
Primary Cortical Dynamics for Visual GroupingZhaoping LiPublished in Theoretical aspects of neural computation,K.M. Wong, I. King, D-Y Yeung (Eds), Springer-verlag. January, 1998Abstract. The classical receptive �elds of V1 neurons contain only lo-cal visual input features. The visual system must group separate localelements into meaningful global features to infer the visual objects inthe scene. Local features can group into regions, as in texture segmen-tation; or into contours which may represent boundaries of underlyingobjects. I propose that the primary visual cortex (V1) contributes toboth kinds of groupings with a single mechanism of cortical interac-tions/dynamics mediated by the horizontal connections, and that thedynamics enhance the saliencies of those features in the contours (com-pared with those in a noisy background) or near the region boundaries(compared with those away from the boundaries). Visual inputs spec-ify the initial neural activity levels, and cortical dynamics modify theneural activities to achieve desired computations. Contours are therebyenhanced through dynamically integrating the mutual facilitation be-tween contour segments, while region boundaries are manifested (andenhanced) in the dynamics because of the breakdown of translation in-variance in image characteristics at the region boundaries. I will showanalytically and empirically how global phenomena emerge from localfeatures and �nite range interactions, how saliency enhancement relatesto the contour length and curvature, and how the neural interaction canbe computationally designed for region segmentation and �gure-groundsegregation. The structure and behavior of the model are consistent withexperimental observations.1 IntroductionVisual inputs are �rst sampled as pixels. Subsequently, the images are processedby local transforms, such as the receptive �elds in the primary visual cortex, togive local image features such as edge segments or bars. However, these localfeatures are too small to represent global visual objects. The visual system mustgroup local features into global and more meaningful ones for visual recognitionand visual-motor tasks. One is to group local edge segments into global contours,and the other is to group local features into regions, as in texture segmentation.Global contours sometimes mark boundaries of regions. Other times, regionssuch as those de�ned by textures do not have de�nite or visible markings forboundaries, which we humans can nevertheless locate easily. In any case, a regionand its boundary are complementary to each other. Knowing one can infer theother. It is desirable to have a single computational mechanism for detection orgrouping of both contours and regions.



Both contour and region groupings are very important for visual segmen-tation, which is still a formidable problem in computer vision after more thantwo decades of research e�orts (Kasturi and Jain 1991). The problem with con-tour grouping is that there are many candidate edge segments after the edgedetection operation on an image, many of them are simply \noisey" contrastelements not belonging to any meaningful contour. The grouping algorithm hasto discriminate between \signals" and \noises" using contextual information.Many computer vision algorithms on edge linking need user intervention, thoughmore autonomous algorithms exist and they work under certain conditions (e.g.,Shashua and Ullman 1988, see more references in Li 1997). For region grouping,all existing approaches require image feature extraction and/or region classi�-cation as a preprocessing stage to compute feature values or classi�cation 
agsfor every small area in an image. The regions are di�erentiated by these featurevalues to locate the boundaries (Haralick and Shapiro 1992). Such approacheshave problems near the boundaries where features are inde�nite. Furthermore,they can not segment two regions in Fig. 1 where the two regions would have thesame feature or classi�cation values. Segmentation outcomes from edge and re-gion based approaches usually do not agree with each other, even though the twokinds of algorithms have been combined for better visual segmentation perfor-mance (Kasturi and Jain 1991). There is so far no single algorithm or mechanismthat deals with both contour and region groupings.
Region 1 Region 2Fig. 1. The feature values in the two regions are the same. However one easily sees theboundary between two regions. Traditional approaches to segmentation using featureextraction and comparison will not be able to segment the regions in this example.Here I propose that the �rst step towards contour and region grouping is toenhance the saliencies of image elements on contours or near region boundariesagainst non-contour elements or elements away from the boundaries. In addition,I propose that a single mechanism, using the cortical interactions in the primaryvisual cortex, su�ces for both kinds of saliency enhancement. This operationserves the most di�cult task in contour and region grouping | to discriminatebetween contour and non-contour elements, or to locate the boundary elements.By using a same language | saliency | to distinguish both contours and regionboundaries from background, it is feasible to have a single algorithm for bothgrouping purposes.



One may �nd it easier to accept saliency enhancement for contour elementsthan that for elements near region boundaries. In fact, it is only natural toenhance or mark the region boundaries for segmentation. This is because seg-mentation necessarily means boundary localization. A mere classi�cation 
agat every image area is sometimes not useful or necessary, as indicated by thecounter example in Fig. (1), and at other times require an additional step todi�erentiate the classi�cation values in order to segment.A model of V1 is constructed to implement the proposal. The contextualin
uences beyond the classical receptive �elds modify the neural activity levelsinitialized by external inputs to achieve desired visual computation. It will beshown analytically and empirically that contours are thereby enhanced throughdynamical integration of the contextual facilitation along the contour, and thatthe enhancement increases with contour length and smoothness. On the otherhand, region boundaries are manifested (and enhanced) in the dynamics (medi-ated by the translation invariant cortical neural connections) by the breakdownof translation invariance in image characteristics. Since translation symmtrybreaking can be detected without feature classi�cations, our approach performsregion segmentation without region classi�cation. While boundary resions areproblematic for traditional segmentation-by-classi�cation approaches, they arehigh-lights in the present approach. The structure and behavior of the modelare consistent with the experimental observations (Kapadia, Ito, Gilbert, andWestheimer 1995, Gallant, van Essen, Nothdruft 1994).2 A V1 model of contour enhancement and regionboundary enhancement2.1 Model elements and structureThe selective saliency enhancing network is a model of V1. It consists of Kneuron pairs at each spatial location i modeling a hypercolumn in V1 (Fig. 2).Each neuron has a receptive �eld center i and an optimal orientation � = k�=Kfor k = 1; 2; :::K. A neuron pair consists of a connected excitatory neuron andinhibitory neuron which are denoted by indice (i�) for their receptive �eld cen-ter and preferred orientation, and are referred to as an edge segment. An edgesegment receives the visual input via the excitatory cell, whose output quanti�esthe saliency of the edge segment and projects to higher visual centers. The in-hibitory cells are treated as interneurons. Such a local cortical circuit is modeledafter the experimental observations (White 1989, Douglas and Martin 1990).Some edge elements excite each other via �nite range excitatory-to-excitatoryconnections Ji�;j�0 , while others inhibit each other via �nite range disynapticinhibition Wi�;j�0 which are excitatory-to-inhibitory connections. The systemdynamics follow the equations of motion
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erated inputs, Jo is the self excitation connection, and  (��) models the mutualinhibition spread within a hypercolumn. More details of the model parametersand structures can be found in (Li 1997).The visual input pattern is Ii� , which is transformed by the neural interac-tions and dynamics to give an output pattern gx(xi�), the cell output activitiesfrom the excitatory cells. Usually gx(xi�) 6/ Ii�. The relationship between theinput I and output gx patterns is determined by the network structure, in par-ticular the neural connections J and W that mediate the contextual in
uencesand induce the cortical dynamics. Therefore, J and W should be designed suchthat the network selectively enhances the saliencies gx(xi�) for image elements(i�) within contours or near region boundaries.2.2 Computational design of the cortical interactions for contextualin
uencesThe neural connection structure is designed to satisfy the following conditions.1. The connection strengths decreases with increasing distance between theedge segments, and becomes zero for large distances.2. The connection structure has translation, rotation, and re
ection invariance.This means the following. Let i� j be the line connecting the centers of twoedges (i�) and (j�0), which form angles �1 and �2 with this connecting line.The connections Ji�;j�0 and Wi�;j�0 depend only on ji � jj, �1, and �2, andsatisfy Ji�;j�0 = Jj�0;i� and Wi�;j�0 =Wj�0;i�.3. The connections should be such that the network gives stable and com-putationally desirable behavior: The network ampli�cation (caused mainlyby excitatory connections J) should be enough to give signi�cant saliencyenhancement to selected image elements, but not too much such as to uns-electively give high saliencies to all elements in the image grid.4. The mutual facilitation Ji�;j�0 between two edges i� and j�0 is large if onecan �nd a smooth or small curvature contour to connect (i�) and (j�0), andgenerally decreases with increasing curvature of the contour.5. The mutual inhibition Wi�;j�0 between two edges i� and j�0 is strong whenthey are alternative choices in the route of a smooth contour, i.e., when theyare close, have similar orientations, and displaced roughly in a directionperpendicular to their orientations.6. The connection should be such that a translation invariant input patternI (e.g., when Ii� does not depend on i) will lead to a translation invariantoutput pattern gx. This means, the system should not have spontaneoustranslation symmetry breaking (spontaneous pattern formation).7. The balance between excitation J and inhibition W should be such that un-der a translation invariant input I , each visible element i� receives an overallinhibition (at least under not too low an input strength) after combining thecontextual in
uences from all the neighboring elements.Condition (1) requires local interaction for global grouping behavior. Fero-magnetism is another example in nature of global behavior with local interac-



tions. Condition (2) ensures view point independence of the desired computa-tion. In addition, the translation symmetry in interaction is required to detectthe translation symmetry breaking at the boundary between two image regions.Condition (3) ensures that the model output is under the input control in acomputationally desirable way. For instance, when the input contains a contourof �nite length among a noisy background, the network should not extend thecontour to in�nite length, nor should it leave the contour unenhanced againstthe noisy background. Conditions (4) and (5) are for the contour enhancement,relative to the background. Note that these two conditions imply that two edgesof similar orientations are more likely to interact with each other (see Fig. (2),whether it is mutual excitation or inhibition. Condition (6) ensures that thesystem does not �nd any region boundaries when it should not. Spontaneouspattern formation under translation invariant interactions are not uncommonin nature. Zebra stripe formation is one such example. Hence the model inter-action should be within the subset of all translation invariant interactions thatavoids spontaneous pattern formation. Condition (7) ensures that when trans-lation symmetry is broken by an input image, the region boundary area hashigher, rather than lower, saliency values than areas away from the boundaries.This is because by conditions (4) and (5), similar image elements interact witheach other more strongly than non-similar elements. The image elements nearregion boundaries are surrounded by fewer similar neighbors, and consequentlyreceive less overall inhibition. In the example of a region composed of many par-allel lines, combining conditions (4), (5) and (7) leads to the following: a linesegment in the middle of the region receives less contour enhancement excitationthan the overall iso-orientation suppression from its 
anking neighbors in nearbyparallel lines.2.3 Contour integrationIn addition to the external visual input Ii� , an edge element i� within a contouralso receives excitation�I �Pj�02contour;j�0 6=i� Ji�;j�0gx(xj�0 ) from other contourelements j�0. To analyse contour enhancement, consider for simplicity an edgesegment in a long enough curve whose curvature is changing slowly enough,and assume that there is no inhibition between contour elements. Then it canbe shown (Li, 1997) that the response ratio between a curve segment and anisolated segment is (g0y(�y) + 1� Jo)=(g0y(�y) + 1� Jo �Pj�02contour;j�0 6=i� Ji�;j�0),where �y is the average response of the inhibitory interneurons and g0 is thederivative of g. Therefore, the degree of contour enhancement increases withPj�02contour;j�0 6=i� Ji�;j�0 , the integration of mutual excitation connection withina contour. Since such an integration is computationally designed to increase withcontour smoothness and length, one can then relate the degree of enhancementwith these contour characteristics (see Li 1997 for more examples and detailedanalysis). In the computational design for Ji�;j�0 , the scale of J should be chosensuch that the integration of facilitation Ji�;j�0 along a contour is enough forsigni�cant saliency enhancement within a contour, even to �ll in the gaps in a



contour, but not enough to excite segments beyond the ends of a contour. Fig.(3) demonstrates the performance of contour enhancement against noise.Model visual input Model Output Output after removing edgesof activities lower than 0.63of the most active edge
Fig. 3. Contour enhancement and noise reduction. The input and output edge strengthsare denoted proportionately by the thicknesses of the edges. The same format appliesto other �gures in this paper. The model outputs are the temporal averages of gx(x).All visible edges have the same strength in the input, and are di�erentially enhancedor suppressed at the output. On average, the line and circle segments are roughly 2.5times as salient as the \noise" segments. For demonstration, we display the outputsafter thresholding out the weaker edges (right). Note that the apparent gaps betweenthe circle segments are caused by the lack of sampling points there in the particularsampling grid arrangement. No gaps actually exist and hence no �lling-in is needed.2.4 Region boundary enhancementIn order to have well controlled region boundary enhancement, the synaptic con-nections J and W are examined to see whether conditions (6) and (7) in section2.2 are satis�ed. We check this for translation invariant inputs Ii� = ~I for all iand any given �, and Ii�0 = 0 for �0 6= �. Find the mean �eld solution �x and �yby setting to zero the right hand sides of the equations (1) and (2), and settingxi� = �x, xi�0 = 0 for �0 6= �, yi� = �y. Condition (6) is satis�ed if this mean�eld solution is stable, or if it is unstable, whether the dominant mode in thedeviation from the mean �eld solution is also translation invariant. Stability anddominant mode analysis are studied by a perturbation analysis around the mean�eld solution, using the linear expansion or small amplitude approximation. Con-dition (7) is satis�ed for that input if Pj 6=i Ji�;j� < Pj 6=iWi�;j�g0y(�y) (0) fora reasonable range of �y. This inequality is derived by noting that edges exciteeach other directly by mono-synaptic, excitatory-to-excitatory connections J ,and inhibit each other indirectly by disynaptic, excitatory-to-inhibitory connec-tions W . Conditions (6) and (7) are further con�rmed by simulations. After theconditions (6) and (7) are met for all choices of � for those translation invariantinput images, we hope, and check by some simulation examples, that the sameconditions are also met for arbitrary translation invariant images.
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Fig. 4. A: An example of region boundary enhancement. Note that the output ac-tivities gx(xi�) are higher near the boundaries even though each visible edge has thesame input strength. B: Six additional examples (a, b, c, d, e and f) of model inputimages, each followed by the corresponding output high lights immediately below it.Note that both humans and the network �nd it di�cult to segment two regions in theexample c. Traditional segmentation techniques can not segment f (cf. Fig. (1)).Fig. (4) shows the model performance for some examples on region boundaryenhancement. Note that the plots in Fig. (4) and later �gures include only smallportions of the input and output images in the model for illustration purpose. Sothe boundaries of the plots should not be taken as the boundaries of the textureregions (and hence they are not high-lighted at the model outputs). This modelcan also enhance boundaries for regions de�ned by stochastic image elements(Fig. (5)). The pop-out phenomena can also be accounted for | when a regionis very small, all parts of the region belong to the boundary. The small region is



thus enhanced as a whole and pops out from the background (Fig. (5c).a b c

Fig. 5. Examples of segmentation of stochastic texture regions a and b, and popout c.Visual inputs are at the top row, followed by the respective output high-lights below.The principle and mechanism of region boundary enhancement can be intu-itively understood by the following analogy with physical systems. One may takean edge element as an atom, a composite pattern primitive such as a \+" in Fig.(5a) as a molecule, interactions between edges or composite pattern primitivesas interactions between atoms and molecules, regular texture regions as latticestructured materials, and stochastic regions as non-lattice liquids such as glass.Usually, two blocks of di�erent materials somehow joined together are likelyto break near their junctions, because molecular interactions are not translationinvariant near the junctions and they are manifested by stronger molecular vibra-tions there. Analogously, neural activities near the region boundaries are likelyto be the high lights, relatively enhanced by the underlying neural interactions.3 Summary and DiscussionThis paper proposes that groupings of local visual features into global contoursand regions can be carried out in the �rst stage by local, �nite range, neuralinteractions to enhance the saliencies of image elements within contour or nearthe region boundaries. This proposal is implemented in a model of V1 com-posed of edge/bar detectors and horizontal connections mediating contextualin
uences. The structure of the horizontal connections is computationally de-signed for the requirement of contour and region boundary enhancement. Themodel is studied analytically and empirically to understand that contours are en-hanced by integrating the mutual facilitation between contour segments, whileregion boundaries are detected by the breakdown of translation invariance inthe image characteristics near the boundaries. The performance of the model isdemonstrated by examples.



The main contributions of this work are the following. First, it is the �rst ofthe kind to deal with both contour and region groupings with a single mecha-nism. Regions and their boundary contours are complementary to each other. Itis computationally desirable to handle both groupings by a single mechanism.Second, this work introduces an entirely new approach to region segmentation |region segmentation without region classi�cation. It avoids some problems andthe ad hoc 
avor in the traditional approach to region segmentation of the lasttwo decades, and is computationally simpler. Third, compared to many othermodels (see references in Li 1997), this model achieves contour enhancementusing only known V1 neural elements and interactions without requiring highervisual centers or biologically non-plausible operations. (It has been di�cult tomodel contour enhancement using only V1 elements largely because of the dy-namic stability problems in a recurrent neural network.) It thus answers thequestion of whether the di�cult problem of global contour integration could be�rst attempted in a lower visual stage such as V1. In fact, even though the struc-ture of the neural connections in this model is designed by the computationalrequirements of contour and region grouping, this structure is consistent withthe structure observed physiologically (e.g., Gilbert 1992). The behavior of thismodel in both the contour and region boundary enhancement is also consistentwith experimental data (Kapadia et al. 1995, Gallant et al 1994). These factsfurther strengthen the plausibility of our proposal.This model has many weaknesses. First of all, it has not yet implemented mul-tiscale samplings and interactions in visual space. Consequently the model cannot for instance enhance �ne detailed contours or to detect and segment regionsof very small sizes. Also, the model neural circuit, in particular, the structureof the horizontal connections, must be di�erent from the reality at least quan-titatively. Therefore, the model behaves di�erently, at least quantitatively, fromhuman performance. For instance, the model sometimes �nd it easier or moredi�cult to segment some regions than humans do. However, I believe that theseand many others are mainly the weaknesses of this particular, still primitive,model implementation of V1. The principle of contour enhancement by integrat-ing mutual facilitation and region segmentation by detecting the breakdown oftranslation invariance in inputs should still hold. More informative experimentaldata on the V1 structure should help to build a better V1 model to implementthe above principles for visual grouping.References1. Douglas R.J. and Martin K. A. \Neocortex" in Synaptic Organizat ion of the Brain3rd Edition, Ed. G. M. Shepherd, Oxford University Press 1990.2. Gallant J. L., van Essen D. C. and Nothdurft H. C. \Two-dimensional and three-dimensional texture processing in visual cortex of the macaque monkey" In: Papath-omas T., Gorea A. (Eds.) Linking psychophysics, neurophysiology and computationalvision. MIT press, Cambridge MA 1994.3. Gilbert C.D. \Horizontal integration and cortical dynamics" Neuron. 9(1): 1-13.1992
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