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Abstract The pure quadratic term of New Massive Gravity
in three dimensions admits asymptotically locally flat, rotat-
ing black holes. These black holes are characterized by their
mass and angular momentum, as well as by a hair of gravita-
tional origin. As in the Myers–Perry solution in dimensions
greater than five, there is no upper bound on the angular
momentum. We show that, remarkably, the equation for a
massless scalar field on this background can be solved in an
analytic manner and that the quasinormal frequencies can be
found in a closed form. The spectrum is obtained requiring
ingoing boundary conditions at the horizon and an asymp-
totic behavior at spatial infinity that provides a well-defined
action principle for the scalar probe. As the angular momen-
tum of the black hole approaches zero, the imaginary part of
the quasinormal frequencies tends to minus infinity, migrat-
ing to the north pole of the Riemann sphere and providing
infinitely damped modes of high frequency. We show that
this is consistent with the fact that the static black hole within
this family does not admit quasinormal modes for a massless
scalar probe.

1 Introduction

Three dimensional gravity has been a useful arena to explore
gravitational models with simpler properties than their coun-
terpart in four dimensions. Since the Weyl tensor identically
vanishes in three dimensions, Einstein equations imply that
the spacetime is locally flat or (A)dS depending on whether
the theory has a null, negative or positive cosmological term,
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respectively. This implies that General Relativity has no local
degrees of freedom in vacuum, but nevertheless in the case
with a negative cosmological constant, its spectrum contains
black holes (the BTZ black hole) [1]. These black holes have
been of fundamental importance on the tests of the holo-
graphic correspondence between physics in Anti de Sitter
spacetime and that of a dual Conformal Field Theory living
at the boundary [2–5]. Just to mention two examples of this
relation, the entropy of the BTZ black holes can be obtained
by a microscopic counting of microstates in the dual theory
[6] and their quasinormal ringing correlates precisely with
relaxation time in the dual field theory at finite temperature
[7,8]. By the end of the last decade it was also realized that
the lack of local degrees of freedom of General Relativity
in three dimensions allows to construct a parity invariant,
self-interacting theory for a massive particle of spin 2, i.e.,
a massive gravity theory. The Einstein-Hilbert Lagrangian
is supplemented by quadratic terms in the curvature, and
despite the fact that the field equations are of fourth order,
their linearization around flat space correctly reproduces the
Fierz–Pauli equation for a massive spin 2 excitation [9,10].
The addition of a cosmological term allows to further explore
the ideas of the holographic correspondence in the presence
of a massive graviton in the bulk. As it generically occurs in
theories containing quadratic powers in the curvature, such
theory possesses two maximally symmetric (and therefore
of constant curvature) solutions. For a precise relation of
the couplings both vacua coincide and actually in this case
one can find asymptotically locally (A)dS black holes that
are characterized by the mass, angular momentum and an
extra parameter that stands for a gravitational hair [12,13].
As shown in [14] the entropy of such black holes can be
reproduced by counting microstates in the boundary theory,
providing a new test for such relation on a theory with local
degrees of freedom in the bulk. Recently, there has been a
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revived interest in the study of asymptotic symmetries to null
surfaces, where such surface could be null infinity or the event
horizon of a black hole. It is expected that these studies might
shed some light on the information paradox (see e.g. [15–20]
and references therein). New Massive Gravity provides for a
simple setup to carry on such studies, since the spectrum of
the purely quadratic theory (that is healthy and intrinsically of
fourth-order [10]) contains asymptotically locally flat, rotat-
ing black holes in 2 + 1 dimensions [12]. Such black holes do
not exist in General Relativity in vacuum. Within the realm of
NMG, these black holes can be generalized to construct non-
circular black objects, dubbed black flowers [25], a family of
metrics whose simplest representative is the rotating black
hole constructed in [12] in the massless limit of NMG.1 The
aim of this paper is to show that the equation for the massless
scalar, remarkably, can be solved analytically on these back-
grounds, and that the quasinormal frequencies can be found
in a closed manner. As usual, we require ingoing boundary
condition at the horizon. We show that at infinity the natural
boundary condition that makes the action principle for the
scalar to be well-defined is that the field must vanish suf-
ficiently fast. This is one of the few known, rotating black
holes, that admit such integration.

This paper is organized as follows: Sect. 1 introduces the
theory of new massive gravity and presents the asymptoti-
cally locally flat, rotating black hole solution. In Sect. 2 we
consider a massless scalar field perturbation and solve it in an
exact and analytic manner. We find the quasinormal modes
in a closed form in the rotating case and show that as the
angular momentum of the black hole decreases the imagi-
nary part of the frequencies approach minus infinity. This is
consistent with the fact that in the static case, the algebraic
equations that determine the spectrum cannot be fulfilled.
We therefore explore the behavior of the quasinormal fre-
quencies in terms of the global charges of the background
solution. Even though our interests is in the propagation of a
scalar probe on the black hole background, let us mentions
that our results could shed some light on the stability of the
rotating black hole in NMG. Since the full non-linear field
equations of NMG are of fourth order, their linearized ver-
sion around a generic background will be in general of the
same order. Nevertheless, there could be an affective quan-
tity, constructed with second derivatives of the perturbation,
which may have a second order dynamics, as it occurs in
the Teukolsky equation, where the unknowns are linearized
expressions for the components of the Weyl tensor in a null
tetrad [28]. It is also worth mentioning that in some particu-
lar cases in GR it is known that the dynamics of some of the
modes of the full gravitational perturbation coincide with the

1 It is also worth mentioning that these solutions can be embedded in
the Born–Infeld extensions of New Massive Gravity [26] by removing
the Einstein–Hilbert term [23].

dynamics of a scalar probe with a given mass. This happens
for example in the massless topological black hole [27]. A
less striking connection between a scalar probe and a gravita-
tional perturbation occurs with the Regge–Wheeler equation,
which has the same functional form than the equation for a
massless scalar probe in Schwarzschild background, but in
this case there is a single numeric coefficient of difference
in the effective Schroedinger potential (see [28]). Section 3
contains conclusions and further comments.

2 Massless limit of NMG and its rotating black hole

The theory of New Massive Gravity [9], has the following
action

I [g] = 1

κ2

∫
d3x

√−g

[
−R + 1

m2

(
RμνR

μν − 3

8
R2

)]
.

(1)

Note that the Einstein term has the wrong sign, which is
necessary to obtain a ghost free theory for a massive gravi-
ton, at the linearized level around flat space. Since General
Relativity does not propagate local degrees of freedom in
three dimensions, we can choose the sign of the Einstein
term at convenience. The massless limit is described by the
purely quadratic theory which acquires a linearized confor-
mal invariance [13], and despite the fact of having fourth
order field equations, it defines a healthy theory [10]. We
take the limit in the following manner m → 0 and κ → +∞
with 16πG := κ2m2 fixed. The field equations in vacuum
are therefore given by

Kμν = 2�Rμν − 1

2

(∇μ∇νR + gμν�R
) − 8RμρR

ρ
ν

+9

2
RRμν + gμν

(
3Rασ Rασ − 13

8
R2

)
= 0. (2)

Diffeomorphism invariance of the original action ensures the
identity ∇μKμν ≡ 0. This is the unique quadratic combina-
tion in three dimensions that leads to field equations of fourth
order, whose trace reduces to a second order constraint [11].
This feature is of fundamental importance when proving the
healthiness of the theory. The theory defined by the field
equations (2) has the following rotating black hole solution

ds2 = − (br − μ) dt2 + dr2

br − μ
− a (br − μ) dtdφ

+
(
r2 + r2

0

)
dφ2, (3)

with

r2
0 = a4b2 + 16a2μ

64
. (4)
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It can be checked that this spacetime has a vanishing Cotton
tensor, and it is therefore a solution of Conformal Gravity in
2 + 1 dimensions (the massless limit of Topologically Mas-
sive Gravity [29–31]). In such context, the static solution was
originally reported in [32]. The spacetime (3), is character-
ized by three parameters b, a and μ which determine the
global charges associated to the asymptotic Killing vectors
∂t and ∂φ , i.e. the mass and the angular momentum, respec-
tively, which are given by [25]

M = b2

32G
, J = Ma. (5)

Note that the parameter μ does not appear in the global
charges, and therefore can be interpreted as a hair of grav-
itational origin. Further thermodynamical properties are the
temperature and the entropy of the black hole that respec-
tively read

T = b

4π
, S = πb

4G
. (6)

The remaining chemical potential, the angular velocity of the
horizon, vanishes. The metric (3) can be obtained from the
rotating solution of Cosmological New Massive Gravity at
the point of coinciding vacua [12], in the limit l → +∞, by a
suitable rescaling of the integration constants. This solution
can also be written in null coordinates, adapted to future null
infinity as

ds2 = −
(
8r + a2b

)2
(br − μ)

64r2 + 16a2μ + a4b2 du
2

− 2
(
8r + a2b

)
√

64r2 + 16a2μ + a4b2
dudr (7)

+
(
r2 + r2

0

)(
dψ − 32a (br − μ)

64r2 + 16a2μ + a4b2 du

)2

,

(8)

where the change of coordinates that relates (3) and (7) is

du = dt −
√

64r2 + 16a2μ + a4b2(
8r + a2b

)
(br − μ)

dr, (9)

dψ = dφ − 32a

(br − μ)
√

64r2 + 16a2μ + a4b2
dr. (10)

Hereafter we will use the metric in the coordinate system
defined in Eq. (3). The event horizon is located at r = r+ =
μ/b, and the metric is asymptotically locally flat, i.e.

lim
r→+∞ Rμν

αβ = 0. (11)

3 Massless scalar on the rotating black hole

Consider a massless scalar �, on the rotating black hole met-
ric (3)

�� = 0 . (12)

As usual, the symmetries of the background allow to consider
the following mode decomposition

�(t, φ, r) = �
( +∞∑
n=−∞

∫
dω e−iωt+inφRω,n (r)

)
. (13)

Hereafter we denote Rω,n (r) = R (r). One therefore obtains
an ODE for the radial dependence, which acquires a simple
fashion in terms of the coordinate x , such that

r = x + μ

b
, (14)

that maps the domain r ∈ [r+,+∞[ to the range x ∈
[0,+∞[. The equation for R (x) therefore reads

A (x)
d2R (x)

dx2 + B (x)
dR (x)

dx
+ C (x) R (x) = 0, (15)

with

A (x) = b2x2(a2b2 + 8μ + 8x)2 , (16)

B (x) = b2x(a2b2 + 8μ + 16x)(a2b2 + 8μ + 8x) , (17)

C (x) = (a2b2(a2b2 + 16μ) + 64(x + μ)2)ω2

− 64b2nx(aω + n). (18)

Near the event horizon, located at x = 0, the solutions of
Eq. (15) allow for the following asymptotic behaviors

R (x) = C1x
−i ω

b (1 + O (x)) + C2x
i ω
b (1 + O (x)) , (19)

while at infinity the scalar behaves as

R (x) = C̃1

xδ+

(
1 + O

(
1

x

))
+ C̃2

xδ−

(
1 + O

(
1

x

))
, (20)

where

δ± = 1

2

⎛
⎝1 ±

√
1 − 4ω2

b2

⎞
⎠ . (21)

Here C1,2 an C̃1,2 are integration constants. Note that since
the angular velocity of the horizon vanishes, the leading
dependence of the scalar on the near horizon region does
not depend on the rotation parameter a.
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A remarkable fact is that even though (15) describes the
radial dependence of a scalar on a rotating black hole, it can
be solved in an analytic manner in terms of Hypergeometric
functions. The solution of (15) is given by

R (x) =
(

8x + 8μ + a2b2
)−i

√
2(aω+2n)√
a2b2+8μ x−i ω

b

×
[
C1F

(
α, β, γ,− 8x

a2b2 + 8μ

)

+C2

(
− 8x

a2b2 + 8μ

)1−γ

×F

(
α+1 − γ, β+1− γ, 2− γ,− 8x

a2b2 + 8μ

)]
,

(22)

where F stands for a hypergeometric function 2F1, and

α = (bδ+ − iω)
√
a2b2 + 8μ − √

2 (aw + 2n) bi√
a2b2 + 8μb

, (23)

β = (bδ− − iω)
√
a2b2 + 8μ − √

2(aω + 2n)bi√
a2b2 + 8μb

, (24)

γ = 1 − 2iω

b
. (25)

For quasinormal modes we must require that the energy
flux at the horizon must be ingoing, therefore using the fact
that 2F1 (μ, ν, σ, 0) = 1 one sees thatC2 in (22) must vanish.
Consequently, one obtains

R (x) = C1

(
8x + 8μ + a2b2

)−i
√

2(aω+2n)√
a2b2+8μ x−i ω

b

×F

(
α, β, γ,− 8x

a2b2 + 8μ

)
. (26)

Using Kummer relations for the Hypergeometric Functions
[33], leads to the following asymptotic behavior at infinity
(x → +∞) for (26):

R (x) ∼ � (γ ) � (β − α)

� (γ − α)� (β)

1

xδ+

(
1 + O

(
1

x

))

+ξ
� (γ ) � (α − β)

� (α) � (γ − β)

1

xδ−

(
1 + O

(
1

x

))
, (27)

where ξ is a non-vanishing constant. In general δ± =
1
2

(
1 ±

√
1 − 4ω2

b2

)
will be complex numbers, related by

δ+ + δ− = 1.
The dynamics of the scalar field on the rotating black hole

background comes from the action principle

I [φ] = −1

2

∫ √−gd3x ∇ν�∇ν�, (28)

whose variation reads

δ I [φ] = −
∫ √−gd3x∂ν�∂νδ�

= −
∫ √−gd3x

(∇ν

(∇ν�δ�
) − ��δ�

)
, (29)

which on-shell reduces to a pure boundary term

δon-shell I [φ] = − lim
r0→+∞

∫
d2x

√−ggrr∂r� δ�

∣∣∣∣
r=r0

.

(30)

Requiring the action principle to be well-defined implies that
δon-shell I [φ] = 0, which using the asymptotic expansion (27)
implies

(
� (β − α)

� (γ − α) � (β)

)2
δ+

x2δ+−1

+ ξ

(
� (α − β) � (β − α)

� (α) � (γ − β) � (γ − α) � (β)

)
(δ+ + δ−)

xδ++δ−−1

+ ξ2
(

� (α − β)

� (α) � (γ − β)

)2
δ−

x2δ−−1 = 0 (31)

In the limit x → ∞ the first term goes to zero since
�(2δ+ − 1) > 0, the second term is a constant and the third
term is divergent since �(2δ− − 1) < 0. The last two terms
must vanish independently, and therefore we need to impose
that their common factor vanishes by imposing �(α) → ∞
or �(γ − β) → ∞. These condition lead to the equations
for the spectrum

α = −p or γ − β = −q, (32)

where p and q take integer values 0, 1, 2, 3, . . . .. Conditions
(32) lead to the determination of the spectrum of quasinor-
mal frequencies for ingoing boundary condition at the hori-
zon and on-shell vanishing boundary term of the variation of
the action functional at infinity (30). We can introduce the
reduced quantities

ω → √
Mω̂, J → √

M Ĵ , (33)

in terms of which the constraints (32) that determine the
spectrum read,

C1 := − iω̂

4
− iω̂ Ĵ

2
√

2 Ĵ 2 + μ

− in√
2 Ĵ 2 + μ

+ 1

2
+

√
4 − ω̂2

4
+ p = 0 , (34)

C2 := − iω̂

4
+ iω̂ Ĵ

2
√

2 Ĵ 2 + μ

+ in√
2 Ĵ 2 + μ
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+ 1

2
+

√
4 − ω̂2

4
+ q = 0. (35)

The union of the loci in the complex ω-plane defined by
the Eqs. (34) and (35), defines the quasinormal spectrum
of the rotating black hole. The integers p and q, determine
the overtones. As mentioned above, note that C1( Ĵ , n) =
C2(− Ĵ ,−n) with p interchanged by q. We observe that the
constraint C1 = 0(C2 = 0) can be solved only for posi-
tive(negative) values of the black hole angular momentum
Ĵ , but due to the symmetry mentioned above, as expected,
both constraints will lie on the same locus.

Consequently, in terms of the reduced angular momentum
Ĵ = J/

√
M , the reduced frequencies ω̂ = ω/

√
M can be

conveniently summarized as

ω̂ = −
(
2nσ Ĵ + i (1 + 2p) ν

)
2| Ĵ |

(
| Ĵ | + ν

)

×

⎛
⎜⎜⎝2| Ĵ | + ν + iνσn· Ĵ

√√√√√ 4| Ĵ |
(
| Ĵ | + ν

)
(
2σ Ĵ n + i (1 + 2p) ν

)2 − 1

⎞
⎟⎟⎠ ,

(36)

where we have defined ν :=
√

2 Ĵ 2 + μ and set Newton’s
constant G = 1/2. σx stands for the sign of x , defined such
that σ0 = 1.

Some comments on the boundary conditions are in order.
For asymptotically flat black holes in four dimensions, as for
example in the Kerr family, the scalar field has two possi-
ble behaviors at infinity which are plane waves that describe
the out-going and the in-coming modes, and therefore the
leading contribution goes as e−iω(t±r) with the plus(minus)
sign standing for the in-coming(out-going) mode. The back-
ground of the rotating asymptotically, locally flat, black hole
of New Massive Gravity allows different behaviors at infinity,
which are given in (27). Even in terms of the proper radial
distance at infinity ρ = 2√

b

√
r , one would have x ∼ ρ2,

and the behavior (27) would still have a power law fashion
and would not be compatible with the interpretation of an
out-going or in-coming plane wave. The situation at hand is
actually more similar to the analysis of quasinormal modes
in asymptotically AdS black holes where the leading asymp-
totic behaviors are r−�± and �± are given in terms of the
mass of the field and the dimension of the spacetime, defining
the conformal weights of the operator dual to the scalar on
the boundary CFT. Therefore, with the asymptotic behaviors
given by Eq. (27) a natural physical condition that allows
to compute the quasinormal frequencies is to require that the
field at infinity decays fast enough as to lead to a well defined
variational principle (30) and this is in fact the strategy we
have followed.

Below we present plots of the QNM spectrum of the scalar
probe in terms of the physical variables, as well as closed
analytic expressions for the asymptotic behavior of the fre-
quencies.

3.1 Static case and asymptotic frequencies

Let’s analyze first the static case. We set J = 0 in (34) and
(35). Then from (34) one obtains two equations for the real
and imaginary part of the constraint, whose real part reads

1

2
+ p + 1

2
√

2

(
ωi +

(
4ω2

i ω
2
r +

(
2 + ω2

i − ω2
r

)2
)1/4

× cos

(
arg

(
2 − (ωr + iωi )

2)
2

))
= 0. (37)

This equation does not have solution for any value of ω =
ωr + iωi (with ωr,i finite), and therefore (34) cannot be ful-
filled. A similar analysis of the real part of (35) leads to the
same equation (with p changed by q). This is a peculiar fea-
ture of the static solution: there are no massless scalar field
quasinormal modes for the asymptotically flat, static black
hole with gravitational hair in NMG. The constraints (34) and
(35) can be mapped to the Riemann sphere, where it can be
seen that at the leading order when ωi → −∞ (for constant
ωr ) the constraint is indeed solved since (37) reads

ωi + |ωi | cos

(
arg(ω2

i )

2

)
+ · · · = 0, (38)

which vanishes when ωi → −∞. This result is recovered
from the quasinormal modes of the rotating case. We will see
that as J → 0, the imaginary part of the quasinormal fre-
quencies tend to −∞, and therefore the quasinormal modes
acquire an infinity damping in this limit, and migrate to the
north pole of the Riemann Sphere.2

3.2 The quasinormal spectrum

In this section we present different plots that clarify the
behavior of the spectra as a function of the parameters of
the problem, with descriptive captions (Figs. 1, 2, 3, 4, 5).

3.3 Asymptotic frequencies

Finally let’s analyze two informative asymptotic behaviors
for the spectrum. First, for large angular momentum of the
field the asymptotic expansion n → +∞ reads

2 Same conclusion is obtained if one starts with the asymptotically
locally flat, static black hole from the scratch. Quasinormal modes of
scalar and Dirac fields on the asymptotically AdS, hairy black hole of
NMG have been explored numerically and perturbatively in [34,35].
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Fig. 1 Left panel: spectra for different values μ, and p = 1. For n = 1.
The curves start on the imaginary axis ( Ĵ → −∞), then acquire a posi-
tive real part, approach the north pole of the Riemann sphere ( Ĵ → 0−),
then pass through the pole and acquire a negative real part, and end again

in the imaginary axis as Ĵ → +∞. For n = −1 the locus is exactly
the same but has the opposite orientation. The right panel shows the
projection to the Riemann sphere of the spectrum for μ = 0.1, p = 0
and n = 1 showing that the north pole is reached as Ĵ goes to zero

Fig. 2 Spectrum for different values of n. The modes with n = 0 lie
on the imaginary axis for any J which runs along the curves. We have
fixed μ = 0.01 and left panel shows the fundamental mode p = 0 while

right panel shows the modes with p = 2. As expected, for a given value
of the reduced angular momentum Ĵ , the modes with higher overtones
have a higher damping

123
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Fig. 3 Imaginary part of the frequency (always negative) as a function of the reduced angular momentum Ĵ for different values of μ, and n = 1.
For large angular momentum the imaginary part of the frequencies approaches a finite constant (p = 0 left panel and p = 1 right panel)

Fig. 4 Quasinormal spectrum for the fundamental (p = 0) and first
excited mode (p = 1) for different values of the gravitational hair
parameter μ. As μ increases the modes acquire a higher damping (we
have set Ĵ = n = 1). We observe that 
(ω̂) < −√

2 and approaches the

bound for small μ and large n and p = 0. For modes with higher over-
tones the negative, upper bound on the imaginary part of the frequencies
is always lower, leading to higher damping

ω̂n→+∞ = −2n

Ĵ
− i(1 + 2p)

√
2 + μ

Ĵ 2
+

(
O

(
1

n

)
+ O

(
1

n2

)
i

)
.

(39)

It is interesting to notice that this behavior is reminiscent of
that of the quasinormal modes of a scalar field with large
angular momentum j on Schwarzschild black hole. In that
case one has [36]

ω → ± 1

3
√

3M

(
j + 1

2

)
− 1

6
√

3M
(1 + 2p) i + O

(
1

j

)
.

(40)

It is also interesting to put special attention to the case with
arbitrarily large J , since this cannot be reached within the
Kerr family. (It can be reached in Myers–Perry ind > 5 [37]).
Quasinormal frequencies ω̂ in the limit Ĵ → ∞ becomes

123
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Fig. 5 Imaginary part of the frequencies as a function of the mode number p for different values of the gravitational hair parameter μ. As the latter
increases the modes acquire a higher damping. We have chosen Ĵ = 10 and n = 1

purely imaginary (damped) and depend only on the overtone
integer

ω̂ Ĵ→∞ = −i

(
1 + 2p +

√
1 + 4

(√
2 − 1

)2
p (1 + p)

)
.

(41)

The fundamental mode in this regime is ω̂0
Ĵ→∞ = −2 i . The

function ω̂ Ĵ→∞(p) at large p approaches a straight line with

slope 2
√

2.

4 Conclusions

In this paper we have shown that a massless scalar probe on
the asymptotically locally flat, rotating black hole of pure
NMG can be analytically solved leading to an exact expres-
sion for the quasinormal mode frequencies. We have imposed
ingoing boundary conditions at the horizon and a decay at
infinity which is fast enough leading to a well defined varia-
tional principle for the scalar probe. For a given black hole,
parametrized by the mass, angular momentum and gravita-
tional hair, the quasinormal spectrum is defined by the angu-
lar momentum of the field as well as an integer counting
overtones. We showed that under these boundary conditions

the imaginary part of the frequencies is always negative,
not leading to any superradiance, as expected for a mass-
less scalar. Even more, when the angular momentum of the
black hole approaches zero, the imaginary part of the fre-
quencies tends to minus infinity leading to infinitely damped
modes. Remarkably, this is one of the few examples of rotat-
ing black holes in which the quasinormal frequencies for a
scalar probe can be obtained in an analytic, closed form.3

Since the rotating black hole, even in the case with cos-
mological constant, has vanishing Cotton tensor [12,13], it
is a conformally flat spacetime, therefore the solution for a
conformal scalar could also be obtained in an analytic man-
ner by applying a conformal transformation to the solution
of the free, massless scalar of 3D Minkowski or AdS space
(since the latter is also conformally flat). Once the mapping
is done on the general solution, one would have to impose
the boundary conditions at the horizon and infinity taking
care of the potential divergences induced by the conformal
mapping that leads to the black hole.

The stable propagation of scalar probes on the rotating
background may lead to the existence of rotating black holes
with both scalar and gravitation hair. In NMG static black

3 The other examples being BTZ [38], the so-called subtracted geome-
tries [39] and near horizon geometries of rotating black holes [40]. For
a thorough review on QNMs see [41].

123



Eur. Phys. J. C           (2019) 79:281 Page 9 of 10   281 

holes with self-interacting scalar hair already exist, with Lif-
shitz and AdS asymptotics [42,43], and it would be interest-
ing to construct rotating black holes with these hairs.
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