1 (z, τ)

θ1(z, τ)
−

1

3!

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

g(3)(z, τ) =
1

3!

θ
(3)
1 (z, τ)

θ1(z, τ)
−

1

3!

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

g(1)(z, τ)

g(4)(z, τ) =
1

4!

θ
(4)
1 (z, τ)

θ1(z, τ)
−

1

3!

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

g(2)(z, τ)−
1

5!

θ
(5)
1 (0, τ)

θ
(1)
1 (0, τ)

g(5)(z, τ) =
1

5!

θ
(5)
1 (z, τ)

θ1(z, τ)
−

1

3!

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

g(3)(z, τ)−
1

5!

θ
(5)
1 (0, τ)

θ
(1)
1 (0, τ)

g(1)(z, τ) .

The surprisingly simple pattern above arises from non-trivial cancellations such as

G4 −
1

2
G2

2 = −
1

30

θ
(5)
1 (0, τ)

θ
(1)
1 (0, τ)

, 8G6 − 6G2G4 +G3
2 = −

1

105

θ
(7)
1 (0, τ)

θ
(1)
1 (0, τ)

, (B.3)

where the expansion of the Eisenstein series in terms of Jacobi theta functions reads [34]

G2(τ) = −
1

3

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

, G4(τ) = −
1

30

θ
(5)
1 (0, τ)

θ
(1)
1 (0, τ)

+
1

18

(
θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

)2

(B.4)

G6(τ) = −
1

840

θ
(7)
1 (0, τ)

θ
(1)
1 (0, τ)

+
1

120

θ
(5)
1 (0, τ)

θ
(1)
1 (0, τ)

θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

−
1

108

(
θ
(3)
1 (0, τ)

θ
(1)
1 (0, τ)

)3

.

B.1. Laurent series expansion of the g(n)(z, τ)-functions

The Laurent expansion of g(n)(z, τ) follows from (B.1) and [35] (note
(
p
0

)
≡ 1)

En(z, τ) =
1

zn
+ (−1)n

∞∑

m=1

(
2m− 1

n− 1

)
G2m(τ)z2m−1 . (B.5)
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More explicitly,

g(1)(z, τ) =
1

z
−G2z −G4z

3 −G6z
5 +O(z7) (B.6)

g(2)(z, τ) = −G2 +
1

2

(
G2

2 − 5G4

)
z2 +

(
G2G4 −

7

2
G6

)
z4 +O(z6)

g(3)(z, τ) =
1

2

(
G2

2 − 5G4

)
z +

1

2

(
5G2G4 −

35

3
G6 −

1

3
G3

2

)
z3 +O(z5)

g(4)(z, τ) = −G4 +
1

2

(
5G2G4 −

35

3
G6 −

1

3
G3

2

)
z2 +O(z4) .

Appendix C. String correlators and GEIs

For convenience, in this appendix we quote from part III of this series of papers a repre-

sentation of the one-loop correlators utilizing GEIs for n = 4, 5, 6, 7, as they are frequently

referred to in this work.

K4(ℓ) = C1|2,3,4E1|2,3,4 (C.1)

K5(ℓ) = Cm
1|2,3,4,5E

m
1|2,3,4,5 +

[
C1|23,4,5s23E1|23,4,5 + (2, 3|2, 3, 4, 5)

]
, (C.2)

K6(ℓ) =
1

2
Cmn

1|2,3,4,5,6E
mn
1|2,3,4,5,6 −

[
P1|2|3,4,5,6E1|2|3,4,5,6 + (2↔ 3, . . . , 6)

]

+
[
s23C

m
1|23,4,5,6E

m
1|23,4,5,6 + (2, 3|2, 3, . . . , 6)

]
(C.3)

+
([

s23s45C1|23,45,6E1|23,45,6 + cyc(3, 4, 5)
]
+ (6↔ 5, 4, 3, 2)

)

+
([

s23s34C1|234,5,6E1|234,5,6 + cyc(2, 3, 4)
]
+ (2, 3, 4|2, 3, . . . , 6)

)

K7(ℓ) =
1

6
Cmnp

1|2,3,4,5,6,7E
(s)mnp
1|2,3,4,5,6,7 (C.4)

+
1

2
Cmn

1|23,4,5,6,7E
(s)mn
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

+
[
Cm

1|234,5,6,7E
(s)m
1|234,5,6,7 + Cm

1|243,5,6,7E
(s)m
1|243,5,6,7

]
+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[
Cm

1|23,45,6,7E
(s)m
1|23,45,6,7 + cyc(2, 3, 4)

]
+ (6, 7|2, 3, 4, 5, 6, 7)

+
[
C1|2345,6,7E

(s)
1|2345,6,7 + perm(3, 4, 5)

]
+ (2, 3, 4, 5|2, 3, 4, 5, 6, 7)

+
[
C1|234,56,7E

(s)
1|234,56,7 + C1|243,56,7E

(s)
1|243,56,7 + cyc(5, 6, 7)

]
+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[
C1|23,45,67E

(s)
1|23,45,67 + cyc(4, 5, 6)

]
+ (3↔ 4, 5, 6, 7)

− Pm
1|2|3,...,7E

(s)m
1|2|3,...,7 + (2↔ 3, 4, 5, 6, 7)

− P1|23|4,...,7E
(s)
1|23|4,...,7 + (2, 3|2, 3, 4, 5, 6, 7)

−
[
P1|2|34,5,6,7E

(s)
1|2|34,5,6,7 + cyc(2, 3, 4)

]
+ (2, 3, 4|2, 3, 4, 5, 6, 7) .
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By the symmetric role of GEIs and BRST (pseudo-)invariants, these representations man-

ifest the double-copy structure of one-loop open-superstring amplitudes [4]. Other proper-

ties of one-loop correlators including locality are manifest in various alternative represen-

tations given in part III.
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