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In this final part of a series of three papers, we will assemble supersymmetric expressions for
one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single
valued. A key driving force in this construction is the generalization of a so far unnoticed
property at tree-level; the correlators have the symmetry structure akin to Lie polynomi-
als. One-loop correlators up to seven points are presented in a variety of representations
manifesting different subsets of their defining properties. These expressions are related via
identities obeyed by the kinematic superfields and worldsheet functions spelled out in the
first two parts of this series and reflecting a duality between the two kinds of ingredients.

Interestingly, the expression for the eight-point correlator following from our method
seems to capture correctly all the dependence on the worldsheet punctures but leaves
undetermined the coefficient of the holomorphic Eisenstein series G4. By virtue of chiral

splitting, closed-string correlators follow from the double copy of the open-string results.
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1. Introduction

This is the third part of a series of papers [1] towards the derivation of one-loop correla-
tors of massless open- and closed-superstring states using techniques from the pure-spinor
formalism [2,3]. We often refer to section and equation numbers from part I & part IT and
then prefix these numbers by the corresponding roman numerals I and II. The main result
of this paper is the assembly of local one-loop correlators in pure-spinor superspace [4] up

to eight points. This will be done by combining two main ingredients:

1. local kinematic building blocks introduced in part I that capture the essentials of the
pure-spinor zero-mode saturation rules and transform covariantly under the BRST
charge

2. worldsheet functions introduced in part II capturing the singularities generated by
OPE contractions among vertex operators. In particular, their monodromies as the
vertex positions are moved around the genus-one cycles also follow a notion of “co-
variance”. More precisely, the monodromies are described by a system of equations
that share the same properties of the so-called BRST invariants and naturally lead to

a duality between kinematics and worldsheet functions.

The fundamental guiding principle that will act as the recipe to combine these two in-
gredients will correspond to the one-loop generalization of a symmetry property obeyed
by the analogous tree-level correlators derived in [5] and reviewed in section 2.1 below.
More precisely, the tree-level correlators are composed from products of Lie-symmetric
kinematic building blocks Via3. , and shuffle-symmetric worldsheet functions Zi23.. , =
(212223 - - .zp_l,p)_l. Given the similar structure between these symmetries and the com-
posing elements in a theorem of Ree concerning Lie polynomials [6], we dubbed the corre-
lators obtained in this way as having a Lie-polynomial form. We will see that this line of
reasoning leads to a key assumption of this paper, that the local n-point one-loop correla-
tors of the open superstring can be written as

n—4 1

Kn(l) = Z I (VAlT’Zzl’:::,er:H Zpeme o+ [12...n|As, ..., AT+4D + corrections. (1.1)
r=0 "'

Definitions of the kinematic building blocks 77" =~ and the worldsheet functions

cArya
mi...m
ZA

A, can be found in part I and part II, respectively'. The notation for the permu-

tations in terms of partitions of words addresses the kind of permutations resulting from

1 The worldsheet functions can also be downloaded from [7] as text files in FORM [8] format.
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the interplay between shuffles and Lie symmetries, and is explained in the appendix A. As
discussed in part II, a beneficial side effect of requiring shuffle symmetry for the worldsheet
functions is that the resulting functions automatically contain non-singular pieces that are
invisible to an OPE analysis. Lie symmetries in turn refer to the generalized Jacobi identi-
ties satisfied by the kinematic building blocks, in lines with the Bern—Carrasco—Johansson
duality between color and kinematics [9].

The notions of locality, BRST invariance and single-valuedness will then lead to a
discussion for why the “+ corrections” are needed starting at n > 7 points. In section 3,
a multitude of representations for the correlators with n = 4,5,6,7 (including the “4
corrections” at n = 7) will be given that expose different subsets of their properties. While
the n = 8 correlator following from the proposal (1.1) satisfies many non-trivial constraints,
it fails to be BRST invariant by terms proportional to the holomorphic Eisenstein series
Gy4. In the future, we expect to address this challenging leftover problem in order to extend
our results to arbitrary numbers of points.

Section 4 is dedicated to manifesting the modular properties of the open- and closed-
string correlators by integrating out the loop momentum. We will relate a double-copy
structure of the open-string correlators [10] to the low-energy limit of the closed-string
amplitudes. This incarnation of the duality between kinematics and worldsheet functions
is checked in detail up to multiplicity seven, and we describe the problems and perspectives

in the quest for an n-point generalization at the end of section 4.

2. One-loop correlators of the open superstring: general structure

In this section, we set the stage for assembling one-loop correlators K, (¢) from the system
of kinematic building blocks and worldsheet functions introduced in part I and II. By their
definition in section 1.2.2; correlators IC,,(¢) carry the kinematic dependence of one-loop

open-string amplitudes among n massless states

AnZthOp/ drdzy dzs ... dz, /dD€ Z,.(€)] (Kn(0)), (2.1)

top Diop

with (...) denoting the zero-mode integration prescription of the pure-spinor formalism
[2]. The integration domains Dy, for the modular parameter 7 and vertex positions z;

are tailored to the topologies of a cylinder or a Mdobius strip with associated color factors
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Ciop, see [11] for details. The integration over loop momenta ¢ is an integral part of the
chiral-splitting method [12,13,14], which allows to derive massless closed-string one-loop

amplitudes from an integrand of double-copy form
M,, :/ T d*2od?23 ... d*z, /dDz 1T, ()2 (K (0)) (K (—0)), (2.2)
_F

with F denoting the fundamental domain for inequivalent tori w.r.t. the modular group.

Both of (2.1) and (2.2) involve the universal one-loop Koba—Nielsen factor

Inw) = exp (Z Sij log 91(2’@‘,7‘) + Z Z](E . kj> + i£2> , (23)

i<j j=1

with lightlike external momenta k;, where we use the shorthands
Sij = k’l : k‘j y Zij =Z; — Zj (24)

and conventions where 2o/ = 1 for open strings and %/ =1 for closed ones.

In trying to calculate multiparticle one-loop amplitudes using the pure-spinor prescrip-
tion (1.2.4), one soon realizes that most efforts tend to be hampered by the complicated
nature of the b-ghost (I1.2.5). This difficulty, however, motivates a less direct approach
which illuminates the structure of the answer in a somewhat unexpected way; the organiz-

ing principle will be drawn from the tree-level correlators of [5].

2.1. Lessons from tree-level correlators

Recall that n-point open-string tree amplitudes in the pure-spinor formulation require the

evaluation of the following n-point correlation function [2],

(V1) [T Vi)V o) Va0 aee = 435 [T 2l (25)

see (1.2.6) and (I1.2.7) for the vertex operators V; and U;. The definition of the tree-level

correlators K¢ on the right-hand side is analogous to that of one-loop correlators /C,, (£),

cf. (I.2.28). The idea is to strip off the universal factors of |z;;|** from the path integral,
i.e. the tree-level analogue of the one-loop Koba—Nielsen factor (2.3). The computation of
the correlators K% boils down to using the CFT rules of the pure-spinor formalism to

perform OPE contractions among the vertex operators in (2.5).
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One of the crucial steps in the calculation of [5] was showing that the multiparticle
vertex operators Vp [15] could be used as the fundamental building blocks of the correlator;

for example, in terms of the function Z%°® defined by

ree 1
2;23...p = ) (26)

212223 - -« Zp—1,p

we have

Vi(21)Us(22) = Vi Z15°° (2.7)
Vi(21)Ua(22)Us(23) =2 Vigg 2155 + Vi3 2155,

where the symbol 2 is a reminder that the above relations are valid up to total derivatives
and BRST-exact quantities. As reviewed in section I1.4.1, the accompanying functions
exhibit shuffle symmetry such as Z{5¢ + Zie¢ = (0, Zite — Ziee = 0 and ZW¢ + Z8¢ +
Zggef = 0 dual to the Lie symmetries Vio = —V51, Visg = —Vh13 and Vigz + Vazy +
Va12 = 0, cf. (1.3.25). When combined with (2.7), these symmetries lead to the following
generalization:

n

Vile) [[Uaiza) = 30 Via2ii®, 2555 =0, YAB#0,  (28)
i=1 |Al=n

which eventually gives rise to the solution found in [5]. As detailed in section 1.3.1, the
summation range |A| = n in (2.8) refers to the n! words A formed by permutations of

aias...aja with |[A| =n.
At this point one may realize that the right-hand side of (2.8) has the structure of
a Lie polynomial [16,6] and that the expressions for the n-point correlators at tree level
obtained in [5] can be written in terms of their products. More precisely, K is given by
two copies of (2.8) with n—2 deconcatenations AB = 23...n—2 and an overall permutation

over (n—3)! letters for a total of (n—2)! terms:

Ko = > (ViaZi5®) (Vao1,8255 5) Vo + perm(23...n—2). (2:9)
AB=23...n—2

For example (Z**°¢ = 1),

Icgree = V1V2V3 y Kflree = VlQdeeVZ%V4 + %%QZ;)E%XQ ’ (2‘10)
K5 = (Vs 2155 + Visa 2155 VaVs + Vi (Vazs 2555 + Vasa Z155) Vs
+ (Vi2Z215°) (Vas Z57°) Vs + (VisZ2157°) (Vae Z55°°) Vs -
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Note that Vio3 2155 + V132 2155 in (2.10) is symmetric in 1,2, 3 even though only two out
of 3! permutations are spelled out. This is a consequence of the Lie-polynomial structure of
the correlator?; the right-hand side of (2.8) is permutation symmetric in 1, a1, as, . . ., a4
even though only the weaker symmetry in ay, az, ..., a4 is manifest.

The Lie-polynomial structure of the building blocks in the tree-level correlator (2.9)

motivates us to search for a similar organization of the one-loop correlators.

2.2. Assembling one-loop correlators

Let us summarize what we have seen in part I and II in order to better understand the mo-

tivation behind the general form of the one-loop correlators I\, (£) to be proposed shortly.

e In section 1.3, we reviewed the definition of local superfields that satisfy generalized
Jacobi identities and, in section 1.4, we showed how they can be assembled in several
classes of local building blocks.

e In section II.4, we constructed functions composed of the expansion coefficients of the
Kronecker—Eisenstein series that obey shuffle symmetries when the vertex insertion

points are permuted.

Let us thread the above points together in view of the tree-level structure discussed above.
Firstly, since the short-distance singularities within the correlator are independent on the
global properties of the Riemann surface, the shuffie symmetries of the worldsheet functions
should also be a property of the worldsheet functions at one loop. And secondly, the shuffle
symmetry obeyed by the functions are the driving force in the Lie-polynomial organization
of the tree-level correlators with local kinematic building blocks. When taken together these
points suggest that the superfields and worldsheet functions of one-loop correlators have
the same symmetry structure of Lie polynomials. This realization will lead to a beautiful

organization of superstring one-loop correlators.

2.3. The Lie-polynomial structure of one-loop correlators

The additional zero modes at genus one, in particular the availability of loop momenta,
allow for a significantly richer system of kinematic building blocks as compared to the tree-
level kinematics V4 4V,,—1 gV, in (2.9). Also their accompanying worldsheet functions must

accommodate the different OPE singularities and powers of loop momentum characteristic

2 This follows from the identity Yoa ﬁZ AVa=> . ZigVip [6].
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to each zero-mode saturation pattern, see e.g. (1.3.23) and (1.3.24). The corresponding
Lie polynomials will therefore differ with respect to these features but will preserve their
mathematical characterization as sums over products of shuffle- and Lie-symmetric objects.

To exemplify and to give a preview of what is ahead, the four-, five-, and six-point
correlators at one loop will be written as products of local kinematic building blocks T;"fg;j”

(cf. sections 1.4.1 to 1.4.3) and worldsheet functions (cf. section 11.4.4) as follows,

Ka(l) =ViT2 3421234, (2.11)
Ks(0) =ViT3s 4 5219 545 + [Vi2T5.4,5 212,345 + (2 > 3,4,5)]

+ [ViTos,a521,23.45 + (2,3(2,3,4,5)]
Ke(0) = %‘GT27737?4,5,6Z{727?3,4,5,6

+ [VioT3 5 6215 3456 + (2 ¢ 3,4,5,06)]

+ [V1T277§,4,5,GZ{723,4,5,6 +(2,32,3,4,5,6)]

+ [VizsTu5.62123,4,5,6 + ViseTu5.62132,4,5,6 + (2,3]2,3,4,5,6)]

+ [(Vi2T34,5.6212,34,5,6 + cye(2,3,4)) + (2,3,4]2,3,4,5,6)]

+ [(ViTo34,5621,2,34,56 + cyc(3,4,5)) + (2 4> 3,4,5,6)]

+ [ViTos4,5,621,234,5,6 + ViToas,5.621 243,56 + (2,3,4/2,3,4,5,6)] ,

where m,n,p,... = 0,1,...,9 denote Lorentz-vector indices. As in part I and II, the
separation of words A, B, ... through a comma in a subscript indicates that the parental
object is symmetric under A <+ B, e.g. Ta,p,c = TB,a,c = Ta,c,B- The generalized Jacobi
symmetries of Vp then apply to all of A, B, ..., e.g. Tosza 56 + cyc(2,3,4) = 0. Moreover,
+(a1,...,apla1, ..., aptq) refers to summing over all the (p;q) subsets of a1,...,ap4+q
involving p elements a; in the place of aq,...,ap.

The Lie-polynomial form of the correlator (2.11) is also convenient for obtaining dif-
ferent representations. For example, after rewriting > , ViaZia = ) AB Viada BZip one

can use (1.5.2) to obtain the trading identity,
S ViaZia =Y MiaZl . (2.12)
A A

Shuffle symmetric Berends—Giele currents Mp and Lie-symmetric worldsheet functions

ZS) are defined in (I.5.1) and (I1.4.22), respectively, and (2.12) can be easily generalized
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to any number of words. This kind of manipulation played a key role in expressing the
tree-level correlator in terms of an (n—3)! basis of worldsheet functions in [5].

We will be concerned with the particulars of the expressions (2.11) in section 3; for the
moment we note that their growing number of terms calls for a more convenient notation. In
the subsequent discussion we will distill the combinatorial properties of these permutation

sums and propose an intuitive notation for them.

2.8.1. Stirling cycle permutation sums

In order to grasp the combinatorics of (2.11), note that the symmetries of the Lie polyno-
mial ) , VaZ4 imply that only (p—1)! permutations are independent for words of length p.
This is true for each word A; in terms such as V4, T4, a5, 4,24, ,4,, 45,4, For an n-point cor-
relator these words A; must encompass all particle labels, that is | A |4+|Az2|+|As|+]A4] = n.
Therefore the sums of Va,Ta, a;,4,24,,4, 45,4, il the correlators of (2.11) can be inter-
preted as being all the permutations of n labels that are composed of 4 cycles, or p cycles
in the general case of tensorial Va, T)7' 7> , . This is the characterization of the Stirling
cycle numbers® [’Iﬂ

Using the above interpretation, the scalar building blocks in (2.11) are generated by

the following combinatorial notation

Kn = VATB,C,DZA,B,C,D =+ [12 .. .n\A, B, C, D} , (2.13)

(Z) ‘VATB,C,D

where -1-[12 ...nlA, B, C, D} indicates a sum over the Stirling cycle permutations of the
set {1,2,...,n}, defined in the appendix A. As a consequence of this definition, each term
of (2.13) has leg one as the first letter of A, cf. (A.3).

Similarly, the vector contribution to Ks5(¢) and Kg(¢) in (2.11) follows the same com-
binatorial pattern as the scalars and its contribution is captured by extending the Stirling
cycle permutations to five slots in a similar manner,

Kn(0) |y, e =VuTgoppZiBope+[12...n|/A, B,C, D, E]. (2.14)

B,C,D,E

The generalization of the above sums to more slots is straightforward.

3 We are following the terminology and notation proposed in [17]; they are commonly known
as the Stirling numbers of the first kind.



2.3.2. Unrefined Lie polynomials

The Stirling cycle permutations allow for a straightforward generalization of the correlators

in (2.11) to multiplicities n > 4,

n—4
1 m m M. My
KO0 =" - (VA1TA;III,AZ+4ZAE,...,AM +[12...n|4y,. .., Ar+4}> : (2.15)
r=0

where the summand with » = 0 and r = 1 reproduces (2.13) and (2.14), respectively. The
reason for the superscript in IC%O)(E) will become clear below, and this is related to the

corrections in (1.1). Expanding the sum yields,

KO 0) = Va, Tay 45,4, Z a1 As A5, 4, + [12...0| A1, .., Ad] (2.16)
1 m m
tVaTa,, 424, a5 [12...0|Ay, ..., As]
1 mim mim
+ 5VAlTA21,...,2A62A11,A22,...,A6 + [12 s TL|A1, ) AG]
1 M. Mp—4 ~M71...Mp—4
+ (n_4)!VA1TA2”An ZAl:""An + [12"'n‘A17A27"'7An:| :

We will see in section 3 that (2.15) gives the correct form of the one-loop correlators up
to and including six points, i.e., K, (¢) = Kk (¢) for n < 6. By “correct” we mean that
the resulting correlators satisfy a number of requirements detailed in section 2.4, the most
stringent ones being BRST invariance and single-valuedness.

So the question to consider is whether the expression (2.16) provides the complete
answer for correlators with seven or more external states. Unfortunately this is not the
case; the explicit construction of the seven-point correlator indicates that the proposal
(2.16) needs to be amended by terms involving superfields with higher degrees of refinement
defined in section 1.4.4. This will be done below and leads to an expression for K7 that
passes all consistency checks. At eight points and beyond, however, the appearance of
Eisenstein series in the correlators cannot be determined by the methods in this work.
Hence, we will only propose an expression for g up to an unknown kinematic factor

multiplying G4 while completely fixing its dependence on the z;.
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2.3.3. Including refined building blocks

The reason why Kk (¢) in (2.16) cannot be the full expression for the one-loop correlator for
n > 7 is related to BRST invariance; it is not difficult to show that the seven-point instance
is not BRST invariant using the worldsheet functions discussed in part II. However, the
desired invariance can still be achieved by adding corrections containing refined superfields
Ja|B,c,p,r and their tensorial generalizations, cf. section 1.4.4. The patterns encountered
at multiplicities seven and eight suggest the following organization; the n-point correlator

contains contributions with varying degree d of refinement according to,

|25
Kpe@)y= Y (1)) (2.17)
d=0

The alternating minus sign in (2.17) is chosen for later convenience. The d = 0 contribution
is given by (2.15) for n > 4, while the first instance of refined corrections with d = 1 could

already appear in the six-point correlator,
/Cél)(g) = ViJo3,4,5,6221,3,4,5,6 T (2 ¢+ 3,4,5,6). (2.18)

However, as detailed in section II1.4.4.3, the accompanying functions Zj|; 3456 can be
chosen to vanish, i.e. Kél)(ﬁ) = 0. Therefore, the first non-vanishing contribution to (2.17)

with d = 1 occurs at seven points,

’Cgl)(g) =ViJ354567221,34567+ (24 3,4,5,6,7) (2.19)
+ [ViaJsja,5,672312,4,5,6,7 + Visdoja5.6,722)13.4,5,67 + (2,3(2,3,...,7)]
+ [Vidasjas.67 223114567 + (2,3]2,3,...,7)]
+ [(Vid2j34,5,6,7221,345,6,7 + cye(2,3,4)) + (2,3,4]2,3,...,7)],

see (I1.4.42) for the refined worldsheet functions Z4p,. .. Similarly, eight points give rise

to the first non-vanishing instance of d = 2,
’Cz(;z)(g) = V1J2314,5,6,7,8 Z2,3]1,4,5,6,7,8 T (2,3|2,3,4,5,6,7,8). (2.20)

These expressions generalize to n > 7 points at generic degree d of refinement as

n—4—2d

(d) _ § l mi...mp mi...m,
IC” (Z) r! (VAl JAZ:---aAd+1|Ad+2’~~~:Ar+4+2dZA2’~~~:Ad+1|A1’Ad+2’~~~:Ar+4+2d (2'21>
r=0

—+ (AQ, Ceey Ad+1|A2, Ceey Ar—|—4—|—2d)) —+ [12 .. .n\Al, RN Ar—|—4—|—2d]> .
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More explicitly, expanding the sum in (2.21) for the case d = 1 yields,

K(0) = (Va, T ay| as,... s B Ay, Ao dg + (A2 A, .0, Ag)) + [L...n|Ar,. .., Ag] (2.22)

A7ZZ|A1,A3,...,A7 + <A2<—>A3, .. .,A7)) + [1 .. .n\Al, .. .,A7]

geeey

—+ 5 (VA1 12127|LA3V~~,ASZZZ|LA1,A3,~~~,A8 + <A2<—>A3, RN Ag)) + [1 .. .n\Al, ceey Ag]

1

+ 7(71—6)' (VA1 lelz:?TZnZ;”21|'ATZ;€?MA7L -+ (AQHA;),, ceey An)) + [1 .. .n\Al, ceey An] .

The collection of KV (¢) withd = 0,1,..., 252 ] summarized by (2.17) makes up the bulk
of the open-string one-loop correlators and will be referred to as its Lie-series part. The
expressions (2.21) for Kcid (¢) with d > 1 furnish a large class of the corrections in (1.1).
We will see that up to and including eight points, the BRST variation of (2.17) is purely
anomalous (it is written in terms of the anomalous superfields Y, see section 1.4.3.1) and

it is natural to conjecture that this behavior is valid for arbitrary n.

2.3.4. BRST wvariation of the Lie-polynomial correlator

By BRST covariance of their kinematic building blocks in section 1.4, the () variations
of the above KLi¢(¢) boil down to ghost-number four superfields Va,Va, T4y, and
VAlyngS,...' As will be detailed in the next section, the coefficients of these ghost-number

four combinations read as follows in the simplest non-vanishing variations,

Lie m zm
—QK; (£>}V1V2T3 s = F2 200 3.4 51521 221,34,5152321 23,4, 5F52421,24,3,51525 21,25 3.4
Lie _inoamn m m
—QK&(O]yyvyry =k 215456 = k5 Zapnsass + 921251 3456+ (1 ¢ 3,4,5,6)]

—Q’C%iew)}vmwn I k3 215 3 4561531 2312,4,5,6—5322321,4,5,6+ | 534 212,34,5,6+ (45, 6)

—Q’C%iew)}VMTM I kY 2 34561523 21,234,5,6— 524 21,243,5,6+ | 521 221,34,5,6+ (145, 6)
L

—QK618(€>}V1V23T475’6 = k5321"93.4.5.6 — 22/1,3,4,5,6 T 23]1,2,4,5.,6 (2.23)

+ [8312231,4,5.6 — 521 Z321,4,56 + (1 ¢ 4,5,6)]

as well as

1

= 2195456 [Z2|1,3,4,5,6 +(2 <> 3,4,5, 6)} ) (2.24)

Lie
—QKg (E) ‘v1Y2,3,4,5,6 2
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where K% ¢(¢) already furnish the complete correlators K, (€). Note that we have dis-
regarded the vanishing of Z51 3456 for later convenience, and one can compactly ab-
sorb the Mandelstam invariants in (2.23) into the S[A, B] map defined in (1.5.13), e.g.
$312312,4,5,6 — $322321,4,5,6 = Z25[3,12],4,5,6- Based on these examples and analogous ob-
servations on QKLi¢(¢) for higher values of n, it is possible infer a general pattern and
propose closed formulae. We organize the general conjecture on the BRST variation of the

correlator (2.17) into the following Stirling permutation sums,

n—>5
ie 1 o,r
QK“(0) = ~ Z ﬁT,Ex1|f)12,...,AT+5 +[12...n]Ay, ... Arys] (2.25)
r=0
y (0:r)
+Z YA Ao [12...0]A1, ..., Avys]
717
_Z ' A1|A2,...,Ar+7+ [12...n|A1,...,AT+7]

+ Z T' zgi|1:4)2,...,AT+s + [12 o ‘n|A17 R AT+8j|
+ “ee

where the suppressed terms 7" and Y(4") in ... refer to higher degree of refinement
d > 2 and start to contribute at n = 9. The case r = 0 is understood as containing no
vector indices in the superfields, and a upper negative integer in the sum must be discarded;
Zr_:i()(' ..) = 0. The shorthands 74" contain T-like* building blocks, and their definitions
at refinement d = 0, 1

(0,7") — My (O)m My

TA1|A2,...,AT+5 = VA1VA?TZ?,...,TZT.Q.s@A2|A;:LL,A3,...,AT+5 + (AQ < A3, RN AT+5) , (226)
(L,r) — (1) mqy..my

TA1|A2""7AT+7 - <[VA1 Va, sz{L31|A4, Ar+7@A2|A;|A1,A4,...,AT+7 + (A3 ¢ Ay, AT+7>}

+ (A2 < A3, '7Ar+7))

admit an obvious generalization to higher values of d. Similarly, the shorthands Y (¢7)
contain anomalous superfields Y with degree of refinement d, see equations (1.4.18) and

(I.4.32), and their definitions at d =0, 1

(O’T) my. :(0) mi... My

YA1|A2, Ay T VAlYA27A37 VArye—A1|Ag,. . Arge (2'27>
(1,7) _ mi ,:(1) mi...my

YA1|A27 Args VAl [YA2|A37 JAryrg TA1|A2| Az, Args + (A2 o Az AT+8)] ’

4 Recall that the J 4]... building block is naturally identified as a d = 1 refined version of T'.
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suggest their analogues at d > 2. Finally, the shorthands O and E(@ stand for the
following linear combinations of worldsheet functions with degree d of refinement that
capture the right-hand sides of (2.23),

(O) mi1me... My _ p pmims.. mimsa..
@AIBth, Brya — kaZa BlaB27 Br+4 + [Z S[A, Bl] Bz: Bria +(Bre B,y BT+4)]

(m mo...m,) mims...m,
— kN > (Zeya ™y —(XeY)), (228

A=XY
(1) mima...m, _ p ~pm m
@A|B|B1,B2,...,Br+5 =k ZB|Al Bl, Brys -Z [34 B]|B1, ,Bris
[zg'ls[A Bil.B,,, T (B¢ Ba, . ,Br45)]
(m m mr) mim
+ k 1ZA 2B|Bl, Byys + Z ZXlBDZ/Bl, Brys <X N Y)) ’
A=XY
(recall that S[A, B] denotes the S-map defined in (1.5.13)), and
:(O)m meo...My __ 1 M ... My m
S 1B B = —525,1;’3117.”,37% 4+ [ZBJAl,Bz, Bouy T (B1 ¢ B, .Br15)], (2.29)
—(1) mima...m, _ 1 mi...m, m
“A1|A;|Bz17---73r+6 = §ZZZ|1411,B1,~~,BT+6 a [ZA21731|A1,32, yBrie +(B1 < By, .. 'BH‘G)] )

Hence, after modding out by Lie symmetries of the superfields, combining (2.25) and

(2.26) identifies @Ef)(gllmQ B;T;h As,.... to be the coefficient of Va, Va, J5'' "y _in QKLe.

Bd|A
Similarly, EffBgiTin';Q turns out to be the coefficient of VAlle Bl A, DY (2.25)

and (2.27).

Two comments are in order here. First, notice that the presentation of the BRST vari-
ation as a Stirling permutation sum (with the conventions of the appendix A) is essential to
fix the ambiguity of V4V = —Vp V4 in matching the V4 Vg products in (2.26) to @S;?A
For example, the conventions of the appendix A fix the relative ordering between the cy-
cles (1)(234) in the permutation sum such that we get V1 Va34T5 6.7 oL rather than

VozaViTs 6,7 ®§|%34 5.6.7"

234|1 5,6,7
And second, although a bit surprising, the BRST variation leads
to crossing-symmetric definitions such as @(0)

A|B,C.D.E in B,C,D and F; in other words,
the worldsheet functions multiplying Vi234V575s 7,8 are related by a relabeling of those that
multiply V1V2T3456,7,s-

The monodromy variations of section I1.4.2 and the elliptic identities of section II.5
imply that the definitions (2.28) are generalized elliptic integrands (GEIs); DO = 0.
Moreover, by inserting the solutions of the bootstrap procedure in section 11.4.4 up to

= 8 points, the GEIs ©@ are in fact found to vanish up to total derivatives. The

coefficients (@ of the anomalous terms, however, turn out to be non-zero. Instead, the
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trace relations among worldsheet functions discussed in section I1.5.3 simplify the explicit

expressions of 24 from (2.29) at n < 7 points to a single term. In summary, we obtain

(0) mima...my ~ (1) mima...m, ~
@A|B17B2""7BT+4 o O’ @AlBlBl’B27""BT+4 - O’ n S 8’ (2'30)
and
—=(0) mima..m, ~, =(1) mima...m, ~
._‘A1|Bl,~~~,Br+6 - _ZAllBl""7B’F+6 ? HAllAQlBl,...,BT_A'_G - ZAl,A?lBlv""B"‘-‘rG ’ n S 7’
(2.31)

see section 3.5.1 for the eight-point examples of Z(%).

The simplest examples of (2.28) are given by (see (2.23) for the former two),

@g?%,3,4,5 =k 29345+ [512212345 + (2 ¢ 3,4,5)], (2.32)
®§2)|3,4,5,6 = kf22f2,3,4,5,6 + [3232123,4,5,6 — 5132213456 + (3 <> 4,5, 6)]

— 21)2,3,4,5,6 T £2/1,3,4,5,6 »

(1) _ _1pzp
®1|2|3,4,5,6,7 — _k122|1,3,4,5,6,7 - 812212|3,4,5,6,7 - [813ZQ|13,4,5,6,7 + (3 A 47 57 67 7)] ’

and one can verify from the expressions for Z in section I1.4.4 that these linear combinations

indeed yield total derivatives. For more examples, see the appendix C.

2.8.5. Anomalous Lie polynomials

Given the non-vanishing expressions for =@ in (2.31), the Lie-series part X(£) of the
correlators from (2.17) is not BRST invariant for n > 7. More precisely, we have T(%7) =0
but Y(4") =£ 0 in (2.25). Fortunately, these non-vanishing terms are purely anomalous
and suggest to add corrections containing exclusively anomalous superfields of the form
YIZ?IIT-.-.-.:Ad'Bl:---’ see (1.4.18), (1.4.19) and (1.4.42). Therefore our proposal for the one-loop
correlator becomes,

Kn(t) = K5°(0) + KX (0), (2.33)

for some KY (¢) to be determined. Such an anomaly sector KY (¢) is plausible by the kine-
matic identities of section 1.5.4, as they mix anomalous and non-anomalous terms. Up to

and including six points, we have
KX()=0, forn<6. (2.34)

From multiplicity seven on, we need to find an expression for the anomaly sector Y (¢)
such that the full correlator satisfies the criteria summarized below. Even though we will
find the proper KY (¢) in the seven-point example of section 3, this is done case-by-case,

so it would be desirable to understand the general pattern behind them.
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2.4. Final assembly of one-loop correlators

The general form of the one-loop correlators (2.33) was suggested by analogy with the
Lie-polynomial structure observed at tree level [5]. The one-loop correlators IC,,(¢) are
expressions in the cohomology [18] of pure-spinor superspace that depend on the loop
momentum ¢ and the zero modes of the pure spinor A* and of the superspace coordinate
0<. Moreover, they are also expanded in terms of worldsheet functions that have to be
integrated over the vertex operator insertions points as well as over the moduli space
that parametrize the different genus-one surfaces. Given this setting, the final assembly
of one-loop correlators IC,,(¢) as defined in (2.1) must satisfy the following fundamental

requirements:

1. The correlator must be in the cohomology of the BRST operator;
2. The correlator must be a single-valued function with respect to both z; and ¢™;
3. The correlator must admit a local representation;

4. The correlator must be manifestly® symmetric in the labels (2,3,...,n).

These conditions arise from general CF'T considerations applied to the pure-spinor ampli-
tude prescription (1.2.4), and they are compatible with the tree-level arguments that led
to the Lie-polynomial proposal (2.33). The notion of single-valuedness in 2. is defined in

Lin a local representation of /C,,.

(I1.3.3), and 3. refers to the absence of kinematic poles s,
The combination of 1. and 3. turns out to be particularly constraining: Any BRST-invariant
linear combination of the building blocks of section 1.4 has been checked to vanish in the
cohomology at 5 < n < 8 points (see appendix I.B for further details). Therefore there is
no freedom of adding BRST-invariant local terms multiplying single-valued functions at
these multiplicities.

In the next section we write down explicit examples of one-loop correlators fulfilling
the above criteria up to seven points. Moreover, we propose an expression at eight points
with mild violations of 1. and 3.: Its BRST variation vanishes only up to local terms
proportional to the Eisenstein series of modular weight four, G4, and certain terms in the
anomaly sector K} violate locality. We expect that the eight-point proposal to be given in
section 3.5 differs from the correct correlator Kg by G4 multiplying an unknown kinematic

factor, i.e. it correctly captures all dependence on the z;.

® The symmetry with respect to leg 1 is not manifest in the prescription (I1.2.4) and therefore

can be verified only up to total 7 derivatives originating from BRST integration by parts [3].

15



3. One-loop correlators of the open superstring: examples

We will now apply all the techniques developed in the previous sections to obtain explicit
expressions for the one-loop correlators of the open superstring in a manifestly supersym-
metric fashion. The correlators at four, five, six and seven points meet all the requirements
described in section 2.4, and we will elaborate on the aforementioned issues with the eight-

point correlator below.

3.1. Four points

The four-point correlator is uniquely determined by the zero-mode integration over the
pure-spinor variables and it was firstly computed by Berkovits in [3]. Using the defini-
tion (1.4.1) its correlator can be written as the manifestly local pure-spinor superspace
expression

Ka(l) =ViTo34. (3.1)

Note that there are no worldsheet singularities among the vertex positions nor an explicit
dependence on the loop momentum ¢™. This is in accordance with the general discussion
in section 1.2.1.3 that a n-point correlator /C,, () is a polynomial in loop momenta of degree
n—4 and that the maximum number of OPE contractions is also n—4. It has been shown
in [19] using BRST cohomology identities in pure-spinor superspace that the one-loop

correlator (3.1) is proportional to its tree-level counterpart (2.10),
(ViTo3,4) = s12523A5YM(1,2,3,4) . (3.2)

Therefore it reproduces the well-known [11,20] supersymmetric completion of tg 4 and the

one-loop amplitudes of Brink, Green and Schwarz with bosonic external states [21].

3.2. Five points

The reasoning behind the derivation of the five-point correlator will be presented in detail
as it constitutes the prototype for similar derivations at higher points. Not surprisingly,
the outcome of the following analysis is in accordance with the general features of one-loop
correlators summarized in section 2.3.

As discussed in section 1.2.1.3, the pure-spinor prescription [3] implies that the five-
point correlator K5(¢) is a polynomial of degree one in ¢ with at most one OPE singularity.
Therefore the correlator is composed of two classes of terms containing: (i) one OPE

contraction, (i7) one loop momentum. Let us consider them in turn.
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3.2.1. The OPEs

The two inequivalent OPEs Vi (z1)Uz(22) and Us(22)Us(z3) can be derived from (1.2.11)

and give rise to two-particle vertex operators (1.3.16) and (1.3.19),

Vi(21)Us(22) = 9$5 Via(2a),  Us(22)Us(23) — 955 Uns(23) , (3.3)

where gf;”) = g(w)(zi—zj,T) refer to expansion coefficients of the Kronecker—Eisenstein
series, see (I1.2.5), with g™V (z,7) = 0, log 6, (2, 7). In both cases the zero-mode integration
for d, and N,,, only admits the b-ghost sector b*) defined in section 1.2.1.3 and yields
T4 B,c according to the multiplicity-agnostic rule (1.3.23). In assembling all the ten OPE

channels we obtain
Ks(0)|opg = [Qg)vlszA,s + (24 3,4,5)] + [géé)‘/iTzs,4,5 +(2,312,3,4,5)].  (3.4)

3.2.2. Adjoining the loop momentum

Five points is the first instance where a loop momentum can be extracted from the external
vertices or the b-ghost. According to the discussion of section 1.4.2, the relevant b-ghost
sectors are b and b(2), and they give rise to the schematic contributions ¢, V1 A5"T5 4 5

and £, V1W3" 4 5, respectively. BRST covariance fixes their relative coefficients to
Ks (Z)}e =l ViT55 45, (3.5)

see (1.4.6). By adjoining the contribution (3.4) from OPEs, one arrives at the following

final expression for the five-point correlator anticipated in section I1.3.1:

Ks(0) = Ks5(¢) ‘e + Ks (E)}OPE (3.6)
= L VTS 45 + [035 VioTs 4 5+(2 5 3,4,5)] + [g55 ViTos 4 5+(2,3]2,3,4,5)] .
It will be rewarding to rewrite the correlator (3.6) in a slightly more abstract manner,

since the higher-point generalization will become more natural in this way. The correlator

lines up with the Lie-polynomial structure of (2.15),

Ks(0) = Va, TR A ZR o4, + [12345|A, ..., As5] (3.7)
+Va,Ta,,.. .4, 24,4, + [12345| A1, ..., Ad],
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where the notation for the permutations is explained after (2.13) and in the appendix A.

Expanding the above permutations leads to the following [g} + E’J =1+ 10 = 11 terms,

’CS(E) = V1T2773,4,5Zf?2,3,4,5 (3-8>
+ VieT5 4 5212,3.45 + (2433,4,5)
+ ViTes 4521 23,45 + (2,3|2,3,4,5) .

In comparing (3.8) with (3.6) we can read off the following Z-functions,

Z12,3,4,5 = gg) ) Zf,lz,3,4,5 =L", (3.9)

which correspond to the functions (I1.4.30) studied in section 11.4.4.2. As this example
demonstrates, the presentation of the correlator as the Lie-polynomial (3.7) organizes the
worldsheet functions in a way that manifests the parallels with the kinematic building
blocks as highlighted in section I1.4.

In summary, the five-point one-loop correlator (3.8) is a manifestly local expression of
superfields that was obtained using general arguments based on the amplitude prescription
of the pure-spinor formalism. If we want to argue that it is also the correct correlator, it

must be BRST invariant and single-valued as well.

3.2.3. BRST invariance

It is straightforward to use the BRST variations of the local building blocks — (1.3.32),
(I.4.3) and (1.4.8) — to obtain the n = 5 instance of the general BRST variation (2.25).

Indeed, a short calculation yields
QK5(0) = —ViVaTs a5 |ky 21 5 45 + [521221,3.45 + (1 > 3,4, 5)}} +(2 4 3,4,5)
= —ViVaTs4505) 5 15+ (24 3,4,5), (3.10)

where in the second line we used the shorthand defined in (2.28). At first sight (3.10)
appears to be different than zero, but luckily this particular arrangement of integrands

turns out to be a total worldsheet derivative,
k;nZ{?Q’g,A’E, + [821221,3,4,5 + (1 ~ 3,4, 5)} = (Z . kg) + [Sglgéll) + (1 <~ 3,4, 5)} =0, (3.11)

where we used the expansions (3.9) and the identity (II1.2.22). Therefore the five-point
correlator (3.8) is BRST invariant.
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3.2.4. Single-valuedness

From the discussion in section I1.2.1.1, it follows that the monodromies around the A-cycle
()
1) ’
its monodromies around the B-cycle also vanish. In this case, the variations (I1.3.9) yield

vanish for any combination of ¢ and g so the correlator (3.8) will be single valued if

DK (E) = (kTV1T£13,4’5 + [‘/12T37475 +2 < 3,4, 5}) (3.12)

+ Qo (RS VTS a5 + VerToas + [ViTasas +3 0 4,5]) + (2 3,4,5),

see section I1.3.2 for the linearized-monodromy operator D. Note that the superspace
expressions that multiply the formal variables €2; for ¢ = 1,...,5 in the definition (I1.3.8)
of D are BRST-closed and local. However, as discussed in the appendix I.B, the BRST
cohomology is empty for local superspace expressions and therefore the above combinations
must be BRST-exact. In fact, one can show via (1.4.23) and (1.5.41) that

DE5(0) = M QJ1j2,345 + [Q2(QD1j213,45 — A1j2,3.45) + (2 > 3,4,5)] =20. (3.13)

Since the anomalous superfield Aj2 345 was shown to be BRST-exact in [22], the mon-
odromy variation (3.13) vanishes in the cohomology of the pure-spinor superspace (indi-

cated by = 0), and the correlator (3.8) is therefore single-valued.

3.2.5. Duality between worldsheet functions and BRST invariants

The vanishing of (3.11) is a clear indication of the duality between worldsheet functions
and BRST invariants discussed in section I1.4 and pointed out in [10]; it corresponds to the

BRST-exact linear combination of superfields in (3.12) under the replacement (I1.4.10),

0= k" ViTys 45+ Var1Ts45 + ViTo3 a5 + ViToass + ViTas 3.4 (3.14)

— 0= kgnzf,sz),rg,zl,s) + Zéi?3,4,5 + Z§§?1,4,5 + 25231,3,5 + Z§§?1,3,4 ;

where the Lie-symmetric worldsheet functions Z(*) have been introduced in section I1.4.2.5.
The superspace expression in the first line of (3.14) vanishes because it is BRST exact, see
(I.5.41), while the integrand in the second line vanishes because it is a total worldsheet
derivative, see (11.2.22). This correspondence between BRST invariance and monodromy
invariance is a central example of the duality between pure-spinor-superspace expressions
and one-loop worldsheet functions. In fact, further investigation of such relations led to

the discussions presented in section I1.4.
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3.2.6. Different representations of the five-point correlator

Since the correlator (3.8) is local, single-valued and BRST invariant, it meets the criteria
of section 2.4 to be the open-superstring five-point correlator. We will now exploit the
properties of both the superspace expressions and the worldsheet functions to rewrite it in
various ways that manifest different subsets of these fundamental properties.

3.2.6.1. The C - Z representation: manifesting BRST invariance

Integration-by-parts identities can be used to yield a manifestly BRST closed representa-
tion of the correlator: first rewrite (3.8) in terms of Berends—Giele currents M4 and Mp ¢ p

associated with V4 and T ¢ p using the trading identity (2.12) of the Lie polynomial as

Ks(€) = MiM3's 4 521" 345 + [M12M3 45512212345 + (2 ¢ 3,4,5)] (3.15)
+ M1 Mas 4552321 23,45+ (2,3]2,3,4,5) .

Next, the integration-by-parts identity (3.11) can be used to eliminate all functions of the

form Zy; 4 p.c with i # 0 (i.e. all of g\3, g%), gy, gg)). Doing this leads to

Ks(0) = Z{?Q’3’4’5<M1M2”f3’4’5 + R MiaMs a5 + (2 < 3,4, 5)}) (3.16)
+ [$2321,23,4,5(M1 Moz a5 + MioMs a5 — MisMa s 5) + (2,3(2,3,4,5)] .

In this way, the terms inside the round brackets build up the Berends—Giele expansions of
the BRST invariants from (1.5.20) and (I.5.21) such that (3.16) becomes

Ks(0) = Clly 545219345 T [C1j23,45 523212345 + (2,3[2,3,4,5)] . (3.17)

Since Cﬁ“A 5.c.p and Cyj4 g c are both BRST closed, (3.17) constitutes a manifestly BRST

invariant representation of the local correlator (3.8).

3.2.6.2. The T - E representation: manifesting single-valuedness

Since the five-point correlator (3.8) is single valued, it is worthwhile to spell out a repre-
sentation that manifests this property. To do this, we rewrite the terms containing a factor

of V1 4 with non-empty A using the BRST cohomology identity

VieTsa5 = kS VITy 4 5+ [ViTesas + (3 3 4,5)] (3.18)
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which follows from the (I.5.41) and the BRST-exactness of Ajjs 3 4,5. Doing this replace-
ment in the correlator (3.8) and collecting terms leads to
Ks(0) = ViTgs a5 (20,05 + (K5 Zr2a5 + (2 & 3,4,5)] ) (3.19)
+ [ViTosa5( 21,2345 + 212,345 — Z1324,5) + (2,3]2,3,4,5)] .
The combinations of Z-functions the round brackets can be identified with the GEIs

E{T2345 and FEjg34,5 from (I1.4.31) and (I1.4.32), respectively. Using these functions,

the correlator (3.19) takes the manifestly single-valued form:
Ks(0) = VT3 4 5E 345 + [ViTesa5F1j23.45 + (2,3[2,3,4,5)] . (3.20)

This representation reverses the roles of worldsheet functions and kinematic factors in
comparison to (3.17)%: Manifest BRST invariance is traded for manifest monodromy in-

variance.

3.2.6.3. The C - E representation: manifesting BRST invariance € single-valuedness

The five-point correlator can also be rewritten such as to manifest both BRST invariance
and single-valuedness. To this effect we eliminate 21" 5 4 5 = Ef}y 3 4 5~ k3" Z12,3,45+(2 ¢
3,4,5)] as well as 21 2345 = F1j23,4,5 — 212,3,4,5 + Z13,2,4,5 from (3.17) and use the BRST
cohomology identity (1.5.41) to obtain

Ks(l) = Clla3.45E7 23,45 + [Cry23,45523F1 12345 + (2,3(2,3,4,5)] , (3.21)

which reproduces the double-copy expression for the five-point correlator proposed in [10]

and manifests both BRST invariance and single-valuedness.

3.2.7. Summary of representations

As shown above, there are multiple Lie-polynomial representations of the five-point corre-
lator according to which features are chosen to be manifested:
Ks(0) = Vi1 4 5215 545 + [Vi2Ts5.45212,345 + (2 ¢ 3,4,5)] (3.22)
+ [ViTes,a,521 23,45 + (2,3(2,3,4,5)]
Ks(0) = ViTy% 4 s BTl 345 + [ViTesasF1j2s.a5 + (2,3(2,3,4,5)]
Ks(l) = Cll2 345212345 [Chj23,4,552321 23,45 + (2,3]2,3,4,5)]
Ks(l) = Cll23.45F 2,345 T [C1123,4,5523E1 123,45 + (2,3(2,3,4,5)] .

6 This becomes particularly transparent by introducing Zf 2)?4 5 = 212,345 and Z1 23,45 —

82321’23,4,5 in (317)
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In addition to the above, the single-valued representation of the five-point correlator ob-
tained by explicit integration over the loop momentum will be presented in section 4.

We remark that the one-loop five-point amplitude in the open superstring has been
computed with the RNS and GS formalisms for states in the Neveu-Schwarz sector
[23,24,25] and in the Ramond sector [26,27]. Manifestly supersymmetric expressions were
obtained in [28] using the non-minimal pure-spinor formalism [29] and later in [30] using

the minimal pure-spinor formalism.

3.3. Six points

We will now show that the general formulas summarized in section 2.3 give rise to the
correct six-point one-loop correlator. The Lie-polynomial form of the six-point correlator
is given by
Ke(l) = EVAlTA””W A 2R A, T [123456| A4, . . ., Ag] (3.23)
9 2,46 Ar,, Ag
+ VA, TR A ZR .4, + [123456]A4, ..., As]
+ VA, Ta,,.. 4, 24,4, + [123456| A4, ..., Ad],

with the following worldsheet functions as derived in section 11.4.4.3,
Z123,4,5,6 = gg)géé) + gg) + 9%) - Qg) ; (3.24)
1) (1 2 2 2 2
Z12,34,5,6 = 952)912,4) + 953) + 954) - g;([4) - 953) )
Zi53456=" 9%2) + (k3" — ki )9%2) + [k5 (9%3) - 9533) +(34+4,5,6)],
mn m pmn mi1.n nim 2
2153456 =0"0" + [(lﬁ ko + ki'ky )9%2) +(1,2[1,2,3,4,5, 6)] .
Note that a possible contribution of a d = 1 refined sector according to (2.21) is suppressed
since the monodromy variations (I1.4.34) are compatible with 2|3 4 5.6 = 0. The explicit
expansion of the Stirling cycle permutations in (3.23) generates a total of [g} + [g} + [Sﬂ =
1415+ 85 =101 terms,

1 mn mn
ICG(@ = §V1T2,3,4,5,6ZL2,3,4,5,6 (325)

+ Vl?T?ﬁ,SﬁZg,?)A,E),G + (24 3,4,5,6)

+ V1133 45621 93,456 T (2,3[2,3,4,5,6)

+ ViesTy 5 62123456 + ViseTus62132.45.6 + (2,3]2,3,4,5,6)
+ ViTo34.5 621 23456 + Viloas 562124356 + (2,3,4(2,3,4,5,6)
+ [(Vi2T34,5,6Z12,34,5,6 + cyc(2,3,4)) + (2,3,4]2,3,4,5,6)]

+ [(ViT34,5621,2,34,56 + cye(3,4,5)) + (2 > 3,4,5,6)] ,
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where the indicated permutations defined in (1.3.13) act on a line-by-line basis.
We will now prove that the six-point correlator (3.23) is both single-valued and BRST

invariant, in accordance with the expectations outlined in section 2.4.

3.5.1. BRST invariance

As anticipated in section 2.3.4, the BRST algebra of the building blocks leads to the

following @-variation of the correlator (3.23),

1
o %V2T£I4,5,6®é(\)i,§4,5,6 - V12‘/E”T4’5’6@£(’>(|)i2,4,5,6 +(2+43,4,5,0)

— [ViVaT34,5.605) 5456+ (3.413,4,5,6)] + (2 ¢ 3,4,5,6)

— ViVasTu 56051 456+ (2:3]2,3,4,5,6),

where the shorthands @g?l‘m were defined in (2.28). After discarding the vanishing refined

Z-function, they are given by

0 n mn m ~Y
O 556 = M3 2185450 + 521251 556+ (1 & 3,4,5,6)] =0, (3.27)
92?22,4,5,6 = ky' 215 3456+ 312312456 — $322321,45,6 + [$34Z12,3456 + (4 > 5,6)] =0,
@;?2’34,5’6 = kY 21" 5456+ 52321,234,5,6 — 52421,243,5,6 + 5212213456 + (1 <> 5,6)] =20,

@g:)a)|1,4,5,6 = k33215 456+ [5312231,4,5,6 — 212321,45,6 + (1 ¢+ 4,5,6)] =0,

and conspire to total derivatives in z;. Therefore the BRST variation is proportional to

mm
the trace Z1"9"s 4 5 ¢

1 , 0
QICG(g) = _imY2,3,4,5,GZ{7}2@’>,4,5,6 = —2m ‘/1Y2’3’4’5’6E IOgI(;(g) = 0, (328)

where the total 7 derivative of the Koba-Nielsen factor has been identified in (I1.5.15).
Thus, the BRST variation is a boundary term in moduli space [31], and the usual mecha-

nism of anomaly cancellation [32] implies that the amplitudes computed from the correlator

(3.23) are BRST invariant.
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3.3.1.1. The C - Z representation: manifesting BRST invariance

Now that BRST invariance of the six-point correlator is proven, let us rewrite it using
the BRST invariants from section 1.5.2, in a similar spirit as done with the five-point
correlator in the previous section. There are different ways to achieve this, one uses the

trading identity (2.12) to rewrite the Lie polynomial (3.23) as,

1 ]
Ko(t) = 5 Ma ME s 25k 4+ [123456] Ay, . ., Ag (3.29)

+ Ma, M7 Z(S) 4, + [123456]4;, . .., As]

-----

-----

where Z() is defined in (I1.4.22). The idea now is to exploit the fact that terms of the form
MM}, which feature the single-particle Berends-Giele current M, are the leading
terms in the expansion of the BRST (pseudo-)invariants from section 1.5.2.1. Therefore

they can be rewritten as
MiMZ5,  =Cllip,.  +- (3.30)

where the terms in the ellipsis on the right-hand side are linear combinations of My Mg
with A # () that uniquely follow from the definition of the BRST pseudo-invariants in
(I.5.20) to (I.5.22). Plugging in the above expressions into the correlator (3.29) yields

]' mn s)ymn
Koll) = 5 2N A+ [23456] Ay, ., As] (3.31)

+ C’1|Al LAs Z]&?JK,A4 + [23456|A17 R A4}
+ Chjayas 280, [23456]A4,, ..., Ay

To arrive at (3.31) the following three topologies of terms (and their permutations) were

discarded as they are total derivatives:

s3aMi2Msza,5 6@2‘1 3456 =0 Mo M3 5 6@%)2 3456 =0, (3.32)
0 a4
MiasMay 56 (k? @gd 3,4,5,6 T 812®3|12 156 T [834®g|1,34,5,6 +( e )]) =0.

Expanding the Stirling cycle permutations in (3.31) yields the following [g} + [Z} + [g} =
14 10+ 35 = 46 terms,

Ko (l) = 01|2 5.4.5671 954,56 + [Cllas 15,671 254,56 + (2:3[2,3,4,5,6)] (3.33)
+ [01|234,5,6Z£,52)34,5,6 + 01I243,5,6Z§,5343,5,6 +(2,3,4/2,3,4,5,6)]
+ {Cl|23,45,6ZS2)3,45,6 + Cl|24,35,6Z§,52)4,35,6 + Cl|25,34,62§,52)5,34,6 + (64 2,3,4,5)].
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Note one important difference between the expansion above and an earlier representation;
unlike the local Lie polynomial (3.23) in which six labels are distributed among the available
slots, in the non-local representation (3.31) only five labels participate in the Stirling
permutations. Like this, the initially 101 terms in (3.25) conspire to the considerably
smaller number of 46 terms in (3.33).

As a consistency check, we note that the scalar Cyj4 g, and vectorial Cﬁ“A B.C.D
are manifestly BRST closed while the BRST variation of the two-tensor C’1| AB.C.D.E IS

proportional to 6" [22]. Hence, we arrive at the same conclusion as in (3.28)

0

QKs(l) = ——V1Y2 34562195456 = 2T V1Ya345, 65-

logZs(¢) =20, (3.34)

since Zf%,@fim = 2133 4.5, follows from (IL.4.22).

3.3.2. Single-valuedness

To prove that the correlator (3.23) is single-valued it is sufficient to show that its
integration-by-parts-equivalent representation (3.33) is single-valued. After a tedious cal-

culation using the monodromy variations (I1.4.34) one gets
DKg(0) = Q6K + QoK + -+ + Q6K | (3.35)
where

0K = KT CT5s 45.6B .56 + [KT"523C s 4 5 6 Fros.ass + (2,32,3,4,5,6)]  (3.36)

2 m
5’C( ) = = k3" Cl303.4,5,652)1,3,4,5,6 T [32301\23456E2|13456+ (3 <_>47576>}

+ [k5'534C ] 34 5.6 F2)1,34,5,6 T (3,4/3,4,5,6)]

+ [(523545C1)23,45,6 F2|1,3,45,6 + $23534C11234,5,6F2)1,34,5,6 + €y¢(3,4,5)) + (3 <> 4,5,6)] ,
and the other 5/Céi) for i = 3,4, 5,6 are obtained from relabeling of 5IC§52) under (2 < 3),
(2 <+ 4) and so forth. The structural difference between 5/Cé1) and 6/Céj ) for j # 1 arises
from the choice of basis for the BRST pseudo-invariants which singles out leg number 1 in
C{TA'...' To expose this, one uses the kinematic change-of-basis identities dual to (I1.5.11)

and (I1.5.12) [22] (also see section I1.5.2 and the appendix I.A.3) to rewrite 5/Cé2) in a basis
of Uyl . to obtain”

2 m mn m m
5/Cé = kg 2[1,3,4,5, 6E2\1 3,456 1 [kz 31302|13,4,5,6E2\13,4,5,6 +(1,3[1,3,4,5, 6)] , (3:37)

" The anomalous term in the change-of-basis identity Cllasa56=0""Ve1,3456+C515456F
.. [22] has already been discarded from (3.37) since the accompanying GEI k3" E3}; 3 4 5 ¢ vanishes

upon contraction with §™".
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which is clearly the relabeling of 6/Cé1) under 1 <+ 2. Therefore, it suffices to demonstrate
the vanishing of 5]Cé1) to prove that the correlator (3.23) is single-valued.
To show that 6/Cé1) vanishes, we use the kinematic BRST cohomology identities [22]

m m ~J
k" Cllag a 5,6 = —Pr2i3,456 T P132,.4.56 — D1)23,4,5,6 (3.38)

kT Cl23.a56 = — k5" Prjajz,a56 + (2 4 3,4,5,6)] — All2,3.4,5,6
that follow from (I.5.42) and can be used to bring (3.36) into the following form

5’Cél) . ﬁ2,3,4,5,6 {7|12,3,4,5,6 - [Al|23,4,5,6323E1|23,4,5,6 + (2: 3|27 3: 47 5: 6)} (3-39>
- {P1|2|3,4,5,6 (k?;nEﬁz,gA,f),G + [323E1|23,4,5,6 + (3 > 4,5, 6)}) + (2 3,4,5, 6)} .

The coefficients of Pj|23,4,5,6 in the second line in turn conspire to total derivatives,
kgnEﬁz,3,4,5,6 + [323E1|23,4,5,6 + (3 < 4,5, 6)] =0, (3-40)
see section I1.5.1. Finally, combining the relabelings of the first line of (3.39), we arrive at

—DKe(£) = M (Aﬁ2,3,4,5,6E§TQ,3,4,5,6 + [Ayj23,4,5,6523F1 123,456 + (2,3(2,3,4,5, 6)])

+ (14 2,3,4,5,6). (3.41)
As reviewed in section 1.5.3, the unrefined anomalous building blocks A717|11141 are BRST
exact, so the monodromy variation (3.41) vanishes in the cohomology of the pure-spinor
BRST charge, finishing the proof that the six-point correlator (3.23) is single valued. By
the interplay of the cohomology identity (3.38) and the GEI relation (3.40), our proof of
DK (f) = 0 constitutes an illuminating showcase of the duality between kinematics and
worldsheet functions.

We note that there are other ways to prove the single-valuedness of the six-point cor-
relator (3.23). One such proof, given in section 4, follows by explicitly integrating the loop
momentum from the correlator while verifying that only the single-valued functions fi(f)
in (I1.7.1) build up in the outcome. Another proof, presented in the appendix B, uses ma-
nipulations involving the manifestly-local representation 7' - Z. However, in exploiting the
BRST invariance of the correlator in its C'- Z representation the proof above is considerably

simpler than the others.
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3.3.2.1. The C - E representation: manifesting BRST invariance € single-valuedness

As another application of the duality between kinematics and worldsheet functions, we
shall now derive a manifestly BRST-invariant and single-valued representation of the six-
point correlator. The idea is to start from the C' - Z representation (3.33) and to exploit
the dual

2B, =Eip.  + (3.42)

of (3.30): Each Z-function with leg one in a single-particle slot is taken as a leading term
of a GEI, see (11.4.26), and the additional terms in the ellipsis of (3.42) are of the form
Zi6p,.. with C # (). In this way, a long sequence of BRST cohomology identities given
in section 1.5.4 leads to the following manifestly BRST-invariant and single-valued Lie-
polynomial form of (3.33),

1 mn s),mn
Ks() = 5 T A BT L+ [23456] Ay, ., As] (3.43)

+ O{TA17’A4E](.TJ)41T/,,A4 + [23456|A17 ctt A4]
+ 01|A1,...,A3E§'|51)41’”.’A3 + [23456|A1, ceey A3]

— [Prjay) s, ..., A5E§TA1|A2,__,A5 + (A1 <> Aa,..., As)] 4 [23456| A4, ..., As] .

The GEIs have been expressed in terms of the Lie symmetric Eﬁl‘m defined in (I11.4.23),
and similar to (3.31), only five legs participate in the Stirling permutations. More explicitly,

expanding the above sums over Stirling cycle permutations yields

1
Ke(l) = 5C15'5 45.6E1]2.3,45,6 — [P1213,4,5,6F1 213,456 + (2 <> 3,4,5,6)]

2
+[ 1123,4,5,6 523E7 (23,456 T (2,3(2,3,4,5, 6)]
+ [(C1j23,45,6 523545 E1)23,45,6 + cyc(3,4,5)) + (6 <+ 5,4, 3,2)] (3.44)

+ [(C11234,5,6 523534 F1234,5,6 + €yc(2,3,4)) + (2, 3,4]2,3,4,5,6)]

and reproduces the double-copy expression for the six-point correlator proposed in [10]. The
refined GEI E 93,4 5,6 arises from its expansion (I1.4.27) in terms of Z-functions and boils
down to the ggl) in (I1.4.37). By the vanishing of Zy|; 3456, the C'- Z-representation (3.33)
of the six-point correlator does not feature any analogue of the terms Py|213.4,5 6F1|2/3,4,5,6
in the first line of (3.44).

Furthermore, from the trace relation (I1.5.31) among GEIs,

1 mn 0
3 Omn 23,456 = [E1j2)3,45,6 + (2 ¢ 3,4,5,6)] + 2mis— logZs(¢) , (3.45)
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one concludes that the BRST variation of (3.44) is a boundary term [10]

1
QKs(l) = —‘GY2,3,4,5,6<§E{7|12773,4,5,6 — [E12j3,4,5.6 + (2 ¢ 3,4,5, 6)}) (3.46)

, 0
= —2mi ‘/1Y2,3,4,5,6E logZs(¢) = 0,

as required by the anomaly cancellation condition.

3.3.2.2. The T - E representation: manifesting locality € single-valuedness

The C - E representation (3.43) is not manifestly local, but it is written in terms of GEIs
manifesting monodromy invariance. However, by construction, we know that (3.43) is
equivalent to the local representation (3.23), so all the non-localities within the pseudo-
invariants C' and P must be spurious. In the following discussions we exploit this reasoning
to find a new representation that is both manifestly local and monodromy invariant.

We can do this starting from (3.44), plugging in the Berends—Giele expansion of the
pseudo-invariants and separating terms according to their kinematic poles. The non-local
terms turn out to vanish (as will be exemplified below) while the local terms conspire to
produce the full correlator KCg(¢). After going through the algebra we obtain the following

manifestly local and monodromy-invariant form of the six-point correlator Kg(¢),

1
ICG (€> = §V1T27?31?47576EW£3,4’5’6 - [‘/1 J2|3,4,5,6E1|2|3,4,5,6 + (2 AN 37 47 57 6)} ’ (347>

+ [V1T277??,4,5,6E17|123,4,5,6 +(2,3/2,3,4,5,6)]
+ [ViTasa5,6E1 (234,56 + ViToas,5,6E1 1243 5.6 + (2,3,4[2,3,4,5,6)]
+ [(ViT234,56 E1j2,34,56 + €yc(3,4,5)) + (2 ¢ 3,4,5,6)] .

The non-local terms from the kinematic side turn out to vanish due to identities obeyed by
their accompanying worldsheet functions. For instance, one such class of terms (featuring

an uncancelled s12 pole) is given by,

M12T34,5,6(kglE?|127347576 + s23F11234,5,6 — 524F1)243,5.6 + S25F1)25,34,6 + 526 F1)26,345) = 0,
(3.48)
whose vanishing follows from one of the GEI relations (I1.5.2). Similarly, one can check that
all the other classes of non-local terms vanish as well. In summary, the expressions (3.25),
(3.33), (3.44) and (3.47) for the six-point correlator generalize the four representations of
the five-point correlator in (3.22).
Note that the T - E representation (3.47) is related to the C - Z representation (3.33)
through the duality between kinematics and worldsheet functions: In order to see this, one

needs to adjoin the vanishing terms — [ZQ|1’3’4’5’6P1|2|3,4,5,6 +(2 < 3,4,5, 6)} to the latter.
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3.3.3. Comparison with older results

To conclude the discussion of the six-point correlator, we make contact between the above
representations and a manifestly BRST invariant expression for the six-point amplitude
that has been presented in [33]. Starting from the C - Z-representation (3.33), expanding

the worldsheet functions and collecting terms yields,
1) ~m
Ke(£) = E 4 01|2 3,4,5,6 1 bm [823953)01&3,4,5,6 +(2,3[2,..., 6)} (3.49)
+ [(823834923 934 C'1|234 5.6 +cye(2,3,4)) +(2,3,42,3,4,5,6)]
+ [(823845923 gss C'1|23 45,6 +€yc(3,4,5)) + (6 < 5,4,3,2)]
+ [912 Cip23,a56 + (24> 3,4,5,6)] + [923)C1|(23)|4,5,6 +(2,3[2,3,4,5,6)]

(2) (2)

where we defined the following shorthands for the coefficients of g5 and gs3’,

C'1|2|3 4,56 = kl k2 C’1|2 3,4,5,6 + [323]“117101723 4,5,6 + (3 < 4,5, 6)} ) (3-5())
Chy(23)14,5,6 = k3 k3 CTj2'3.4 56 T S23(k5" — k3" )Cila3 456
+ [s24k3" Cllo43,56 T 5345 Cil34 256 + (4 <> 5, 6)]
+ [534523C1 |234,5,6 + 523524C1)324,5,6 — 524534C1)243,5,6 + (4 < 5,6)]
+ [524535C1)24,35,6 + S25534C1)25 34,6 + (4,54, 5, 6)] :
These combinations are easily seen to satisfy

QC1)213,4,56 = —512V1Y23.45.6 , QC1|(23)14,5,6 = —523V1Y23.456, (3.51)

so the BRST variation of (3.49) reproduces the desired Koba—Nielsen derivative in 7. Using
BRST cohomology identities one can show that

C11213,4,5,6 = 512P112(3,4,5,6 » (3.52)
1
Chi(23)]4,5,6 = 5823<P1|2|3456+P1|3|2456+(k? — k3")Cyj. 1]23,4,5,6

+ [534C1j234,5,6 + 524C1 32456 + (4 < 5, 6)}) ,

which will imply, after integration over the loop momentum in section 4, that (3.49) gives
rise to an equivalent version of the six-point pure-spinor correlator expression of [33]%.
The bosonic six-point one-loop amplitude of the open superstring was computed in

the RNS formalism, see [23,24] for the parity even part and [34] for the parity odd part.

8 To see the equivalence we note, in particular, equation (3.15) of [33].
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3.4. Seven points

Following the general structure of the one-loop correlator presented in (2.33), the local

seven-point correlator is proposed to be
Ko (0) = K7 (6) + K3 (0) (3.53)

where KX€(/¢) is defined in (2.17) and the anomaly sector K¥ (£) will be determined below.
The unrefined contribution to KXi¢(¢) = ICgO) (0) — IC(71)(£) follows the pattern of (2.16),

1 mn mn
IC%O)(Z) - QVAlTAzf.,mZAlf.,m + [1234567|44, ..., A7] (3.54)

1 mn mn
+ QVAlTAz’W’AGZAIW’Aﬁ + [1234567| A, .. ., Ag)
+ VA, TR A ZR a4, + [1234567| Ay, ..., As)
+ VA, Ta,,.. 4,24, A, + [1234567| Ay, ..., Ag],

with a total number of terms given by m + [g} + [g + [ﬂ = 142141754735 = 932 (see its

explicit expansion in (A.6)). The worldsheet functions entering (3.54) and the subsequent
equations are determined from their monodromy variations. The solutions for the three

topologies of scalar Z-functions, the two topologies of vectorial ones and the tensorial ones
can be found in (I1.4.40), (II.A.26), (II.A.29) and (II.A.30), respectively.

The above IC(70)(€) alone is not BRST invariant, and this fact motivates the introduc-
tion of refined contributions IC(71)(£) to (2.17). In fact, the general discussion of refined
correlators K\ (¢) in section 2.3.2 originated from the explicit findings of this example.

The seven-point expression
K (0) = [Vay I3 s An 25 Ay Agons + (A2 63 Ao Ag)] + [1234567| AL, . .., Af]
+ [Vay J Ay As.... A6 Z A Ar, As... Ag + (A2 3 Az, Ag)] + [1234567| A4, .. ., Ag]
= Vids3 4567220134567 T (24 3,4,5,6,7) (3.55)
+ [ViaJsja,5,672312,4,5,6,7 + Visdoja5.6,722113,45,67 + (2,3(2,3,...,7)]
+ [Vidasjas.6722311.4,5.67 + (2,3]2,3,...,7)]
+ [(Vidaj3a,5,6,722)1,30,5,6,7 + €ye(2,3,4)) + (2,3,4(2,3,...,7)]
with 5 [ZJ +6 m = 10546 = 111 terms in total lines up with the general proposal (2.22) at

refinement d = 1. We have seen in (I1.4.42) that the three topologies of refined functions

appearing in (3.55) are simple combinations of

Z193,4,5,6,7 = 0913 + 512933 913 — 3512915 (3.56)

= —38129§?2’) + Qg) (0 ko + 8239%) + 824953;) +...+ 8279;)) .
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However, the sum of the d = 0 and d = 1 correlators in (3.54) and (3.55) is still not enough
to yield a BRST-invariant seven-point correlator, see the discussion of QKLi¢(¢) in section

2.3.4. This necessitates the additional purely anomalous contribution to (3.53) given by
KY(0) = —A1213,4,5,6,7212(3,4,5,6,7 T (2 <> 3,4,5,6,7), (3.57)

where the anomalous superfield Ayjg)3,... 7 is defined in (I.5.35). By the arguments of section
[.5.3.1, the components (Aj3,... 7) cannot have any kinematic pole, so addition of (3.57)
does not spoil the locality of the seven-point correlator (3.53).

Note that the representation of Zis)34 56,7 in the second line of (3.56) manifests that
1) (2)

K7(¢) can be written without any derivatives 691(;-“) or products g;;" g,

with coinciding
arguments. This observation should play an important role for the transcendentality prop-

erties upon integration over z;.

3.4.1. BRST wnvariance

In order to show that the full correlator (3.54) is BRST invariant, let us first consider its
non-anomalous part, QK¢(¢). This computation can be organized according to the ghost-
number four products of superfields it generates; this general structure was anticipated in

section 2.3.4 but it is instructive to see it again in this particular case:

QK7 = ;Tl(|0223)4 56,7 T1(|12,03),4,5,6,7 (3.58)
~ [Tiaiasr (26 3,4.5.6.0)] = [ 57 + (2.3(2.3,4,5,6,7)]
~ [T s6r + Tisaaser + (2:312:3,4,5,6,7)
[T1(|023?z)1 56,71 T(|022:)’, 5671 (2,3,4]2,3,4,5,6,7)]
- [T g|§4)1567+T(§|34)1567+T(2|32’,567+( ,3,412,3,4,5,6,7)]

(0,0) (0,0) (0,0)
- [T1|234567+T |245367+T |253467+ (677‘27374757677)]
+y oY V0 4+ (24¢3,4,5,6,7)]

1]2,3,4,5,6,7 12]3,4,5,6,7
0,0
+ [Y(|23)4567+( ,312,3,4,5,6,7)],

where, following (2.26), the non-anomalous building blocks are contained in

0,2 mn 0) mn

T1(|2,3),4,5,6,7 =WVel37 792& 3.7 T (24> 3,4,5,6,7), (3.59)
0,1 0)m

T1(2|3:)4:5 6,7 V12V3T4 (‘-)é\iQ 4,....7 + (3 <« 47 57 67 7) )
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TOD, 5 0r = VVasTT O+ (2360 4,5,6.7).

1)23,4,5,6,7 23|1,4,..
Tl(gé?i,g,ﬁ,? = V123V4T5,...,7@4(1?223757___’7 + (44 5,6,7),
Tf;’gi,g)ﬁ,? = V12V34T5,...,7@gi)|12757__,7 + (34 <+ 5,6,7),
T srsor=ViVesTs 705 o o+ (2344 5,6,7),

0,0 0
Tl(\23,)45,6,7 - V1V23T45’6»7®é3)\1,45,6,7 + (23 <> 45,6,7),
1,0 1
T30 16 = ViValJaja,7OS0 4 o+ (342 4,5,6,7)] + (2 ¢ 3,4,5,6,7),

-----

while the anomalous building blocks are contained in Y (%) given by (2.27),

(0,1) _ m =(0) m

Yi2sase67= V1Y2345675123,..7 (3.60)
(0,0) _ =(0)

Y12|3,4,5,6,7 = Vi2Y34.5.6,7 =123,...,7°
(070) — ’:‘(0)

Y1|23,4,5,6,7 =W1Ya3.456,7 —1]23,4,...,7 "

It is evident from the above permutations that the general compact expression (2.25)
leads to involved combinatorics resulting in many terms present in the seven-point BRST
variation (3.58), even when written using the shorthands ©(®) and Z(9) defined in (2.28)
and (2.29). Fortunately, the analysis of the outcome is also greatly simplified by this very
same organization, as it suffices to check only a handful of different topologies of ©(®) and
Z(@ rather than all their permutations. In fact, it is straightforward to check that all 7(%")

terms above vanish due to

Vl%T?:?ﬁf’ﬁﬁ@gl)igis,es,? =0, V1V2T515,6,79g|)i,?4,5,6,7 =0, (3.61)
V1%3Tﬁ5,6,7@ég)\ff4,5,6,7 =0, WV2T34:56:7®§H,34,56,7 =0,
V1V2T345,6,7®é(|)i’34576’7 =0, V1V23T45,6,7®§%)‘1,45,6,7 =0,
V1V234T5,6,7®é%)4|1’576’7 =0, ‘/1V2J3|4,5,6,7®S;,|1’4’5’677 =0,

whose explicit expansions in terms of shuffle-symmetric functions Z can be found in the
appendix C. The coefficients of Vi 4 with A # () are just relabellings of the ©(@ in (3.61)
and therefore vanish as well.

Using the results above the BRST variation of (3.54) is purely anomalous

ie m —(0)m
QKF“(6) = ViY3h 4567 :g\;,3,4,5,e,7 (3.62)
+ ‘/12Y3,4,5,6,7 Eg(;)|3,4,5,6,7 + (2 < 37 4; 57 6, 7)

+ V1Ya3.4,56,7 5%23,4,5,6,7 +(2,3]2,3,4,5,6,7),
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and is written entirely using the linear combinations Z(©) of (2.29),

=(0)m R m ~ m

=112,3,4,5,6,7 — _521,2,3,4,5,6,7 + [ZZ|1,3,4,5,6,7 +(2¢3,...,7)] = —Z{234567 (3.63)
=9 = Lam +[2 + (3 ©4,5,6,7)]=-Z2

—1203,4,5,6,7 — 9 12,3,4,5,6,7 3|12,4,5,6,7 195 05 = 12(3,4,5,6,7

=) = Llam + [z + (2345 4,5,6,7)] = -2

—1]23,4,5,6,7 — ~ 91,23,4,5,6,7 23(1,4,5,6,7 195 0, = 1]23,4,5,6,7 -

Similar to (3.28), the = symbol indicates that boundary terms w.r.t. 7 have been dis-
carded in the second step of each line. The rearrangements of the above sums have the
same structure as the trace relations among non-refined and refined building blocks, see
section 1.4.4.4. As discussed in section I1.5.3, the worldsheet functions found via the boot-
strap method of section I1.4.4.4 satisfy the dual trace relations exploited in (3.63), and
(3.62) becomes,

Q/C?ie(@ = —Vlyzng 4,5,6,7 Z{TZ,SA,S,ES,? (3-64>

”””

—V12Y3.4.5.6,7 Z1213,4,5,6,7 T (2 <> 3,4,5,6,7)
—V1Ya3456,7 21j23,4,5,6,7 + (2,3]2,3,4,5,6,7) .

By the relations (I1.4.42) between the three topologies of refined Z-functions, the BRST

variation (3.64) can then be written as,

77777

+ (245 3,4,5,6,7). (3.65)

QICHe(0) = (kgnle{% w567+ Ver1Yaaser+ [ViYosaser+ (3 4,5,6, 7)])312|3,4,5,6,7

From (I1.5.36) we recognize the terms inside the parenthesis in (3.65) as the BRST variation

of Aqj213.4,5,6,7, that is, the expression for KY (¢) in (3.57) is tailored to cancel
Qlclfie(f) = QA1)23,4,5,6,7212|3,4,5,6,7 + (2 ¢+ 3,4,5,6,7) = —QIC%/(Z) . (3.66)

Therefore the full correlator (3.54) is BRST invariant up to total derivatives,
Q(KF(0) + K7 (0)) = QK+ (0) = 0. (3.67)

Before showing that (3.54) is also monodromy invariant, it will be convenient to rewrite it

using the pseudo-invariants of section 1.5.2, as that will simplify the proof considerably.
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3.4.1.1. The C' - Z representation: manifesting BRST invariance

Given that the correlator (3.54) is BRST invariant, it is rewarding to rewrite it in terms of
BRST pseudo-invariants. This can be done following the same procedure applied in detail
for the six-point correlator in subsection 3.3.1.1, so it will only be sketched here again;
we rewrite MyMj'y = Cliyp  +---and MuJR'y = Py +--- and collect the
terms containing a factor of M;p with P # (). A long but straightforward analysis using
integration-by-parts relations (2.30) for the Z-functions shows that all terms proportional

to M;p vanish and we arrive at

1 mn s),mn
Kr(0) = CIAY ZP5" o+ [234567| Ay, . ., Ag) (3.68)

1 mn Ss),mn
+ 3 1|A1,...,A5Z£,1)41,...,A5 + [234567|Ay, . .., As]

O A 200, [234567| Ay, ., A
+ Chiayay 250 4+ [234567| Ay, .., Ay

P 2T gy + (AL An, o AG)] + [234567| Ay, ..., Ag]

_ [pl‘Al‘A27___,A5Z‘§1>‘1’A27“"A5 + (A1 ¢ As,..., As)] + [234567| A4, . . ., As]

— A11213,4,5,6,7212(3,4,5,6,7 T (2 ¢ 3,4,5,6,7).

Note that only six legs participate in the Stirling permutations, and Z.(f) are defined in
(I1.4.22). To compute the BRST variation of (3.68) it will be convenient to recall that [22]

m _ . T1Tm mnp _ __s(mn D)
QP 534567 = "TT]234567> QCl234567= 0 Tias4567
_ mn _ mmn
QPr1j2314,5,6,7 = —1'1]23,4,5,6,7 5 QCT 35,4567 =—0""T1]2345,6,7
_ m _ _
QP12134,5,6,7 = —1'1]2,34,5,6,7 5 QCT A, B,c,p = RQC1ja,Bc =0 (3.69)

QA1123,456,7 = k3 T2 34567+ [523T1)23,4,5.6,7 + (34> 4,5,6,7)] ,

see (1.5.27) for the anomaly invariants I'y|. . After straightforward algebra and using the

trace relations (3.63) we obtain,

QK7(6) =TTl 34567(Zl 954567+ [k 212134567+ (2 ¢ 3,4,5,6,7)]) (3.70)
— 52301123,4,5,6,7(21)23,4,5,6,7 T 212/3,4,5,6,7 — 213(2,4,5,6,7) T (2, 3|2,3,4,5,6,7)
0.

12

The linear combinations of worldsheet functions in (3.70) correspond to the BRST-exact
anomalous kinematic factors displayed in section I1.5.4 and, as we have seen in (11.5.26),
they vanish up to total derivatives. Therefore, BRST invariance of the representation (3.68)

is indeed confirmed.
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3.4.2. Single-valuedness

We will take the manifestly BRST-invariant representation (3.68) of the seven-point corre-
lator as a starting point to verify monodromy invariance. Using the monodromy variations
of the seven-point Z-functions discussed in section 11.4.4.4 and in the appendix II.A, a

long but straightforward calculation implies,
DKr() = Q0K + -+ 4+ Q7687 (3.71)

where (E(S) " is defined in (11.4.23))

1]A,..

(m(l) _kmgmf Eﬁ}fi’ A+ [234567| 4y, ..., A7 (3.72)

+ R4, E§|S,)4n ..... A, T [234567]Ag, . .., Ag]

RO, A5E§f}4 _____ 4 [234567] A, . .., As]
- [kTP1|2|3,4,5,6,7 + A1|2|374757677] E§|2)|3,4,5,6,7 +(243,4,5,6,7).
The other (5IC(7j) for j = 2,...,7 can be obtained from (5IC§1) by relabeling of 1 <> j in both
the kinematics and GEls of (3.72). To verify this last statement one uses the change-of-

basis identities for pseudo-invariants derived in [22]. This is because the relabeling of (5IC(7j )

e
with j # 1), whereas the monodromy variation of (3.71) obviously contains only elements

for j = 2,...,7 involves pseudo-invariants outside of the canonical basis Cl| - (i.e.

in the canonical basis. See the analogous six-point analysis described in section 3.3.2 for
more details.

The appearance of momentum contractions in (3.72) signals the need to use the BRST
cohomology identities derived in [22] and reviewed in section 1.5.4. In addition, one also
needs their elliptic dual identities involving momentum contractions of k7" E™ (cf. section

I1.5.1) and the trace identity

L pmm 9
5 EBhas67 = [Braaser+ (2 3,4,5,6,7)] 4 2miz—log 7((). (3.73)

After long but straightforward manipulations one finally concludes that the monodromy

variation (3.72) is BRST-exact and given by

1 1 mn s)mn
5’C(7 ) = 5 1|Aa,..., E§|1)4 L Ag + [234567|A2, .. .,A7} (374)
AT A Bt [234567] s, ., Ag]
+ A1|A2,...,A5E§|22MA5 + [234567| Ay, ..., As] 20.

It is crucial to note that only unrefined building blocks A, . arise, whose BRST exactness
is discussed in section 1.5.3. Since the other 5/ng ) are relabellings of (3.74), it follows that
the complete monodromy variation DKC7(¢) in (3.71) is BRST-exact and therefore vanishes
in the cohomology; DK7(¢) = 0.
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3.4.2.1. The C - E representation: manifesting BRST invariance € single-valuedness

Having derived the C - Z representation and shown that it is single valued, we can re-
express it to manifest both BRST and monodromy invariance. We proceed similarly as in
the six-point case by inserting Zi";'p == Efl; 5+ --- into the C'- Z representation
(3.68) and using a long sequence of BRST Cohomology identities described in [22]. Doing
this leads to a manifestly BRST-invariant and single-valued expression neatly summarized

by the following Stirling permutation sums

ZCM ..... T BT [234567[ A, Avys) (3.75)
mi...my (s)mi...myp
B Z P1|1‘:;1|A27 r+5E1|A1|1142...,AT+5 + (Al < Ag, ., AT—I—S)] + [2 .. -7|A1, ceey AT+5} ,
where E§|,)4 " is defined in (I1.4.23), and the terms proportional to Aq|g3,4,5,6,7 drop by

the trace relations (3.63). Expanding the Stirling permutation sums in (3.75) yields

mn (s)mn
Kz (€) = Cl|2,§,4,5,6,7E1|2 3, 4p5 6,7 (3.76)

+ C(1|23,4,5 6 7E(|82);n:5 6,7 + (27 3‘27 3,4,5,6, 7)

[ 1|234,5,6 7E1|2)34 5,6,7 + C’1|243 5,6 7E§TZ)Z’> 5,6, 7] <2’ 3’ 4‘2’ 3’ 47 5’ 67 7)

[CT: 1/23,45,6 7E1|2)3 45,6, T €ve(2,3, 4)] +(6,7(2,3,4,5,6,7)
[C112345.6.7 B 1p345.6.7 + Perm(3,4,5)] + (2,3, 4,512, 3,4,5,6,7)

[C11234.56.7 B934 56.7 + C1j243.56.7 B gz 6.7 + €e(5,6,7)] +(2,3,4]2,3,4,5,6,7)
[Ch125.45,67 By 35,4567 + €e(4,5,6)] + (3 > 4,5,6,7)

{?2|3,4,5,6,7E§T2)\17;4 5,6,7 + (24 3,4,5,6,7)

.
N
N
N

- P1|23|4,5,6,7E§‘2)3‘4’5’677 +(2,3]2,3,4,5,6,7)
- |:P1‘2‘34757677E§T2)‘34,576’7 + CyC(Q, 37 4>j| + (27 37 4|27 37 47 57 67 7) )

for a total number of 326 terms with pseudo-invariants C' and 81 terms with P. This is the
double-copy expression for the seven-point correlator implicitly proposed in [10]. Similar
0 (3.68), only six legs participate in the Stirling permutations, but there is no analogue

of the terms Aygj3,.. 72Z12)3,...,7 in the last line of the C'- Z representation.
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3.4.2.2. The T - E representation: manifesting locality € single-valuedness

From the C - E representation (3.76) one can derive a manifestly local and single-valued
representation following the same ideas as explained for the six-point case in section 3.3.2.2.

The end result is given by,

1

Kr(0) = SWTY? (B, (3.77)

+ ;Vszs 456,781 23,4567 T (2,3(2,3,4,5,6,7)

(ViT354 56,7 o3a,5,6,0 + ViToas 56,7 E joaz 5.6,7) + (2:3,4(2,3,4,5,6,7)

(ViT35 45,6 7B (23,45,6,7 + cye(2, 3, 4)] +(6,7(2,3,4,5,6,7)

[V1T2345,6,7E1|2345,6,7 + perm(3, 4, 5)} +1(2,3,4,5(2,3,4,5)

(ViTasa,56,7F1)234,56,7 + ViToa3,56,7F1|243,56,7 + cye(5,6,7)] + (2,3,4/2,3,4,5,6,7)
+ [ViTa3,45,67E1)23,45,67 + cyc(4,5,6)] + (3 > 4,5,6,7)

—Vid3s 456781 23,4567 T (24> 3,4,5,6,7)

— ViJosjas,6,7E1 2314,5,6,7 + (2,3]2,3,4,5,6,7)

— [Vidapsa5.6,7E112134,5,6,7 + €ye(2,3,4)] +(2,3,4]2,3,4,5,6,7) .

N
N
N
N

Similar to the six-point case (3.47), this T'- E representation is related to the C' - Z repre-
sentation through the duality between kinematics and worldsheet functions, up to the fact
that (3.77) does not exhibit any dual of the terms Aygj3,.. 7Z123,... 7 in (3.68). Moreover,
the combinatorial structure of (3.77) is identical to that of the C'- E representation (3.76).
In addition, proving BRST invariance of the representation (3.77) requires the same elliptic

worldsheet identities used to generate (3.77) from (3.76).

3.5. Fight points

Following the general structure of one-loop correlators presented in (2.17) and (2.33), the

manifestly local Lie-series part of the eight-point correlator is proposed to be
KFe ) = K (0) — K0 (0) + £ (1) (3.78)

which will later receive a purely anomalous correction K} (£). The unrefined part with

d = 0 follows the general pattern indicated in (2.16),

L (0) = VA T4 250+ 12345678 4s, . A (3.79)
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VAle"p 24T 4+ (12345678 Ay, . .., A7

3' 7
+ —VAIT}Q"W Ag ngm A, + [12345678| Ay, ..., Ag]
A, + [12345678|Ay, ..., As]

A, T [12345678| Ay, ..., A4l

.....

-----

and contains [§| + [5] + [5] + [] + [}] = 1+ 28 + 322 + 1960 + 6769 = 9080 terms, where

n

we recall that [ ] denotes the Stirling cycle number. The correlator (3.78) also contains

78] +6[5] +5[5] =7+ 168 + 1610 = 1785 terms with refinement d = 1,

bS]

K& (o) = [VAIJA2|A3 A g F (A2 Az, AQ)] + 1. 8|Ay, ., A
[VAlJA2|A37W’A7ZA2|A1’A37.“’A7 +(Ay & Ag, .. A7) +[1...8|Ay, ..., Af]
+ [Var 4y ... 46 ZAs| Ay As,... g + (A2 <> As, ., Ag)] 4+ [1...8] A1, ..., Ag],
(3.80)

and (;) = 21 terms with refinement d = 2,
Icéz)(@ = V1J2,314,5,6,7,822,3)1,4,5,6,7,8 T (2,3]2,3,4,5,6,7,8) . (3.81)

The worldsheet functions appearing in the expansions above can be obtained solving the
system of monodromy variations described in section I1.4.4, and their explicit expressions
can be found in the appendix II.A.

One can also show using the trace relations among local building blocks that the overall
correlator (3.78) is unchanged when using trace-satisfying worldsheet functions Z defined

in (I1.5.19) instead of the naive ones from the solutions to the monodromy variations,
KLe(e) = Kk (). (3.82)

3.5.1. BRST wariation

The computation of QKL® can be performed in a straightforward fashion using the varia-
tions of the local superfields given in section 1.4 and is given by the general identity (2.25)
with n = 8 (see its n = 7 instance in (3.58)). To check whether the correlator is BRST
invariant, it suffices to analyze a few distinct linear combinations of worldsheet functions
encompassed in the definitions of ©(® and =@ in (2.28) and (2.29).
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One can show that the eight-point Z-functions derived via the bootstrap approach
(cf. appendix I1.A.3) imply the vanishing of all 0@ topologies of worldsheet functions,
see (2.30). For some of these topologies, more than ten Z-functions conspire in a highly
non-trivial way to yield total Koba—Nielsen derivatives that integrate to zero. The full list
of inequivalent topologies can be found in the appendix C.

However, the combinations Z(9) defined in (2.29) do not vanish when the solutions
to the monodromy equations are plugged in. For instance, the contributions to QKI°

proportional to VY53 45 6,7, are given by

—(0 _ 1
ég)u s5.678 = 52515078+ [Zasiase s+ (23 ¢ 45,6,7,8)]
= —Z1|23,45,6,7,8 T 121,23,45,6,7,8 (3.83)

= —Z21)23,45,6,7,8 »

where the R-functions where defined in (I1.5.18) are proportional to G4 — they will be
written down below in (3.88) for convenience — and we used the definition (I1.5.19) of Z
in passing to the last line. The analysis for the other eight-point building blocks is similar,

—(0) mima...m,. —=(1) mima...m,

\_'A1|B1 ..... B'r+6 = _ZA1|B17---7B7“+6 ) HA1|A2|B1,...,BT+6 = ZA17A2|B170~7BT+6 ) n= 87
(3.84)
and the BRST variation of (3.78) becomes
ie 1 m
QICEe () = —5VaYE 4 SN g H12...8]A1, . Ay (3.85)

— VA1Y£;,”"A7 ZIZL1|A27---,A7 + [12 . .8‘141, ce ey A?]
—Va,Ya, . Aq 2A1|A2,...,A6 +[12...8]|A4, ..., Ag]
+ [ViYai3,4,5.6,7,8 21,2|3,4,5,6,7,8 + (24 3,4,5,6,7,8)],

which can be written more explicitly as

Q]Cgfie( ) = —_V1Y2,3,4,5,6,7,8 Z1|2 3,4,5,6,7,8 (3~86)
- [V Y93 456, 7SZl|23,4,5,6,7,8+ (2,32,3,4,5,6,7,8)]
— [Vi2Ysy 5678 Z12|3,4,5,6,7,8+ (2 ¢ 3,4,5,6,7,8)]
— [Vi23Ya 56,78 Zr93j4.5.6.7.8 + ViseYas.6,7.8 2132145678 + (2,3]2,3,4,5,6,7,8)]
— [ViYasu,5,6,7,8 Z1j231,5,6,78 + V1Y2u3,5,6,7.8 Z11243.5.6,7.8 + (2,3,4/2,3,4,5,6,7,8)]
— [(Vi2Y34,5.6,7,8 Z12|34 56,78 +cye(2,3,4)) +(2,3,4]2,3,4,5,6,7,8)]

— [(V1Ya,3,4,56,78 Z112,3,4,56,78 + cyc(5,6,7)) + (2,3,4]2,3,4,5,6,7,8)]

[V

+ [ViYa;3456,7, 8§ 21 203,4,5,6,7,8 + (24 3,4,5,6,7,8)] .
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In terms of the undeformed functions, the BRST variation is given by

ie 1 mn mn mn
QKg*(0) = _§VA1YA2,...,A8 ( Ar| Az, Ag A oag) F12...8lAr, ..., Ag] (3.87)

- VAlyzgr;,...,A7 (Z;ZLllAg,...,A'y - 211,...,147) + [12 te 8|A17 et A7]
—Va,Ya,,. a6 (Za1)4s,... 06 — Ray,ias) + [12...8|A1, ..., Ag]
+ [ViYajs,45.6,7.8 21,234,567 + (2 <> 3,4,5,6,7,8)] ,

where the R-functions are all proportional to Gy,

Ri2,34,5,6,7,8 = 3Ga(s13 — S14 — 523 + S24) , (3.88)
Ri23.456,78 = 3Gy (812 — 2513+ 823) ;
Note that the trace relation Y3’y ¢ = 2Yyj3 g+ (2 <> 3,...,8) implies that the contribu-

tions of R{% g in (I1.5.21) and (I1.5.22) cancel. The remaining task is to compensate the

leftover variation (3.87) by adding an anomaly sector K} (£) to the eight-point correlator.

3.5.2. Purely anomalous sector

The strategy to cancel the terms (3.86) in a bid to achieve BRST invariance is similar to
the seven-point case; we propose to add a purely anomalous contribution to the eight-point
correlator (3.78),

Ks(0) = KKFe(0) + K¥ (0). (3.89)

By analogy with the expression (3.57) for KXY (¢), we start from an ansatz comprising

anomalous A superfields of (I.C.1) and some unknown worldsheet functions U,

Ks (¢) = [Aﬁ2\3,4,...,8 Ullasa,..s T (23,4, 8)]
+ [A1|23|4,...,8 s23U123)4,....8 +(2,3(2,3,4, .. '78):| (3.90)
+ [(Avj2p34,....8 534U 2j34,...8 + cye(2,3,4)) 4 (2,3,4/2,3,4,5,6,7)] .
In fact, (3.90) is the most general linear combination of anomalous building blocks such
that their BRST variations are expressible in terms of V3 4Y "™ rather than VpY¥;"'

with 1 ¢ B. Any other combination of Y- in (3.90) would lead to terms Vg, 1 ¢ B in
QKY (¢) that cannot be cancelled by (3.87). In contrast to their seven-point counterpart
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Aqj213,4,5,6,7, the eight-point instances of the A superfields exhibit kinematic poles (cf.
appendix 1.C), so (3.90) amounts to a mild violating of manifest locality.

In order to determine the U-functions in (3.90) we start by noting that Q?KL¢(¢) = 0
implies that QKL¢(¢) is BRST closed. Therefore all the ghost-number-four superfields
VAlem2 " in (3.87) must combine to ghost-number four BRST invariants given by I'
defined in [22] (also see the alternative algorithm in appendix I.A.2 for the unrefined
cases). This can be seen by rewriting the local superfields in (3.86) in terms of Berends—

Giele currents using (1.5.1) followed by MAY5 5> — ¢ A|’1F7X|1B”:’2é'2’m where

3345678 = MYy 8+[k2M12y345678+k2M12y345678+(2Hg - 8)]
— [(k:;nkg, + kS kS ) Ms19YVa 56,78 + (2,3]2,3,4,5,6,7, 8)] (3.91)
1j23,4,5,6,7,8 = M1YVa3 456,78 [M12y§74,5,6,7,8 + Mi23Ya5.6,7.8k5" — (2 < 3)]
+ [k (M14Y23,5.6,7,8 — M214Y3 56,78 + M31aVa5.6,7,8) + (4 43 5,6,7,8)]
['11234,5,6,7,8 = M1Y234,5.6,7,8 + M12YV34.5,6,7,8 + M123V4,5,6,7,8
+ M214Y3.56,7,8 — M14Y23 56,78 + M143Vo 56,78
['yj23.45.6,7.8 = M1Vos 56,78 + [M12Vas 3,678 — (2 <> 3)]
+ [M14Y23 5,678 + M215Y3,4.6,7,8 — M315Vo 4678 — (4 3 5)]

[1123,4,5,6,7.8 = M1YVo3 4,8 + M12ky' V3" + (3¢ 4,...,8)].

........

Under these transformations, it is possible to verify that (3.86) is identical to

QKLe(0) = —% s Zﬁfﬁ@” A, T2.8lA1 . A (3.92)
T Amar 2t 4 H12...8A, ., A
— Ty Aade 2 yng F 11208 A1, L, Ag]
+ [T1pi.4,567.5 21 oy a6 T (24 3,4,5,6,7,8)]
+ %VAIYX;?“’AS RE™ 4+ (12841, ..., Ag]
FVAYE L RT 4+ [12...8|Ay,. ., A

+Va,Ya,, . as Ra, .. a4, +[12...8|A41, ..., Ag],

where Z() is defined in (I1.4.22). It is beneficial to rewrite (3.86) in this way because the

Q-variation of the anomalous correlator (3.90) takes the the same form once we insert the
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expressions for QA in (1.5.39):

”””

+ [823F1|23 4,..8 (U1|2|3,...,8 - U1|3|2,...,8
[k23U1|23|4,...,8 + (23 < 4,5,6,7, 8):|) + (27 3‘27 3,4,5,6,7, 8):|

QK3 (£) = ﬁ§3,4,5 6,7,8 [k U1|2|3 15678 (2423,4,5,6,7, 8)} (3.93)

+ [s2354501123,45,6,7,8 (U112/3,45,6,7,8 — U1/312,45,6,7.8
+ Utjajs,23,6,7,8 — Utjsja,23,6,7,8) + (2,3]4,5[2,3,4,5,6,7,8)]
+ [F1|234,5,6,7,8 [323824 (U1|23|4,...,8 — Utj4)23,...8 — U1j3)24,...8 + U1|24|3,...,8)
+ 523534 (Unj23)a,....8 — Unja2s,...s + Urj2iaa,...s — Urjsape,...8) ]
+T'1)243,5,6,7,8 [323324(U1|24|3,...,8 —Uij3j24,...8 = Urja)o3,..8 + U1|23|4,...,8)
+ 524534 (Unj2aj3,...8 — Unjzj2a,...8 + Urjaas,...8 — Urjazja,...8) |
+(2,3,4]2,3,4,5,6,7, 8)}

77777

+ -+ 528U72813,4,5,6,7) + (2 < 3,4, 5, 6, 77 8)] .

m m
— [T1j213,4,5,6,7,8 (K5 Ullaja

As we will see, the functions U in the anomalous correlator (3.90) can be chosen such as
to cancel all I' terms from (3.92). This can be achieved provided the following equations
hold:

0= ( 112.3,4,5,6,7,8 — [k(mUﬁ)mg 456,78 +(2¢3,..., 8)]) 112.3,4,5,6,7,8 (3.94)
0= < 1]23 ,4,... 1|2|3 8T U{?3|2,...,8 - [k%U1|23I4,~.,8 + (23 4,..., 8)})F?|L23,4,...,8
(3.95)
0= <Zl|23 15,678 — [U1j4123,5,6,7,8 T Ut}sj23,4,6,7,8 — (23 45)])F1|23,45,6,7,8 (3.96)
0= (82 (524 + 834) Z11234,5,6,7,8 + 523524 21|243,5,6,7,8 (3.97)
— 593504 (U1j23)4,....8 T Utj24/3,...8 — U1j3j24,...8 — Urjaj23,...8)
— 523534 (Unj2134,...8 + U)2314,...8 — U1j3aj2,....s — Urjajos, .. )>F1|234 5,6,7,8
0= (Zl,2|3, — k3" Ullas,..8 — (5230112314, + (3 > 4,..., 8)DF1|2|3,4,5,6,7,8~ (3.98)
To solve these equations it will be convenient to exploit the vanishing of Z? according to
(I1.5.29). For instance, 0 = ZIAIQ?;ZL,B,G,ZS can be used to rewrite
112.3,4,5,6,7,8 = — [k(mZIL2)|3,4,5,6,7,8+<2 ©3,...,8)]+ [kgmk§)22l3l4,5,6,7,8+(27 3[2,...,8)]

(3.99)
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allowing (3.94) to be solved for U™. In turn, plugging U™ into (3.95) and using the
vanishing of Zﬁ% 1567 rom (IL.5.27) allows the determination of the other two topologies

of U in (3.90). The resulting expressions

1
m . m m
1]2/3,4,5,6,7,8 = —212|3,...8 T 3 (k3 Zo13)4,..8 + (3 & 4,...,8)], (3.100)
1
Ui|23]4,5,6,7,8 = 2 (Z132)4,5.6,7,8 — Z123(4,5,6,7,8) -
1
U1|2/34,5,6,7,8 = 2 (Z312)4,5,6,7,8 — Z412(3,5,6,7,8)

are consistent with the remaining equations (3.96) to (3.98). One could wonder if the
trace relation Fﬁg,?,,...,s = 2T)93,...8 +(2 <> 3,...,8) among the anomaly invariants might
generate corrections to the last equation (3.98) from tensor traces in (3.94). This is not
the case because the chosen representation of Z™" in the tensorial equation (3.94) does
not feature any 6" Gy deformations.

Given that the expressions (3.100) for the U-functions in k¥ (¢) solve all of (3.94) to
(3.98), the BRST variation of the overall correlator (3.89) reduces to

. 1
QIKE (0) + K§ (0)) = §VA1Y£?..,A8 Ry 4, +[12...8[A1,..., Ag]  (3.101)

+VA1YAT;,...,A7 K17___,A7 + [128‘141,,147]

+ VA1YA2,...,A6 RA17---,A6 + [12 .. .8|A1, ceey AG] .

The R-functions from (3.88) are all proportional to the holomorphic Eisenstein series Gy,
i.e. any dependence of the BRST variation (3.101) on ¢ or the z; has cancelled.
Unfortunately, we explicitly checked [8] that there is no manifestly local deformation
of the correlator that can be used to cancel the remaining terms in (3.101). Therefore,
even though the BRST variation of Xi¢(¢) + kY (¢) turns out to be a local expression, its
component expansion is non-local, see appendix I.C for the kinematic poles of the Ay
superfields in (3.90). This suggests that there may be another non-local sector whose BRST
variation cancels (3.101), although we have not been able to pinpoint it yet. We leave the

quest for finding such a completion to future investigations.
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4. Modular forms: Integrating out the loop momentum

This section is dedicated to the integration over the loop momentum which will lead to
manifestly single-valued one-loop correlators. In this way, the correlators acquire well-
defined weights under modular transformations, namely holomorphic weight n—4 for the
loop integral of /C,, ().

At the same time, closed-string correlators are no longer chirally split after integration
over the loop momenta [12,13,14]. We will describe the systematics of the interactions
between left- and right movers that arises from loop integration of the holomorphic squares
K, (£)|?. The setup of Z-functions and GEIs turns out to provide an efficient handle on
the vector contractions between left- and right movers and the loss of meromorphicity of
the open-string contributions after integration over /.

Let us briefly summarize the notation of part I & II. As detailed in sections 1.2.2 and

I1.7.2, the net effect of loop integration on the Koba—Nielsen factor (2.3) is captured by

e (20)P o ) 7(Im z;;)?

B = ey P (2 00 [l nC | = T2 -
A (2mi)P = 2
o amnE P (;j sis | og [ ey, P = - (m ] ).

After factorizing these universal quantities in the worldsheet integrand of open- and closed-
string amplitudes (2.1) and (2.2),

An = Ciop / drdzy dzs . .. dz, TP [ (K (0)]], (4.2)

top Dtop

/\/ln:/ Py Py . A2 T [ (O)) (RO 1],
i

the leftover integrand w.r.t. the punctures z; and modular parameters 7 is furnished by
“loop-integrated” correlators [[[C,,(£)]] and [[K,,(¢)K,,(—¢)]] in combination with the zero-
mode prescription (...) of the pure-spinor formalism [2]. Hence, the notation [[...]] in
(4.2) addresses the net effect of shifting the loop momentum as a Gaussian integration
variable, cf. section I1.7.2. The normalization is chosen as [[1]] = 1, and the simplest non-

trivial examples [[(™]] = Lg* and [[("™4"]] = Lg'L{ — 72—0™" are most compactly written

I i i mo_ N pmoy, o= oz
in terms of the non-meromorphic quantity Lg' = ijz ki'viy with v = 2mi—*, see

(I1.7.13) for integration over higher powers of £. The contribution —==™" to [[{"{"]] is

the first instance of the aforementioned interactions between left- and right movers.
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4.1. Five-point open-string correlators

Starting from this section, we apply the techniques of integrating the loop momentum to
the correlators ICp, (¢) of section 3. We will complement the direct integration of GEIs with
a study of the T - Z and C - Z representations where the origin of the kinematic factors

from the OPEs is more transparent.

4.1.1. The T - F representation: manifesting locality € single-valuedness

As discussed in [14], integration over the loop momentum leads to manifestly single-valued
representations of chirally-split correlators. We therefore integrate out the loop momentum

from the representation (3.8) using (I1.7.13) to obtain

[[/Cg)(g)” = [kgbvngng’E)Vlg + V12T37475gg) + (2 < 3,4, 5)} + [V1T23,4,5g§§) + (2, 3|2, 3,4, 5)}
= [ViaTs.,5(9\%) +112) + (243, 4, 5) |+ [Vi Tos 4.5 (958 +18) +(2,3(2,3,4,5)],  (4.3)

where to arrive in the second line we used the cohomology identity (3.18) as k3*V1 T3 4 5 =
VieTs 45 — [V1T23,4,5 + (3 « 4, 5)} and v13—112 = 3. So we see that the single-valued
functions fg) = 92(31 )+ v;; are constructively obtained and we get the following correlator

([Cs(0)]] = ViTs .45 Fi2,3.45 + (2 <> 3,4,5) (4.4)
+ ViTos a5F1,23,45 + (2,32,3,4,5),

in terms of manifestly single-valued functions Fi23.45 = fl(;) Given that the functions
fi(;”) defined by (I1.7.1) carry w units of holomorphic modular weight, see (I1.7.5), the

correlator (4.4) is a modular form of weight one.

4.1.2. The C - F representation: manifesting BRST invariance € single-valuedness

It is also possible to obtain a representation without the loop momentum which mani-
fests both BRST invariance and single-valuedness. This can be achieved in at least two
ways: integrating out the loop momentum from the C' - Z representation (3.17) or using
integration-by-parts identities to eliminate all fl(;) integrands with j = 2,3, 4,5 from (4.4).

First, integrating out the loop momentum from (3.17) using the identity,
5
j=1
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leads to the manifestly single-valued and BRST-invariant form of the five-point correlator

[Ks(O)]] = Cujos 5525 £33 + (2,312,3,4,5) (4.6)
This form reproduces the five-point one-loop correlator proposed in [28] and rederived
in [30,10]. Alternatively, one can arrive at the representation (4.6) using integration-by-
parts identities (I1.7.27) in the local and single-valued representation (4.4). In fact, this is
how (4.6) was originally derived in [30]. The derivations of this paper are based on single-
valuedness and BRST-invariance constraints, and one obtains a much richer perspective on
the correlators. In summary, the integration over the loop momentum yields two additional

representations of the five-point correlator from (3.22),
[(Ks(0)]] = [VieTs,4,5F 12,345 + (2 4 3,4,5)] + [ViTosa5F 123,45 + (2,3[2,3,4,5)] ,

[KCs (D] = CijasasFrvs a5+ (2,3(2,3,4,5), (4.7)

where we used the shorthand F1(:92)3,4,5 = s93F1,2345 = 823f2(;’) in the second line. More

generally, by analogy with the Z(*) in (I1.4.22), we define the following Lie-symmetry

satisfying analogues of the shuffle-symmetric fzg’i?j”—functions,
FSl = 3 S(AIAYGSBIB b Filtiipr (4.8)

A',B,...
which will be tensorial at higher multiplicity. We see that integrating out the loop momen-
(1) 1)
i Jig
However, these replacement rules are tied to the present open-string context and no longer

tum from the functions Z in (3.8) has the same effect as sending ¢ — 0 and g

apply to the closed-string five-point correlators of section (4.20).

4.1.3. Lessons from the T - E and C - E representations

As an alternative to the earlier computations, one can start from the representations (3.20)
or (3.21) of K5(¥¢) in terms of GEIs and insert the results (II.7.17) and (I1.7.19) for their
loop integral. The manifestly local T - E representation (3.20) yields

[[Ks(0)]] = ViTasasfSs) + (2,3]2,3,4,5) (4.9)
+ Vi(ky' T3 45+ Toz a5+ Toa3 s + T25,3,4)f1(§) + (24 3,4,5)

after reorganizing terms which agrees with the T - F representation (4.4) up to the co-
homology identity (3.18). Similarly, the manifestly BRST-invariant C' - E representation
(3.21) yields

(K5 (0)]] = 82301|23,4,5f2(§) +(2,3(2,3,4,5) (4.9)
+ (k3'Cll2 3,45 + 523C1 23,45 + 524C1j243 5 + 52501\25,3,4)f1(;) + (24 3,4,5),
after reorganizing terms. This in turn matches the C' - F representation (4.6), because the

second line is BRST exact by (1.5.41).
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4.2. Siz-point open-string correlators

4.2.1. The T - F representation: manifesting locality & single-valuedness

We already know that the six-point correlator (3.23) is single-valued, and in this section
this will be manifested by integrating out the loop momentum and checking that the

generated variables v;; combine into single-valued functions fi(;) according to (I1.7.3)
1 1 2 1y, 1 2
gz(]) +V1j fl(])7 gl(]) + 13,91(]) + 57/2‘23‘ = fl(]) . (411)

Indeed, integrating out the loop momentum in the representation (3.23) using (I11.7.3)

yields

-----

1

(O] = 5V A a FA a, + [123456] s, .., Ag] (4.12)
+ Va,Th, A, Fa,. .4, +[123456]Aq, ..., As]
+ VAlTA27___,A4fA17___’A4 + [123456|A1, ceey A4] N

with manifestly single-valued worldsheet functions given by

F123,4,5,6 = f1(1)f(1) +f(2) +f(2) 1(?, (4.13)
F12,34,5,6 = fl(g)f(l) + f(z) + f(z) (i) - 2(? 5

Fiisase = (K — kIS + [ (A5 — £35) + (3 ¢ 4,5,6)]

]-"1’2’3’4’5’6 = [(K7R3 + KPR 1)+ (1,2]1,2,3,4,5,6)] .

To see this, we use the integration-by-parts identity (I1.7.27) obtained from ds(vyZg) = 0,

1) ~ T (1)
vofiy = 51a (E + [s23v2fa5" + (3 <> 4, 5,6)]) ) (4.14)

and drop the BRST-exact linear combinations given by (I.B.2) and (I.B.14). Given that
an additional summand of Z— arises from the loop integral over 14,0, Vi T. 554565 the
coefficient of the modular anomaly cancels by the building-block trace relation (1.4.45).
Similarly as in the five-point open-string calculations, the functions F in (4.13) are related
to Z from (3.24) by ¢ — 0 and g( ™ (") . Furthermore, we see from (I1.7.5) that the

non-holomorphic six-point correlator (4.12) is a modular form of weight two.
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4.2.2. The C - F representation: manifesting BRST invariance € single-valuedness

There are several alternatives to deriving a manifestly BRST-invariant form of the corre-
lator without the loop momentum. The most straightforward way is to use integration-by-
parts identities (I1.7.27) in the representation (4.12). A long calculation very similar to the
derivation of (3.49) in section 3.3.3 leads to

[KC6(0)]] = [(so3s34f53 33 Chjasase + cye(2,3,4)) + (2,3,4]2,3,4,5,6)] (4.15)
+ [(s23515f35' fi5 Chjosas.6 + (3, 4,5)) + (6  5,4,3,2)]
+ [fg)01|2|3,4,5,6 +(2+4+3,4,5,6)] + [fz(g)01|(23)|4,5,6 +(2,3/2,3,4,5,6)]
see (3.50) or (3.52) for the pseudo-invariant kinematic factors Cij2(3.4,56 and Cij(23)(4,5,6-
This representation reproduces the correlator proposed in [33] based on BRST cohomology
properties together with an anomaly-cancellation analysis. At the same time, (4.15) can

be easily checked to be equivalent to
1 mn s)mn m s)m
[KCs ()] = B 1|2,3,4,5,6F1(,2),3,4,5,6 + 1|23,4,5,6F1(,2)3,4,5,6 +(2,3/2,3,4,5,6)] (4.16)

+ [(Cl|234,5,6F1(f2)34,5,6 + Cl|243,5,6F1(,82)43,5,6) +(2,3,4/2,3,4,5,6)]
+ [(Cl|23,45,6F1(:92)3,45,6 + cyc(3,4,5)) + (6 <> 5,4,3,2)]

using the Lie-symmetric version (4.8) of the functions Fi'y; in (4.13).

4.2.83. Lessons from the T - E and C - E representations

Again, one can combine the above results for the loop integrals over six-point GEIs with
the T'- E and C'- E representations of ICg(¢) in (3.47) and (3.44), respectively. Based on the
loop integration [[EY[y ]| = —i0™" + ... and [[Eyjg3, ]| = =5 + ... in (IL7.19) and
(I1.7.32), the cancellation of the modular anomalies is transparent in both representations:
Either by the trace relation (1.4.45) among local building blocks or by the trace relation
(I.5.29) among pseudo-invariants.
In particular, the terms Kg(¢) = %C’{TQ"E{TQ” — [P1|2|3’“.E1|2|3’m +(2++3,.. )} +
. in the C - E representations (3.44) illustrate the duality between BRST anomalies
and modular anomalies: In the same way as the modular anomaly of [[[Cs(¢)]] cancels by
the trace relation (1.5.29) between C’ﬁ”zn and Pygj3,..., the BRST anomaly localizes to a
boundary term in moduli space since the GEIs Efrzn and FEq)g3,... satisfy the dual trace
relation (I1.5.31) (or (I1.7.34) after integration over /).
Also, note that the C' - F representation (4.16) results from straightforward regroup-
ings of terms in the integrated C - E representations (3.44): There is no need to perform

integration by parts on the fi(f), and the coefficients of f 1)

15 5 j=2,3,4,5,6 are easily seen

to vanish after using Fay relations and cohomology identities of section 1.5.4.
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4.8. Closed-string correlators

One of the major motivations for chiral splitting is that closed-string correlators are literally
the square of open-string correlators before integration over ¢, cf. (2.2). Performing the loop
integral reveals modular invariance of the closed-string amplitude representation (4.2),
at the expense of introducing interactions between left- and right-movers. We will now
illustrate these interactions based on examples up to six points.

Most obviously, the expressions of section I1.7.2 for integrated GEIs are augmented by
additional terms involving ~— when the opposite-chirality sector contributes additional
loop momenta, e.g.

HE E1|2 3,4, 5” = _Eémn + Ln [k (1) (2 Axd 37 47 5)} y (417>

n mm mn n m 1 m 1 2 2
[[¢ 1|23,4,5,6”:_E5 Vi(l 273)+L0<k3 f1( f()‘f'kz f1( f()‘f‘kzs( - 1(3))

(k= RO + (R ADVA(L2,8) + (40 5,6)]),

0BT 56)) = <”’)WMW@—E;L@WW[“ﬂ” (23,4,5,6)]

ImT

- o0 LR+ 2(L8LE - 0" ) [k + (2 3,4,5,6)]

Im~r

+ (ZBLE — 07 ) (kg ks +R5 R £33+ (2,312,3,4,5,6)]

T
[0™ Ev213,4,5,6)] = —ﬁfg)kén + Ly’ <_E - 2312f1( + f(l) [323f(1) (3¢ 4,5, 6)D

m ™ 1 1 2
= LO <—E + 6f1(2) + 812( 1(2)> 2812f( )> .

Once these additional loop momenta are regrouped into complex conjugate GEIs, the net

effect of the additional L7 is to recombine the g™ functions to

n

7™ () = > <_k') g (z, 1) . (4.18)

k=0

The minus signs relative to (11.7.3) are due to v;; = —v;; under complex conjugation. Like-
wise, our normalization conventions for the loop momentum transforms ¢ — —/ in passing
from GEIs to their complex conjugates, as reflected in the notation I@n(—é) for right-moving
correlators in (4.2). For instance, the vectorial GEI in Ks(—¢f) = Fﬁ2’3’4’5é’ﬁ2’3’4’5 + ...
reads E1|2 345 = —{+ [k;”gglz) + (2 4+ 3,4,5)], and the loop integral of its holomorphic

square can be performed via (4.17),

m " ™ mn nF(1)
[[ET2.3,4,5E71)2,3,4,5]] = ﬁé + [k3 f1 (1) + (24 3,4,5)] [k 12 +(2 4 3,4,5)] . (4.19)
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The first term exemplifies that factors of 7— are not necessarily associated with modular
—(1
anomalies in a closed-string setup: Both Z— and the remaining terms fi(jl) f;l) in (4.19)
have modular weights (1,1), in lines with modular invariance of the five-point amplitude
(4.2). In fact, the cancellation of modular anomalies in integrated open-string six-point

correlators applies separately to both chiral halves of the closed-string calculation.

4.3.1. Five points

Starting from the T' - Z representation (3.8) of the open-string five-point correlator, loop
integration over its holomorphic square yields

- 2
[Ks(O)Ks(—0)]] = ’[‘/12T3,4,5f12,3,4,5+(2 < 3,4,5)] + [ViTos,4,5F1 23,4,5+(2, 3]2,3,4, 5)“

™

+ Im T‘/iT2773,4,5‘71T2773,4,5 . (4.20)

The second line augments the square of the integrated open-string correlator in its 7' - F

representation (4.4) by a left-right contraction. The recombination of gz(]1 ) 4 Vij = fi(jl) and
—(1) ?(1)

9;;' —vij = [;; follows the mechanism of the open-string context, see (4.3).

The local form (4.20) of the five-point closed-string correlator has been spelled out in
[35]. As already emphasized in the reference, integrations by parts (I1.7.27) are more subtle

in presence of both fi(;) and ?ﬁf) Additional terms "— may arise in trading si2 fl(;) for

593 féé) + (3 <> 4,5) on the left-moving side, depending on the labels of the accompanying
(1)

right-moving fij , see e.g. (I1.7.30). Hence, one cannot just replace the left-moving terms

in the first line of (4.20) by their manifestly BRST-invariant counterparts (4.6) without

T
ImT7*

inspecting the respective right-movers and altering the coefficient of
Instead, a manifestly BRST-invariant rewriting of (4.20) can be conveniently found

by integrating the C - Z representation of Ks(£)Ks(—£),

% 2 ™ m m
(s (O (=0)]] = }stfz(?l,)01|23,4,5+(2,3|2a3,47 5|+ E01|2’3’4’501|2’3’4’5' (4.21)

This representation has been firstly given in [33], based on a long sequence of integration-

by-parts identities in (4.20) and carefully tracking all 817531 - Eifg) = —5a= [35].
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4.8.2. Six points

A manifestly BRST invariant closed-string six-point correlator has been proposed in [33]
” open g~open ™ m 2
Ko (O)Ra(—0]) = KFmRE™ + |3 /) Ol a6 + (2,312.3,4,5,6° (4.22)

T 2/1 mn ~mmn
+ (Im%) (501|2,3,4,5,601|2,3,4,5,6 - [|P1|2|3,4,5,6|2 + (2 <+ 3,4,5, 6)]) ,

where ICZP" is essentially the representation of [[Kg(¢)]] given in (4.15),

KCgP = [(823834f2(§)féi)01|234,5,6 +eye(2,3,4)) +(2,3,4]2,3,4,5,6)] (4.23)
+ [(823845f2(;,)fié)01|23,45,6 + cye(3,4,5)) + (6 <> 5,4,3,2)]
+ [f3 Criapass + (24 3,4,5,6)] + [£52) Cujamyjas6 + (2,312,3,4,5,6)]

up to Koba-Nielsen derivatives to be detailed below. The pseudo-invariants C1|23,4,5,6 and
C1|(23))4,5,6 have been defined in (3.50). The second line of (4.22) has not yet been derived
from first principles but was inferred by indirect arguments including properties of the
2 in (4.22)

low-energy limit [33]. In appendix D, we will demonstrate the terms |Py 234,56
to follow from a careful analysis of integration-by-parts identities.

Our derivation of (4.22) starts from the C' - E representation (3.44) of Kg(¢) and a
convenient organization of the loop integrals in the closed-string case according to the

number of contractions £™¢" — —;— between left- and right-movers

Koo~ = (KoO]- (Ko=) (1.20)
a0 o [ 5 ]

4+ 1 m 2Omn é«mn
o\ Im~ 112,3,4,5,6Y1)2,3,4,5,6 -

The double contractions between left- and right movers are sensitive to no contribution
to other than Kg(¢) = lﬁmZanrQ”S 456+ --- and lead to the last line. For the vectorial

- 2
open-string constituents of (4.24), the representation (3.44) gives rise to
0K (¢) . )
|:|: 6€ i|i| - |: 1|23747576823f2(3) + (273|273747576)i|

+ [Prj213,4,5,6k3 V12 + (2 ¢ 3,4,5,6)] (4.25)
see appendix D for intermediate steps. Finally, the scalar contributions to (4.24)
[Ko(O)]] = K" = [Nujaj3,a5,6P1j2j3,4,5,6 + (2 ¢ 3,4,5,6)] (4.26)
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augment (4.23) by total derivatives

N T A 0 N
Nij2i3,4,5,6L6 = (E +via(siafly) — [523f2(§)+(3+>4, 576)])>1-6 = —8—22(1/1216)
N - ™ —(1) —(1) ; 9
Nij2i3,4,5,6L6 = <E — via(s12f 19 — [S23f 23 +(3434, 5,6)})> 6= 3%, —(v12Zs) (4.27)

that have been dropped in the open-string context of (4.15), see (11.7.32). In the present
closed-string context, however, the quantity Kg"" in (4.23) cannot be replaced by
integration-by-parts equivalent representations of [[[Cs(¢)]], say the local expression in
(4.12). The factors of fﬁ;") in the accom