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In this final part of a series of three papers, we will assemble supersymmetric expressions for

one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single

valued. A key driving force in this construction is the generalization of a so far unnoticed

property at tree-level; the correlators have the symmetry structure akin to Lie polynomi-

als. One-loop correlators up to seven points are presented in a variety of representations

manifesting different subsets of their defining properties. These expressions are related via

identities obeyed by the kinematic superfields and worldsheet functions spelled out in the

first two parts of this series and reflecting a duality between the two kinds of ingredients.

Interestingly, the expression for the eight-point correlator following from our method

seems to capture correctly all the dependence on the worldsheet punctures but leaves

undetermined the coefficient of the holomorphic Eisenstein series G4. By virtue of chiral

splitting, closed-string correlators follow from the double copy of the open-string results.
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1. Introduction

This is the third part of a series of papers [1] towards the derivation of one-loop correla-

tors of massless open- and closed-superstring states using techniques from the pure-spinor

formalism [2,3]. We often refer to section and equation numbers from part I & part II and

then prefix these numbers by the corresponding roman numerals I and II. The main result

of this paper is the assembly of local one-loop correlators in pure-spinor superspace [4] up

to eight points. This will be done by combining two main ingredients:

1. local kinematic building blocks introduced in part I that capture the essentials of the

pure-spinor zero-mode saturation rules and transform covariantly under the BRST

charge

2. worldsheet functions introduced in part II capturing the singularities generated by

OPE contractions among vertex operators. In particular, their monodromies as the

vertex positions are moved around the genus-one cycles also follow a notion of “co-

variance”. More precisely, the monodromies are described by a system of equations

that share the same properties of the so-called BRST invariants and naturally lead to

a duality between kinematics and worldsheet functions.

The fundamental guiding principle that will act as the recipe to combine these two in-

gredients will correspond to the one-loop generalization of a symmetry property obeyed

by the analogous tree-level correlators derived in [5] and reviewed in section 2.1 below.

More precisely, the tree-level correlators are composed from products of Lie-symmetric

kinematic building blocks V123...p and shuffle-symmetric worldsheet functions Z123...p =

(z12z23 . . . zp−1,p)
−1. Given the similar structure between these symmetries and the com-

posing elements in a theorem of Ree concerning Lie polynomials [6], we dubbed the corre-

lators obtained in this way as having a Lie-polynomial form. We will see that this line of

reasoning leads to a key assumption of this paper, that the local n-point one-loop correla-

tors of the open superstring can be written as

Kn(ℓ) =

n−4
∑

r=0

1

r!

(

VA1
Tm1...mr

A2,...,Ar+4
Zm1...mr

A1,...,Ar+4
+
[

12 . . . n|A1, . . . , Ar+4

]

)

+ corrections . (1.1)

Definitions of the kinematic building blocks Tm1...mr

A2,...,Ar+4
and the worldsheet functions

Zm1...mr

A1,...,Ar+4
can be found in part I and part II, respectively1. The notation for the permu-

tations in terms of partitions of words addresses the kind of permutations resulting from

1 The worldsheet functions can also be downloaded from [7] as text files in FORM [8] format.
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the interplay between shuffles and Lie symmetries, and is explained in the appendix A. As

discussed in part II, a beneficial side effect of requiring shuffle symmetry for the worldsheet

functions is that the resulting functions automatically contain non-singular pieces that are

invisible to an OPE analysis. Lie symmetries in turn refer to the generalized Jacobi identi-

ties satisfied by the kinematic building blocks, in lines with the Bern–Carrasco–Johansson

duality between color and kinematics [9].

The notions of locality, BRST invariance and single-valuedness will then lead to a

discussion for why the “+ corrections” are needed starting at n ≥ 7 points. In section 3,

a multitude of representations for the correlators with n = 4, 5, 6, 7 (including the “+

corrections” at n = 7) will be given that expose different subsets of their properties. While

the n = 8 correlator following from the proposal (1.1) satisfies many non-trivial constraints,

it fails to be BRST invariant by terms proportional to the holomorphic Eisenstein series

G4. In the future, we expect to address this challenging leftover problem in order to extend

our results to arbitrary numbers of points.

Section 4 is dedicated to manifesting the modular properties of the open- and closed-

string correlators by integrating out the loop momentum. We will relate a double-copy

structure of the open-string correlators [10] to the low-energy limit of the closed-string

amplitudes. This incarnation of the duality between kinematics and worldsheet functions

is checked in detail up to multiplicity seven, and we describe the problems and perspectives

in the quest for an n-point generalization at the end of section 4.

2. One-loop correlators of the open superstring: general structure

In this section, we set the stage for assembling one-loop correlators Kn(ℓ) from the system

of kinematic building blocks and worldsheet functions introduced in part I and II. By their

definition in section I.2.2, correlators Kn(ℓ) carry the kinematic dependence of one-loop

open-string amplitudes among n massless states

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn

∫

dDℓ |In(ℓ)| 〈Kn(ℓ)〉 , (2.1)

with 〈. . .〉 denoting the zero-mode integration prescription of the pure-spinor formalism

[2]. The integration domains Dtop for the modular parameter τ and vertex positions zj

are tailored to the topologies of a cylinder or a Möbius strip with associated color factors
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Ctop, see [11] for details. The integration over loop momenta ℓ is an integral part of the

chiral-splitting method [12,13,14], which allows to derive massless closed-string one-loop

amplitudes from an integrand of double-copy form

Mn =

∫

F

d2τ d2z2 d
2z3 . . . d2zn

∫

dDℓ |In(ℓ)|
2 〈Kn(ℓ)〉 〈K̃n(−ℓ)〉 , (2.2)

with F denoting the fundamental domain for inequivalent tori w.r.t. the modular group.

Both of (2.1) and (2.2) involve the universal one-loop Koba–Nielsen factor

In(ℓ) ≡ exp
(

n
∑

i<j

sij log θ1(zij , τ) +
n
∑

j=1

zj(ℓ · kj) +
τ

4πi
ℓ2
)

, (2.3)

with lightlike external momenta kj , where we use the shorthands

sij ≡ ki · kj , zij ≡ zi − zj (2.4)

and conventions where 2α′ = 1 for open strings and α′

2
= 1 for closed ones.

In trying to calculate multiparticle one-loop amplitudes using the pure-spinor prescrip-

tion (I.2.4), one soon realizes that most efforts tend to be hampered by the complicated

nature of the b-ghost (I.2.5). This difficulty, however, motivates a less direct approach

which illuminates the structure of the answer in a somewhat unexpected way; the organiz-

ing principle will be drawn from the tree-level correlators of [5].

2.1. Lessons from tree-level correlators

Recall that n-point open-string tree amplitudes in the pure-spinor formulation require the

evaluation of the following n-point correlation function [2],

〈〈V1(z1)
n−2
∏

j=2

Uj(zj)Vn−1(zn−1)Vn(∞)〉〉tree ≡ 〈Ktree
n 〉

n
∏

i<j

|zij |
sij , (2.5)

see (I.2.6) and (I.2.7) for the vertex operators Vi and Uj . The definition of the tree-level

correlators Ktree
n on the right-hand side is analogous to that of one-loop correlators Kn(ℓ),

cf. (I.2.28). The idea is to strip off the universal factors of |zij |
sij from the path integral,

i.e. the tree-level analogue of the one-loop Koba–Nielsen factor (2.3). The computation of

the correlators Ktree
n boils down to using the CFT rules of the pure-spinor formalism to

perform OPE contractions among the vertex operators in (2.5).
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One of the crucial steps in the calculation of [5] was showing that the multiparticle

vertex operators VP [15] could be used as the fundamental building blocks of the correlator;

for example, in terms of the function Ztree
P defined by

Ztree
123...p ≡

1

z12z23 . . . zp−1,p
, (2.6)

we have

V1(z1)U2(z2) ∼= V12Z
tree
12 (2.7)

V1(z1)U2(z2)U3(z3) ∼= V123Z
tree
123 + V132Z

tree
132 ,

where the symbol ∼= is a reminder that the above relations are valid up to total derivatives

and BRST-exact quantities. As reviewed in section II.4.1, the accompanying functions

exhibit shuffle symmetry such as Ztree
12 + Ztree

21 = 0, Ztree
123 − Ztree

321 = 0 and Ztree
123 + Ztree

213 +

Ztree
231 = 0 dual to the Lie symmetries V12 = −V21, V123 = −V213 and V123 + V231 +

V312 = 0, cf. (I.3.25). When combined with (2.7), these symmetries lead to the following

generalization:

V1(z1)

n
∏

i=1

Uai
(zai

) ∼=
∑

|A|=n

V1AZ
tree
1A , Ztree

A�B = 0 , ∀A,B 6= ∅ , (2.8)

which eventually gives rise to the solution found in [5]. As detailed in section I.3.1, the

summation range |A| = n in (2.8) refers to the n! words A formed by permutations of

a1a2 . . . a|A| with |A| = n.

At this point one may realize that the right-hand side of (2.8) has the structure of

a Lie polynomial [16,6] and that the expressions for the n-point correlators at tree level

obtained in [5] can be written in terms of their products. More precisely, Ktree
n is given by

two copies of (2.8) with n−2 deconcatenations AB = 23 . . . n−2 and an overall permutation

over (n−3)! letters for a total of (n−2)! terms:

Ktree
n =

∑

AB=23...n−2

(

V1AZ
tree
1A

)(

Vn−1,BZ
tree
n−1,B

)

Vn + perm(23 . . . n−2) . (2.9)

For example (Ztree
i ≡ 1),

Ktree
3 = V1V2V3 , Ktree

4 = V12Z
tree
12 V3V4 + V1V32Z

tree
32 V4 , (2.10)

Ktree
5 =

(

V123Z
tree
123 + V132Z

tree
132

)

V4V5 + V1

(

V423Z
tree
423 + V432Z

tree
432

)

V5

+
(

V12Z
tree
12

)(

V43Z
tree
43

)

V5 +
(

V13Z
tree
13

)(

V42Z
tree
42

)

V5 .
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Note that V123Z
tree
123 + V132Z

tree
132 in (2.10) is symmetric in 1, 2, 3 even though only two out

of 3! permutations are spelled out. This is a consequence of the Lie-polynomial structure of

the correlator2; the right-hand side of (2.8) is permutation symmetric in 1, a1, a2, . . . , a|A|

even though only the weaker symmetry in a1, a2, . . . , a|A| is manifest.

The Lie-polynomial structure of the building blocks in the tree-level correlator (2.9)

motivates us to search for a similar organization of the one-loop correlators.

2.2. Assembling one-loop correlators

Let us summarize what we have seen in part I and II in order to better understand the mo-

tivation behind the general form of the one-loop correlators Kn(ℓ) to be proposed shortly.

• In section I.3, we reviewed the definition of local superfields that satisfy generalized

Jacobi identities and, in section I.4, we showed how they can be assembled in several

classes of local building blocks.

• In section II.4, we constructed functions composed of the expansion coefficients of the

Kronecker–Eisenstein series that obey shuffle symmetries when the vertex insertion

points are permuted.

Let us thread the above points together in view of the tree-level structure discussed above.

Firstly, since the short-distance singularities within the correlator are independent on the

global properties of the Riemann surface, the shuffle symmetries of the worldsheet functions

should also be a property of the worldsheet functions at one loop. And secondly, the shuffle

symmetry obeyed by the functions are the driving force in the Lie-polynomial organization

of the tree-level correlators with local kinematic building blocks. When taken together these

points suggest that the superfields and worldsheet functions of one-loop correlators have

the same symmetry structure of Lie polynomials. This realization will lead to a beautiful

organization of superstring one-loop correlators.

2.3. The Lie-polynomial structure of one-loop correlators

The additional zero modes at genus one, in particular the availability of loop momenta,

allow for a significantly richer system of kinematic building blocks as compared to the tree-

level kinematics V1AVn−1,BVn in (2.9). Also their accompanying worldsheet functions must

accommodate the different OPE singularities and powers of loop momentum characteristic

2 This follows from the identity
∑

A

1
|A|

ZAVA =
∑

B
ZiBViB [6].
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to each zero-mode saturation pattern, see e.g. (I.3.23) and (I.3.24). The corresponding

Lie polynomials will therefore differ with respect to these features but will preserve their

mathematical characterization as sums over products of shuffle- and Lie-symmetric objects.

To exemplify and to give a preview of what is ahead, the four-, five-, and six-point

correlators at one loop will be written as products of local kinematic building blocks Tm1...
A,B,...

(cf. sections I.4.1 to I.4.3) and worldsheet functions (cf. section II.4.4) as follows,

K4(ℓ) = V1T2,3,4Z1,2,3,4 , (2.11)

K5(ℓ) = V1T
m
2,3,4,5Z

m
1,2,3,4,5 +

[

V12T3,4,5Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

+
[

V1T23,4,5Z1,23,4,5 + (2, 3|2, 3, 4, 5)
]

,

K6(ℓ) =
1

2
V1T

mn
2,3,4,5,6Z

mn
1,2,3,4,5,6

+
[

V12T
m
3,4,5,6Z

m
12,3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]

+
[

V1T
m
23,4,5,6Z

m
1,23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

+
[

V123T4,5,6Z123,4,5,6 + V132T4,5,6Z132,4,5,6 + (2, 3|2, 3, 4, 5, 6)
]

+
[

(V12T34,5,6Z12,34,5,6 + cyc(2, 3, 4)) + (2, 3, 4|2, 3, 4, 5, 6)
]

+
[

(V1T2,34,56Z1,2,34,56 + cyc(3, 4, 5)) + (2 ↔ 3, 4, 5, 6)
]

+
[

V1T234,5,6Z1,234,5,6 + V1T243,5,6Z1,243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)
]

,

where m,n, p, . . . = 0, 1, . . . , 9 denote Lorentz-vector indices. As in part I and II, the

separation of words A,B, . . . through a comma in a subscript indicates that the parental

object is symmetric under A ↔ B, e.g. TA,B,C = TB,A,C = TA,C,B. The generalized Jacobi

symmetries of VP then apply to all of A,B, . . ., e.g. T234,5,6 + cyc(2, 3, 4) = 0. Moreover,

+(a1, . . . , ap|a1, . . . , ap+q) refers to summing over all the
(

p+q
p

)

subsets of a1, . . . , ap+q

involving p elements ai in the place of a1, . . . , ap.

The Lie-polynomial form of the correlator (2.11) is also convenient for obtaining dif-

ferent representations. For example, after rewriting
∑

A ViAZiA =
∑

A,B ViAδA,BZiB one

can use (I.5.2) to obtain the trading identity ,

∑

A

ViAZiA =
∑

A

MiAZ
(s)
iA . (2.12)

Shuffle symmetric Berends–Giele currents MB and Lie-symmetric worldsheet functions

Z
(s)
B are defined in (I.5.1) and (II.4.22), respectively, and (2.12) can be easily generalized
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to any number of words. This kind of manipulation played a key role in expressing the

tree-level correlator in terms of an (n−3)! basis of worldsheet functions in [5].

We will be concerned with the particulars of the expressions (2.11) in section 3; for the

moment we note that their growing number of terms calls for a more convenient notation. In

the subsequent discussion we will distill the combinatorial properties of these permutation

sums and propose an intuitive notation for them.

2.3.1. Stirling cycle permutation sums

In order to grasp the combinatorics of (2.11), note that the symmetries of the Lie polyno-

mial
∑

A VAZA imply that only (p−1)! permutations are independent for words of length p.

This is true for each word Ai in terms such as VA1
TA2,A3,A4

ZA1,A2,A3,A4
. For an n-point cor-

relator these words Ai must encompass all particle labels, that is |A1|+|A2|+|A3|+|A4| = n.

Therefore the sums of VA1
TA2,A3,A4

ZA1,A2,A3,A4
in the correlators of (2.11) can be inter-

preted as being all the permutations of n labels that are composed of 4 cycles, or p cycles

in the general case of tensorial VA1
Tm1m2...
A2,A3,...,Ap

. This is the characterization of the Stirling

cycle numbers3
[

n
p

]

.

Using the above interpretation, the scalar building blocks in (2.11) are generated by

the following combinatorial notation

Kn(ℓ)
∣

∣

VATB,C,D
= VATB,C,DZA,B,C,D +

[

12 . . . n|A,B,C,D
]

, (2.13)

where +
[

12 . . . n|A,B,C,D
]

indicates a sum over the Stirling cycle permutations of the

set {1, 2, . . . , n}, defined in the appendix A. As a consequence of this definition, each term

of (2.13) has leg one as the first letter of A, cf. (A.3).

Similarly, the vector contribution to K5(ℓ) and K6(ℓ) in (2.11) follows the same com-

binatorial pattern as the scalars and its contribution is captured by extending the Stirling

cycle permutations to five slots in a similar manner,

Kn(ℓ)
∣

∣

VATm
B,C,D,E

= VAT
m
B,C,D,EZ

m
A,B,C,D,E +

[

12 . . . n|A,B,C,D,E
]

. (2.14)

The generalization of the above sums to more slots is straightforward.

3 We are following the terminology and notation proposed in [17]; they are commonly known

as the Stirling numbers of the first kind.
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2.3.2. Unrefined Lie polynomials

The Stirling cycle permutations allow for a straightforward generalization of the correlators

in (2.11) to multiplicities n ≥ 4,

K(0)
n (ℓ) =

n−4
∑

r=0

1

r!

(

VA1
Tm1...mr

A2,...,Ar+4
Zm1...mr

A1,...,Ar+4
+
[

12 . . . n|A1, . . . , Ar+4

]

)

, (2.15)

where the summand with r = 0 and r = 1 reproduces (2.13) and (2.14), respectively. The

reason for the superscript in K
(0)
n (ℓ) will become clear below, and this is related to the

corrections in (1.1). Expanding the sum yields,

K(0)
n (ℓ) = VA1

TA2,A3,A4
ZA1,A2,A3,A4

+
[

12 . . . n|A1, . . . , A4

]

(2.16)

+
1

1!
VA1

Tm1

A2,...,A5
Zm1

A1,A2,...,A5
+

[

12 . . . n|A1, . . . , A5

]

+
1

2!
VA1

Tm1m2

A2,...,A6
Zm1m2

A1,A2,...,A6
+

[

12 . . . n|A1, . . . , A6

]

...

+
1

(n−4)!
VA1

T
m1...mn−4

A2,...,An
Z

m1...mn−4

A1,...,An
+

[

12 . . . n|A1, A2, . . . , An

]

.

We will see in section 3 that (2.15) gives the correct form of the one-loop correlators up

to and including six points, i.e., Kn(ℓ) = K
(0)
n (ℓ) for n ≤ 6. By “correct” we mean that

the resulting correlators satisfy a number of requirements detailed in section 2.4, the most

stringent ones being BRST invariance and single-valuedness.

So the question to consider is whether the expression (2.16) provides the complete

answer for correlators with seven or more external states. Unfortunately this is not the

case; the explicit construction of the seven-point correlator indicates that the proposal

(2.16) needs to be amended by terms involving superfields with higher degrees of refinement

defined in section I.4.4. This will be done below and leads to an expression for K7 that

passes all consistency checks. At eight points and beyond, however, the appearance of

Eisenstein series in the correlators cannot be determined by the methods in this work.

Hence, we will only propose an expression for K8 up to an unknown kinematic factor

multiplying G4 while completely fixing its dependence on the zj .
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2.3.3. Including refined building blocks

The reason why K
(0)
n (ℓ) in (2.16) cannot be the full expression for the one-loop correlator for

n ≥ 7 is related to BRST invariance; it is not difficult to show that the seven-point instance

is not BRST invariant using the worldsheet functions discussed in part II. However, the

desired invariance can still be achieved by adding corrections containing refined superfields

JA|B,C,D,E and their tensorial generalizations, cf. section I.4.4. The patterns encountered

at multiplicities seven and eight suggest the following organization; the n-point correlator

contains contributions with varying degree d of refinement according to,

KLie
n (ℓ) ≡

⌊n−4

2
⌋

∑

d=0

(−1)dK(d)
n (ℓ) . (2.17)

The alternating minus sign in (2.17) is chosen for later convenience. The d = 0 contribution

is given by (2.15) for n ≥ 4, while the first instance of refined corrections with d = 1 could

already appear in the six-point correlator,

K
(1)
6 (ℓ) = V1J2|3,4,5,6Z2|1,3,4,5,6 + (2 ↔ 3, 4, 5, 6) . (2.18)

However, as detailed in section II.4.4.3, the accompanying functions Z2|1,3,4,5,6 can be

chosen to vanish, i.e. K
(1)
6 (ℓ) = 0. Therefore, the first non-vanishing contribution to (2.17)

with d = 1 occurs at seven points,

K
(1)
7 (ℓ) = V1J

m
2|3,4,5,6,7Z

m
2|1,3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) (2.19)

+
[

V12J3|4,5,6,7Z3|12,4,5,6,7 + V13J2|4,5,6,7Z2|13,4,5,6,7 + (2, 3|2, 3, . . . , 7)
]

+
[

V1J23|4,5,6,7Z23|1,4,5,6,7 + (2, 3|2, 3, . . . , 7)
]

+
[

(V1J2|34,5,6,7Z2|1,34,5,6,7 + cyc(2, 3, 4)) + (2, 3, 4|2, 3, . . . , 7)
]

,

see (II.4.42) for the refined worldsheet functions ZA|B,.... Similarly, eight points give rise

to the first non-vanishing instance of d = 2,

K
(2)
8 (ℓ) = V1J2,3|4,5,6,7,8Z2,3|1,4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8) . (2.20)

These expressions generalize to n ≥ 7 points at generic degree d of refinement as

K(d)
n (ℓ) =

n−4−2d
∑

r=0

1

r!

(

(

VA1
Jm1...mr

A2,...,Ad+1|Ad+2,...,Ar+4+2d
Zm1...mr

A2,...,Ad+1|A1,Ad+2,...,Ar+4+2d
(2.21)

+ (A2, . . . , Ad+1|A2, . . . , Ar+4+2d)
)

+
[

12 . . . n|A1, . . . , Ar+4+2d

]

)

.
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More explicitly, expanding the sum in (2.21) for the case d = 1 yields,

K(1)
n (ℓ) =

(

VA1
JA2|A3,...,A6

ZA2|A1,A3,...,A6
+ (A2↔A3, . . . , A6)

)

+
[

1 . . . n|A1, . . . , A6

]

(2.22)

+
1

1!

(

VA1
Jm
A2|A3,...,A7

Zm
A2|A1,A3,...,A7

+ (A2↔A3, . . . , A7)
)

+
[

1 . . . n|A1, . . . , A7

]

+
1

2!

(

VA1
Jmn
A2|A3,...,A8

Zmn
A2|A1,A3,...,A8

+ (A2↔A3, . . . , A8)
)

+
[

1 . . . n|A1, . . . , A8

]

...

+
1

(n−6)!

(

VA1
J
m1...mn−6

A2|A3,...,An
Z

m1...mn−6

A2|A1,A3,...,An
+ (A2↔A3, . . . , An)

)

+
[

1 . . . n|A1, . . . , An

]

.

The collection of K
(d)
n (ℓ) with d = 0, 1, . . . , ⌊n−4

2 ⌋ summarized by (2.17) makes up the bulk

of the open-string one-loop correlators and will be referred to as its Lie-series part. The

expressions (2.21) for K
(d)
n (ℓ) with d ≥ 1 furnish a large class of the corrections in (1.1).

We will see that up to and including eight points, the BRST variation of (2.17) is purely

anomalous (it is written in terms of the anomalous superfields Y , see section I.4.3.1) and

it is natural to conjecture that this behavior is valid for arbitrary n.

2.3.4. BRST variation of the Lie-polynomial correlator

By BRST covariance of their kinematic building blocks in section I.4, the Q variations

of the above KLie
n (ℓ) boil down to ghost-number four superfields VA1

VA2
Tm1...
A3,A4,...

and

VA1
Y m1...
A2,A3,...

. As will be detailed in the next section, the coefficients of these ghost-number

four combinations read as follows in the simplest non-vanishing variations,

−QKLie
5 (ℓ)

∣

∣

V1V2T3,4,5
= km2 Zm

1,2,3,4,5+s21Z21,3,4,5+s23Z1,23,4,5+s24Z1,24,3,5+s25Z1,25,3,4

−QKLie
6 (ℓ)

∣

∣

V1V2T
m
3,4,5,6

= kn2Z
mn
1,2,3,4,5,6 − km2 Z2|1,3,4,5,6 +

[

s21Z
m
21,3,4,5,6 + (1 ↔ 3, 4, 5, 6)

]

−QKLie
6 (ℓ)

∣

∣

V12V3T4,5,6
= km3 Zm

12,3,4,5,6+s31Z312,4,5,6−s32Z321,4,5,6+
[

s34Z12,34,5,6+(4↔5, 6)
]

−QKLie
6 (ℓ)

∣

∣

V1V2T34,5,6
= km2 Zm

1,2,34,5,6+s23Z1,234,5,6−s24Z1,243,5,6+
[

s21Z21,34,5,6+(1↔5, 6)
]

−QKLie
6 (ℓ)

∣

∣

V1V23T4,5,6
= km23Z

m
1,23,4,5,6 −Z2|1,3,4,5,6 + Z3|1,2,4,5,6 (2.23)

+
[

s31Z231,4,5,6 − s21Z321,4,5,6 + (1 ↔ 4, 5, 6)
]

,

as well as

−QKLie
6 (ℓ)

∣

∣

V1Y2,3,4,5,6
=

1

2
Zmm

1,2,3,4,5,6 −
[

Z2|1,3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

, (2.24)
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where KLie
n=5,6(ℓ) already furnish the complete correlators Kn(ℓ). Note that we have dis-

regarded the vanishing of Z2|1,3,4,5,6 for later convenience, and one can compactly ab-

sorb the Mandelstam invariants in (2.23) into the S[A,B] map defined in (I.5.13), e.g.

s31Z312,4,5,6 − s32Z321,4,5,6 = ZS[3,12],4,5,6. Based on these examples and analogous ob-

servations on QKLie
n (ℓ) for higher values of n, it is possible infer a general pattern and

propose closed formulae. We organize the general conjecture on the BRST variation of the

correlator (2.17) into the following Stirling permutation sums,

QKLie
n (ℓ) = −

n−5
∑

r=0

1

r!
T

(0,r)
A1|A2,...,Ar+5

+
[

12 . . . n|A1, . . . , Ar+5

]

(2.25)

+
n−6
∑

r=0

1

r!
Y

(0,r)
A1|A2,...,Ar+6

+
[

12 . . . n|A1, . . . , Ar+6

]

−
n−7
∑

r=0

1

r!
T

(1,r)
A1|A2,...,Ar+7

+
[

12 . . . n|A1, . . . , Ar+7

]

+
n−8
∑

r=0

1

r!
Y

(1,r)
A1|A2,...,Ar+8

+
[

12 . . . n|A1, . . . , Ar+8

]

+ · · · ,

where the suppressed terms T (d,r) and Y (d,r) in . . . refer to higher degree of refinement

d ≥ 2 and start to contribute at n = 9. The case r = 0 is understood as containing no

vector indices in the superfields, and a upper negative integer in the sum must be discarded;
∑−i

r=0(. . .) → 0. The shorthands T (d,r) contain T -like4 building blocks, and their definitions

at refinement d = 0, 1

T
(0,r)
A1|A2,...,Ar+5

≡ VA1
VA2

Tm1...mr

A3,...,Ar+5
Θ

(0)m1...mr

A2|A1,A3,...,Ar+5
+ (A2 ↔ A3, . . . , Ar+5) , (2.26)

T
(1,r)
A1|A2,...,Ar+7

≡
(

[

VA1
VA2

Jm1...mr

A3|A4,...,Ar+7
Θ

(1)m1...mr

A2|A3|A1,A4,...,Ar+7
+ (A3 ↔ A4, . . . , Ar+7)

]

+ (A2 ↔ A3, . . . , Ar+7)
)

admit an obvious generalization to higher values of d. Similarly, the shorthands Y (d,r)

contain anomalous superfields Y with degree of refinement d, see equations (I.4.18) and

(I.4.32), and their definitions at d = 0, 1,

Y
(0,r)
A1|A2,...,Ar+6

≡ VA1
Y m1...mr

A2,A3,...,Ar+6
Ξ
(0)m1...mr

A1|A2,...,Ar+6
, (2.27)

Y
(1,r)
A1|A2,...,Ar+8

≡ VA1

[

Y m1...mr

A2|A3,...,Ar+8
Ξ
(1)m1...mr

A1|A2|A3,...,Ar+8
+ (A2 ↔ A3, . . . , Ar+8)

]

,

4 Recall that the JA|... building block is naturally identified as a d = 1 refined version of T .
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suggest their analogues at d ≥ 2. Finally, the shorthands Θ(d) and Ξ(d) stand for the

following linear combinations of worldsheet functions with degree d of refinement that

capture the right-hand sides of (2.23),

Θ
(0)m1m2...mr

A|B1,B2,...,Br+4
≡ kpAZ

pm1m2...mr

A,B1,B2,...,Br+4
+
[

Zm1m2...mr

S[A,B1],B2,...,Br+4
+ (B1 ↔ B2, . . . , Br+4)

]

− k
(m1

A Z
m2...mr)
A|B1,...,Br+4

−
∑

A=XY

(

Zm1m2...mr

X|Y,B1,...,Br+4
− (X ↔ Y )

)

, (2.28)

Θ
(1)m1m2...mr

A|B|B1,B2,...,Br+5
≡ −kpAZ

pm1...mr

B|A,B1,...,Br+5
−Zm1...mr

S[A,B]|B1,...,Br+5

−
[

Zm1...mr

B|S[A,B1],...,Br+5
+ (B1 ↔ B2, . . . , Br+5)

]

+ k
(m1

A Z
m2...mr)
A,B|B1,...,Br+5

+
∑

A=XY

(

Zm1m2...mr

X,B|Y,B1,...,Br+5
− (X ↔ Y )

)

,

(recall that S[A,B] denotes the S-map defined in (I.5.13)), and

Ξ
(0)m1m2...mr

A1|B1,...,Br+5
≡ −

1

2
Zppm1...mr

A1,B1,...,Br+5
+

[

Zm1...mr

B1|A1,B2,...,Br+5
+ (B1 ↔ B2, . . .Br+5)

]

, (2.29)

Ξ
(1)m1m2...mr

A1|A2|B1,...,Br+6
≡

1

2
Zppm1...mr

A2|A1,B1,...,Br+6
−

[

Zm1...mr

A2,B1|A1,B2,...,Br+6
+ (B1 ↔ B2, . . .Br+6)

]

.

Hence, after modding out by Lie symmetries of the superfields, combining (2.25) and

(2.26) identifies Θ
(d)m1m2...mr

A2|B1,...,Bd|A1,A3,...
to be the coefficient of VA1

VA2
Jm1...mr

B1,...,Bd|A3,...
in QKLie

n .

Similarly, Ξ
(d)m1m2...mr

A1|B1,...,Bd|A2,...
turns out to be the coefficient of VA1

Y m1...mr

B1,...,Bd|A2,...
by (2.25)

and (2.27).

Two comments are in order here. First, notice that the presentation of the BRST vari-

ation as a Stirling permutation sum (with the conventions of the appendix A) is essential to

fix the ambiguity of VAVB = −VBVA in matching the VAVB products in (2.26) to Θ
(d)
B|A,...

.

For example, the conventions of the appendix A fix the relative ordering between the cy-

cles (1)(234) in the permutation sum such that we get V1V234T5,6,7Θ
(0)
234|1,5,6,7 rather than

V234V1T5,6,7Θ
(0)
1|234,5,6,7. And second, although a bit surprising, the BRST variation leads

to crossing-symmetric definitions such as Θ
(0)
A|B,C,D,E

in B,C,D and E; in other words,

the worldsheet functions multiplying V1234V5T6,7,8 are related by a relabeling of those that

multiply V1V2T3456,7,8.

The monodromy variations of section II.4.2 and the elliptic identities of section II.5

imply that the definitions (2.28) are generalized elliptic integrands (GEIs); DΘ(d) = 0.

Moreover, by inserting the solutions of the bootstrap procedure in section II.4.4 up to

n = 8 points, the GEIs Θ(d) are in fact found to vanish up to total derivatives. The

coefficients Ξ(d) of the anomalous terms, however, turn out to be non-zero. Instead, the
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trace relations among worldsheet functions discussed in section II.5.3 simplify the explicit

expressions of Ξ(d) from (2.29) at n ≤ 7 points to a single term. In summary, we obtain

Θ
(0)m1m2...mr

A|B1,B2,...,Br+4

∼= 0 , Θ
(1)m1m2...mr

A|B|B1,B2,...,Br+4

∼= 0 , n ≤ 8 , (2.30)

and

Ξ
(0)m1m2...mr

A1|B1,...,Br+6

∼= −ZA1|B1,...,Br+6
, Ξ

(1)m1m2...mr

A1|A2|B1,...,Br+6

∼= ZA1,A2|B1,...,Br+6
, n ≤ 7 ,

(2.31)

see section 3.5.1 for the eight-point examples of Ξ(d).

The simplest examples of (2.28) are given by (see (2.23) for the former two),

Θ
(0)
1|2,3,4,5 = kp1Z

p
1,2,3,4,5 +

[

s12Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

, (2.32)

Θ
(0)
12|3,4,5,6 = kp12Z

p
12,3,4,5,6 +

[

s23Z123,4,5,6 − s13Z213,4,5,6 + (3 ↔ 4, 5, 6)
]

−Z1|2,3,4,5,6 + Z2|1,3,4,5,6 ,

Θ
(1)
1|2|3,4,5,6,7 = −kp1Z

p

2|1,3,4,5,6,7 − s12Z12|3,4,5,6,7 −
[

s13Z2|13,4,5,6,7 + (3 ↔ 4, 5, 6, 7)
]

,

and one can verify from the expressions for Z in section II.4.4 that these linear combinations

indeed yield total derivatives. For more examples, see the appendix C.

2.3.5. Anomalous Lie polynomials

Given the non-vanishing expressions for Ξ(d) in (2.31), the Lie-series part KLie
n (ℓ) of the

correlators from (2.17) is not BRST invariant for n ≥ 7. More precisely, we have T (d,r) = 0

but Y (d,r) 6= 0 in (2.25). Fortunately, these non-vanishing terms are purely anomalous

and suggest to add corrections containing exclusively anomalous superfields of the form

Y m1...
A1,...,Ad|B1,...

, see (I.4.18), (I.4.19) and (I.4.42). Therefore our proposal for the one-loop

correlator becomes,

Kn(ℓ) = KLie
n (ℓ) +KY

n (ℓ) , (2.33)

for some KY
n (ℓ) to be determined. Such an anomaly sector KY

n (ℓ) is plausible by the kine-

matic identities of section I.5.4, as they mix anomalous and non-anomalous terms. Up to

and including six points, we have

KY
n (ℓ) = 0 , for n ≤ 6 . (2.34)

From multiplicity seven on, we need to find an expression for the anomaly sector KY
n (ℓ)

such that the full correlator satisfies the criteria summarized below. Even though we will

find the proper KY
n (ℓ) in the seven-point example of section 3, this is done case-by-case,

so it would be desirable to understand the general pattern behind them.
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2.4. Final assembly of one-loop correlators

The general form of the one-loop correlators (2.33) was suggested by analogy with the

Lie-polynomial structure observed at tree level [5]. The one-loop correlators Kn(ℓ) are

expressions in the cohomology [18] of pure-spinor superspace that depend on the loop

momentum ℓm and the zero modes of the pure spinor λα and of the superspace coordinate

θα. Moreover, they are also expanded in terms of worldsheet functions that have to be

integrated over the vertex operator insertions points as well as over the moduli space

that parametrize the different genus-one surfaces. Given this setting, the final assembly

of one-loop correlators Kn(ℓ) as defined in (2.1) must satisfy the following fundamental

requirements:

1. The correlator must be in the cohomology of the BRST operator;

2. The correlator must be a single-valued function with respect to both zi and ℓm;

3. The correlator must admit a local representation;

4. The correlator must be manifestly5 symmetric in the labels (2, 3, . . . , n).

These conditions arise from general CFT considerations applied to the pure-spinor ampli-

tude prescription (I.2.4), and they are compatible with the tree-level arguments that led

to the Lie-polynomial proposal (2.33). The notion of single-valuedness in 2. is defined in

(II.3.3), and 3. refers to the absence of kinematic poles s−1
P in a local representation of Kn.

The combination of 1. and 3. turns out to be particularly constraining: Any BRST-invariant

linear combination of the building blocks of section I.4 has been checked to vanish in the

cohomology at 5 ≤ n ≤ 8 points (see appendix I.B for further details). Therefore there is

no freedom of adding BRST-invariant local terms multiplying single-valued functions at

these multiplicities.

In the next section we write down explicit examples of one-loop correlators fulfilling

the above criteria up to seven points. Moreover, we propose an expression at eight points

with mild violations of 1. and 3.: Its BRST variation vanishes only up to local terms

proportional to the Eisenstein series of modular weight four, G4, and certain terms in the

anomaly sector KY
8 violate locality. We expect that the eight-point proposal to be given in

section 3.5 differs from the correct correlator K8 by G4 multiplying an unknown kinematic

factor, i.e. it correctly captures all dependence on the zi.

5 The symmetry with respect to leg 1 is not manifest in the prescription (I.2.4) and therefore

can be verified only up to total τ derivatives originating from BRST integration by parts [3].
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3. One-loop correlators of the open superstring: examples

We will now apply all the techniques developed in the previous sections to obtain explicit

expressions for the one-loop correlators of the open superstring in a manifestly supersym-

metric fashion. The correlators at four, five, six and seven points meet all the requirements

described in section 2.4, and we will elaborate on the aforementioned issues with the eight-

point correlator below.

3.1. Four points

The four-point correlator is uniquely determined by the zero-mode integration over the

pure-spinor variables and it was firstly computed by Berkovits in [3]. Using the defini-

tion (I.4.1) its correlator can be written as the manifestly local pure-spinor superspace

expression

K4(ℓ) = V1T2,3,4 . (3.1)

Note that there are no worldsheet singularities among the vertex positions nor an explicit

dependence on the loop momentum ℓm. This is in accordance with the general discussion

in section I.2.1.3 that a n-point correlator Kn(ℓ) is a polynomial in loop momenta of degree

n−4 and that the maximum number of OPE contractions is also n−4. It has been shown

in [19] using BRST cohomology identities in pure-spinor superspace that the one-loop

correlator (3.1) is proportional to its tree-level counterpart (2.10),

〈V1T2,3,4〉 = s12s23A
SYM(1, 2, 3, 4) . (3.2)

Therefore it reproduces the well-known [11,20] supersymmetric completion of t8F
4 and the

one-loop amplitudes of Brink, Green and Schwarz with bosonic external states [21].

3.2. Five points

The reasoning behind the derivation of the five-point correlator will be presented in detail

as it constitutes the prototype for similar derivations at higher points. Not surprisingly,

the outcome of the following analysis is in accordance with the general features of one-loop

correlators summarized in section 2.3.

As discussed in section I.2.1.3, the pure-spinor prescription [3] implies that the five-

point correlator K5(ℓ) is a polynomial of degree one in ℓ with at most one OPE singularity.

Therefore the correlator is composed of two classes of terms containing: (i) one OPE

contraction, (ii) one loop momentum. Let us consider them in turn.
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3.2.1. The OPEs

The two inequivalent OPEs V1(z1)U2(z2) and U2(z2)U3(z3) can be derived from (I.2.11)

and give rise to two-particle vertex operators (I.3.16) and (I.3.19),

V1(z1)U2(z2) → g
(1)
12 V12(z2) , U2(z2)U3(z3) → g

(1)
23 U23(z3) , (3.3)

where g
(w)
ij ≡ g(w)(zi−zj , τ) refer to expansion coefficients of the Kronecker–Eisenstein

series, see (II.2.5), with g(1)(z, τ) = ∂z log θ1(z, τ). In both cases the zero-mode integration

for dα and Nmn only admits the b-ghost sector b(4) defined in section I.2.1.3 and yields

TA,B,C according to the multiplicity-agnostic rule (I.3.23). In assembling all the ten OPE

channels we obtain

K5(ℓ)
∣

∣

OPE
=

[

g
(1)
12 V12T3,4,5 + (2 ↔ 3, 4, 5)

]

+
[

g
(1)
23 V1T23,4,5 + (2, 3|2, 3, 4, 5)

]

. (3.4)

3.2.2. Adjoining the loop momentum

Five points is the first instance where a loop momentum can be extracted from the external

vertices or the b-ghost. According to the discussion of section I.4.2, the relevant b-ghost

sectors are b(4) and b(2), and they give rise to the schematic contributions ℓmV1A
m
2 T3,4,5

and ℓmV1W
m
2,3,4,5, respectively. BRST covariance fixes their relative coefficients to

K5(ℓ)
∣

∣

ℓ
= ℓmV1T

m
2,3,4,5 , (3.5)

see (I.4.6). By adjoining the contribution (3.4) from OPEs, one arrives at the following

final expression for the five-point correlator anticipated in section II.3.1:

K5(ℓ) = K5(ℓ)
∣

∣

ℓ
+K5(ℓ)

∣

∣

OPE
(3.6)

= ℓmV1T
m
2,3,4,5 +

[

g
(1)
12 V12T3,4,5+(2 ↔ 3, 4, 5)

]

+
[

g
(1)
23 V1T23,4,5+(2, 3|2, 3, 4, 5)

]

.

It will be rewarding to rewrite the correlator (3.6) in a slightly more abstract manner,

since the higher-point generalization will become more natural in this way. The correlator

lines up with the Lie-polynomial structure of (2.15),

K5(ℓ) = VA1
Tm
A2,...,A5

Zm
A1,...,A5

+
[

12345|A1, . . . , A5

]

(3.7)

+ VA1
TA2,...,A4

ZA1,...,A4
+
[

12345|A1, . . . , A4

]

,
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where the notation for the permutations is explained after (2.13) and in the appendix A.

Expanding the above permutations leads to the following
[

5
5

]

+
[

5
4

]

= 1 + 10 = 11 terms,

K5(ℓ) = V1T
m
2,3,4,5Z

m
1,2,3,4,5 (3.8)

+ V12T3,4,5Z12,3,4,5 + (2↔3, 4, 5)

+ V1T23,4,5Z1,23,4,5 + (2, 3|2, 3, 4, 5) .

In comparing (3.8) with (3.6) we can read off the following Z-functions,

Z12,3,4,5 = g
(1)
12 , Zm

1,2,3,4,5 = ℓm , (3.9)

which correspond to the functions (II.4.30) studied in section II.4.4.2. As this example

demonstrates, the presentation of the correlator as the Lie-polynomial (3.7) organizes the

worldsheet functions in a way that manifests the parallels with the kinematic building

blocks as highlighted in section II.4.

In summary, the five-point one-loop correlator (3.8) is a manifestly local expression of

superfields that was obtained using general arguments based on the amplitude prescription

of the pure-spinor formalism. If we want to argue that it is also the correct correlator, it

must be BRST invariant and single-valued as well.

3.2.3. BRST invariance

It is straightforward to use the BRST variations of the local building blocks – (I.3.32),

(I.4.3) and (I.4.8) – to obtain the n = 5 instance of the general BRST variation (2.25).

Indeed, a short calculation yields

QK5(ℓ) = −V1V2T3,4,5

[

km2 Zm
1,2,3,4,5 +

[

s21Z21,3,4,5 + (1 ↔ 3, 4, 5)
]

]

+ (2 ↔ 3, 4, 5)

= −V1V2T3,4,5Θ
(0)
2|1,3,4,5 + (2 ↔ 3, 4, 5) , (3.10)

where in the second line we used the shorthand defined in (2.28). At first sight (3.10)

appears to be different than zero, but luckily this particular arrangement of integrands

turns out to be a total worldsheet derivative,

km2 Zm
1,2,3,4,5+

[

s21Z21,3,4,5+(1 ↔ 3, 4, 5)
]

= (ℓ · k2)+
[

s21g
(1)
21 +(1 ↔ 3, 4, 5)

]

∼= 0 , (3.11)

where we used the expansions (3.9) and the identity (II.2.22). Therefore the five-point

correlator (3.8) is BRST invariant.
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3.2.4. Single-valuedness

From the discussion in section II.2.1.1, it follows that the monodromies around the A-cycle

vanish for any combination of ℓm and g
(n)
ij , so the correlator (3.8) will be single valued if

its monodromies around the B-cycle also vanish. In this case, the variations (II.3.9) yield

DK5(ℓ) = Ω1

(

km1 V1T
m
2,3,4,5 +

[

V12T3,4,5 + 2 ↔ 3, 4, 5
]

)

(3.12)

+ Ω2

(

km2 V1T
m
2,3,4,5 + V21T3,4,5 +

[

V1T23,4,5 + 3 ↔ 4, 5
]

)

+ (2 ↔ 3, 4, 5) ,

see section II.3.2 for the linearized-monodromy operator D. Note that the superspace

expressions that multiply the formal variables Ωi for i = 1, . . . , 5 in the definition (II.3.8)

of D are BRST-closed and local. However, as discussed in the appendix I.B, the BRST

cohomology is empty for local superspace expressions and therefore the above combinations

must be BRST-exact. In fact, one can show via (I.4.23) and (I.5.41) that

DK5(ℓ) = Ω1QJ1|2,3,4,5 +
[

Ω2(QD1|2|3,4,5 −∆1|2,3,4,5) + (2 ↔ 3, 4, 5)
]

∼= 0 . (3.13)

Since the anomalous superfield ∆1|2,3,4,5 was shown to be BRST-exact in [22], the mon-

odromy variation (3.13) vanishes in the cohomology of the pure-spinor superspace (indi-

cated by ∼= 0), and the correlator (3.8) is therefore single-valued.

3.2.5. Duality between worldsheet functions and BRST invariants

The vanishing of (3.11) is a clear indication of the duality between worldsheet functions

and BRST invariants discussed in section II.4 and pointed out in [10]; it corresponds to the

BRST-exact linear combination of superfields in (3.12) under the replacement (II.4.10),

0 ∼= km2 V1T
m
2,3,4,5 + V21T3,4,5 + V1T23,4,5 + V1T24,3,5 + V1T25,3,4 (3.14)

⇐⇒ 0 ∼= km2 Z
(s)m
1,2,3,4,5 + Z

(s)
21,3,4,5 + Z

(s)
23,1,4,5 + Z

(s)
24,1,3,5 + Z

(s)
25,1,3,4 ,

where the Lie-symmetric worldsheet functions Z(s) have been introduced in section II.4.2.5.

The superspace expression in the first line of (3.14) vanishes because it is BRST exact, see

(I.5.41), while the integrand in the second line vanishes because it is a total worldsheet

derivative, see (II.2.22). This correspondence between BRST invariance and monodromy

invariance is a central example of the duality between pure-spinor-superspace expressions

and one-loop worldsheet functions. In fact, further investigation of such relations led to

the discussions presented in section II.4.
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3.2.6. Different representations of the five-point correlator

Since the correlator (3.8) is local, single-valued and BRST invariant, it meets the criteria

of section 2.4 to be the open-superstring five-point correlator. We will now exploit the

properties of both the superspace expressions and the worldsheet functions to rewrite it in

various ways that manifest different subsets of these fundamental properties.

3.2.6.1. The C · Z representation: manifesting BRST invariance

Integration-by-parts identities can be used to yield a manifestly BRST closed representa-

tion of the correlator: first rewrite (3.8) in terms of Berends–Giele currents MA andMB,C,D

associated with VA and TB,C,D using the trading identity (2.12) of the Lie polynomial as

K5(ℓ) = M1M
m
2,3,4,5Z

m
1,2,3,4,5 +

[

M12M3,4,5s12Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

(3.15)

+M1M23,4,5s23Z1,23,4,5 + (2, 3|2, 3, 4, 5) .

Next, the integration-by-parts identity (3.11) can be used to eliminate all functions of the

form Z1i,A,B,C with i 6= ∅ (i.e. all of g
(1)
12 , g

(1)
13 , g

(1)
14 , g

(1)
15 ). Doing this leads to

K5(ℓ) = Zm
1,2,3,4,5

(

M1M
m
2,3,4,5 +

[

km2 M12M3,4,5 + (2 ↔ 3, 4, 5)
]

)

(3.16)

+
[

s23Z1,23,4,5(M1M23,4,5 +M12M3,4,5 −M13M2,4,5) + (2, 3|2, 3, 4, 5)
]

.

In this way, the terms inside the round brackets build up the Berends–Giele expansions of

the BRST invariants from (I.5.20) and (I.5.21) such that (3.16) becomes

K5(ℓ) = Cm
1|2,3,4,5Z

m
1,2,3,4,5 +

[

C1|23,4,5 s23Z1,23,4,5 + (2, 3|2, 3, 4, 5)
]

. (3.17)

Since Cm
1|A,B,C,D and C1|A,B,C are both BRST closed, (3.17) constitutes a manifestly BRST

invariant representation of the local correlator (3.8).

3.2.6.2. The T · E representation: manifesting single-valuedness

Since the five-point correlator (3.8) is single valued, it is worthwhile to spell out a repre-

sentation that manifests this property. To do this, we rewrite the terms containing a factor

of V1A with non-empty A using the BRST cohomology identity

V12T3,4,5
∼= km2 V1T

m
2,3,4,5 +

[

V1T23,4,5 + (3 ↔ 4, 5)
]

, (3.18)
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which follows from the (I.5.41) and the BRST-exactness of ∆1|2,3,4,5. Doing this replace-

ment in the correlator (3.8) and collecting terms leads to

K5(ℓ) = V1T
m
2,3,4,5

(

Zm
1,2,3,4,5 +

[

km2 Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

)

(3.19)

+
[

V1T23,4,5

(

Z1,23,4,5 + Z12,3,4,5 −Z13,2,4,5

)

+ (2, 3|2, 3, 4, 5)
]

.

The combinations of Z-functions the round brackets can be identified with the GEIs

Em
1|2,3,4,5 and E1|23,4,5 from (II.4.31) and (II.4.32), respectively. Using these functions,

the correlator (3.19) takes the manifestly single-valued form:

K5(ℓ) = V1T
m
2,3,4,5E

m
1|2,3,4,5 +

[

V1T23,4,5E1|23,4,5 + (2, 3|2, 3, 4, 5)
]

. (3.20)

This representation reverses the roles of worldsheet functions and kinematic factors in

comparison to (3.17)6: Manifest BRST invariance is traded for manifest monodromy in-

variance.

3.2.6.3. The C ·E representation: manifesting BRST invariance & single-valuedness

The five-point correlator can also be rewritten such as to manifest both BRST invariance

and single-valuedness. To this effect we eliminate Zm
1,2,3,4,5 = Em

1|2,3,4,5−[km2 Z12,3,4,5+(2 ↔

3, 4, 5)] as well as Z1,23,4,5 = E1|23,4,5 −Z12,3,4,5 +Z13,2,4,5 from (3.17) and use the BRST

cohomology identity (I.5.41) to obtain

K5(ℓ) = Cm
1|2,3,4,5E

m
1|2,3,4,5 + [C1|23,4,5s23E1|23,4,5 + (2, 3|2, 3, 4, 5)] , (3.21)

which reproduces the double-copy expression for the five-point correlator proposed in [10]

and manifests both BRST invariance and single-valuedness.

3.2.7. Summary of representations

As shown above, there are multiple Lie-polynomial representations of the five-point corre-

lator according to which features are chosen to be manifested:

K5(ℓ) = V1T
m
2,3,4,5Z

m
1,2,3,4,5 +

[

V12T3,4,5Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

(3.22)

+
[

V1T23,4,5Z1,23,4,5 + (2, 3|2, 3, 4, 5)
]

,

K5(ℓ) = V1T
m
2,3,4,5E

m
1|2,3,4,5 +

[

V1T23,4,5E1|23,4,5 + (2, 3|2, 3, 4, 5)
]

,

K5(ℓ) = Cm
1|2,3,4,5Z

m
1,2,3,4,5 +

[

C1|23,4,5s23Z1,23,4,5 + (2, 3|2, 3, 4, 5)
]

,

K5(ℓ) = Cm
1|2,3,4,5E

m
1|2,3,4,5 + [C1|23,4,5s23E1|23,4,5 + (2, 3|2, 3, 4, 5)] .

6 This becomes particularly transparent by introducing Z
(s)m
1,2,3,4,5 = Z

m
1,2,3,4,5 and Z

(s)
1,23,4,5 =

s23Z1,23,4,5 in (3.17).
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In addition to the above, the single-valued representation of the five-point correlator ob-

tained by explicit integration over the loop momentum will be presented in section 4.

We remark that the one-loop five-point amplitude in the open superstring has been

computed with the RNS and GS formalisms for states in the Neveu-Schwarz sector

[23,24,25] and in the Ramond sector [26,27]. Manifestly supersymmetric expressions were

obtained in [28] using the non-minimal pure-spinor formalism [29] and later in [30] using

the minimal pure-spinor formalism.

3.3. Six points

We will now show that the general formulas summarized in section 2.3 give rise to the

correct six-point one-loop correlator. The Lie-polynomial form of the six-point correlator

is given by

K6(ℓ) =
1

2
VA1

Tmn
A2,...,A6

Zmn
A1,...,A6

+
[

123456|A1, . . . , A6

]

(3.23)

+ VA1
Tm
A2,...,A5

Zm
A1,...,A5

+
[

123456|A1, . . . , A5

]

+ VA1
TA2,...,A4

ZA1,...,A4
+

[

123456|A1, . . . , A4

]

,

with the following worldsheet functions as derived in section II.4.4.3,

Z123,4,5,6 = g
(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13 , (3.24)

Z12,34,5,6 = g
(1)
12 g

(1)
34 + g

(2)
13 + g

(2)
24 − g

(2)
14 − g

(2)
23 ,

Zm
12,3,4,5,6 = ℓmg

(1)
12 + (km2 − km1 )g

(2)
12 +

[

km3 (g
(2)
13 − g

(2)
23 ) + (3 ↔ 4, 5, 6)

]

,

Zmn
1,2,3,4,5,6 = ℓmℓn +

[

(km1 kn2 + kn1 k
m
2 )g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]

.

Note that a possible contribution of a d = 1 refined sector according to (2.21) is suppressed

since the monodromy variations (II.4.34) are compatible with Z1|2,3,4,5,6 = 0. The explicit

expansion of the Stirling cycle permutations in (3.23) generates a total of
[

6
6

]

+
[

6
5

]

+
[

6
4

]

=

1 + 15 + 85 = 101 terms,

K6(ℓ) =
1

2
V1T

mn
2,3,4,5,6Z

mn
1,2,3,4,5,6 (3.25)

+ V12T
m
3,4,5,6Z

m
12,3,4,5,6 + (2 ↔ 3, 4, 5, 6)

+ V1T
m
23,4,5,6Z

m
1,23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

+ V123T4,5,6Z123,4,5,6 + V132T4,5,6Z132,4,5,6 + (2, 3|2, 3, 4, 5, 6)

+ V1T234,5,6Z1,234,5,6 + V1T243,5,6Z1,243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)

+
[(

V12T34,5,6Z12,34,5,6 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

+
[(

V1T2,34,56Z1,2,34,56 + cyc(3, 4, 5)
)

+ (2 ↔ 3, 4, 5, 6)
]

,
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where the indicated permutations defined in (I.3.13) act on a line-by-line basis.

We will now prove that the six-point correlator (3.23) is both single-valued and BRST

invariant, in accordance with the expectations outlined in section 2.4.

3.3.1. BRST invariance

As anticipated in section 2.3.4, the BRST algebra of the building blocks leads to the

following Q-variation of the correlator (3.23),

QK6(ℓ) = −
1

2
V1Y2,3,4,5,6Z

mm
1,2,3,4,5,6 (3.26)

− V1V2T
m
3,4,5,6Θ

(0)m
2|1,3,4,5,6 − V12V3T4,5,6Θ

(0)
3|12,4,5,6 + (2 ↔ 3, 4, 5, 6)

−
[

V1V2T34,5,6Θ
(0)
2|1,34,5,6 + (3, 4|3, 4, 5, 6)

]

+ (2 ↔ 3, 4, 5, 6)

− V1V23T4,5,6Θ
(0)
23|1,4,5,6 + (2, 3|2, 3, 4, 5, 6) ,

where the shorthands Θ
(0)m...

1|A,...
were defined in (2.28). After discarding the vanishing refined

Z-function, they are given by

Θ
(0)m
2|1,3,4,5,6 = kn2Z

mn
1,2,3,4,5,6 +

[

s21Z
m
21,3,4,5,6 + (1 ↔ 3, 4, 5, 6)

]

∼= 0 , (3.27)

Θ
(0)
3|12,4,5,6 = km3 Zm

12,3,4,5,6 + s31Z312,4,5,6 − s32Z321,4,5,6 +
[

s34Z12,34,5,6 + (4 ↔ 5, 6)
]

∼= 0 ,

Θ
(0)
2|1,34,5,6 = km2 Zm

1,2,34,5,6 + s23Z1,234,5,6 − s24Z1,243,5,6 +
[

s21Z21,34,5,6 + (1 ↔ 5, 6)
]

∼= 0 ,

Θ
(0)
23|1,4,5,6 = km23Z

m
1,23,4,5,6 +

[

s31Z231,4,5,6 − s21Z321,4,5,6 + (1 ↔ 4, 5, 6)
]

∼= 0 ,

and conspire to total derivatives in zj . Therefore the BRST variation is proportional to

the trace Zmm
1,2,3,4,5,6,

QK6(ℓ) = −
1

2
V1Y2,3,4,5,6Z

mm
1,2,3,4,5,6 = −2πi V1Y2,3,4,5,6

∂

∂τ
log I6(ℓ) ∼= 0 , (3.28)

where the total τ derivative of the Koba–Nielsen factor has been identified in (II.5.15).

Thus, the BRST variation is a boundary term in moduli space [31], and the usual mecha-

nism of anomaly cancellation [32] implies that the amplitudes computed from the correlator

(3.23) are BRST invariant.
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3.3.1.1. The C · Z representation: manifesting BRST invariance

Now that BRST invariance of the six-point correlator is proven, let us rewrite it using

the BRST invariants from section I.5.2, in a similar spirit as done with the five-point

correlator in the previous section. There are different ways to achieve this, one uses the

trading identity (2.12) to rewrite the Lie polynomial (3.23) as,

K6(ℓ) =
1

2
MA1

Mmn
A2,...,A6

Z
(s),mn

A1,...,A6
+
[

123456|A1, . . . , A6

]

(3.29)

+MA1
Mm

A2,...,A5
Z

(s),m
A1,...,A5

+
[

123456|A1, . . . , A5

]

+MA1
MA2,...,A4

Z
(s)
A1,...,A4

+
[

123456|A1, . . . , A4

]

,

where Z(s) is defined in (II.4.22). The idea now is to exploit the fact that terms of the form

M1M
m...
A,B,..., which feature the single-particle Berends–Giele current M1, are the leading

terms in the expansion of the BRST (pseudo-)invariants from section I.5.2.1. Therefore

they can be rewritten as

M1M
m...
A,B,... = Cm...

1|A,B,... + · · · , (3.30)

where the terms in the ellipsis on the right-hand side are linear combinations of M1AM
m...
B,...

with A 6= ∅ that uniquely follow from the definition of the BRST pseudo-invariants in

(I.5.20) to (I.5.22). Plugging in the above expressions into the correlator (3.29) yields

K6(ℓ) =
1

2
Cmn

1|A1,...,A5
Z

(s)mn

1,A1,...,A5
+
[

23456|A1, . . . , A5

]

(3.31)

+ Cm
1|A1,...,A4

Z
(s)m
1,A1,...,A4

+
[

23456|A1, . . . , A4

]

+ C1|A1,...,A3
Z

(s)
1,A1,...,A3

+
[

23456|A1, . . . , A3

]

.

To arrive at (3.31) the following three topologies of terms (and their permutations) were

discarded as they are total derivatives:

s34M12M34,5,6Θ
(0)
2|1,34,5,6

∼= 0 , M12M
m
3,4,5,6Θ

(0)m
2|1,3,4,5,6

∼= 0 , (3.32)

M123M4,5,6

(

km3 Θ
(0)m
2|1,3,4,5,6 + s12Θ

(0)
3|12,4,5,6 +

[

s34Θ
(0)
2|1,34,5,6 + (4 ↔ 5, 6)

]

)

∼= 0 .

Expanding the Stirling cycle permutations in (3.31) yields the following
[

5
5

]

+
[

5
4

]

+
[

5
3

]

=

1 + 10 + 35 = 46 terms,

K6(ℓ) =
1

2
Cmn

1|2,3,4,5,6Z
(s)mn
1,2,3,4,5,6 +

[

Cm
1|23,4,5,6Z

(s)m
1,23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

(3.33)

+
[

C1|234,5,6Z
(s)
1,234,5,6 + C1|243,5,6Z

(s)
1,243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)

]

+
[

C1|23,45,6Z
(s)
1,23,45,6 + C1|24,35,6Z

(s)
1,24,35,6 + C1|25,34,6Z

(s)
1,25,34,6 + (6 ↔ 2, 3, 4, 5)

]

.
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Note one important difference between the expansion above and an earlier representation;

unlike the local Lie polynomial (3.23) in which six labels are distributed among the available

slots, in the non-local representation (3.31) only five labels participate in the Stirling

permutations. Like this, the initially 101 terms in (3.25) conspire to the considerably

smaller number of 46 terms in (3.33).

As a consistency check, we note that the scalar C1|A,B,C and vectorial Cm
1|A,B,C,D

are manifestly BRST closed while the BRST variation of the two-tensor Cmn
1|A,B,C,D,E

is

proportional to δmn [22]. Hence, we arrive at the same conclusion as in (3.28)

QK6(ℓ) = −
1

2
V1Y2,3,4,5,6Z

mm
1,2,3,4,5,6 = −2πi V1Y2,3,4,5,6

∂

∂τ
log I6(ℓ) ∼= 0 , (3.34)

since Z
(s)mn
1,2,3,4,5,6 = Zmn

1,2,3,4,5,6 follows from (II.4.22).

3.3.2. Single-valuedness

To prove that the correlator (3.23) is single-valued it is sufficient to show that its

integration-by-parts-equivalent representation (3.33) is single-valued. After a tedious cal-

culation using the monodromy variations (II.4.34) one gets

DK6(ℓ) = Ω1δK
(1)
6 +Ω2δK

(2)
6 + · · ·+ Ω6δK

(6)
6 , (3.35)

where

δK
(1)
6 = kn1C

mn
1|2,3,4,5,6E

m
1|2,3,4,5,6 +

[

km1 s23C
m
1|23,4,5,6E1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

(3.36)

δK
(2)
6 = km2 Cmn

1|2,3,4,5,6E
n
2|1,3,4,5,6 +

[

s23C
m
1|23,4,5,6E

m
2|1,3,4,5,6 + (3 ↔ 4, 5, 6)

]

+
[

km2 s34C
m
1|2,34,5,6E2|1,34,5,6 + (3, 4|3, 4, 5, 6)

]

+
[(

s23s45C1|23,45,6E2|1,3,45,6 + s23s34C1|234,5,6E2|1,34,5,6 + cyc(3, 4, 5)
)

+ (3 ↔ 4, 5, 6)
]

,

and the other δK
(i)
6 for i = 3, 4, 5, 6 are obtained from relabeling of δK

(2)
6 under (2 ↔ 3),

(2 ↔ 4) and so forth. The structural difference between δK
(1)
6 and δK

(j)
6 for j 6= 1 arises

from the choice of basis for the BRST pseudo-invariants which singles out leg number 1 in

Cm...
1|A,.... To expose this, one uses the kinematic change-of-basis identities dual to (II.5.11)

and (II.5.12) [22] (also see section II.5.2 and the appendix I.A.3) to rewrite δK
(2)
6 in a basis

of Cm...
2|A,... to obtain7

δK
(2)
6 = km2 Cmn

2|1,3,4,5,6E
n
2|1,3,4,5,6 +

[

km2 s13C
m
2|13,4,5,6E2|13,4,5,6 + (1, 3|1, 3, 4, 5, 6)

]

, (3.37)

7 The anomalous term in the change-of-basis identity Cmn
1|2,3,4,5,6 = δmn

Y21,3,4,5,6+Cmn
2|1,3,4,5,6+

. . . [22] has already been discarded from (3.37) since the accompanying GEI km
2 En

2|1,3,4,5,6 vanishes

upon contraction with δmn.
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which is clearly the relabeling of δK
(1)
6 under 1 ↔ 2. Therefore, it suffices to demonstrate

the vanishing of δK
(1)
6 to prove that the correlator (3.23) is single-valued.

To show that δK
(1)
6 vanishes, we use the kinematic BRST cohomology identities [22]

km1 Cm
1|23,4,5,6

∼= −P1|2|3,4,5,6 + P1|3|2,4,5,6 −∆1|23,4,5,6 (3.38)

kn1C
mn
1|2,3,4,5,6

∼= −
[

km2 P1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

−∆m
1|2,3,4,5,6 ,

that follow from (I.5.42) and can be used to bring (3.36) into the following form

δK
(1)
6

∼= −∆m
1|2,3,4,5,6E

m
1|2,3,4,5,6 −

[

∆1|23,4,5,6s23E1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)
]

(3.39)

−
{

P1|2|3,4,5,6

(

km2 Em
1|2,3,4,5,6 +

[

s23E1|23,4,5,6 + (3 ↔ 4, 5, 6)
])

+ (2 ↔ 3, 4, 5, 6)
}

.

The coefficients of P1|2|3,4,5,6 in the second line in turn conspire to total derivatives,

km2 Em
1|2,3,4,5,6 +

[

s23E1|23,4,5,6 + (3 ↔ 4, 5, 6)
]

∼= 0 , (3.40)

see section II.5.1. Finally, combining the relabelings of the first line of (3.39), we arrive at

−DK6(ℓ) ∼= Ω1

(

∆m
1|2,3,4,5,6E

m
1|2,3,4,5,6 +

[

∆1|23,4,5,6s23E1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)
]

)

+ (1 ↔ 2, 3, 4, 5, 6) . (3.41)

As reviewed in section I.5.3, the unrefined anomalous building blocks ∆m1...
1|A1,...

are BRST

exact, so the monodromy variation (3.41) vanishes in the cohomology of the pure-spinor

BRST charge, finishing the proof that the six-point correlator (3.23) is single valued. By

the interplay of the cohomology identity (3.38) and the GEI relation (3.40), our proof of

DK6(ℓ) ∼= 0 constitutes an illuminating showcase of the duality between kinematics and

worldsheet functions.

We note that there are other ways to prove the single-valuedness of the six-point cor-

relator (3.23). One such proof, given in section 4, follows by explicitly integrating the loop

momentum from the correlator while verifying that only the single-valued functions f
(n)
ij

in (II.7.1) build up in the outcome. Another proof, presented in the appendix B, uses ma-

nipulations involving the manifestly-local representation T · Z. However, in exploiting the

BRST invariance of the correlator in its C ·Z representation the proof above is considerably

simpler than the others.
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3.3.2.1. The C ·E representation: manifesting BRST invariance & single-valuedness

As another application of the duality between kinematics and worldsheet functions, we

shall now derive a manifestly BRST-invariant and single-valued representation of the six-

point correlator. The idea is to start from the C · Z representation (3.33) and to exploit

the dual

Zm...
1,A,B,... = Em...

1|A,B,... + · · · (3.42)

of (3.30): Each Z-function with leg one in a single-particle slot is taken as a leading term

of a GEI, see (II.4.26), and the additional terms in the ellipsis of (3.42) are of the form

Zm...
1C,D,... with C 6= ∅. In this way, a long sequence of BRST cohomology identities given

in section I.5.4 leads to the following manifestly BRST-invariant and single-valued Lie-

polynomial form of (3.33),

K6(ℓ) =
1

2
Cmn

1|A1,...,A5
E

(s),mn

1|A1,...,A5
+

[

23456|A1, . . . , A5

]

(3.43)

+ Cm
1|A1,...,A4

E
(s)m
1|A1,...,A4

+
[

23456|A1, . . . , A4

]

+ C1|A1,...,A3
E

(s)
1|A1,...,A3

+
[

23456|A1, . . . , A3

]

−
[

P1|A1|A2,...,A5
E

(s)
1|A1|A2,...,A5

+ (A1 ↔ A2, . . . , A5)
]

+
[

23456|A1, . . . , A5

]

.

The GEIs have been expressed in terms of the Lie symmetric E
(s)m...

1|A,...
defined in (II.4.23),

and similar to (3.31), only five legs participate in the Stirling permutations. More explicitly,

expanding the above sums over Stirling cycle permutations yields

K6(ℓ) =
1

2
Cmn

1|2,3,4,5,6E
mn
1|2,3,4,5,6 −

[

P1|2|3,4,5,6E1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

+
[

Cm
1|23,4,5,6 s23E

m
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

+ [
(

C1|23,45,6 s23s45E1|23,45,6 + cyc(3, 4, 5)
)

+ (6 ↔ 5, 4, 3, 2)] (3.44)

+
[(

C1|234,5,6 s23s34E1|234,5,6 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

,

and reproduces the double-copy expression for the six-point correlator proposed in [10]. The

refined GEI E1|2|3,4,5,6 arises from its expansion (II.4.27) in terms of Z-functions and boils

down to the g
(n)
ij in (II.4.37). By the vanishing of Z2|1,3,4,5,6, the C ·Z-representation (3.33)

of the six-point correlator does not feature any analogue of the terms P1|2|3,4,5,6E1|2|3,4,5,6

in the first line of (3.44).

Furthermore, from the trace relation (II.5.31) among GEIs,

1

2
δmnE

mn
1|2,3,4,5,6 =

[

E1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

+ 2πi
∂

∂τ
log I6(ℓ) , (3.45)
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one concludes that the BRST variation of (3.44) is a boundary term [10]

QK6(ℓ) = −V1Y2,3,4,5,6

(1

2
Emm

1|2,3,4,5,6 −
[

E1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

)

(3.46)

= −2πi V1Y2,3,4,5,6
∂

∂τ
log I6(ℓ) ∼= 0 ,

as required by the anomaly cancellation condition.

3.3.2.2. The T · E representation: manifesting locality & single-valuedness

The C · E representation (3.43) is not manifestly local, but it is written in terms of GEIs

manifesting monodromy invariance. However, by construction, we know that (3.43) is

equivalent to the local representation (3.23), so all the non-localities within the pseudo-

invariants C and P must be spurious. In the following discussions we exploit this reasoning

to find a new representation that is both manifestly local and monodromy invariant.

We can do this starting from (3.44), plugging in the Berends–Giele expansion of the

pseudo-invariants and separating terms according to their kinematic poles. The non-local

terms turn out to vanish (as will be exemplified below) while the local terms conspire to

produce the full correlator K6(ℓ). After going through the algebra we obtain the following

manifestly local and monodromy-invariant form of the six-point correlator K6(ℓ),

K6(ℓ) =
1

2
V1T

mn
2,3,4,5,6E

mn
1|2,3,4,5,6 −

[

V1J2|3,4,5,6E1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

, (3.47)

+
[

V1T
m
23,4,5,6E

m
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

+
[

V1T234,5,6E1|234,5,6 + V1T243,5,6E1|243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)
]

+
[(

V1T2,34,56E1|2,34,56 + cyc(3, 4, 5)
)

+ (2 ↔ 3, 4, 5, 6)
]

.

The non-local terms from the kinematic side turn out to vanish due to identities obeyed by

their accompanying worldsheet functions. For instance, one such class of terms (featuring

an uncancelled s12 pole) is given by,

M12T34,5,6

(

km2 Em
1|2,34,5,6 + s23E1|234,5,6 − s24E1|243,5,6 + s25E1|25,34,6 + s26E1|26,34,5

)

∼= 0 ,

(3.48)

whose vanishing follows from one of the GEI relations (II.5.2). Similarly, one can check that

all the other classes of non-local terms vanish as well. In summary, the expressions (3.25),

(3.33), (3.44) and (3.47) for the six-point correlator generalize the four representations of

the five-point correlator in (3.22).

Note that the T ·E representation (3.47) is related to the C · Z representation (3.33)

through the duality between kinematics and worldsheet functions: In order to see this, one

needs to adjoin the vanishing terms −
[

Z2|1,3,4,5,6P1|2|3,4,5,6+(2 ↔ 3, 4, 5, 6)
]

to the latter.
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3.3.3. Comparison with older results

To conclude the discussion of the six-point correlator, we make contact between the above

representations and a manifestly BRST invariant expression for the six-point amplitude

that has been presented in [33]. Starting from the C · Z-representation (3.33), expanding

the worldsheet functions and collecting terms yields,

K6(ℓ) =
1

2
ℓmℓnC

mn
1|2,3,4,5,6 + ℓm

[

s23g
(1)
23 C

m
1|23,4,5,6 + (2, 3|2, . . . , 6)

]

(3.49)

+
[(

s23s34g
(1)
23 g

(1)
34 C1|234,5,6 + cyc(2, 3, 4)

)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

+
[(

s23s45g
(1)
23 g

(1)
45 C1|23,45,6 + cyc(3, 4, 5)

)

+ (6 ↔ 5, 4, 3, 2)
]

+
[

g
(2)
12 C1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]

+
[

g
(2)
23 C1|(23)|4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

where we defined the following shorthands for the coefficients of g
(2)
12 and g

(2)
23 ,

C1|2|3,4,5,6 ≡ km1 kn2C
mn
1|2,3,4,5,6 +

[

s23k
m
1 Cm

1|23,4,5,6 + (3 ↔ 4, 5, 6)
]

, (3.50)

C1|(23)|4,5,6 ≡ km2 kn3C
mn
1|2,3,4,5,6 + s23(k

m
3 − km2 )Cm

1|23,4,5,6

+
[

s24k
m
3 Cm

1|24,3,5,6 + s34k
m
2 Cm

1|34,2,5,6 + (4 ↔ 5, 6)
]

+
[

s34s23C1|234,5,6 + s23s24C1|324,5,6 − s24s34C1|243,5,6 + (4 ↔ 5, 6)
]

+
[

s24s35C1|24,35,6 + s25s34C1|25,34,6 + (4, 5|4, 5, 6)
]

.

These combinations are easily seen to satisfy

QC1|2|3,4,5,6 = −s12V1Y2,3,4,5,6 , QC1|(23)|4,5,6 = −s23V1Y2,3,4,5,6 , (3.51)

so the BRST variation of (3.49) reproduces the desired Koba–Nielsen derivative in τ . Using

BRST cohomology identities one can show that

C1|2|3,4,5,6
∼= s12P1|2|3,4,5,6 , (3.52)

C1|(23)|4,5,6
∼=

1

2
s23

(

P1|2|3,4,5,6 + P1|3|2,4,5,6 + (km3 − km2 )Cm
1|23,4,5,6

+
[

s34C1|234,5,6 + s24C1|324,5,6 + (4 ↔ 5, 6)
]

)

,

which will imply, after integration over the loop momentum in section 4, that (3.49) gives

rise to an equivalent version of the six-point pure-spinor correlator expression of [33]8.

The bosonic six-point one-loop amplitude of the open superstring was computed in

the RNS formalism, see [23,24] for the parity even part and [34] for the parity odd part.

8 To see the equivalence we note, in particular, equation (3.15) of [33].
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3.4. Seven points

Following the general structure of the one-loop correlator presented in (2.33), the local

seven-point correlator is proposed to be

K7(ℓ) = KLie
7 (ℓ) +KY

7 (ℓ) , (3.53)

where KLie
n (ℓ) is defined in (2.17) and the anomaly sector KY

7 (ℓ) will be determined below.

The unrefined contribution to KLie
n (ℓ) = K

(0)
7 (ℓ)−K

(1)
7 (ℓ) follows the pattern of (2.16),

K
(0)
7 (ℓ) =

1

3!
VA1

Tmnp
A2,...,A7

Zmnp
A1,...,A7

+
[

1234567|A1, . . . , A7

]

(3.54)

+
1

2!
VA1

Tmn
A2,...,A6

Zmn
A1,...,A6

+
[

1234567|A1, . . . , A6

]

+ VA1
Tm
A2,...,A5

Zm
A1,...,A5

+
[

1234567|A1, . . . , A5

]

+ VA1
TA2,...,A4

ZA1,...,A4
+
[

1234567|A1, . . . , A4

]

,

with a total number of terms given by
[

7
7

]

+
[

7
6

]

+
[

7
5

]

+
[

7
4

]

= 1+21+175+735 = 932 (see its

explicit expansion in (A.6)). The worldsheet functions entering (3.54) and the subsequent

equations are determined from their monodromy variations. The solutions for the three

topologies of scalar Z-functions, the two topologies of vectorial ones and the tensorial ones

can be found in (II.4.40), (II.A.26), (II.A.29) and (II.A.30), respectively.

The above K
(0)
7 (ℓ) alone is not BRST invariant, and this fact motivates the introduc-

tion of refined contributions K
(1)
7 (ℓ) to (2.17). In fact, the general discussion of refined

correlators K
(d)
n (ℓ) in section 2.3.2 originated from the explicit findings of this example.

The seven-point expression

K
(1)
7 (ℓ) =

[

VA1
Jm
A2|A3,...,A7

Zm
A2|A1,A3,...,A7

+ (A2 ↔ A3, . . . , A7)
]

+
[

1234567|A1, . . . , A7

]

+
[

VA1
JA2|A3,...,A6

ZA2|A1,A3,...,A6
+ (A2 ↔ A3, . . . , A6)

]

+
[

1234567|A1, . . . , A6

]

= V1J
m
2|3,4,5,6,7Z

m
2|1,3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) (3.55)

+
[

V12J3|4,5,6,7Z3|12,4,5,6,7 + V13J2|4,5,6,7Z2|13,4,5,6,7 + (2, 3|2, 3, . . . , 7)
]

+
[

V1J23|4,5,6,7Z23|1,4,5,6,7 + (2, 3|2, 3, . . . , 7)
]

+
[

(V1J2|34,5,6,7Z2|1,34,5,6,7 + cyc(2, 3, 4)) + (2, 3, 4|2, 3, . . . , 7)
]

with 5
[

7
6

]

+6
[

7
7

]

= 105+6 = 111 terms in total lines up with the general proposal (2.22) at

refinement d = 1. We have seen in (II.4.42) that the three topologies of refined functions

appearing in (3.55) are simple combinations of

Z12|3,4,5,6,7 = ∂g
(2)
12 + s12g

(1)
12 g

(2)
12 − 3s12g

(3)
12 (3.56)

∼= −3s12g
(3)
12 + g

(2)
12 (ℓ · k2 + s23g

(1)
23 + s24g

(1)
24 + . . .+ s27g

(1)
27 ) .
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However, the sum of the d = 0 and d = 1 correlators in (3.54) and (3.55) is still not enough

to yield a BRST-invariant seven-point correlator, see the discussion of QKLie
n (ℓ) in section

2.3.4. This necessitates the additional purely anomalous contribution to (3.53) given by

KY
7 (ℓ) = −∆1|2|3,4,5,6,7Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) , (3.57)

where the anomalous superfield ∆1|2|3,...,7 is defined in (I.5.35). By the arguments of section

I.5.3.1, the components 〈∆1|2|3,...,7〉 cannot have any kinematic pole, so addition of (3.57)

does not spoil the locality of the seven-point correlator (3.53).

Note that the representation of Z12|3,4,5,6,7 in the second line of (3.56) manifests that

K7(ℓ) can be written without any derivatives ∂g
(m)
ij or products g

(1)
ij g

(2)
ij with coinciding

arguments. This observation should play an important role for the transcendentality prop-

erties upon integration over zj .

3.4.1. BRST invariance

In order to show that the full correlator (3.54) is BRST invariant, let us first consider its

non-anomalous part, QKLie
7 (ℓ). This computation can be organized according to the ghost-

number four products of superfields it generates; this general structure was anticipated in

section 2.3.4 but it is instructive to see it again in this particular case:

QKLie
7 = −

1

2
T

(0,2)
1|2,3,4,5,6,7 − T

(1,0)
1|2,3,4,5,6,7 (3.58)

−
[

T
(0,1)
12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]

−
[

T
(0,1)
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

]

−
[

T
(0,0)
123|4,5,6,7 + T

(0,0)
132|4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

]

−
[

T
(0,0)
1|234,5,6,7 + T

(0,0)
1|243,5,6,7 + (2, 3, 4|2, 3, 4, 5, 6, 7)

]

−
[

T
(0,0)
12|34,5,6,7 + T

(0,0)
13|24,5,6,7 + T

(0,0)
14|23,5,6,7 + (2, 3, 4|2, 3, 4, 5, 6, 7)

]

−
[

T
(0,0)
1|23,45,6,7 + T

(0,0)
1|24,53,6,7 + T

(0,0)
1|25,34,6,7 + (6, 7|2, 3, 4, 5, 6, 7)

]

+ Y
(0,1)
1|2,3,4,5,6,7 +

[

Y
(0,0)
12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]

+
[

Y
(0,0)
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

]

,

where, following (2.26), the non-anomalous building blocks are contained in

T
(0,2)
1|2,3,4,5,6,7 = V1V2T

mn
3,...,7Θ

(0)mn

2|1,3,...,7 + (2 ↔ 3, 4, 5, 6, 7) , (3.59)

T
(0,1)
12|3,4,5,6,7 = V12V3T

m
4,...,7Θ

(0)m
3|12,4,...,7 + (3 ↔ 4, 5, 6, 7) ,
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T
(0,1)
1|23,4,5,6,7 = V1V23T

m
4,...,7Θ

(0)m
23|1,4,...,7 + (23 ↔ 4, 5, 6, 7) ,

T
(0,0)
123|4,5,6,7 = V123V4T5,...,7Θ

(0)
4|123,5,...,7 + (4 ↔ 5, 6, 7) ,

T
(0,0)
12|34,5,6,7 = V12V34T5,...,7Θ

(0)
34|12,5,...,7 + (34 ↔ 5, 6, 7) ,

T
(0,0)
1|234,5,6,7 = V1V234T5,...,7Θ

(0)
234|1,5,...,7 + (234 ↔ 5, 6, 7) ,

T
(0,0)
1|23,45,6,7 = V1V23T45,6,7Θ

(0)
23|1,45,6,7 + (23 ↔ 45, 6, 7) ,

T
(1,0)
1|2,3,4,5,6,7 = V1V2

[

J3|4,...,7Θ
(1)
2|3|1,4,...,7 + (3 ↔ 4, 5, 6, 7)

]

+ (2 ↔ 3, 4, 5, 6, 7) ,

while the anomalous building blocks are contained in Y (d,r) given by (2.27),

Y
(0,1)
1|2,3,4,5,6,7 = V1Y

m
2,3,4,5,6,7Ξ

(0)m
1|2,3,...,7 (3.60)

Y
(0,0)
12|3,4,5,6,7 = V12Y3,4,5,6,7Ξ

(0)
12|3,...,7 ,

Y
(0,0)
1|23,4,5,6,7 = V1Y23,4,5,6,7Ξ

(0)
1|23,4,...,7 .

It is evident from the above permutations that the general compact expression (2.25)

leads to involved combinatorics resulting in many terms present in the seven-point BRST

variation (3.58), even when written using the shorthands Θ(d) and Ξ(d) defined in (2.28)

and (2.29). Fortunately, the analysis of the outcome is also greatly simplified by this very

same organization, as it suffices to check only a handful of different topologies of Θ(d) and

Ξ(d) rather than all their permutations. In fact, it is straightforward to check that all T (d,r)

terms above vanish due to

V1V2T
mn
3,4,5,6,7Θ

(0)mn

2|1,3,4,5,6,7
∼= 0, V1V2T

m
34,5,6,7Θ

(0)m
2|1,34,5,6,7

∼= 0, (3.61)

V1V23T
m
4,5,6,7Θ

(0)m
23|1,4,5,6,7

∼= 0, V1V2T34,56,7Θ
(0)
2|1,34,56,7

∼= 0,

V1V2T345,6,7Θ
(0)
2|1,345,6,7

∼= 0, V1V23T45,6,7Θ
(0)
23|1,45,6,7

∼= 0,

V1V234T5,6,7Θ
(0)
234|1,5,6,7

∼= 0, V1V2J3|4,5,6,7Θ
(1)
2|3|1,4,5,6,7

∼= 0 ,

whose explicit expansions in terms of shuffle-symmetric functions Z can be found in the

appendix C. The coefficients of V1A with A 6= ∅ are just relabellings of the Θ(d) in (3.61)

and therefore vanish as well.

Using the results above the BRST variation of (3.54) is purely anomalous

QKLie
7 (ℓ) = V1Y

m
2,3,4,5,6,7Ξ

(0)m
1|2,3,4,5,6,7 (3.62)

+ V12Y3,4,5,6,7Ξ
(0)
12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

+ V1Y23,4,5,6,7Ξ
(0)
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7) ,
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and is written entirely using the linear combinations Ξ(0) of (2.29),

Ξ
(0)m
1|2,3,4,5,6,7 = −

1

2
Zmpp

1,2,3,4,5,6,7 +
[

Zm
2|1,3,4,5,6,7 + (2 ↔ 3, . . . , 7)

]

∼= −Zm
1|2,3,4,5,6,7 (3.63)

Ξ
(0)
12|3,4,5,6,7 = −

1

2
Zpp

12,3,4,5,6,7 +
[

Z3|12,4,5,6,7 + (3 ↔ 4, 5, 6, 7)
]

∼= −Z12|3,4,5,6,7

Ξ
(0)
1|23,4,5,6,7 = −

1

2
Zpp

1,23,4,5,6,7 +
[

Z23|1,4,5,6,7 + (23 ↔ 4, 5, 6, 7)
]

∼= −Z1|23,4,5,6,7 .

Similar to (3.28), the ∼= symbol indicates that boundary terms w.r.t. τ have been dis-

carded in the second step of each line. The rearrangements of the above sums have the

same structure as the trace relations among non-refined and refined building blocks, see

section I.4.4.4. As discussed in section II.5.3, the worldsheet functions found via the boot-

strap method of section II.4.4.4 satisfy the dual trace relations exploited in (3.63), and

(3.62) becomes,

QKLie
7 (ℓ) = −V1Y

m
2,3,4,5,6,7Z

m
1|2,3,4,5,6,7 (3.64)

− V12Y3,4,5,6,7Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

− V1Y23,4,5,6,7Z1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7) .

By the relations (II.4.42) between the three topologies of refined Z-functions, the BRST

variation (3.64) can then be written as,

QKLie
7 (ℓ) =

(

km2 V1Y
m
2,3,4,5,6,7 + V21Y3,4,5,6,7 +

[

V1Y23,4,5,6,7 + (3 ↔ 4, 5, 6, 7)
]

)

Z12|3,4,5,6,7

+ (2 ↔ 3, 4, 5, 6, 7) . (3.65)

From (I.5.36) we recognize the terms inside the parenthesis in (3.65) as the BRST variation

of ∆1|2|3,4,5,6,7, that is, the expression for KY
7 (ℓ) in (3.57) is tailored to cancel

QKLie
7 (ℓ) = Q∆1|2|3,4,5,6,7Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) = −QKY

7 (ℓ) . (3.66)

Therefore the full correlator (3.54) is BRST invariant up to total derivatives,

Q
(

KLie
7 (ℓ) +KY

7 (ℓ)
)

= QK7(ℓ) ∼= 0 . (3.67)

Before showing that (3.54) is also monodromy invariant, it will be convenient to rewrite it

using the pseudo-invariants of section I.5.2, as that will simplify the proof considerably.
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3.4.1.1. The C · Z representation: manifesting BRST invariance

Given that the correlator (3.54) is BRST invariant, it is rewarding to rewrite it in terms of

BRST pseudo-invariants. This can be done following the same procedure applied in detail

for the six-point correlator in subsection 3.3.1.1, so it will only be sketched here again;

we rewrite M1M
m...
A,B,... = Cm...

1|A,B,...
+ · · · and M1J

m...
A,B,... = Pm...

1|A,B,...
+ · · · and collect the

terms containing a factor of M1P with P 6= ∅. A long but straightforward analysis using

integration-by-parts relations (2.30) for the Z-functions shows that all terms proportional

to M1P vanish and we arrive at

K7(ℓ) =
1

6
Cmnp

1|A1,...,A6
Z

(s),mnp

1,A1,...,A6
+

[

234567|A1, . . . , A6

]

(3.68)

+
1

2
Cmn

1|A1,...,A5
Z

(s),mn

1,A1,...,A5
+

[

234567|A1, . . . , A5

]

+ Cm
1|A1,...,A4

Z
(s)m
1,A1,...,A4

+
[

234567|A1, . . . , A4

]

+ C1|A1,...,A3
Z

(s)
1,A1,...,A3

+
[

234567|A1, . . . , A3

]

−
[

Pm
1|A1|A2,...,A6

Z
(s)m
A1|1,A2,...,A6

+ (A1 ↔ A2, . . . , A6)
]

+
[

234567|A1, . . . , A6

]

−
[

P1|A1|A2,...,A5
Z

(s)
A1|1,A2,...,A5

+ (A1 ↔ A2, . . . , A5)
]

+
[

234567|A1, . . . , A5

]

−∆1|2|3,4,5,6,7Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) .

Note that only six legs participate in the Stirling permutations, and Z(s)
... are defined in

(II.4.22). To compute the BRST variation of (3.68) it will be convenient to recall that [22]

QPm
1|2|3,4,5,6,7 = −Γm

1|2,3,4,5,6,7 , QCmnp

1|2,3,4,5,6,7 = −δ(mnΓ
p)
1|2,3,4,5,6,7

QP1|23|4,5,6,7 = −Γ1|23,4,5,6,7 , QCmn
1|23,4,5,6,7 = −δmnΓ1|23,4,5,6,7

QP1|2|34,5,6,7 = −Γ1|2,34,5,6,7 , QCm
1|A,B,C,D = QC1|A,B,C = 0 (3.69)

Q∆1|2|3,4,5,6,7 = km2 Γm
1|2,3,4,5,6,7 +

[

s23Γ1|23,4,5,6,7 + (3 ↔ 4, 5, 6, 7)
]

,

see (I.5.27) for the anomaly invariants Γ1|.... After straightforward algebra and using the

trace relations (3.63) we obtain,

QK7(ℓ) = Γm
1|2,3,4,5,6,7

(

Zm
1|2,3,4,5,6,7 +

[

km2 Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)
])

(3.70)

− s23Γ1|23,4,5,6,7(Z1|23,4,5,6,7 + Z12|3,4,5,6,7 −Z13|2,4,5,6,7) + (2, 3|2, 3, 4, 5, 6, 7)

∼= 0 .

The linear combinations of worldsheet functions in (3.70) correspond to the BRST-exact

anomalous kinematic factors displayed in section II.5.4 and, as we have seen in (II.5.26),

they vanish up to total derivatives. Therefore, BRST invariance of the representation (3.68)

is indeed confirmed.
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3.4.2. Single-valuedness

We will take the manifestly BRST-invariant representation (3.68) of the seven-point corre-

lator as a starting point to verify monodromy invariance. Using the monodromy variations

of the seven-point Z-functions discussed in section II.4.4.4 and in the appendix II.A, a

long but straightforward calculation implies,

DK7(ℓ) = Ω1δK
(1)
7 + · · ·+ Ω7δK

(7)
7 , (3.71)

where (E
(s)m...

1|A,...
is defined in (II.4.23))

δK
(1)
7 =

1

2
km1 Cmnp

1|A2,...,A7
E

(s)np
1|A2,...,A7

+
[

234567|A2, . . . , A7

]

(3.72)

+ km1 Cmn
1|A2,...,A6

E
(s)n
1|A2,...,A6

+
[

234567|A2, . . . , A6

]

+ km1 Cm
1|A2,...,A5

E
(s)
1|A2,...,A5

+
[

234567|A2, . . . , A5

]

−
[

km1 Pm
1|2|3,4,5,6,7 +∆1|2|3,4,5,6,7

]

E
(s)
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7) .

The other δK
(j)
7 for j = 2, . . . , 7 can be obtained from δK

(1)
7 by relabeling of 1 ↔ j in both

the kinematics and GEIs of (3.72). To verify this last statement one uses the change-of-

basis identities for pseudo-invariants derived in [22]. This is because the relabeling of δK
(j)
7

for j = 2, . . . , 7 involves pseudo-invariants outside of the canonical basis Cm...
1|... (i.e. Cm...

j|...

with j 6= 1), whereas the monodromy variation of (3.71) obviously contains only elements

in the canonical basis. See the analogous six-point analysis described in section 3.3.2 for

more details.

The appearance of momentum contractions in (3.72) signals the need to use the BRST

cohomology identities derived in [22] and reviewed in section I.5.4. In addition, one also

needs their elliptic dual identities involving momentum contractions of km1 Em... (cf. section

II.5.1) and the trace identity

1

2
Emm

1|2|3,4,5,6,7 =
[

E1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)
]

+ 2πi
∂

∂τ
log I7(ℓ) . (3.73)

After long but straightforward manipulations one finally concludes that the monodromy

variation (3.72) is BRST-exact and given by

δK
(1)
7 =

1

2
∆mn

1|A2,...,A7
E

(s)mn

1|A2,...,A6
+
[

234567|A2, . . . , A7

]

(3.74)

+ ∆m
1|A2,...,A6

E
(s)m
1|A2,...,A6

+
[

234567|A2, . . . , A6

]

+∆1|A2,...,A5
E

(s)
1|A2,...,A5

+
[

234567|A2, . . . , A5

]

∼= 0 .

It is crucial to note that only unrefined building blocks ∆1|... arise, whose BRST exactness

is discussed in section I.5.3. Since the other δK
(j)
7 are relabellings of (3.74), it follows that

the complete monodromy variation DK7(ℓ) in (3.71) is BRST-exact and therefore vanishes

in the cohomology; DK7(ℓ) ∼= 0.
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3.4.2.1. The C ·E representation: manifesting BRST invariance & single-valuedness

Having derived the C · Z representation and shown that it is single valued, we can re-

express it to manifest both BRST and monodromy invariance. We proceed similarly as in

the six-point case by inserting Zm...
1,A,B,... = Em...

1|A,B,... + · · · into the C · Z representation

(3.68) and using a long sequence of BRST cohomology identities described in [22]. Doing

this leads to a manifestly BRST-invariant and single-valued expression neatly summarized

by the following Stirling permutation sums

K7(ℓ) =
3

∑

r=0

Cm1...mr

1|A1,...,Ar+3
E

(s)m1...mr

1|A1,...,Ar+3
+

[

234567|A1, . . . , Ar+3

]

(3.75)

−
1

∑

r=0

[

Pm1...mr

1|A1|A2,...,Ar+5
E

(s)m1...mr

1|A1|A2...,Ar+5
+ (A1 ↔ A2, . . . , Ar+5)

]

+
[

2 . . .7|A1, . . . , Ar+5

]

,

where E
(s)m...

1|A,...
is defined in (II.4.23), and the terms proportional to ∆1|2|3,4,5,6,7 drop by

the trace relations (3.63). Expanding the Stirling permutation sums in (3.75) yields

K7(ℓ) =
1

6
Cmnp

1|2,3,4,5,6,7E
(s)mnp

1|2,3,4,5,6,7 (3.76)

+
1

2
Cmn

1|23,4,5,6,7E
(s)mn

1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

+
[

Cm
1|234,5,6,7E

(s)m
1|234,5,6,7 + Cm

1|243,5,6,7E
(s)m
1|243,5,6,7

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

Cm
1|23,45,6,7E

(s)m
1|23,45,6,7 + cyc(2, 3, 4)

]

+ (6, 7|2, 3, 4, 5, 6, 7)

+
[

C1|2345,6,7E
(s)
1|2345,6,7 + perm(3, 4, 5)

]

+ (2, 3, 4, 5|2, 3, 4, 5, 6, 7)

+
[

C1|234,56,7E
(s)
1|234,56,7 + C1|243,56,7E

(s)
1|243,56,7 + cyc(5, 6, 7)

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

C1|23,45,67E
(s)
1|23,45,67 + cyc(4, 5, 6)

]

+ (3 ↔ 4, 5, 6, 7)

− Pm
1|2|3,4,5,6,7E

(s)m
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

− P1|23|4,5,6,7E
(s)
1|23|4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

−
[

P1|2|34,5,6,7E
(s)
1|2|34,5,6,7 + cyc(2, 3, 4)

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7) ,

for a total number of 326 terms with pseudo-invariants C and 81 terms with P . This is the

double-copy expression for the seven-point correlator implicitly proposed in [10]. Similar

to (3.68), only six legs participate in the Stirling permutations, but there is no analogue

of the terms ∆1|2|3,...,7Z12|3,...,7 in the last line of the C · Z representation.
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3.4.2.2. The T · E representation: manifesting locality & single-valuedness

From the C · E representation (3.76) one can derive a manifestly local and single-valued

representation following the same ideas as explained for the six-point case in section 3.3.2.2.

The end result is given by,

K7(ℓ) =
1

6
V1T

mnp
2,3,...,7E

mnp

1|2,3,...,7 (3.77)

+
1

2
V1T

mn
23,4,5,6,7E

mn
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

+
[

V1T
m
234,5,6,7E

m
1|234,5,6,7 + V1T

m
243,5,6,7E

m
1|243,5,6,7

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

V1T
m
23,45,6,7E

m
1|23,45,6,7 + cyc(2, 3, 4)

]

+ (6, 7|2, 3, 4, 5, 6, 7)

+
[

V1T2345,6,7E1|2345,6,7 + perm(3, 4, 5)
]

+ (2, 3, 4, 5|2, 3, 4, 5)

+
[

V1T234,56,7E1|234,56,7 + V1T243,56,7E1|243,56,7 + cyc(5, 6, 7)
]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

V1T23,45,67E1|23,45,67 + cyc(4, 5, 6)
]

+ (3 ↔ 4, 5, 6, 7)

− V1J
m
2|3,4,5,6,7E

m
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

− V1J23|4,5,6,7E1|23|4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

−
[

V1J2|34,5,6,7E1|2|34,5,6,7 + cyc(2, 3, 4)
]

+ (2, 3, 4|2, 3, 4, 5, 6, 7) .

Similar to the six-point case (3.47), this T ·E representation is related to the C · Z repre-

sentation through the duality between kinematics and worldsheet functions, up to the fact

that (3.77) does not exhibit any dual of the terms ∆1|2|3,...,7Z12|3,...,7 in (3.68). Moreover,

the combinatorial structure of (3.77) is identical to that of the C ·E representation (3.76).

In addition, proving BRST invariance of the representation (3.77) requires the same elliptic

worldsheet identities used to generate (3.77) from (3.76).

3.5. Eight points

Following the general structure of one-loop correlators presented in (2.17) and (2.33), the

manifestly local Lie-series part of the eight-point correlator is proposed to be

KLie
8 (ℓ) ≡ K

(0)
8 (ℓ)−K

(1)
8 (ℓ) +K

(2)
8 (ℓ) , (3.78)

which will later receive a purely anomalous correction KY
8 (ℓ). The unrefined part with

d = 0 follows the general pattern indicated in (2.16),

K
(0)
8 (ℓ) =

1

4!
VA1

Tmnpq
A2,...,A8

Zmnpq
A1,...,A8

+
[

12345678|A1, . . . , A8

]

(3.79)
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+
1

3!
VA1

Tmnp
A2,...,A7

Zmnp
A1,...,A7

+
[

12345678|A1, . . . , A7

]

+
1

2!
VA1

Tmn
A2,...,A6

Zmn
A1,...,A6

+
[

12345678|A1, . . . , A6

]

+ VA1
Tm
A2,...,A5

Zm
A1,...,A5

+
[

12345678|A1, . . . , A5

]

+ VA1
TA2,...,A4

ZA1,...,A4
+
[

12345678|A1, . . . , A4

]

,

and contains
[

8
8

]

+
[

8
7

]

+
[

8
6

]

+
[

8
5

]

+
[

8
4

]

= 1+ 28 + 322 + 1960 + 6769 = 9080 terms, where

we recall that
[

n
p

]

denotes the Stirling cycle number. The correlator (3.78) also contains

7
[

8
8

]

+ 6
[

8
7

]

+ 5
[

8
6

]

= 7 + 168 + 1610 = 1785 terms with refinement d = 1,

K
(1)
8 (ℓ) =

1

2!

[

VA1
Jmn
A2|A3,...,A8

Zmn
A2|A1,A3,...,A8

+ (A2 ↔ A3, . . . , A8)
]

+ [1 . . .8|A1, . . . , A8]

+
[

VA1
Jm
A2|A3,...,A7

Zm
A2|A1,A3,...,A7

+ (A2 ↔ A3, . . . , A7)
]

+ [1 . . .8|A1, . . . , A7]

+
[

VA1
JA2|A3,...,A6

ZA2|A1,A3,...,A6
+ (A2 ↔ A3, . . . , A6)

]

+ [1 . . .8|A1, . . . , A6] ,

(3.80)

and
(

7
2

)

= 21 terms with refinement d = 2,

K
(2)
8 (ℓ) = V1J2,3|4,5,6,7,8Z2,3|1,4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8) . (3.81)

The worldsheet functions appearing in the expansions above can be obtained solving the

system of monodromy variations described in section II.4.4, and their explicit expressions

can be found in the appendix II.A.

One can also show using the trace relations among local building blocks that the overall

correlator (3.78) is unchanged when using trace-satisfying worldsheet functions Ẑ defined

in (II.5.19) instead of the naive ones from the solutions to the monodromy variations,

K̂Lie
8 (ℓ) = KLie

8 (ℓ) . (3.82)

3.5.1. BRST variation

The computation of QKLie
8 can be performed in a straightforward fashion using the varia-

tions of the local superfields given in section I.4 and is given by the general identity (2.25)

with n = 8 (see its n = 7 instance in (3.58)). To check whether the correlator is BRST

invariant, it suffices to analyze a few distinct linear combinations of worldsheet functions

encompassed in the definitions of Θ(d) and Ξ(d) in (2.28) and (2.29).
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One can show that the eight-point Z-functions derived via the bootstrap approach

(cf. appendix II.A.3) imply the vanishing of all Θ(d) topologies of worldsheet functions,

see (2.30). For some of these topologies, more than ten Z-functions conspire in a highly

non-trivial way to yield total Koba–Nielsen derivatives that integrate to zero. The full list

of inequivalent topologies can be found in the appendix C.

However, the combinations Ξ(d) defined in (2.29) do not vanish when the solutions

to the monodromy equations are plugged in. For instance, the contributions to QKLie
8

proportional to V1Y23,45,6,7,8 are given by

Ξ
(0)
23|1,45,6,7,8 ≡ −

1

2
Zpp

23,1,45,6,7,8 +
[

Z23|1,45,6,7,8 + (23 ↔ 45, 6, 7, 8)
]

= −Z1|23,45,6,7,8 +R1,23,45,6,7,8 (3.83)

= −Ẑ1|23,45,6,7,8 ,

where the R-functions where defined in (II.5.18) are proportional to G4 – they will be

written down below in (3.88) for convenience – and we used the definition (II.5.19) of Ẑ

in passing to the last line. The analysis for the other eight-point building blocks is similar,

Ξ
(0)m1m2...mr

A1|B1,...,Br+6

∼= −ẐA1|B1,...,Br+6
, Ξ

(1)m1m2...mr

A1|A2|B1,...,Br+6

∼= ẐA1,A2|B1,...,Br+6
, n = 8 ,

(3.84)

and the BRST variation of (3.78) becomes

QKLie
8 (ℓ) = −

1

2
VA1

Y mn
A2,...,A8

Ẑmn
A1|A2,...,A8

+ [12 . . .8|A1, . . . , A8] (3.85)

− VA1
Y m
A2,...,A7

Ẑm
A1|A2,...,A7

+ [12 . . .8|A1, . . . , A7]

− VA1
YA2,...,A6

ẐA1|A2,...,A6
+ [12 . . .8|A1, . . . , A6]

+
[

V1Y2|3,4,5,6,7,8 Ẑ1,2|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)
]

,

which can be written more explicitly as

QKLie
8 (ℓ) = −

1

2
V1Y

mn
2,3,4,5,6,7,8 Ẑ

mn
1|2,3,4,5,6,7,8 (3.86)

−
[

V1Y
m
23,4,5,6,7,8 Ẑ

m
1|23,4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8)

]

−
[

V12Y
m
3,4,5,6,7,8 Ẑ

m
12|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)

]

−
[

V123Y4,5,6,7,8 Ẑ123|4,5,6,7,8 + V132Y4,5,6,7,8 Ẑ132|4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8)
]

−
[

V1Y234,5,6,7,8 Ẑ1|234,5,6,7,8 + V1Y243,5,6,7,8 Ẑ1|243,5,6,7,8 + (2, 3, 4|2, 3, 4, 5, 6, 7, 8)
]

−
[(

V12Y34,5,6,7,8 Ẑ12|34,5,6,7,8 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6, 7, 8)
]

−
[(

V1Y2,3,4,56,78 Ẑ1|2,3,4,56,78 + cyc(5, 6, 7)
)

+ (2, 3, 4|2, 3, 4, 5, 6, 7, 8)
]

+
[

V1Y2|3,4,5,6,7,8 Ẑ1,2|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)
]

.
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In terms of the undeformed functions, the BRST variation is given by

QKLie
8 (ℓ) = −

1

2
VA1

Y mn
A2,...,A8

(

Zmn
A1|A2,...,A8

−Rmn
A1,...,A8

)

+ [12 . . .8|A1, . . . , A8] (3.87)

− VA1
Y m
A2,...,A7

(

Zm
A1|A2,...,A7

−Rm
A1,...,A7

)

+ [12 . . .8|A1, . . . , A7]

− VA1
YA2,...,A6

(

ZA1|A2,...,A6
−RA1,...,A6

)

+ [12 . . .8|A1, . . . , A6]

+
[

V1Y2|3,4,5,6,7,8Z1,2|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)
]

,

where the R-functions are all proportional to G4,

R12,34,5,6,7,8 = 3G4

(

s13 − s14 − s23 + s24
)

, (3.88)

R123,4,5,6,7,8 = 3G4

(

s12 − 2s13 + s23
)

,

Rm
12,3,4,5,6,7,8 = 3G4

(

s12(k
m
2 − km1 ) +

[

km3 (s13 − s23) + (3 ↔ 4, 5, 6, 7, 8)
])

,

Rmn
1,2,3,4,5,6,7,8 = 3G4k

(m
1 k

n)
2 s12 + (1, 2|1, 2, . . . , 8) .

Note that the trace relation Y mm
2,3,...,8 = 2Y2|3,...,8+(2 ↔ 3, . . . , 8) implies that the contribu-

tions of Raa
1,2,...,8 in (II.5.21) and (II.5.22) cancel. The remaining task is to compensate the

leftover variation (3.87) by adding an anomaly sector KY
8 (ℓ) to the eight-point correlator.

3.5.2. Purely anomalous sector

The strategy to cancel the terms (3.86) in a bid to achieve BRST invariance is similar to

the seven-point case; we propose to add a purely anomalous contribution to the eight-point

correlator (3.78),

K8(ℓ) = KLie
8 (ℓ) +KY

8 (ℓ) . (3.89)

By analogy with the expression (3.57) for KY
7 (ℓ), we start from an ansatz comprising

anomalous ∆ superfields of (I.C.1) and some unknown worldsheet functions U ,

KY
8 (ℓ) =

[

∆m
1|2|3,4,...,8 U

m
1|2|3,4,...,8 + (2 ↔ 3, 4, . . . , 8)

]

+
[

∆1|23|4,...,8 s23U1|23|4,...,8 + (2, 3|2, 3, 4, . . . , 8)
]

(3.90)

+
[(

∆1|2|34,...,8 s34U1|2|34,...,8 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6, 7)
]

.

In fact, (3.90) is the most general linear combination of anomalous building blocks such

that their BRST variations are expressible in terms of V1AY
m1...
... rather than VBY

m1...
1...

with 1 /∈ B. Any other combination of Y m1...
... in (3.90) would lead to terms VB , 1 /∈ B in

QKY
8 (ℓ) that cannot be cancelled by (3.87). In contrast to their seven-point counterpart
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∆1|2|3,4,5,6,7, the eight-point instances of the ∆ superfields exhibit kinematic poles (cf.

appendix I.C), so (3.90) amounts to a mild violating of manifest locality.

In order to determine the U -functions in (3.90) we start by noting that Q2KLie
8 (ℓ) = 0

implies that QKLie
8 (ℓ) is BRST closed. Therefore all the ghost-number-four superfields

VAY
m1m2...
B1,B2,...

in (3.87) must combine to ghost-number four BRST invariants given by Γ

defined in [22] (also see the alternative algorithm in appendix I.A.2 for the unrefined

cases). This can be seen by rewriting the local superfields in (3.86) in terms of Berends–

Giele currents using (I.5.1) followed by MAY
m1m2...
B1,B2,...

→ δ|A|,1Γ
m1m2...
A|B1,B2,...

where

Γmn
1|2,3,4,5,6,7,8 = M1Y

mn
2,...,8 +

[

km2 M12Y
n
3,4,5,6,7,8 + kn2M12Y

m
3,4,5,6,7,8 + (2 ↔ 3, . . . , 8)

]

−
[

(km2 kn3 + kn2 k
m
3 )M312Y4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8)

]

(3.91)

Γm
1|23,4,5,6,7,8 = M1Y

m
23,4,5,6,7,8 +

[

M12Y
m
3,4,5,6,7,8 +M123Y4,5,6,7,8k

m
3 − (2 ↔ 3)

]

+
[

km4
(

M14Y23,5,6,7,8 −M214Y3,5,6,7,8 +M314Y2,5,6,7,8

)

+ (4 ↔ 5, 6, 7, 8)
]

Γ1|234,5,6,7,8 = M1Y234,5,6,7,8 +M12Y34,5,6,7,8 +M123Y4,5,6,7,8

+M214Y3,5,6,7,8 −M14Y23,5,6,7,8 +M143Y2,5,6,7,8

Γ1|23,45,6,7,8 = M1Y23,45,6,7,8 +
[

M12Y45,3,6,7,8 − (2 ↔ 3)
]

+
[

M14Y23,5,6,7,8 +M215Y3,4,6,7,8 −M315Y2,4,6,7,8 − (4 ↔ 5)
]

Γ1|2|3,4,5,6,7,8 = M1Y2|3,4,...,8 +M12k
m
2 Ym

3,4,...,8 +
[

s23M123Y4,...,8 + (3 ↔ 4, . . . , 8)
]

.

Under these transformations, it is possible to verify that (3.86) is identical to

QKLie
8 (ℓ) = −

1

2
Γmn
A1|A2,...,A8

Z
(s),mn

A1|A2,...,A8
+ [12 . . .8|A1, . . . , A8] (3.92)

− Γm
A1|A2,...,A7

Z
(s),m
A1|A2,...,A7

+ [12 . . .8|A1, . . . , A7]

− ΓA1|A2,...,A6
Z

(s)
A1|A2,...,A6

+ [12 . . .8|A1, . . . , A6]

+
[

Γ1|2|3,4,5,6,7,8Z
(s)
1,2|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)

]

+
1

2
VA1

Y mn
A2,...,A8

Rmn
A1,...,A8

+ [12 . . .8|A1, . . . , A8]

+ VA1
Y m
A2,...,A7

Rm
A1,...,A7

+ [12 . . .8|A1, . . . , A7]

+ VA1
YA2,...,A6

RA1,...,A6
+ [12 . . .8|A1, . . . , A6] ,

where Z(s) is defined in (II.4.22). It is beneficial to rewrite (3.86) in this way because the

Q-variation of the anomalous correlator (3.90) takes the the same form once we insert the
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expressions for Q∆ in (I.5.39):

QKY
8 (ℓ) = Γmn

1|2,3,4,5,6,7,8

[

km2 Un
1|2|3,4,5,6,7,8 + (2 ↔ 3, 4, 5, 6, 7, 8)

]

(3.93)

+
[

s23Γ
m
1|23,4,...,8

(

Um
1|2|3,...,8 − Um

1|3|2,...,8

+
[

km23U1|23|4,...,8 + (23 ↔ 4, 5, 6, 7, 8)
])

+ (2, 3|2, 3, 4, 5, 6, 7, 8)
]

+
[

s23s45Γ1|23,45,6,7,8

(

U1|2|3,45,6,7,8 − U1|3|2,45,6,7,8

+ U1|4|5,23,6,7,8 − U1|5|4,23,6,7,8

)

+ (2, 3|4, 5|2, 3, 4, 5, 6, 7, 8)
]

+
[

Γ1|234,5,6,7,8

[

s23s24
(

U1|23|4,...,8 − U1|4|23,...,8 − U1|3|24,...,8 + U1|24|3,...,8

)

+ s23s34
(

U1|23|4,...,8 − U1|4|23,...,8 + U1|2|34,...,8 − U1|34|2,...,8

)]

+ Γ1|243,5,6,7,8

[

s23s24
(

U1|24|3,...,8 − U1|3|24,...,8 − U1|4|23,...,8 + U1|23|4,...,8

)

+ s24s34
(

U1|24|3,...,8 − U1|3|24,...,8 + U1|2|43,...,8 − U1|43|2,...,8

)]

+ (2, 3, 4|2, 3, 4, 5, 6, 7, 8)
]

−
[

Γ1|2|3,4,5,6,7,8 (k
m
2 Um

1|2|3,4,5,6,7,8 + s23U1|23|4,5,6,7,8 + s24U1|24|3,5,6,7,8

+ · · ·+ s28U1|28|3,4,5,6,7) + (2 ↔ 3, 4, 5, 6, 7, 8)
]

.

As we will see, the functions U in the anomalous correlator (3.90) can be chosen such as

to cancel all Γ terms from (3.92). This can be achieved provided the following equations

hold:

0 ∼=
(

Zmn
1|2,3,4,5,6,7,8 −

[

k
(m
2 U

n)
1|2|3,4,5,6,7,8 + (2 ↔ 3, . . . , 8)

]

)

Γmn
1|2,3,4,5,6,7,8 (3.94)

0 ∼=
(

Zm
1|23,4,...,8 − Um

1|2|3,...,8 + Um
1|3|2,...,8 −

[

km23U1|23|4,...,8 + (23 ↔ 4, . . . , 8)
]

)

Γm
1|23,4,...,8

(3.95)

0 ∼=
(

Z1|23,45,6,7,8 −
[

U1|4|23,5,6,7,8 + U1|5|23,4,6,7,8 − (23 ↔ 45)
]

)

Γ1|23,45,6,7,8 (3.96)

0 ∼=
(

s23(s24 + s34)Z1|234,5,6,7,8 + s23s24Z1|243,5,6,7,8 (3.97)

− s23s24
(

U1|23|4,...,8 + U1|24|3,...,8 − U1|3|24,...,8 − U1|4|23,...,8

)

− s23s34
(

U1|2|34,...,8 + U1|23|4,...,8 − U1|34|2,...,8 − U1|4|23,...,8

)

)

Γ1|234,5,6,7,8

0 ∼=
(

Z1,2|3,...,8 − km2 Um
1|2|3,...,8 −

[

s23U1|23|4,...,8 + (3 ↔ 4, . . . , 8)
]

)

Γ1|2|3,4,5,6,7,8 . (3.98)

To solve these equations it will be convenient to exploit the vanishing of Z∆ according to

(II.5.29). For instance, 0 ∼= Z∆,mn

1|2,3,4,5,6,7,8 can be used to rewrite

Zmn
1|2,3,4,5,6,7,8 = −

[

k
(m
2 Z

n)
12|3,4,5,6,7,8+(2 ↔ 3, . . . , 8)

]

+
[

k
(m
2 k

n)
3 Z213|4,5,6,7,8+(2, 3|2, . . . , 8)

]

(3.99)

42



allowing (3.94) to be solved for Um. In turn, plugging Um into (3.95) and using the

vanishing of Z∆
1|23,4,5,6,7,8 from (II.5.27) allows the determination of the other two topologies

of U in (3.90). The resulting expressions

Um
1|2|3,4,5,6,7,8 = −Zm

12|3,...,8 +
1

2

[

km3 Z213|4,...,8 + (3 ↔ 4, . . . , 8)
]

, (3.100)

U1|23|4,5,6,7,8 =
1

2

(

Z132|4,5,6,7,8 − Z123|4,5,6,7,8

)

,

U1|2|34,5,6,7,8 =
1

2

(

Z312|4,5,6,7,8 − Z412|3,5,6,7,8

)

,

are consistent with the remaining equations (3.96) to (3.98). One could wonder if the

trace relation Γmn
1|2,3,...,8 = 2Γ1|2|3,...,8+(2 ↔ 3, . . . , 8) among the anomaly invariants might

generate corrections to the last equation (3.98) from tensor traces in (3.94). This is not

the case because the chosen representation of Zmn in the tensorial equation (3.94) does

not feature any δmnG4 deformations.

Given that the expressions (3.100) for the U -functions in KY
8 (ℓ) solve all of (3.94) to

(3.98), the BRST variation of the overall correlator (3.89) reduces to

Q(KLie
8 (ℓ) +KY

8 (ℓ)) =
1

2
VA1

Y mn
A2,...,A8

Rmn
A1,...,A8

+ [12 . . .8|A1, . . . , A8] (3.101)

+ VA1
Y m
A2,...,A7

Rm
A1,...,A7

+ [12 . . .8|A1, . . . , A7]

+ VA1
YA2,...,A6

RA1,...,A6
+ [12 . . .8|A1, . . . , A6] .

The R-functions from (3.88) are all proportional to the holomorphic Eisenstein series G4,

i.e. any dependence of the BRST variation (3.101) on ℓ or the zj has cancelled.

Unfortunately, we explicitly checked [8] that there is no manifestly local deformation

of the correlator that can be used to cancel the remaining terms in (3.101). Therefore,

even though the BRST variation of KLie
8 (ℓ) +KY

8 (ℓ) turns out to be a local expression, its

component expansion is non-local, see appendix I.C for the kinematic poles of the ∆1|...

superfields in (3.90). This suggests that there may be another non-local sector whose BRST

variation cancels (3.101), although we have not been able to pinpoint it yet. We leave the

quest for finding such a completion to future investigations.
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4. Modular forms: Integrating out the loop momentum

This section is dedicated to the integration over the loop momentum which will lead to

manifestly single-valued one-loop correlators. In this way, the correlators acquire well-

defined weights under modular transformations, namely holomorphic weight n−4 for the

loop integral of Kn(ℓ).

At the same time, closed-string correlators are no longer chirally split after integration

over the loop momenta [12,13,14]. We will describe the systematics of the interactions

between left- and right movers that arises from loop integration of the holomorphic squares

|Kn(ℓ)|
2. The setup of Z-functions and GEIs turns out to provide an efficient handle on

the vector contractions between left- and right movers and the loss of meromorphicity of

the open-string contributions after integration over ℓ.

Let us briefly summarize the notation of part I & II. As detailed in sections I.2.2 and

II.7.2, the net effect of loop integration on the Koba–Nielsen factor (2.3) is captured by

Îopen
n =

(2πi)D

(Im τ)
D
2

exp
(

n
∑

i<j

sij

[

log
∣

∣θ1(zij , τ)
∣

∣−
π(Im zij)

2

Im τ

])

, (4.1)

În =
(2πi)D

(2 Im τ)
D
2

exp
(

n
∑

i<j

sij

[

log
∣

∣θ1(zij , τ)
∣

∣

2
−

2π

Im τ
(Im zij)

2
])

.

After factorizing these universal quantities in the worldsheet integrand of open- and closed-

string amplitudes (2.1) and (2.2),

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn Îopen
n [[ 〈Kn(ℓ)〉 ]] , (4.2)

Mn =

∫

F

d2τ d2z2 d
2z3 . . . d2zn În [[ 〈Kn(ℓ)〉 〈K̃n(−ℓ)〉 ]] ,

the leftover integrand w.r.t. the punctures zj and modular parameters τ is furnished by

“loop-integrated” correlators [[Kn(ℓ)]] and [[Kn(ℓ)K̃n(−ℓ)]] in combination with the zero-

mode prescription 〈. . .〉 of the pure-spinor formalism [2]. Hence, the notation [[. . .]] in

(4.2) addresses the net effect of shifting the loop momentum as a Gaussian integration

variable, cf. section II.7.2. The normalization is chosen as [[1]] = 1, and the simplest non-

trivial examples [[ℓm]] = Lm
0 and [[ℓmℓn]] = Lm

0 Ln
0 − π

Im τ
δmn are most compactly written

in terms of the non-meromorphic quantity Lm
0 =

∑n
j=2 k

m
j ν1j with νij ≡ 2πi

Im zij
Im τ

, see

(II.7.13) for integration over higher powers of ℓ. The contribution − π
Im τ

δmn to [[ℓmℓn]] is

the first instance of the aforementioned interactions between left- and right movers.
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4.1. Five-point open-string correlators

Starting from this section, we apply the techniques of integrating the loop momentum to

the correlators Kn(ℓ) of section 3. We will complement the direct integration of GEIs with

a study of the T · Z and C · Z representations where the origin of the kinematic factors

from the OPEs is more transparent.

4.1.1. The T · F representation: manifesting locality & single-valuedness

As discussed in [14], integration over the loop momentum leads to manifestly single-valued

representations of chirally-split correlators. We therefore integrate out the loop momentum

from the representation (3.8) using (II.7.13) to obtain

[[K5(ℓ)]] =
[

km2 V1T
m
2,3,4,5ν12 + V12T3,4,5g

(1)
12 + (2 ↔ 3, 4, 5)

]

+
[

V1T23,4,5g
(1)
23 + (2, 3|2, 3, 4, 5)

]

=
[

V12T3,4,5(g
(1)
12 +ν12)+(2↔3, 4, 5)

]

+
[

V1T23,4,5(g
(1)
23 +ν23)+(2, 3|2, 3, 4, 5)

]

, (4.3)

where to arrive in the second line we used the cohomology identity (3.18) as km2 V1T
m
2,3,4,5

∼=

V12T3,4,5 −
[

V1T23,4,5 + (3 ↔ 4, 5)
]

and ν13−ν12 = ν23. So we see that the single-valued

functions f
(1)
ij = g

(1)
ij + νij are constructively obtained and we get the following correlator

[[K5(ℓ)]] = V12T3,4,5F12,3,4,5 + (2 ↔ 3, 4, 5) (4.4)

+ V1T23,4,5F1,23,4,5 + (2, 3|2, 3, 4, 5) ,

in terms of manifestly single-valued functions F12,3,4,5 ≡ f
(1)
12 . Given that the functions

f
(w)
ij defined by (II.7.1) carry w units of holomorphic modular weight, see (II.7.5), the

correlator (4.4) is a modular form of weight one.

4.1.2. The C · F representation: manifesting BRST invariance & single-valuedness

It is also possible to obtain a representation without the loop momentum which mani-

fests both BRST invariance and single-valuedness. This can be achieved in at least two

ways: integrating out the loop momentum from the C · Z representation (3.17) or using

integration-by-parts identities to eliminate all f
(1)
1j integrands with j = 2, 3, 4, 5 from (4.4).

First, integrating out the loop momentum from (3.17) using the identity,

Lm
0 Cm

1|2,3,4,5 = −
5

∑

j=1

νjk
m
j Cm

1|2,3,4,5 =
[

s23ν23C1|23,4,5 + (2, 3|2, 3, 4, 5)
]

, (4.5)
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leads to the manifestly single-valued and BRST-invariant form of the five-point correlator

[[K5(ℓ)]] = C1|23,4,5s23f
(1)
23 + (2, 3|2, 3, 4, 5) . (4.6)

This form reproduces the five-point one-loop correlator proposed in [28] and rederived

in [30,10]. Alternatively, one can arrive at the representation (4.6) using integration-by-

parts identities (II.7.27) in the local and single-valued representation (4.4). In fact, this is

how (4.6) was originally derived in [30]. The derivations of this paper are based on single-

valuedness and BRST-invariance constraints, and one obtains a much richer perspective on

the correlators. In summary, the integration over the loop momentum yields two additional

representations of the five-point correlator from (3.22),

[[K5(ℓ)]] =
[

V12T3,4,5F12,3,4,5 + (2 ↔ 3, 4, 5)
]

+
[

V1T23,4,5F1,23,4,5 + (2, 3|2, 3, 4, 5)
]

,

[[K5(ℓ)]] = C1|23,4,5F
(s)
1,23,4,5 + (2, 3|2, 3, 4, 5) , (4.7)

where we used the shorthand F
(s)
1,23,4,5 = s23F1,23,4,5 = s23f

(1)
23 in the second line. More

generally, by analogy with the Z(s) in (II.4.22), we define the following Lie-symmetry

satisfying analogues of the shuffle-symmetric Fm1m2...
A,B,... -functions,

F
(s)m1...

aA,bB,... ≡
∑

A′,B′,...

S(A|A′)aS(B|B′)b · · · F
m1...
aA′,bB′,... , (4.8)

which will be tensorial at higher multiplicity. We see that integrating out the loop momen-

tum from the functions Z in (3.8) has the same effect as sending ℓ → 0 and g
(1)
ij → f

(1)
ij .

However, these replacement rules are tied to the present open-string context and no longer

apply to the closed-string five-point correlators of section (4.20).

4.1.3. Lessons from the T · E and C · E representations

As an alternative to the earlier computations, one can start from the representations (3.20)

or (3.21) of K5(ℓ) in terms of GEIs and insert the results (II.7.17) and (II.7.19) for their

loop integral. The manifestly local T · E representation (3.20) yields

[[K5(ℓ)]] = V1T23,4,5f
(1)
23 + (2, 3|2, 3, 4, 5) (4.9)

+ V1(k
m
2 Tm

2,3,4,5 + T23,4,5 + T24,3,5 + T25,3,4)f
(1)
12 + (2 ↔ 3, 4, 5)

after reorganizing terms which agrees with the T · F representation (4.4) up to the co-

homology identity (3.18). Similarly, the manifestly BRST-invariant C · E representation

(3.21) yields

[[K5(ℓ)]] = s23C1|23,4,5f
(1)
23 + (2, 3|2, 3, 4, 5) (4.9)

+ (km2 Cm
1|2,3,4,5 + s23C1|23,4,5 + s24C1|24,3,5 + s25C1|25,3,4)f

(1)
12 + (2 ↔ 3, 4, 5) ,

after reorganizing terms. This in turn matches the C · F representation (4.6), because the

second line is BRST exact by (I.5.41).
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4.2. Six-point open-string correlators

4.2.1. The T · F representation: manifesting locality & single-valuedness

We already know that the six-point correlator (3.23) is single-valued, and in this section

this will be manifested by integrating out the loop momentum and checking that the

generated variables νij combine into single-valued functions f
(n)
ij according to (II.7.3)

g
(1)
ij + νij = f

(1)
ij , g

(2)
ij + νijg

(1)
ij +

1

2
ν2ij = f

(2)
ij . (4.11)

Indeed, integrating out the loop momentum in the representation (3.23) using (II.7.3)

yields

[[K6(ℓ)]] =
1

2
VA1

Tmn
A2,...,A6

Fmn
A1,...,A6

+ [123456|A1, . . . , A6] (4.12)

+ VA1
Tm
A2,...,A5

Fm
A1,...,A5

+ [123456|A1, . . . , A5]

+ VA1
TA2,...,A4

FA1,...,A4
+ [123456|A1, . . . , A4] ,

with manifestly single-valued worldsheet functions given by

F123,4,5,6 ≡ f
(1)
12 f

(1)
23 + f

(2)
12 + f

(2)
23 − f

(2)
13 , (4.13)

F12,34,5,6 ≡ f
(1)
12 f

(1)
34 + f

(2)
13 + f

(2)
24 − f

(2)
14 − f

(2)
23 ,

Fm
12,3,4,5,6 ≡ (km2 − km1 )f

(2)
12 +

[

km3 (f
(2)
13 − f

(2)
23 ) + (3 ↔ 4, 5, 6)

]

,

Fmn
1,2,3,4,5,6 ≡

[

(km1 kn2 + kn1 k
m
2 )f

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]

.

To see this, we use the integration-by-parts identity (II.7.27) obtained from ∂2(ν2Î6) = 0,

ν2f
(1)
12

∼=
1

s12

( π

Im τ
+

[

s23ν2f
(1)
23 + (3 ↔ 4, 5, 6)

]

)

, (4.14)

and drop the BRST-exact linear combinations given by (I.B.2) and (I.B.14). Given that

an additional summand of π
Im τ

arises from the loop integral over 1
2ℓmℓnV1T

mn
2,3,4,5,6, the

coefficient of the modular anomaly cancels by the building-block trace relation (I.4.45).

Similarly as in the five-point open-string calculations, the functions F in (4.13) are related

to Z from (3.24) by ℓ → 0 and g
(n)
ij → f

(n)
ij . Furthermore, we see from (II.7.5) that the

non-holomorphic six-point correlator (4.12) is a modular form of weight two.
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4.2.2. The C · F representation: manifesting BRST invariance & single-valuedness

There are several alternatives to deriving a manifestly BRST-invariant form of the corre-

lator without the loop momentum. The most straightforward way is to use integration-by-

parts identities (II.7.27) in the representation (4.12). A long calculation very similar to the

derivation of (3.49) in section 3.3.3 leads to

[[K6(ℓ)]] =
[(

s23s34f
(1)
23 f

(1)
34 C1|234,5,6 + cyc(2, 3, 4)

)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

(4.15)

+
[(

s23s45f
(1)
23 f

(1)
45 C1|23,45,6 + cyc(3, 4, 5)

)

+ (6 ↔ 5, 4, 3, 2)
]

+
[

f
(2)
12 C1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]

+
[

f
(2)
23 C1|(23)|4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

,

see (3.50) or (3.52) for the pseudo-invariant kinematic factors C1|2|3,4,5,6 and C1|(23)|4,5,6.

This representation reproduces the correlator proposed in [33] based on BRST cohomology

properties together with an anomaly-cancellation analysis. At the same time, (4.15) can

be easily checked to be equivalent to

[[K6(ℓ)]] =
1

2
Cmn

1|2,3,4,5,6F
(s)mn
1,2,3,4,5,6 +

[

Cm
1|23,4,5,6F

(s)m
1,23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

(4.16)

+
[(

C1|234,5,6F
(s)
1,234,5,6 + C1|243,5,6F

(s)
1,243,5,6

)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

+
[(

C1|23,45,6F
(s)
1,23,45,6 + cyc(3, 4, 5)

)

+ (6 ↔ 5, 4, 3, 2)
]

,

using the Lie-symmetric version (4.8) of the functions Fm...
A,B,... in (4.13).

4.2.3. Lessons from the T · E and C · E representations

Again, one can combine the above results for the loop integrals over six-point GEIs with

the T ·E and C ·E representations of K6(ℓ) in (3.47) and (3.44), respectively. Based on the

loop integration [[Emn
1|2,...]] = − π

Im τ
δmn + . . . and [[E1|2|3,...]] = − π

Im τ
+ . . . in (II.7.19) and

(II.7.32), the cancellation of the modular anomalies is transparent in both representations:

Either by the trace relation (I.4.45) among local building blocks or by the trace relation

(I.5.29) among pseudo-invariants.

In particular, the terms K6(ℓ) =
1
2C

mn
1|2,...E

mn
1|2,... −

[

P1|2|3,...E1|2|3,... + (2 ↔ 3, . . .)
]

+

. . . in the C · E representations (3.44) illustrate the duality between BRST anomalies

and modular anomalies: In the same way as the modular anomaly of [[K6(ℓ)]] cancels by

the trace relation (I.5.29) between Cmn
1|2,... and P1|2|3,..., the BRST anomaly localizes to a

boundary term in moduli space since the GEIs Emn
1|2,... and E1|2|3,... satisfy the dual trace

relation (II.5.31) (or (II.7.34) after integration over ℓ).

Also, note that the C · F representation (4.16) results from straightforward regroup-

ings of terms in the integrated C · E representations (3.44): There is no need to perform

integration by parts on the f
(n)
ij , and the coefficients of f

(1)
1j , j = 2, 3, 4, 5, 6 are easily seen

to vanish after using Fay relations and cohomology identities of section I.5.4.
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4.3. Closed-string correlators

One of the major motivations for chiral splitting is that closed-string correlators are literally

the square of open-string correlators before integration over ℓ, cf. (2.2). Performing the loop

integral reveals modular invariance of the closed-string amplitude representation (4.2),

at the expense of introducing interactions between left- and right-movers. We will now

illustrate these interactions based on examples up to six points.

Most obviously, the expressions of section II.7.2 for integrated GEIs are augmented by

additional terms involving π
Im τ

when the opposite-chirality sector contributes additional

loop momenta, e.g.

[[ℓnEm
1|2,3,4,5]] = −

π

Im τ
δmn + Ln

0

[

km2 f
(1)
12 + (2 ↔ 3, 4, 5)

]

, (4.17)

[[ℓnEm
1|23,4,5,6]] = −

π

Im τ
δmnV1(1, 2, 3) + Ln

0

(

km3 f
(1)
12 f

(1)
23 + km2 f

(1)
13 f

(1)
23 + km23(f

(2)
12 − f

(2)
13 )

+ (km3 − km2 )f
(2)
23 +

[

km4 f
(1)
14 V1(1, 2, 3) + (4 ↔ 5, 6)

]

)

,

[[ℓpℓqEmn
1|2,3,4,5,6]] =

( π

Im τ

)2

δm(nδpq) −
π

Im τ
L
(p
0 δq)(m

[

k
n)
2 f

(1)
12 + (2 ↔ 3, 4, 5, 6)

]

−
π

Im τ
δmnLp

0L
q
0 + 2

(

Lp
0L

q
0 −

π

Im τ
δpq

)

[

km2 kn2 f
(2)
12 + (2 ↔ 3, 4, 5, 6)

]

+
(

Lp
0L

q
0 −

π

Im τ
δpq

)

[

(km2 kn3+km2 kn3 )f
(1)
12 f

(1)
13 + (2, 3|2, 3, 4, 5, 6)

]

,

[[ℓmE1|2|3,4,5,6]] = −
π

Im τ
f
(1)
12 km2 + Lm

0

(

−
π

Im τ
− 2s12f

(2)
12 + f

(1)
12

[

s23f
(1)
23 + (3 ↔ 4, 5, 6)

]

)

= Lm
0

(

−
π

Im τ
+ ∂f

(1)
12 + s12(f

(1)
12 )2 − 2s12f

(2)
12

)

.

Once these additional loop momenta are regrouped into complex conjugate GEIs, the net

effect of the additional Lm
0 is to recombine the g(n) functions to

f
(n)

(z, τ) ≡
n
∑

k=0

(−ν)k

k!
g(n−k)(z, τ) . (4.18)

The minus signs relative to (II.7.3) are due to νij → −νij under complex conjugation. Like-

wise, our normalization conventions for the loop momentum transforms ℓ → −ℓ in passing

from GEIs to their complex conjugates, as reflected in the notation K̃n(−ℓ) for right-moving

correlators in (4.2). For instance, the vectorial GEI in K̃5(−ℓ) = E
m

1|2,3,4,5C̃
m
1|2,3,4,5 + . . .

reads E
m

1|2,3,4,5 = −ℓ +
[

km2 g
(1)
12 + (2 ↔ 3, 4, 5)

]

, and the loop integral of its holomorphic

square can be performed via (4.17),

[[Em
1|2,3,4,5E

n

1|2,3,4,5]] =
π

Im τ
δmn+

[

km2 f
(1)
12 +(2 ↔ 3, 4, 5)

][

kn2 f
(1)

12 +(2 ↔ 3, 4, 5)
]

. (4.19)
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The first term exemplifies that factors of π
Im τ

are not necessarily associated with modular

anomalies in a closed-string setup: Both π
Im τ

and the remaining terms f
(1)
ij f

(1)

kl in (4.19)

have modular weights (1, 1), in lines with modular invariance of the five-point amplitude

(4.2). In fact, the cancellation of modular anomalies in integrated open-string six-point

correlators applies separately to both chiral halves of the closed-string calculation.

4.3.1. Five points

Starting from the T · Z representation (3.8) of the open-string five-point correlator, loop

integration over its holomorphic square yields

[[K5(ℓ)K̃5(−ℓ)]] =
∣

∣

∣

[

V12T3,4,5F12,3,4,5+(2 ↔ 3, 4, 5)
]

+
[

V1T23,4,5F1,23,4,5+(2, 3|2, 3, 4, 5)
]

∣

∣

∣

2

+
π

Im τ
V1T

m
2,3,4,5Ṽ1T̃

m
2,3,4,5 . (4.20)

The second line augments the square of the integrated open-string correlator in its T · F

representation (4.4) by a left-right contraction. The recombination of g
(1)
ij + νij = f

(1)
ij and

g
(1)
ij − νij = f

(1)

ij follows the mechanism of the open-string context, see (4.3).

The local form (4.20) of the five-point closed-string correlator has been spelled out in

[35]. As already emphasized in the reference, integrations by parts (II.7.27) are more subtle

in presence of both f
(n)
ij and f

(n)

ij : Additional terms π
Im τ

may arise in trading s12f
(1)
12 for

s23f
(1)
23 + (3 ↔ 4, 5) on the left-moving side, depending on the labels of the accompanying

right-moving f
(1)

ij , see e.g. (II.7.30). Hence, one cannot just replace the left-moving terms

in the first line of (4.20) by their manifestly BRST-invariant counterparts (4.6) without

inspecting the respective right-movers and altering the coefficient of π
Im τ

.

Instead, a manifestly BRST-invariant rewriting of (4.20) can be conveniently found

by integrating the C · Z representation of K5(ℓ)K̃5(−ℓ),

[[K5(ℓ)K̃5(−ℓ)]] =
∣

∣s23f
(1)
23 C1|23,4,5+(2, 3|2, 3, 4, 5)

∣

∣

2
+

π

Im τ
Cm

1|2,3,4,5C̃
m
1|2,3,4,5 . (4.21)

This representation has been firstly given in [33], based on a long sequence of integration-

by-parts identities in (4.20) and carefully tracking all ∂if
(1)

ij = ∂if
(1)
ij = − π

Im τ
[35].
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4.3.2. Six points

A manifestly BRST invariant closed-string six-point correlator has been proposed in [33]

[[K6(ℓ)K̃6(−ℓ)]] = Kopen
6 K̃open

6 +
π

Im τ

∣

∣s23f
(1)
23 Cm

1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)
∣

∣

2
(4.22)

+
( π

Im τ

)2(1

2
Cmn

1|2,3,4,5,6C̃
mn
1|2,3,4,5,6 −

[

|P1|2|3,4,5,6|
2 + (2 ↔ 3, 4, 5, 6)

]

)

,

where Kopen
6 is essentially the representation of [[K6(ℓ)]] given in (4.15),

Kopen
6 =

[(

s23s34f
(1)
23 f

(1)
34 C1|234,5,6 + cyc(2, 3, 4)

)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

(4.23)

+
[(

s23s45f
(1)
23 f

(1)
45 C1|23,45,6 + cyc(3, 4, 5)

)

+ (6 ↔ 5, 4, 3, 2)
]

+
[

f
(2)
12 C1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]

+
[

f
(2)
23 C1|(23)|4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

,

up to Koba–Nielsen derivatives to be detailed below. The pseudo-invariants C1|2|3,4,5,6 and

C1|(23)|4,5,6 have been defined in (3.50). The second line of (4.22) has not yet been derived

from first principles but was inferred by indirect arguments including properties of the

low-energy limit [33]. In appendix D, we will demonstrate the terms |P1|2|3,4,5,6|
2 in (4.22)

to follow from a careful analysis of integration-by-parts identities.

Our derivation of (4.22) starts from the C · E representation (3.44) of K6(ℓ) and a

convenient organization of the loop integrals in the closed-string case according to the

number of contractions ℓmℓn → − π
Im τ

between left- and right-movers

[[K6(ℓ)K̃6(−ℓ)]] = [[K6(ℓ)]] · [[K̃6(−ℓ)]] (4.24)

+
π

Im τ

[[∂K6(ℓ)

∂ℓm

]]

δmn

[[∂K̃6(−ℓ)

∂(−ℓn)

]]

+
1

2

( π

Im τ

)2

Cmn
1|2,3,4,5,6C̃

mn
1|2,3,4,5,6 .

The double contractions between left- and right movers are sensitive to no contribution

to other than K6(ℓ) = 1
2ℓmℓnC

mn
1|2,3,4,5,6 + . . . and lead to the last line. For the vectorial

open-string constituents of (4.24), the representation (3.44) gives rise to

[[∂K6(ℓ)

∂ℓm

]]

=
[

Cm
1|23,4,5,6s23f

(1)
23 + (2, 3|2, 3, 4, 5, 6)

]

+
[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

, (4.25)

see appendix D for intermediate steps. Finally, the scalar contributions to (4.24)

[[K6(ℓ)]] = Kopen
6 −

[

N1|2|3,4,5,6P1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

(4.26)
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augment (4.23) by total derivatives

N1|2|3,4,5,6Î6 =
( π

Im τ
+ ν12(s12f

(1)
12 −

[

s23f
(1)
23 +(3↔4, 5, 6)

]

)
)

Î6 = −
∂

∂z2
(ν12Î6)

Ñ1|2|3,4,5,6Î6 =
( π

Im τ
− ν12(s12f

(1)

12 −
[

s23f
(1)

23 +(3↔4, 5, 6)
]

)
)

Î6 =
∂

∂z2
(ν12Î6) (4.27)

that have been dropped in the open-string context of (4.15), see (II.7.32). In the present

closed-string context, however, the quantity Kopen
6 in (4.23) cannot be replaced by

integration-by-parts equivalent representations of [[K6(ℓ)]], say the local expression in

(4.12). The factors of f
(w)

ij in the accompanying K̃open
6 in (4.22) are affected by holomorphic

total derivatives via (II.7.29).

Upon insertion into (4.24), the first line of (4.25) and the holomorphic square of Kopen
6

in (4.26) explain the first line of the final result (4.22). The second line of (4.22), how-

ever, arises from the factors of ν1j in (4.25) and (4.27) through a sequence of integrations

by parts, see appendix D for details. Note that the modular anomalies of (4.24) cancel

separately in both [[K6(ℓ)]] and [[K̃6(−ℓ)]], following the mechanisms of section 4.2.3. The

BRST anomaly of (4.22) was shown in [33] to yield a boundary term in τ , based on a

special case of (II.7.28).

4.3.3. Higher multiplicity

The organization of the closed-string loop integration in the six-point example (4.24) read-

ily generalizes to higher multiplicity. The left-right contractions in the seven-point corre-

lator can be captured via

[[K7(ℓ)K̃7(−ℓ)]] = [[K7(ℓ)]] · [[K̃7(−ℓ)]] +
π

Im τ

[[∂K7(ℓ)

∂ℓm

]]

δmn
[[∂K̃7(−ℓ)

∂(−ℓn)

]]

(4.28)

+
1

2!

( π

Im τ

)2[[∂2K7(ℓ)

∂ℓm∂ℓn

]]

δmpδnq
[[ ∂2K̃7(−ℓ)

∂(−ℓp)∂(−ℓq)

]]

+
1

3!

( π

Im τ

)3[[ ∂3K7(ℓ)

∂ℓm∂ℓn∂ℓp

]]

δmqδnrδps
[[ ∂3K̃7(−ℓ)

∂(−ℓq)∂(−ℓr)∂(−ℓs)

]]

,

where the last line evaluates to 1
3!(

π
Im τ

)3Cmnp

1|2,...C̃
mn
1|2,... when the C ·E representation (3.76)

of K7(ℓ) is used. By adapting the techniques of appendix D, it should be possible to bring

(4.28) into a form similar to (4.22) where all the g
(n)
ij and g

(n)
ij are completed to f

(n)
ij and

f
(n)

ij through the loop integration. The most laborious part of this calculation might be to

identify the seven-point generalization of the terms like −( π
Im τ

)2|P1|2|3,...|
2 in (4.22).

52



Note that the all-multiplicity generalization of (4.28) reads

[[Kn(ℓ)K̃n(−ℓ)]] =
n−4
∑

r=0

1

r!

( π

Im τ

)r[[ ∂rKr(ℓ)

∂ℓm1
∂ℓm2

. . . ∂ℓmr

]]

(4.29)

× δm1p1δm2p2 . . . δmrpr

[[ ∂rK̃n(−ℓ)

∂(−ℓp1
)∂(−ℓp2

) . . . ∂(−ℓpr
)

]]

.

4.4. Closed-string low-energy limits versus open-string correlators

The one-loop low-energy effective action9 of type-IIB and type-IIA superstrings features

a supersymmetrized higher-curvature operator10 R4 at its leading order in α′ [21]. Hence,

the low-energy limit of one-loop closed-string amplitudes yields matrix elements with a

single insertion of a supersymmetrized R4 operator. By inspection of their (n ≤ 7)-point

examples, these matrix elements will be shown to relate to open-string correlators by the

duality between pseudo-invariants and GEIs [10].

4.4.1. Up to six points

Once the zj -dependence of closed-string correlators [[Kn(ℓ)K̃n(−ℓ)]] is expressed in terms

of f
(n)
ij and f

(n)

ij , their low-energy limit can be conveniently extracted through the tech-

niques of [25,35]. The idea is to perform the α′-expansion of the integrals in (4.2) over the

punctures while keeping τ finite11 in this process. Then, the leftover τ -integration at the

leading order in α′ straightforwardly yields the volume π
3
of moduli space.

9 See [36] for the exact coefficient of the R4 operator in the type-IIB effective action, including

all perturbative and non-perturbative contributions.
10 While the R4 operators in the tree-level effective action of the type-IIA and type-IIB theories

are identical, at one loop they differ by a contribution proportional to ǫ10ǫ10R
4 [37,38]. As detailed

in [35], the type-IIB matrix elements of this section are proportional to the α′3ζ3-order of the

respective tree amplitudes, where the proportionality constant depends on the R-symmetry charge

of the components (say gravitons or dilatons).
11 This approach yields a power series in α′ that is tailored to infer the one-loop low-energy

effective action. The branch cuts of the overall amplitude due to the τ → i∞ limit of the moduli-

space integral are disentangled when integrating over the zj at fixed values τ . Still, in analyzing

effective interactions beyond the low-energy limit, a subtle interplay between the branch cuts and

the power-series part has to be taken into account [39,40].

53



In this setup, the representations (4.21) and (4.22) of the closed-string correlators are

tailored to extract the following low-energy limits [33]

MR4

4 = C1|2,3,4C̃1|2,3,4 (4.30)

MR4

5 = Cm
1|2,3,4,5C̃

m
1|2,3,4,5 +

[

C1|23,4,5 s23C̃1|23,4,5 + (2, 3|2, 3, 4, 5)
]

MR4

6 =
1

2
Cmn

1|2,3,4,5,6C̃
mn
1|2,3,4,5,6 −

[

P1|2|3,4,5,6P̃1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

+
[

Cm
1|23,4,5,6 s23C̃

m
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

+
[(

C1|23,45,6 s23s45C̃1|23,45,6 + cyc(3, 4, 5)
)

+ (6 ↔ 5, 4, 3, 2)]

+
[(

C1|234,5,6 s23s34C̃1|234,5,6 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

,

also see [21] and [25,35] for earlier discussions of the four- and five-point examples.

As highlighted in [10], the expressions (4.30) for the matrix elements of R4 are related

to open-string correlators Kn(ℓ) by the duality between kinematics and worldsheet func-

tions. More precisely, the above MR4

n can be mapped to the C · E representations of the

open-string correlators by trading the right-moving pseudo-invariants for the GEIs with

the same slot structure [10],

Kn(ℓ) = MR4

n

∣

∣

C̃,P̃→E
. (4.31)

This can be checked from the formal rewriting K4(ℓ) = C1|2,3,4E1|2,3,4 of (3.1) and as well

as the expressions (3.21) and (3.44) for K5(ℓ) and K6(ℓ), respectively.

In the same way as open-string correlators admit a variety of representations, one can

rewrite the matrix elements (4.30) such as to manifest their locality properties. The idea is

to aim for a kinematic analogue of the T ·E representations K4(ℓ) = V1T2,3,4E1|2,3,4 as well

as (3.20) and (3.47) of the open-string correlators. The duality between pseudo-invariants

and GEIs translates these manifestly local representations of Kn(ℓ) into

MR4

4 = V1T2,3,4C̃1|2,3,4 (4.32)

MR4

5 = V1T
m
2,3,4,5C̃

m
1|2,3,4,5 + V1

[

T23,4,5 C̃1|23,4,5 + (2, 3|2, 3, 4, 5)
]

MR4

6 =
1

2
V1T

mn
2,3,4,5,6C̃

mn
1|2,3,4,5,6 − V1

[

J2|3,4,5,6P̃1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

+ V1

[

Tm
23,4,5,6 C̃

m
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

+ V1

[(

T23,45,6 C̃1|23,45,6 + cyc(3, 4, 5)
)

+ (6 ↔ 5, 4, 3, 2)]

+ V1

[

T234,5,6 C̃1|234,5,6 + T243,5,6 C̃1|243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)
]

.
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These representations of the matrix elements are tailored to connect with the Feynman

diagrams of the effective action proportional to R + R4: All the propagators stem from

the right-moving pseudo-invariants whose expansion in terms of Berends–Giele currents

is reviewed in section I.5.2. These Berends–Giele constituents manifest that each term in

(4.32) has at most n−4 propagators, reflecting at least one vertex of valence ≥ 4 in each

diagram.

The equivalence of (4.30) and (4.32) can be checked without any further calculation

by exploiting the duality between kinematics and worldsheet functions: Given that Kn(ℓ)

and MR4

4 are related by exchange of pseudo-invariants and GEIs, the manipulations that

connect the T · E and C · E representations of the correlators apply in identical form to

the matrix elements of R4. This follows from the observations of section II.5.1 that all

the integration-by-parts identities among GEIs at n ≤ 6 points have a counterpart in the

BRST cohomology, relating pseudo-invariants of different tensor rank.

In summary, the low-energy limit of closed-string one-loop amplitudes results in su-

persymmetrized matrix elements of R4 that share the structure of open-string correlators,

cf. (4.31). Like this, the duality between kinematics and worldsheet functions connects the

representations (4.30) and (4.32) and implies that the matrix elements are both local and

BRST invariant.

4.4.2. Seven points

As explained in section 4.3.3, the low-energy limit of the closed-string seven-point am-

plitude may not be readily available from the expression (4.28) for the loop-integrated

correlator. Still, it is tempting to invoke the connection between matrix elements of R4

and open-string correlators to propose a candidate expression on the basis of the C · E

representation (3.76) of K7(ℓ):

MR4

7 =
1

6
Cmnp

1|2,3,4,5,6,7C̃
(s)mnp

1|2,3,4,5,6,7 (4.33)

+
1

2
Cmn

1|23,4,5,6,7C̃
(s)mn

1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

+
[

Cm
1|234,5,6,7C̃

(s)m
1|234,5,6,7 + Cm

1|243,5,6,7C̃
(s)m
1|243,5,6,7

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

Cm
1|23,45,6,7C̃

(s)m
1|23,45,6,7 + cyc(2, 3, 4)

]

+ (6, 7|2, 3, 4, 5, 6, 7)

+
[

C1|2345,6,7C̃
(s)
1|2345,6,7 + perm(3, 4, 5)

]

+ (2, 3, 4, 5|2, 3, 4, 5, 6, 7)

+
[

C1|234,56,7C̃
(s)
1|234,56,7 + C1|243,56,7C̃

(s)
1|243,56,7 + cyc(5, 6, 7)

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)
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+
[

C1|23,45,67C̃
(s)
1|23,45,67 + cyc(4, 5, 6)

]

+ (3 ↔ 4, 5, 6, 7)

− Pm
1|2|3,4,5,6,7P̃

(s)m
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

− P1|23|4,5,6,7P̃
(s)
1|23|4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

−
[

P1|2|34,5,6,7P̃
(s)
1|2|34,5,6,7 + cyc(2, 3, 4)

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7) .

The superscripts (s) of the right-moving pseudo-invariants instruct to perform the matrix

multiplications with S(A|A′)a as in the definitions (II.4.22) and (II.4.23) of Z(s) and E(s),

e.g. C̃
(s)
1|23,45,67 = s23s45s67C̃1|23,45,67.

In order to validate the proposal (4.33), we shall verify that the BRST invariant

expression is at the same time compatible with the locality properties of an R4 matrix

element. Since the seven-point pseudo-invariants obey the relations of the dual GEIs up

to the anomalous ∆...
1|... superfields, cf. section II.5.1.3, we can apply the manipulations of

the correlator K7(ℓ) to the above expression for MR4

7 . In the same way as integration-by-

parts relations among GEIs yield the T ·E representation (3.77) for K7(ℓ), (4.33) must be

equivalent to

MR4

7 =
1

6
V1T

mnp
2,3,4,5,6,7C̃

mnp

1|2,3,4,5,6,7 (4.34)

+
1

2
V1T

mn
23,4,5,6,7C̃

mn
1|23,4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

+
[

V1T
m
234,5,6,7C̃

m
1|234,5,6,7 + V1T

m
243,5,6,7C̃

m
1|243,5,6,7

]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

V1T
m
23,45,6,7C̃

m
1|23,45,6,7 + cyc(2, 3, 4)

]

+ (6, 7|2, 3, 4, 5, 6, 7)

+
[

V1T2345,6,7C̃1|2345,6,7 + perm(3, 4, 5)
]

+ (2, 3, 4, 5|2, 3, 4, 5)

+
[

V1T234,56,7C̃1|234,56,7 + V1T243,56,7C̃1|243,56,7 + cyc(5, 6, 7)
]

+ (2, 3, 4|2, 3, 4, 5, 6, 7)

+
[

V1T23,45,67C̃1|23,45,67 + cyc(4, 5, 6)
]

+ (3 ↔ 4, 5, 6, 7)

− V1J
m
2|3,4,5,6,7P̃

m
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

− V1J23|4,5,6,7P̃1|23|4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

−
[

V1J2|34,5,6,7P̃1|2|34,5,6,7 + cyc(2, 3, 4)
]

+ (2, 3, 4|2, 3, 4, 5, 6, 7) ,

and we have made a separate check that the BRST non-exact ∆1|2|3,... are absent. Given

that the candidate expression (4.33) is both BRST invariant and local, we expect it to

match with the seven-point matrix element of R4. This corroborates the correspondence

(4.31) up to multiplicity seven [10].
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4.4.3. Eight points

At eight points, the analysis of section 3.5 led to obstacles in constructing a BRST-invariant

and local open-string correlator from the methods of this work. A closely related problem

is the availability of the holomorphic Eisenstein series G4 as a deformation of eight-point

GEIs. Any addition of G4 is compatible with the defining property (II.3.3) of GEIs and

the desired modular weight four upon loop integration. While the construction of eight-

point GEIs subject to trace relation is left for the future, we shall propose an eight-point

candidate for MR4

8 ,

MR4

8 =
4

∑

r=0

1

r!
Cm1...mr

1|A1,...,Ar+3
C̃

(s)m1...mr

1|A1,...,Ar+3
+

[

2345678|A1, . . . , Ar+3

]

(4.35)

−
2

∑

r=0

1

r!

[

Pm1...mr

1|A1|A2,...,Ar+5
P̃

(s)m1...mr

1|A1|A2...,Ar+5
+ (A1 ↔ A2, . . . , Ar+5)

]

+
[

23 . . .8|A1, . . . , Ar+5

]

+
[

P1|2,3|4,5,6,7,8P̃1|2,3|4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8)
]

,

see section 2.3 and appendix A for the notation [2345678|A1, . . . , Aj]. The BRST variation

of (4.35) vanishes by the trace relations (I.5.29) and (I.5.30) among the pseudo-invariants,

and we expect it to be equivalent to the following local representation,

MR4

8 =

4
∑

r=0

1

r!
V1T

m1...mr

A1,...,Ar+3
C̃m1...mr

1|A1,...,Ar+3
+

[

2345678|A1, . . . , Ar+3

]

(4.36)

−
2

∑

r=0

1

r!
V1

[

Jm1...mr

A1|A2,...,Ar+5
P̃m1...mr

1|A1|A2...,Ar+5
+ (A1 ↔ A2, . . . , Ar+5)

]

+
[

23 . . .8|A1, . . . , Ar+5

]

+ V1

[

J2,3|4,5,6,7,8P̃1|2,3|4,5,6,7,8 + (2, 3|2, 3, 4, 5, 6, 7, 8)
]

.

By the cohomology identities and trace relations of the right-moving pseudo-invariants,

also the local representation (4.36) is BRST invariant, see the detailed argument below.

And since all the left-moving superspace building blocks of (4.36) appear in (4.35) with

the same right-moving coefficient, the two expressions should be equivalent.

Since the trace relations (II.5.33) among eight-point GEIs exhibit the inhomogeneities

proportional to G4, the duality between kinematics and worldsheet functions does not

generate any BRST-invariant candidate correlators from (4.36). But it is encouraging to

see that it is only the constant G4 and none of the vast set of zj- and ℓ-dependent eight-

point Z-functions or GEIs that obstructs the construction of local and BRST-invariant

correlators.
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4.4.4. Higher multiplicity

In order to obtain a more general perspective on its BRST invariance, we note that (4.36) is

closely related to the Lie-series contributions KLie
8 (ℓ) of (2.17): By replacing the Z-functions

in (2.21) according to

Zm1...mr

1A,B1,B2,...,Br+3
→ δA,∅C̃

m1...mr

1|B1,B2,...,Br+3
(4.37)

Zm1...mr

B1,...,Bd|1A,Bd+1,...,Br+d+3
→ δA,∅P̃

m1...mr

1|B1,...,Bd|Bd+1,...,Br+d+3

such that all of the accompanying V1A with A 6= ∅ are set to zero, we recover (4.36) from

KLie
8 (ℓ). Then, the coefficients Θ(d) and Ξ(d) in (2.28) and (2.29) of the ghost-number four

superfields in QKLie
8 (ℓ) are mapped to

Θ
(0)m1m2...mr

A|1,B1,...,Br+3
→ kpAC̃

pm1m2...mr

1|A,B1,B2,...,Br+3
+

[

C̃m1m2...mr

1|S[A,B1],B2,...,Br+3
+ (B1 ↔ B2, . . . , Br+3)

]

− k
(m1

A P̃
m2...mr)
1|A|B1,...,Br+3

−
∑

A=XY

(

P̃m1m2...mr

1|X|Y,B1,...,Br+3
− (X ↔ Y )

)

,

Θ
(1)m1m2...mr

A|B|1,B1,...,Br+4
→ −kpAP̃

pm1...mr

1|B|A,B1,...,Br+4
− P̃m1...mr

1|S[A,B]|B1,...,Br+4
(4.38)

−
[

P̃m1...mr

1|B|S[A,B1],B2,...,Br+4
+ (B1 ↔ B2, . . . , Br+4)

]

+ k
(m1

A P̃
m2...mr)
1|A,B|B1,...,Br+4

+
∑

A=XY

(

P̃m1m2...mr

1|X,B|Y,B1,...,Br+4
− (X ↔ Y )

)

,

as well as

Ξ
(0)m1m2...mr

1|B1,...,Br+5
→ −

1

2
C̃ppm1...mr

1|B1,...,Br+5
+

[

P̃m1...mr

1|B1|B2,...,Br+5
+ (B1 ↔ B2, . . .Br+5)

]

, (4.39)

Ξ
(1)m1m2...mr

1|A|B1,...,Br+6
→

1

2
P̃ ppm1...mr

1|A|B1,...,Br+6
−

[

P̃m1...mr

1|A,B1|B2,...,Br+6
+ (B1 ↔ B2, . . .Br+6)

]

.

At multiplicity eight, (4.39) vanishes, and all instances of (4.38) boil down to the anoma-

lous ∆1|... superfields by the results of section I.5.4. The BRST non-exact ∆1|... in turn

drop out from QMR4

8 by the trace relations of the local superfields at ghost-number four,

confirming BRST invariance of (4.36). Moreover, all of Ξ(0),Ξ(1) and Θ(0) at arbitrary

higher multiplicity are mapped to zero or ∆1|... under (4.37) – see e.g. (I.5.43).

For the images of Θ(1), by contrast, only their (n ≤ 8)-point instances are known to

reduce to ∆1|... in the BRST cohomology, see (I.5.44). It is an open question whether the

same is true at n ≥ 9 points and for generalizations Θ(d) with higher refinement d ≥ 2.

Note, however, that the vanishing kinematic factors on the right-hand side of (4.39)

are the result of translating Z-functions to kinematic factors via (4.37). At the level of

58



open-string correlators, i.e. before applying the (non-invertible) map (4.37), the Ξ(d) are

generically non-zero, cf. (3.84).

Up to these open questions on the pseudo-invariants, it appears likely to arrive at

BRST-invariant and local expressions for n-point matrix elements of R4 by applying the

map (4.37) to KLie
n (ℓ). Then, the leftover task to generate BRST-invariant and local corre-

lators in a T ·E representation would be to identify a suitable system of GEIs: Such T ·E

representations of Kn(ℓ) would follow from MR4

n through the duality between pseudo-

invariants and GEIs if the latter can be made to

• satisfy all the trace relations dual to those of the pseudo-invariants

• obey the analogue of the condition Θ(d) = 0 (possibly up to analogues of the BRST

non-exact anomaly superfields ∆1|..., cf. the objects G1|... in (II.5.6) and (II.5.7)),

0 ∼= −kpAE
pm1...mr

1|B1,...,Bd|A,C1,...,Cr+d+3
−

[

Em1...mr

1|S[A,B1],B2,...,Bd|C1,...,Cr+d+3
+ (B1 ↔ B2, . . . , Bd)

]

−
[

Em1...mr

1|B1,...,Bd|S[A,C1],C2,...,Cr+d+3
+ (C1 ↔ C2, . . . , Cr+d+3)

]

(4.40)

+ k
(m1

A E
m2...mr)
1|A,B1,...,Bd|C1,...,Cr+d+3

+
∑

A=XY

(

Em1m2...mr

1|X,B1,...,Bd|Y,C1,...,Cr+d+3
− (X ↔ Y )

)

.

In case one succeeds in generating local and BRST invariant T · E representations for

Kn(ℓ) in this way, one would still have to find and inspect the corresponding T · Z form:

For consistency with the OPEs among vertex operators, the correlators must admit a rep-

resentation, where the slots of the multiparticle superfields in VA, T
m1,...
B,C,... and Jm1,...

B1,...,Bd|C,...

line up with the singularity structure of the accompanying g
(1)
ij . As a drawback of the GEIs

in T · E representations, their slot structure does not expose the singularities of the g
(1)
ij .

In spite of the large list of open questions, we are optimistic that the above ideas will

on the long run guide a path towards an explicit n-point open-string correlator.

5. Conclusions

It is appropriate to summarize the achievements and future directions arising from this se-

ries of three papers [1]. We have presented a method to determine manifestly local one-loop

correlators of the pure-spinor superstring. Their dependence on the external polarizations

is organized in terms of BRST-covariant building blocks discussed in part I.

A bootstrap procedure is introduced to assemble the accompanying worldsheet func-

tions from loop momenta and coefficients of the Kronecker–Eisenstein series. As a key
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input of the bootstrap, the monodromies of the worldsheet function around the B-cycle

are taken to mirror the BRST variations of the associated kinematic factors. This is a first

example for a multifaceted duality between kinematics and worldsheet functions described

in part II.

The bootstrap approach results in shuffle-symmetric worldsheet functions that con-

spire with the Lie symmetries of the kinematic factors: The two kinds of ingredients com-

bine into a Lie-polynomial structure which leads to a natural ansatz for manifestly local

n-point correlators. Up to six points, the Lie polynomials are BRST-invariant by themselves

and reproduce the non-local correlators known from earlier work [33]. At seven points, the

Lie-polynomial ansatz exhibits a simple BRST variation which can be cancelled by adding

a local collection of certain anomalous superfields to the full correlator. Starting from eight

points, however, an anomalous BRST variation along with the holomorphic Eisenstein se-

ries G4 remains uncancelled. Like this, we can only give an incomplete proposal for the

eight-point correlator, leaving a single kinematic factor along with G4 undetermined. We

leave it as an open problem for the future to understand the systematics of Eisenstein

series Gk in (n≥8)-point correlators.

Further aspects of the duality between kinematics and worldsheet functions concern

the BRST-(pseudo-)invariants obtained from certain non-local combinations of kinematic

building blocks [22]. By exporting their underlying combinatorial pattern to the shuffle-

symmetric worldsheet functions, one is led to the notion of generalized elliptic integrands

(GEIs) whose B-cycle monodromies cancel upon integration over the loop momentum.

GEIs are observed to share the relations of the dual kinematic factors up to seven points,

but the preliminary definition of eight-point GEIs are found to violate certain trace rela-

tions by a factor of G4. Hence, it remains to incorporate Gk into (n≥8)-point GEIs in order

to realize the duality between kinematics and worldsheet functions at all multiplicities.

We rewrite the (n≤7)-point correlators in terms of (pseudo-)invariants and/or GEIs

such as to manifest the respective kinds of invariances. When both of BRST-invariance and

monodromy invariance are manifested, the (pseudo-)invariants and GEIs are found to enter

on completely symmetric footing. This kind of exchange symmetry between kinematics and

worldsheet functions is reminiscent of the disk amplitudes of [5,41], where gauge-theory

trees and Parke–Taylor integrands are freely interchangeable. Hence, the observed duality

between kinematics and worldsheet functions up to and including seven points induces

a double-copy structure in one-loop open-superstring amplitudes [10]. In the same way

as disk amplitudes are dual to supergravity trees when replacing worldsheet integrals by
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kinematics, the duality maps one-loop open-superstring amplitudes to matrix elements of

the supersymmetrized higher-curvature operator R4.

The results of this work result suggest a variety of follow-up directions.

Higher genus: Most obviously, the systems of BRST-covariant kinematic building

blocks and shuffle-symmetric worldsheet functions call for an extension to higher genus.

First instances of BRST-covariant vectorial superfields have been studied in the low-energy

regime of two-loop five-point [42,43] and three-loop four-point amplitudes [44,45]. The

principle of BRST-covariance should guide their systematic generalizations to higher tensor

ranks as well as analogues of the refined and anomalous building blocks of this work.

As to the worldsheet functions, one would need to identify a higher-genus generaliza-

tion of the Kronecker–Eisenstein series and its expansion coefficients, where the elliptic

functions of [46] may play a role. It would be interesting to extend the duality between

worldsheet functions and kinematics – in particular between monodromy and BRST vari-

ations – to the multiloop level.

Gravitational operators versus open-string correlators: There is an intuitive

reason to find the matrix elements of R4 and no other gravitational operator as the kine-

matic duals to one-loop open-string correlators: The supersymmetrized higher-curvature

operator R4 governs the low-energy limit of the corresponding closed-string amplitudes.

Accordingly, the supersymmetrized matrix elements of12 D4R4 and D6R4 are likely to

imprint their double-copy structure on two-loop and three-loop open-string correlators.

In one-loop string amplitudes with reduced supersymmetry in turn, the closed-string

low-energy limit results in matrix elements of R2 [47]. Hence, the open-string one-loop

correlators with half- and quarter-maximal supersymmetry of [48] should share the double-

copy structure of R2 involving GEIs similar to the ones in this work.

Field-theory limits and ambitwistors: The framework of chiral splitting is a nat-

ural starting point to determine loop integrands of super-Yang–Mills and supergravity in

momentum space from the field-theory limit. We leave it to follow-up work to investigate

the τ → i∞ degeneration of GEIs relevant to field-theory amplitudes and the emergence

of new color-kinematics dual representations.

Moreover, the superstring correlators of this work can be exported to the one-loop

amplitudes of the ambitwistor string [49,50]. It will then be interesting to explore the

12 The shorthands D4R4 and D6R4 are understood to comprise the companion terms D2R5+R6

and D4R5 +D2R6 +R7 of the same mass dimension determined by non-linear supersymmetry.
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interplay of GEIs with the color-kinematics dual field-theory amplitudes obtained from

the methods of [51,52]. The same questions will arise at higher genus [53,54].

GEIs and scalar amplitudes: The double-copy structure of open-string tree ampli-

tudes [5,41] motivated the interpretation of Parke–Taylor-type disk integrals as scattering

amplitudes in effective field theories of scalars. Indeed, the low-energy limit of disk integrals

reproduces the tree amplitudes of bi-adjoint scalars with a φ3 interaction [55] and Gold-

stone bosons [56,57]. Similarly, higher orders in their α′-expansion suggest higher-mass-

dimension deformations of the respective Lagrangians collectively referred to as Z-theory

[56,58,57].

In one-loop string amplitudes, GEIs are found to play a role similar to the Parke–

Taylor factors at tree level. Hence, it is tempting to compare the moduli-space integrals of

GEIs with loop integrands in scalar field theories – for worldsheets of both toroidal and

cylinder topology. Also, it will be interesting to compare such integrated GEIs with the

forward limits of Z-theory amplitudes.

Connections with combinatorics: After observing that several patterns and iden-

tities obeyed by the BRST pseudo-invariants are also satisfied by the GEIs, one is left

wondering if these kinematic and worldsheet-function invariants could be a manifestation

of a more fundamental mathematical property of objects constructed from building blocks

subject to the shuffle symmetries. After all, the combinatorics of these “invariants” can be

generated by linear maps acting on words that also feature prominently in the free-Lie-

algebra literature. We suspect that many combinatorial algorithms on words have direct

relevance to the study of scattering amplitudes and in particular string-theory correlators,

and that many relations among amplitudes can be understood in terms of free-Lie-algebra

structures.
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Appendix A. Stirling cycle permutation sums

In order to explain the Stirling cycle permutation sums used throughout this work it is

convenient to start by briefly recalling the definition, using the notation and terminology

proposed in [17], of the Stirling cycle numbers
[

n
p

]

and Stirling set numbers
{

n
p

}

.

The Stirling set number
{

n
p

}

represents the number of ways to partition a set of n

elements into p non-empty sets [59]. For example,
{

4
2

}

= 7 because there are seven ways

to split the set {1, 2, 3, 4} into two non-empty subsets:

{1, 2, 3} ∪ {4}, {1, 2, 4} ∪ {3}, {1, 3, 4} ∪ {2}, {2, 3, 4} ∪ {1}, (A.1)

{1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3}.

The Stirling cycle number
[

n
p

]

is closely related and represents the number of ways to split

n objects into p cycles13. It is easy to write down the different arrangements of cycles

once the Stirling set partitions have been worked out: simply convert a given k-element

subset into its (k−1)! distinct cycles as {1, 2, . . . , k} → (123 . . . k) + perm(2, 3, . . . , k). For

example, using the above subset decomposition of
{

4
2

}

we obtain
[

4
2

]

= 11:

(123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2), (A.2)

(1)(234), (1)(243), (12)(34), (13)(24), (14)(23) .

Since there is no unique way of representing a product of disjoint cycles we fix this ambi-

guity by ordering the cycles as follows:

i. each cycle is written with its smallest element first, (A.3)

ii. the cycles are written in increasing order of its smallest element.

For example, (65)(471)(23) becomes (147)(23)(56). Given the above conventions we can

now define:

Definition 2. The Stirling cycle permutation sum of a generic object SA1,A2,...,Ap
with p

slots is denoted by

SA1,A2,...,Ap
+ [1, 2, . . . , n|A1, A2, . . . , Ap] , (A.4)

and it represents the sum over all
[

n
p

]

ways to partition the set {1, 2, . . . , n} into p cycles,

ordered according to (A.3), and that are distributed to SA1,...,Ap
as follows,

(a1 . . . ana
)(b1 . . . bnb

) · · · (p1 . . . pnp
) → Sa1...ana ,b1...bnb

,...,p1...pnp
.

13 A cycle is defined up to cyclic rearrangements; (12 . . . k) = (23 . . . k1).
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To illustrate the above definition, let us consider C1|A,B,C +
[

2, 3, 4, 5, 6|A,B,C
]

. In this

case, all the 35 partitions of {2, 3, 4, 5, 6} into 3 cycles ordered according to the above

convention are given by

(2)(3)(456), (2)(3)(465), (2)(356)(4), (2)(365)(4), (2)(346)(5),

(2)(364)(5), (2)(345)(6), (2)(354)(6), (256)(3)(4), (265)(3)(4),

(246)(3)(5), (264)(3)(5), (245)(3)(6), (254)(3)(6), (236)(4)(5),

(263)(4)(5), (235)(4)(6), (253)(4)(6), (234)(5)(6), (243)(5)(6),

(2)(34)(56), (2)(35)(46), (2)(36)(45), (24)(3)(56), (25)(3)(46),

(26)(3)(45), (23)(4)(56), (25)(36)(4), (26)(35)(4), (23)(46)(5),

(24)(36)(5), (26)(34)(5), (23)(45)(6), (24)(35)(6), (25)(34)(6) .

Therefore

C1|A,B,C +
[

2, 3, 4, 5, 6|A,B,C
]

= (A.5)

C1|2,3,456 + C1|2,3,465 + C1|2,356,4 + C1|2,365,4 + C1|2,346,5 + C1|2,364,5 + C1|2,345,6

+C1|2,354,6 + C1|256,3,4 + C1|265,3,4 + C1|246,3,5 + C1|264,3,5 + C1|245,3,6 + C1|254,3,6

+C1|236,4,5 + C1|263,4,5 + C1|235,4,6 + C1|253,4,6 + C1|234,5,6 + C1|243,5,6 + C1|2,34,56

+C1|2,35,46 + C1|2,36,45 + C1|24,3,56 + C1|25,3,46 + C1|26,3,45 + C1|23,4,56 + C1|25,36,4

+C1|26,35,4 + C1|23,46,5 + C1|24,36,5 + C1|26,34,5 + C1|23,45,6 + C1|24,35,6 + C1|25,34,6 .

For some typical numbers appearing in this work, we note that the total number of terms

in the local representation (2.15) of K
(0)
n (ℓ) is given by Tn ≡

[

n
4

]

+
[

n
5

]

+ · · ·+
[

n
n

]

, while in

the corresponding manifestly BRST-invariant representation they become Cn ≡
[

n−1
3

]

+
[

n−1
4

]

+ · · · +
[

n−1
n−1

]

. For example, Tn = 1, 11, 101, 932, 9080, 94852, 1066644 and Cn =

1, 7, 46, 326, 2556, 22212, 212976 for n = 4, 5, 6, 7, 8, 9, 10.

A.0.1. Stirling cycle permutations of the seven-point d = 0 correlator

For convenience and to provide yet another explicit example of a Stirling cycle permutation

sum, we write down the complete expansion of the unrefined Lie polynomials in (3.54),

K
(0)
7 (ℓ) =

1

6
V1T

mnp
2,3,4,5,6,7Z

mnp
1,2,3,4,5,6,7 (A.6)

+
1

2

[

V12T
mn
3,4,5,6,7Z

mn
12,3,4,5,6,7 + (2 ↔ 3, . . . , 7)

]
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+
1

2

[

V1T
mn
23,4,5,6,7Z

mn
1,23,4,5,6,7 + (2, 3|2, 3, . . . , 7)

]

+
[

(V123T
m
4,5,6,7Z

m
123,4,5,6 + V132T

m
4,5,6,7Z

m
132,4,5,6) + (2, 3|2, 3, . . . , 7)

]

+
[(

V1T
m
234,5,6,7Z

m
1,234,5,6,7 + V1T

m
243,5,6,7Z

m
1,243,5,6,7

)

+ (2, 3, 4|2, 3, . . . , 7)
]

+
[(

V12T
m
34,5,6,7Z

m
12,34,5,6,7 + (3, 4|3, 4, . . . , 7)

)

+ (2 ↔ 3, . . . , 7)
]

+
[(

V1T
m
23,45,6,7Z

m
1,23,45,6,7 + cyc(2, 3, 4)

)

+ (6, 7|2, 3, . . . , 7)
]

+
[(

V1234T5,6,7Z1234,5,6,7 + perm(2, 3, 4)
)

+ (2, 3, 4|2, 3, . . . , 7)
]

+
[(

V123T45,6,7Z123,45,6,7 + V132T45,6,7Z132,45,6,7 + (4, 5|4, 5, 6, 7)
)

+ (2, 3|2, . . . , 7)
]

+
[(

V12T345,6,7Z12,345,6,7 + V12T354,6,7Z12,354,6,7 + cyc(2, 3, 4, 5)
)

+ (6, 7|2, . . . , 7)
]

+
[(

V12T3,45,67Z12,3,45,67 + V13T2,45,67Z13,2,45,67 + cyc(4, 5, 6)
)

+ (2, 3|2, . . . , 7)
]

+
[(

V1T2345,6,7Z1,2345,6,7 + perm(3, 4, 5)
)

+ (2, 3, 4, 5|2, 3, . . . , 7)
]

+
[(

V1T23,4,567Z1,23,4,567 + V1T23,4,576Z1,23,4,576 + cyc(2, 3, 4)
)

+ (2, 3, 4|2, . . . , 7)
]

+
[(

V1T23,45,67Z1,23,45,67 + cyc(4, 5, 6)
)

+ (3 ↔ 4, 5, 6, 7)
]

.

It is straightforward but tedious to see that there are 932 terms above, reproducing the

number T7 = 932 discussed above.

A.1. Lie polynomials

There are several characterizations of a Lie polynomial in the mathematics literature, see

for example [16]. For our purposes, Lie polynomials are composed by linear combinations

of nested commutators in a given set of non-commutative indeterminates. For example, if

ta1 , ta2 , ta3 are non-commutative, P = [ta1 , [ta2 , ta3 ]] + 3[[ta1 , ta2 ], ta3 ] is a Lie polynomial

while N = ta1ta2ta3 is not.

The identification of a Lie-polynomial structure within the correlators of this work

stems from a theorem proved by Ree [6]. Using the notation of section I.3.1, the theorem

states that if MA satisfies shuffle symmetries (i.e., MR�S = 0, for any R, S 6= ∅) and tai

are non-commutative indeterminates with tA ≡ ta1ta2 . . . tap , a sum over all words A of

length p of the form

P =
∑

A

MAt
A (A.7)

gives rise to a Lie polynomial of degree p. For example, at degree two the shuffle symmetry

on Ma1a2
implies that Ma2a1

= −Ma1a2
and the sum (A.7) becomes P = Ma1a2

ta1ta2 +

Ma2a1
ta2ta1 = Ma1a2

[ta1 , ta2 ]. Hence P is a Lie polynomial.
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In general, the sum in (A.7) can be rewritten as a sum proportional to
∑

MAt
ℓ(A)

where ℓ(A) is the Dynkin map defined in (I.3.8). Thus, the Lie polynomial arising from

(A.7) has the form of a sum over products of objects satisfying shuffle symmetries and ob-

jects satisfying generalized Jacobi symmetries. Schematically we have P =
∑

(shuffle)(Lie).

This is precisely the structure within each word (slot) in the local form of the one-loop

correlators found in this work, see for example (2.15).

Appendix B. Monodromy invariance of the six-point correlator

In this appendix we demonstrate the monodromy invariance of the six-point correlator in its

local representation (3.23) and thereby provide an alternative to the proof in section 3.3.2

with manifest BRST invariance. It will be convenient to define the following shorthands:

X
(a)
1|23,4,5,6 ≡ V1k

p
1T

p
23,4,5,6 − V231T4,5,6 − V41T23,5,6 − V51T23,4,6 − V61T23,4,5 (B.1)

X
(a)m
1|2,3,4,5,6 ≡ V1k

n
1T

mn
2,3,4,5,6 − V21T

m
3,4,5,6 − V31T

m
2,4,5,6 − V41T

m
2,3,5,6 − V51T

m
2,3,4,6 − V61T

m
2,3,4,5

X
(b)
13|2|4,5,6 ≡ V13k

p
2T

p
2,4,5,6 − V132T4,5,6 − V13T42,5,6 − V13T52,4,6 − V13T62,4,5

X
(b)
1|2|34,5,6 ≡ V1k

p
2T

p
2,34,5,6 − V12T34,5,6 − V1T342,5,6 − V1T34,52,6 − V1T34,62,5

X
(b)m
1|2|3,4,5,6 ≡ V1k

n
2T

mn
2,3,4,5,6 − V12T

m
3,4,5,6 − V1T

m
32,4,5,6 − V1T

m
42,3,5,6 − V1T

m
52,3,4,6 − V1T

m
62,3,4,5 .

Using the monodromy variations of the six-point functions (II.A.2) we get the following

variation of the correlator (3.23),

DK6(ℓ) = Ω1δK
(1)
6 +Ω2δK

(2)
6 + · · ·+ Ω6δK

(6)
6 , (B.2)

where

δK
(1)
6 = Em

1|2,3,4,5,6X
(a)m
1|2,3,4,5,6 +

[

E1|23,4,5,6X
(a)
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]

(B.3)

δK
(2)
6 = Em

2|1,3,4,5,6X
(b)m
1|2|3,4,5,6 +

[

E2|13,4,5,6X
(b)
13|2|4,5,6 + (3 ↔ 4, 5, 6)

]

(B.4)

+
[

E2|34,1,5,6X
(b)
1|2|34,5,6 + (3, 4|3, 4, 5, 6)

]

,

and the other δK
(i)
6 for i = 3, 4, 5, 6 are obtained by relabeling of δK

(2)
6 in (B.4). Since the

bookkeeping variables Ωi are independent, all the δK
(i)
6 must vanish separately.

For the Ω1 terms in (B.3), after using the BRST identities

QJm
1|2,3,4,5,6 = X

(a)m
1|2,3,4,5,6 +∆m

1,2,3,4,5,6 +
[

km2 (V2J1|3,4,5,6 −Y12,3,4,5,6) + (2 ↔ 3, 4, 5, 6)
]

QJ1|23,4,5,6 = X
(a)
1|23,4,5,6 + s23(V2J1|3,4,5,6 − V3J1|2,4,5,6) + Y1,23,4,5,6
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together with their elliptic counterpart km2 Em
1|2,3,4,5,6 = −

[

s23E1|23,4,5,6 + (3 ↔ 4, 5, 6)
]

,

one arrives at a BRST-exact variation since the unrefined ∆m...
A|B,C,... are BRST exact [22],

δK
(1)
6 = Em

1|2,3,4,5,6

(

QJm
1|2,3,4,5,6 −∆m

1|2,3,4,5,6

)

(B.5)

+
[

E1|23,4,5,6

(

QJ1|23,4,5,6 − s23∆1|23,4,5,6

)

+ (2, 3|2, 3, 4, 5, 6)
]

.

For the Ω2 terms in (B.4), upon using BRST identities (see section 8 of [22] for the D...)

QDm
1|2|3,4,5,6 = X

(b)m
1|2|3,4,5,6 − km2 V1J2|3,4,5,6 +∆m

1|2,3,4,5,6 +
[km3
s13

X
(b)
13|2|4,5,6 + (3 ↔ 4, 5, 6)

]

s34QD1|2|34,5,6 = X
(b)
1|2|34,5,6 +

s34
s13

X
(b)
13|2|4,5,6 −

s34
s14

X
(b)
14|2|3,5,6 + s34∆1|34,2,5,6 (B.6)

and relabellings of km2 Em
1|2,3,4,5,6 = −

[

s23E1|23,4,5,6 + (3 ↔ 4, 5, 6)
]

, one gets

δK
(2)
6 = Em

2|1,3,4,5,6(QDm
1|2|3,4,5,6 −∆m

1|2,3,4,5,6) (B.7)

+
[

E2|34,1,5,6(s34QD1|2|34,5,6 − s34∆1|34,2,5,6) + (3, 4|3, 4, 5, 6)
]

which vanishes in the cohomology for the same reason as above. Therefore, the six-point

correlator (3.23) is confirmed to be single valued.

The above proof can be extended to higher-point correlators, but since it is simpler

to prove monodromy invariance using a non-local representation with manifest BRST

invariance (see section 3.3.2), we will omit further discussions.

Appendix C. Vanishing linear combinations of worldsheet functions

In this appendix we write down a few explicit expansions of the vanishing linear combina-

tions of worldsheet functions given by Θ(d) from (2.28).

At six points, the three topologies of worldsheet functions were expanded in (3.27)

and are easily checked to be zero.

C.1. Seven points

At seven points, the inequivalent topologies of Θ(0) are given by

Θ
(0)
2|1,34,56,7 = km2 Zm

1,2,34,56,7 − s12Z12,34,56,7 + s27Z1,27,34,56 (C.1)

+ s23Z1,234,56,7 − s24Z1,243,56,7 + s25Z1,256,34,7 − s26Z1,265,34,7
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Θ
(0)
23|1,45,6,7 = km23Z

m
1,23,45,6,7 − s12Z123,45,6,7 + s13Z132,45,6,7

− s24Z1,3245,6,7 + s34Z1,2345,6,7 + s25Z1,3254,6,7 − s35Z1,2354,6,7

+
[

s36Z1,236,45,7 − s26Z1,326,45,7 + (6 ↔ 7)
]

− Z2|3,1,45,6,7 + Z3|2,1,45,6,7

Θ
(0)
234|1,5,6,7 = km234Z

m
1,234,5,6,7 +

[

s13(Z1324,5,6,7 + Z1342,5,6,7)

− s12Z1234,5,6,7 − s14Z1432,5,6,7 + (1 ↔ 5, 6, 7)
]

− Z2|34,1,5,6,7 − Z23|4,1,5,6,7 +Z34|2,1,5,6,7 + Z4|23,1,5,6,7

Θ
(0)
4|123,5,6,7 = km4 Zm

123,4,5,6,7 + s34Z4321,5,6,7 + s14Z4123,5,6,7

− s24(Z4213,5,6,7 + Z4231,5,6,7) +
[

s45Z123,45,6,7 + (5 ↔ 6, 7)
]

Θ
(0)m
2|1,34,5,6,7 = kn2Z

mn
1,2,34,5,6,7 − s12Z

m
12,34,5,6,7 + s23Z

m
1,234,5,6,7 − s24Z

m
1,243,5,6,7

+
[

s25Z
m
1,25,34,6,7 + (5 ↔ 6, 7)

]

− km2 Z2|1,34,5,6,7

Θ
(0)m
23|1,4,5,6,7 = kn23Z

mn
1,23,4,5,6,7 − s12Z

m
123,4,5,6,7 + s13Z

m
132,4,5,6,7

+
[

s34Z
m
1,234,5,6,7 − s24Z

m
1,324,5,6,7 + (4 ↔ 5, 6, 7)

]

− km23Z23|1,4,5,6,7 −Zm
2|3,1,4,5,6,7 +Zm

3|2,1,4,5,6,7

Θ
(0)mn

2|1,3,4,5,6,7 = kp2Z
mnp
1,2,3,4,5,6,7 − s12Z

mn
12,3,4,5,6,7 +

[

s23Z
mn
1,23,4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]

− k
(m
2 Z

n)
2|1,3,4,5,6,7

Θ
(1)
2|3|1,4,5,6,7 = −kp2Z3|2,1,4,5,6,7 − s23Z23|1,4,5,6,7 −

[

s21Z3|21,4,5,6,7 + (1 ↔ 4, 5, 6, 7)
]

and can also be verified to be zero up to total derivatives.

C.2. Eight points

At eight points, the following topologies can be shown to vanish up to total derivatives:

V1V2T
mnp
3,4,5,6,7,8Θ

(0)mnp

2|1,3,4,5,6,7,8
∼= 0, V1V2T

mn
34,5,6,7,8Θ

(0)mn

2|1,34,5,6,7,8
∼= 0 (C.2)

V1V23T
mn
4,5,6,7,8Θ

(0)mn

23|1,4,5,6,7,8
∼= 0, V1V2T

m
34,56,7,8Θ

(0)m
2|1,34,56,7,8

∼= 0

V1V2T
m
345,6,7,8Θ

(0)m
2|1,345,6,7,8

∼= 0, V1V23T
m
45,6,7,8Θ

(0)m
23|1,45,6,7,8

∼= 0

V1V234T
m
5,6,7,8Θ

(0)m
234|1,5,6,7,8

∼= 0, V1V23T45,67,8Θ
(0)
23|1,45,67,8

∼= 0

V1V234T56,7,8Θ
(0)
234|1,56,7,8

∼= 0, V1V2345T6,7,8Θ
(0)
2345|1,6,7,8

∼= 0

V1V2T34,56,78Θ
(0)
2|1,34,56,78

∼= 0, V1V2T345,67,8Θ
(0)
2|1,345,67,8

∼= 0

V1V2T3456,7,8Θ
(0)
2|1,3456,7,8

∼= 0, V1V23T456,7,8Θ
(0)
23|1,456,7,8

∼= 0
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as well as

V1V2J34|5,6,7,8Θ
(1)
2|34|1,5,6,7,8

∼= 0, V1V2J3|45,6,7,8Θ
(1)
2|3|1,45,6,7,8

∼= 0 (C.3)

V1V2J
m
3|4,5,6,7,8Θ

(1)m
2|3|1,4,5,6,7,8

∼= 0, V1V23J4|5,6,7,8Θ
(1)
23|4|1,5,6,7,8

∼= 0 .

The coefficients of V1A with A 6= ∅ are just relabellings of the Θ(d) in (C.2) and (C.3) and

therefore vanish as well.

The explicit expansion of all eight-point topologies from (C.2) and (C.3) is somewhat

lengthy, so let us display just a couple of examples. It is not hard to be convinced that

their vanishing, up to total derivatives, is a non-trivial statement:

Θ
(0)
23|1,45,67,8 = km23Z

m
1,23,45,67,8 +

[

s38Z1,238,45,67 + s13Z132,45,67,8 − (2 ↔ 3)
]

+
[

(s24 + s34)Z1,2345,67,8 − (4 ↔ 5)
]

+
[

(s26 + s36)Z1,2367,45,8 − (6 ↔ 7)
]

+
[

s24(Z1,2435,67,8 +Z1,2453,67,8)− (4 ↔ 5)
]

+
[

s26(Z1,2637,45,8 +Z1,2673,45,8)− (6 ↔ 7)
]

−Z2|1,3,45,67,8 +Z3|1,2,45,67,8
∼= 0 ,

Θ
(0)
2|1,345,67,8 = km2 Z1,2,345,67,8 + s23Z1,2345,67,8 − s24(Z1,2435,67,8 + Z1,2453,67,8)

+ s25Z1,2543,67,8 +
[

s26Z1,267,345,8 − (6 ↔ 7)
]

(C.4)

+ s28Z1,28,345,67 − s12Z12,345,67,8
∼= 0 ,

Θ
(0)m
234|1,5,6,7,8 = kp234Z

pm
234,1,5,6,7,8 − km234Z234|1,5,6,7,8

+
[

s14Z
m
2341,5,6,7,8−s13(Z

m
2431,5,6,7,8+Zm

4231,5,6,7,8)+s12Z
m
4321,5,6,7,8+(1↔5, 6, 7, 8)

]

−Zm
2|34,1,5,6,7,8 − Zm

23|4,1,5,6,7,8 + Zm
34|2,1,5,6,7,8 +Zm

4|23,1,5,6,7,8
∼= 0 ,

Θ
(1)
3|4|12,5,6,7,8 = −kp3Z

p

4|12,3,5,6,7,8 − s34Z34|12,5,6,7,8 − s31Z4|312,5,6,7,8

+ s32Z4|321,5,6,7,8 −
[

s35Z4|35,12,6,7,8 + (5 ↔ 6, 7, 8)
]

∼= 0 .

Appendix D. Proof of (4.22)

The purpose of this appendix is to deliver intermediate steps in deriving the manifestly

BRST-invariant representation (4.22) of the six-point closed-string correlator that has been

proposed in [33].
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D.1. Single contraction between left and right movers

The open-string contribution (4.25) involving a single vector contraction between left- and

right-movers stems from the derivative

∂K6(ℓ)

∂ℓm
= Cmn

1|2,3,4,5,6

(

ℓn +
[

g
(1)
12 k

n
2 + (2 ↔ 3, 4, 5, 6)

])

(D.1)

+
[

Cm
1|23,4,5,6s23V1(1, 2, 3) + (2, 3|2, 3, 4, 5, 6)

]

−
[

P1|2|3,4,5,6k
m
2 g

(1)
12 + (2 ↔ 3, 4, 5, 6)

]

of the C ·E representation (3.44) (using the loop-momentum-dependent form of E1|2|3,4,5,6

in the first line of (II.4.37)). Upon integration over ℓ, we obtain

[[∂K6(ℓ)

∂ℓm

]]

= Cmn
1|2,3,4,5,6

[

f
(1)
12 kn2 + (2 ↔ 3, 4, 5, 6)

])

(D.2)

+
[

Cm
1|23,4,5,6s23V1(1, 2, 3) + (2, 3|2, 3, 4, 5, 6)

]

+
[

P1|2|3,4,5,6k
m
2 (ν12 − f

(1)
12 ) + (2 ↔ 3, 4, 5, 6)

]

∼=
[

Cm
1|23,4,5,6s23f

(1)
23 + (2, 3|2, 3, 4, 5, 6)

]

+
[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

+
[

f
(1)
12

(

kn2C
mn
1|2,3,...,6 − km2 P1|2|3,4,5,6 + s23C

m
1|23,4,5,6

+ s24C
m
1|24,3,5,6 + s25C

m
1|25,3,4,6 + s26C

m
1|26,3,4,5

)

+ (2 ↔ 3, 4, 5, 6)
]

,

and BRST-exactness of the coefficient of f
(1)
12 in the last two lines leads to (4.25). As we

will see, the ν1j-dependent terms in the second line of (4.24),

[

Cm
1|23,4,5,6s23f

(1)
23 + (2, 3|2, 3, . . . , 6)

][

C̃m
1|23,4,5,6s23f

(1)

23 + (2, 3|2, 3, . . . , 6)
]

+
[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

][

C̃m
1|23,4,5,6s23f

(1)

23 + (2, 3|2, 3, . . . , 6)
]

−
[

Cm
1|23,4,5,6s23f

(1)
23 + (2, 3|2, 3, . . . , 6)

][

P̃1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

−
[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

][

P̃1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

, (D.3)

will cancel in the end (where all of (D.3) is accompanied by a factor of π
Im τ

).

70



D.2. Contributions from two (anti-)holomorphic derivatives

We shall now elaborate on the contributions of the (anti-)holomorphic derivatives N1|2|3,...

and Ñ1|2|3,... (4.27) that arise in the expression (4.26) for [[K6(ℓ)]]. Combinations of both

N1|2|3,... and Ñ1|2|3,... can lead to the following two inequivalent situations,

N1|2|3,4,5,6Ñ1|3|2,4,5,6 = ν12
∂

∂z2

( π

Im τ
− ν13(s13f

(1)

13 + s23f
(1)

23 −
[

s34f
(1)

34 + (4 ↔ 5, 6)
]

)
)

=
π

Im τ
ν12ν13s23 (D.4)

N1|2|3,4,5,6Ñ1|2|3,4,5,6 = ν12
∂

∂z2

( π

Im τ
− ν12(s12f

(1)

12 −
[

s23f
(1)

23 + (3 ↔ 4, 5, 6)
]

)
)

= −
πν12
Im τ

(

s12f
(1)

21 +
[

s23f
(1)

23 + (3 ↔ 4, 5, 6)
]

+ ν12(s12+s23+ . . .+s26)
)

= −
πν12
Im τ

∂

∂z2
log Î6 ∼=

π

Im τ

∂

∂z2
ν12 =

( π

Im τ

)2

, (D.5)

using ∂
∂z2

f
(1)

2j = − π
Im τ

and momentum conservation. Hence, the part of [[K6(ℓ)]] · [[K̃6(−ℓ)]]

with two factors of N1|2|3,... and Ñ1|2|3,... adds up to
[

N1|2|3,4,5,6P1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
][

Ñ1|2|3,4,5,6P̃1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

=
π

Im τ

[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

][

P̃1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

+
( π

Im τ

)2
[

|P1|2|3,4,5,6|
2 + (2 ↔ 3, 4, 5, 6)

]

. (D.6)

Note that the first line of the right-hand side cancels the last line in (D.3), and the last

term of (D.6) will interfere with the crossterms to be discussed next.

D.3. Contributions from one (anti-)holomorphic derivative

Finally, there are crossterm contributions to [[K6(ℓ)]] · [[K̃6(−ℓ)]]

N1|2|3,4,5,6K̃
open
6 = ν12

∂

∂z2

{1

2
C̃mn

1|2,...,6[[E
mn

1|2,...,6]] +
(

s23C̃
m
1|23,4,5,6[[E

mn

1|23,4,5,6]] + (2, 3|2, . . . , 6)
)

+
[

P̃1|2|3,4,5,6

( π

Im τ
+ 2s12f

(2)

12 − f
(1)

12

[

s23f
(1)

23 + (3 ↔ 4, 5, 6)
]

)

+ (2 ↔ 3, 4, 5, 6)
]}

(D.7)

where K̃open
6 given by (4.23) is obtained from C ·E representation (3.44) of K̃6(−ℓ). The co-

efficient of P̃1|2|3,4,5,6 is most subtle to evaluate since the z2-derivative of the f
(n)

ij functions

generates a Koba–Nielsen derivative w.r.t. z2:

ν12
∂

∂z2

( π

Im τ
+ 2s12f

(2)

12 − f
(1)

12

[

s23f
(1)

23 + (3 ↔ 4, 5, 6)
]

)

=
πν12
Im τ

(

s12f
(1)

12 −
[

s23f
(1)

23 + (3 ↔ 4, 5, 6)
]

)

= −
πν12
Im τ

∂

∂z2
log Î6 =

π

Im τ

∂

∂z2
ν12 =

( π

Im τ

)2

(D.8)
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Given that the only contributions to ∂
∂z2

[[E
...

1|...]] arise from the quantity Lm
0 in (II.7.12),

the remaining terms in (D.7) reduce to vector contractions of
∂Lm

0

∂z2
= − π

Im τ
km2 ,

N1|2|3,4,5,6K̃
open
6 =

( π

Im τ

)2

P̃1|2|3,4,5,6 +
πν12
Im τ

{

km2 C̃mn
1|2,3,4,5,6

[

kn2 f
(1)

12 + (2 ↔ 3, 4, 5, 6)
]

+ km2
[

s23C̃
m
1|23,4,5,6(f

(1)

12 + f
(1)

23 + f
(1)

31 ) + (2, 3|2, 3, 4, 5, 6)
]

−
[

s23P̃1|3|2,4,5,6f
(1)

13 + (3 ↔ 4, 5, 6)
]

}

(D.9)

=
( π

Im τ

)2

P̃1|2|3,4,5,6 +
πν12
Im τ

km2
[

s23C̃
m
1|23,4,5,6f

(1)

23 + (2, 3|2, 3, 4, 5, 6)
]

,

where we have repeated the simplifications of (D.2) in the last step. By adjoining permu-

tations and the complex conjugate of (D.9), one arrives at

−
[

N1|2|3,4,5,6P1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

K̃open
6 −

[

Ñ1|2|3,4,5,6P̃1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)
]

Kopen
6

= −
π

Im τ

[

P1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

][

s23C̃
m
1|23,4,5,6f

(1)

23 + (2, 3|2, 3, 4, 5, 6)
]

+
π

Im τ

[

s23C
m
1|23,4,5,6f

(1)
23 + (2, 3|2, 3, 4, 5, 6)

][

P̃1|2|3,4,5,6k
m
2 ν12 + (2 ↔ 3, 4, 5, 6)

]

− 2
( π

Im τ

)2
[

|P1|2|3,4,5,6|
2 + (2 ↔ 3, 4, 5, 6)

]

, (D.10)

where the last term interferes with (D.6), and the remaining terms on the right-hand side

cancel the crossterms in the second and third line of (D.3). In summary, by combining

(D.3), (D.6) and (D.10), one arrives at the most subtle contributions ∼ Cm
1|23,...C̃

m
1|ij,... and

|P1|i|j,...|
2 in (4.22), concluding the derivation of the proposal in [33].
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