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Plant immune receptors enable detection of a multitude of microbes including

pathogens. The recognition of microbes activates various plant signaling path-

ways, such as those mediated by phytohormones. Over the course of coevolu-

tion with microbes, plants have expanded their repertoire of immune

receptors and signaling components, resulting in highly interconnected plant

immune networks. These immune networks enable plants to appropriately

respond to different types of microbes and to coordinate immune responses

with developmental programs and environmental stress responses. However,

the interconnectivity in plant immune networks is exploited by microbial

pathogens to promote pathogen fitness in plants. Analogous to plant immune

networks, virulence-related pathways in bacterial pathogens are also intercon-

nected. Accumulating evidence implies that some plant-derived compounds

target bacterial virulence networks. Thus, the plant immune and bacterial vir-

ulence networks intimately interact with each other. Here, we highlight recent

insights into the structures of the plant immune and bacterial virulence net-

works and the interactions between them. We propose that small molecules

derived from plants and/or bacterial pathogens connect the two molecular

networks, forming supernetworks in the plant–bacterial pathogen holobiont.
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Biological systems in an organism are often represented

as networks that consist of complex interactions

between biological elements, such as genes, proteins,

and metabolites. These molecular networks provide the

organism with a variety of regulatory functions. In an

ecological context, organisms do not live in isolation

but with intimate interactions with other organisms.

This collective assemblage of different organisms is

called “holobiont” [1], in which molecular networks of

an organism can be connected to those of other organ-

isms, resulting in the formation of a “supernetwork”.

The plant innate immune system relies on an

expanded repertoire of immune receptors on the cell

surface or inside the cell to detect molecular signatures

associated with microbial invasions [2,3]. Perception of

microbe- and damage-associated molecular patterns

(MAMPs and DAMPs) and effector molecules by the

plant immune receptors activates pattern-triggered

immunity (PTI) and effector-triggered immunity (ETI),

respectively [2,3]. PTI and ETI activate various

immune signaling pathways such as those mediated by

phytohormones and restrict microbial invasion and

proliferation [2,4,5]. Plants have evolved complex

interactions between immune receptors and between

immune signaling components. These immune recep-

tors and signaling networks are collectively defined as
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plant immune networks in this review (Fig. 1). The

plant immune networks are further connected with

components in other physiological processes to opti-

mize plant responses in a given condition. For

instance, phytohormone signaling networks coordinate

plant immunity with developmental programs and abi-

otic stress responses [5–9].
During the course of coevolution with host plants,

pathogens have evolved diverse virulence mechanisms to

manipulate components of the plant immune networks

[10]. A remarkable example is that many pathogens

deploy effector proteins or produce phytohormones or

their mimics to exploit existing antagonistic interactions

in the phytohormone signaling networks, thereby damp-

ening plant immunity [11,12]. Thus, the interconnectivity

in the plant immune networks provides not only versatile

regulation in plants but also vulnerability to pathogen

exploitation.

Bacterial pathogens are well studied with respect to

virulence mechanisms. In addition to proteinaceous

type III effectors (T3Es) delivered into the host cell by

the type III secretion system (T3SS), many other viru-

lence-related molecules and processes have been char-

acterized, including siderophores, exopolysaccharides,

quorum sensing, and production of phytohormones

and their mimics [13–17]. Moreover, bacterial cells

globally regulate expression of these virulence factors,

which may coordinate diverse tasks in host plants [18]

These coordinated regulations of virulence factors can

be regarded as bacterial virulence networks (Fig. 1).

Analogous to the bacterial virulence molecules that

interfere with plant immunity, some plant-derived

compounds are shown to affect the components of

bacterial virulence networks [19].

In the past decade, significant progress has been

made in the systems analysis of molecular networks

underlying plant–pathogen interactions with a primary

focus on the plant side during the interactions [20–22].
In this review, we highlight recent biological and func-

tional insights into the plant immune networks whose

highly interconnected property provides a great regula-

tory potential for the benefit of the plant but is also

exploited by pathogens. Then, we discuss relatively

understudied research topics in plant–pathogen inter-

actions, namely, the bacterial pathogen virulence net-

works and their potential manipulation by plant

immunity. Finally, we propose that small molecules

produced by plants and bacteria likely connect the

molecular networks of plants and bacteria, which

results in a supernetwork of the plant and bacterial

Fig. 1. Possible structures of the plant immune and bacterial virulence networks and their interactions. Blue arrows: Bacterial type III

effectors and toxins regulated by the hrp regulon target the plant immune networks. Red arrows: Plant immunity targets components in the

bacterial virulence networks with unknown mechanisms. The plant immune networks include leucine-rich repeat receptor kinases (LRR-RKs)

networks, nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) networks, and phytohormone networks. The

bacterial virulence networks include Hrp regulon, AlgU regulon, quorum sensing (QS) system, and iron homeostasis system. The sub-

networks in the plant immune or bacterial virulence networks are interconnected (black lines).
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holobiont. We do not intend to present a comprehen-

sive review of this body of knowledge, but rather aim

at introducing important concepts using key examples

to stimulate future researches.

Immune receptor networks

LRR-RK and NLR networks

Pattern-triggered immunity is activated through recog-

nition of microbe-derived ligands, called MAMPs, or

plant-derived ligands, known as DAMPs, by cell sur-

face-localized pattern recognition receptors (PRRs), a

major class of which are leucine-rich repeat receptor

kinases (LRR-RKs) [2]. For instance, FLS2 recognizes

the MAMP flg22 derived from bacterial flagellin, while

PEPR1 and PEPR2 sense Pep peptides, which are

DAMPs processed from endogenous PROPEP proteins

in Arabidopsis thaliana [2]. Upon ligand binding, these

LRR-RKs recruit another LRR-RK, BAK1, for trans-

ducing the signal to the cytosol [23]. Although it has

been often reported that LRR-RKs interact with each

other through their extracellular domains (ECDs) [24],

a comprehensive analysis on LRR-RK interactions is

confounded by a massive expansion of this class of

receptor proteins in plants [25]. By employing a high-

throughput in vitro interaction assay, Smakowska-

Luzan et al. tested 40,000 interactions between 200

ECDs in A. thaliana to construct an LRR-RK interac-

tion network (CSILRR) [26]. CSILRR helped to identify

multiple LRR-RKs that modulate immune responses.

The LRR-RK FIR interacts with both FLS2 and

BAK1 and promotes flg22-induced FLS2-BAK1 com-

plex formation, reactive oxygen species (ROS) produc-

tion, defense gene expression, and the growth

inhibition of the bacterial pathogen Pseudomonas

syringae [26]. In CSILRR, BAK1 and APEX are hub

LRR-RKs whose removal could strongly affect network

connectivity [26]. BAK1 is an integral signaling partner

for multiple PRRs, including FLS2, PEPR1, and

PEPR2 [23]. APEX interacts with PEPR1 and PEPR2

in the presence and absence of the Pep2 peptide ligand,

and contributes to Pep2-induced immune responses

[26]. As opposed to BAK1, the APEX protein does not

interact with FLS2. Interestingly, however, genetic

removal of APEX enhanced flg22-induced FLS2-BAK1

complex formation, ROS production, MAP kinase

(MAPK) activation, and defense gene expression [26].

Thus, even without a direct physical interaction with

FLS2, APEX affects the FLS2 functions through

CSILRR. This suggests that CSILRR may monitor the

integrity of APEX and accordingly modulate plant

immune responses by an unknown mechanism.

Interestingly, it was shown that PEPR1 is functional in

the absence of BAK1 as it can form complexes with

most members of SERK proteins, including BAK1 [27].

This study further showed that genetic or pathogen

elimination of BAK1 enhances PEPR1/PEPR2-

mediated cell death and immune responses, thereby

compensating for the loss of BAK1-dependent PRR sig-

naling. It will be of a key future challenge to explore

and define such regulatory functions of CSILRR.

Effector-triggered immunity is a potent form of

plant innate immunity that is often accompanied by

hypersensitive response (HR) cell death and is medi-

ated by nucleotide-binding domain and leucine-rich

repeat-containing proteins (NLRs) [4]. Typically,

NLRs are intracellular immune receptors that either

directly detect pathogen effectors or indirectly sense

the virulence actions of pathogens [3,4]. Emerging evi-

dence points to complex NLR networks, in which

“sensor” NLRs recognize pathogen effectors and

“helper” NLRs act downstream of effector recognition

[28–30]. In A. thaliana, the helper NLRs, ADR1,

ADR1-L1, and ADR-L2, contribute redundantly to

ETI mediated by three different sensor NLRs that

detect bacterial or oomycete effectors [28]. Similarly,

Nicotiana benthamiana NRC2, NRC3, and NRC4 are

helper NLRs that function to elicit HR cell death fol-

lowing recognition of bacterial, oomycete, nematode,

or viral effectors by nine different sensor NLRs, and

in most cases, the redundant functions of NRC2,

NRC3, and NRC4 are evident [30]. Phylogenetic anal-

ysis of plant NLRs revealed that the ADR1 and NRC

families are distantly related [30]. Moreover, the NRC

family is present in asterids including N. benthamiana,

but absent in rosids including A. thaliana [30–32].
These findings suggest that the ADR1 and NRC fami-

lies have independently evolved as helper NLRs, on

which signals from various sensor NLRs converge. In

this way, sensor NLRs could gain a new recognition

spectrum without losing the inter-relationship with

cognate helper NLRs for signal transduction. Thus,

the network structure consisting of pathogen-detecting

sensor NLRs and downstream functionally redundant

helper NLRs could allow plants to evolve sensor

NLRs against a large variety of effectors from fast-

evolving pathogens and, at the same time, to maintain

robust NLR signaling mediated by helper NLRs.

The plant receptor networks as targets of

pathogens

Pathogens have evolved effector molecules that target

components of CSILRR to dampen PTI. Not surpris-

ingly, BAK1, a hub of the network, is targeted by

1939FEBS Letters 592 (2018) 1937–1953 ª 2018 Federation of European Biochemical Societies

T. Nobori et al. Molecular networks in plant–pathogen holobiont



multiple effectors: AvrPto, AvrPtoB, HopF1, and

HopB1 [33–35]. Intriguingly, HopB1 protease specifi-

cally cleaves immune-activated BAK1, thus conferring

virulence without perturbing other BAK1 functions,

such as those in plant growth [35]. AvrPtoB also tar-

gets the MAMP receptors FLS2 and CERK1 [36–38].
HopAO1 targets another MAMP receptor, EFR [39].

Therefore, although CSILRR enables plants to finely

control PTI responses, it can be exploited by patho-

gens as the manipulation of a PRR could affect other

parts of CSILRR due to the highly interconnected

network structure.

Although ETI confers potent and robust immunity

against biotrophic pathogens, which feed on living

host tissues, ETI is exploited by some necrotrophic

pathogens that actively kill host tissues and feed on

the remains. In oats, an immune component TRX-h5

is guarded by the NLR LOV1 [40,41]. Cochliobolus vic-

toriae, a necrotrophic fungus and the causal agent of

Victoria blight, hijacks this defense system by produc-

ing an effector molecule, victorin, which binds to

TRX-h5 and consequently triggers LOV1-mediated

HR cell death, conferring disease susceptibility to C.

victoriae in oats [40,41]. Another necrotrophic fungus,

Parastagonospora nodorum, produces SnToxA, which

indirectly activates the wheat NLR Tsn1 to cause HR

cell death and susceptibility [42]. P. nodorum also pro-

duces SnTox1, which directly binds to Snn1, a wall-

associated kinase class receptor kinase, to trigger cell

death for inducing susceptibility [42]. Thus, plant

immune signaling triggering cell death is exploited by

necrotrophic pathogens that benefit from host cell

death. However, it was shown that prior ETI activa-

tion in one half of a leaf has no effect on promoting

the growth of the necrotrophic fungus Alternaria

brassicicola in the other leaf half [43]. Furthermore,

ETI-associated cell death and defense responses are

tightly regulated in a spatiotemporal manner [44,45].

Therefore, it may be possible that spatiotemporal regu-

lation of ETI responses including cell death provides

certain tolerance against exploitation by necrotrophic

pathogens.

Immune signaling networks

Phytohormone networks

Phytohormones are small signal molecules that are

produced in plants in response to internal and external

stimuli, such as developmental cues and pathogen

invasion, and regulate plant responses to the stimuli

[46]. Land plants have expanded the repertoire of phy-

tohormones, which likely contributed to plant

adaptation to the more variable terrestrial environ-

ments [5]. Consistently, an evolutionary and compara-

tive genomic analysis of species representing all the

major plant lineages revealed that signaling mediated

by the major immunity-related phytohormones jas-

monate (JA) and salicylic acid (SA) likely originated in

the last common ancestor of land plants [47]. JA and

SA signaling can interact either antagonistically or

synergistically, depending on the context, and these

interactions are modulated by other phytohormones,

such as ethylene (ET), abscisic acid (ABA), and auxin,

collectively forming a phytohormone signaling network

[5]. The properties of the phytohormone signaling net-

work were difficult to study due to complex interac-

tions among network components. An approach to

dissect such a complex network is to remove network

components to the level where the network fully loses

its functional output and then assign functions to indi-

vidual network components and their interactions by

studying how the network output is recovered during

stepwise reconstruction of the network using combina-

torial genetic perturbations [20]. To this end, all possi-

ble combinations (from single to quadruple) of A.

thaliana mutants deficient in signaling mediated by JA,

ET, SA, and PAD4 were generated, enabling experi-

mental stepwise reconstitution of the four signaling

sectors and their interactions in the network [20,48].

PAD4 contributes to SA accumulation and also medi-

ates an SA-independent immunity [49]. This SA-inde-

pendent signaling mechanism is defined as the PAD4

sector hereafter. Quantitative measurements of expres-

sion of marker genes for each signaling sector, as well

as the growth of P. syringae pv. tomato DC3000 (Pto)

and pv. maculicola ES4326 in all possible combinations

of plant genotypes treated with three different

MAMPs enabled construction of a highly predictive

regression model that describes signal flow in the JA/

ET/SA/PAD4 signaling network during PTI [50]. The

model showed that the ET sector represses the JA and

PAD4 sectors, the latter of which explains a mecha-

nism for ET-mediated SA suppression, as PAD4 is

required for SA accumulation in PTI [51]. Loss of

either ET or JA sectors increased network fragility,

indicating that the inhibitory effect of the ET sector

on the JA sector is important for robustness of the

network output [50]. The model also revealed that

dominant activation of the SA sector over the JA sec-

tor by the bacterial MAMP flg22 is associated with

strong growth restriction of P. syringae strains,

whereas stronger activation of the JA sector than the

SA sector by the fungal MAMP chitosan is associated

with weak bacterial resistance [50]. In nature, plants

are simultaneously exposed to bacteria, fungi, and

1940 FEBS Letters 592 (2018) 1937–1953 ª 2018 Federation of European Biochemical Societies

Molecular networks in plant–pathogen holobiont T. Nobori et al.



other microorganisms. Hence, it is conceivable that

plants distinguish different mixtures of MAMPs from

different classes of microbes and activate the immune

signaling sectors with different strengths, resulting in

PTI tailored to particular assemblage of microbial

communities that the plant encounters.

The network reconstitution approach was also used

to dissect complex regulation of A. thaliana transcrip-

tome responses to flg22 by the JA/ET/PAD4/SA sig-

naling network [52]. Statistical modeling of the

contributions of the individual signaling sectors and

their interactions to expression changes of over 5000

flg22-responsive genes revealed that these genes are

not merely dependent on single signaling sectors, but

rather on multisector interactions. Consequently, the

transcriptional responses of most of the flg22-respon-

sive genes are highly buffered (i.e., single mutations do

not affect flg22 responsiveness) and thus likely resilient

to perturbation of the network components by, for

example, pathogen effectors and environmental fac-

tors. The combination of network reconstitution and

statistical modeling also unveiled transcriptional regu-

latory logic that could not be detected in conventional

genetic studies. For instance, the SA-dependent genes

defined by a conventional genetic means (genes show-

ing no transcriptional responses in an SA-deficient

mutant sid2) were not simply regulated by the SA sig-

naling sector alone, but were regulated by the ET,

PAD4, and SA signaling sectors and their interactions

[52]. Moreover, simultaneous perturbation of the JA,

ET, PAD4, and SA signaling sectors in a quadruple

mutant led to identification of a signaling mechanism

that modulates HR cell death during ETI [53]. In the

quadruple mutant, the ETI-triggering effector AvrRpt2

failed to elicit HR cell death when delivered by P. sy-

ringae, but, surprisingly, was capable of doing so when

expressed directly in plants by means of a transgene. A

difference in the two experimental conditions, that is,

PTI activation by MAMPs, was shown to inhibit ETI

signaling-mediated HR cell death in a manner inde-

pendent of the JA/ET/PAD4/SA signaling network.

The molecular identity of this ETI signaling and its

inhibition mechanism by PTI remain elusive, but the

latter could be explained by the GYF domain protein

PSIG1 that is phosphorylated upon MAMP perception

and is required for suppressing HR cell death during

ETI in an SA- and ROS-independent manner [54].

Both JA and SA accumulation increases during PTI

and ETI [50–52,55], suggesting the importance of JA-

SA crosstalk for orchestrating plant immune responses.

Nevertheless, our understanding of the biological sig-

nificance of JA-SA crosstalk was mostly limited to their

antagonistic interactions explaining prioritization of

JA- or SA-mediated immunity, each of which is effec-

tive to suppress the growth of pathogens with different

lifestyles over the other [43,56]. This is likely because

most studies on JA-SA crosstalk have been performed

with exogenous application of these hormones or

through analysis of single null mutants [57]. The PTI

signaling network model mentioned above generated a

surprising hypothesis that JA, together with PAD4,

accounts for activation of SA signaling during PTI [50].

A follow-up study validated this prediction by demon-

strating the mechanism by which JA controls flg22-

induced SA accumulation [58]. JA exerts a repressive

effect through MYC transcription factors on expression

of PAD4 that positively contributes to expression of

EDS5, a gene essential for SA accumulation [58]. Para-

doxically, JA activates EDS5 directly through the same

MYC transcription factors [58]. The former inhibitory

effect of JA on SA is functionally dominant when

PAD4 can fulfill its function, thereby mitigating SA

accumulation to minimize its negative impact on plant

growth [58]. However, the latter positive effect of JA

on SA comes to play an important role in supporting

robust SA accumulation and immunity when PAD4 is

perturbed by, for example, high temperature [58]. Thus,

this “incoherent feed-forward loop” consisting of JA,

PAD4, and EDS5 coordinates SA-mediated immunity

with plant growth and high-temperature response dur-

ing PTI [58]. Another excellent example of the biologi-

cal significance of JA-SA crosstalk was recently

proposed [44]. During ETI, a concentration gradient of

SA is formed around the pathogen infection site that

eventually undergoes HR cell death [59]. Intravital

time-lapse imaging of the promoter activities of the SA

maker gene PR1 and the JA marker gene VSP1 during

Pto AvrRpt2-triggered ETI showed that JA signaling is

activated in a spatial domain surrounding the HR area

at an early stage, which is followed by activation of SA

signaling in the region between the HR- and JA-active

domains [44,45]. This temporally dynamic and spatially

separated activation of JA and SA signaling during

ETI could be interpreted as a plant strategy to locally

confine the SA-active cells via JA-SA antagonism and

to create JA-active cells for preventing secondary infec-

tion by necrotrophic pathogens that are sensitive to JA-

mediated immunity [43,45,56]. Thus, this study clearly

highlights the importance of spatiotemporal analysis to

understand the functionality of phytohormone signal-

ing networks. Taken together, highly interconnected

phytohormone signaling networks enable plants to

integrate multiple inputs from microbes and environ-

ments and accordingly regulate immune responses at

the transcriptional level with temporal and spatial

coordination.
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Phytohormone networks as targets of pathogens

Bacterial and fungal pathogens have evolved to target

the phytohormone network to subvert plant immunity,

often by exploiting the interconnected feature of the

phytohormone signaling networks [11,12]. Hormone

crosstalk suppressing SA (e.g., JA-SA, ABA-SA, and

auxin-SA) is often exploited by biotrophic bacterial

pathogens that are sensitive to SA-mediated immunity.

Here, we highlight two types of exploitation/targeting

of phytohormone crosstalk in plant–bacteria interac-

tions. The first is the manipulation of phytohormone

signaling pathways by using effector proteins. AvrB,

HopX1, HopZ1a, and HopBB1 employ different

mechanisms to degrade JAZ proteins, the repressors of

JA-mediated transcriptional reprogramming, thereby

activating JA signaling to dampen SA-mediated immu-

nity [60–63]. AvrPtoB and AvrRpt2 enhance the accu-

mulation of ABA and auxin, respectively, and

promote virulence [64,65]. The second strategy is the

production of phytohormones or their mimics. The

phytotoxin coronatine (COR) produced by certain

strains of P. syringae functions as an analog of JA-iso-

leucine (JA-Ile), an active endogenous JA, and con-

tributes to suppressing stomatal and apoplastic

immunity by reducing SA accumulation and/or by

inactivating MAPKs [66,67]. Production of COR or

COR-like compounds is known in other bacterial

pathogens, suggesting that producing JA-Ile mimicking

compounds may be a widespread strategy for bacterial

pathogens to confer fitness advantages in plant hosts

[68]. Several plant pathogens produce the auxin indole-

3-acetic acid (IAA) to affect host auxin signaling [16].

Disruption of aldA and aldB, encoding IAA biosynthe-

sis enzymes, leads to reduced bacterial virulence in the

plant host in an SA-dependent manner [69], suggesting

that hijacking auxin signaling is a virulence mechanism

that suppresses SA-mediated immunity. Notably, some

bacteria are known to produce SA although the physi-

ological significance of this during interaction with

plants remains elusive [70,71].

Which of these strategies (signaling manipulation by

proteinaceous effectors or phytohormones) is more

advantageous for pathogens? Effector proteins that tar-

get phytohormone signaling pathways can potentially

be recognized by plant NLRs and trigger ETI. Indeed,

AvrRpt2, AvrB, AvrPtoB, and HopZ1a are known to

trigger ETI in certain plant genotypes [62,72–75]. On

the other hand, phytohormones or their mimics pro-

duced by bacteria would have no or less risk of trigger-

ing ETI as they can hardly be recognized as foreign

molecules. Thus, it could be argued that the production

of phytohormones (mimics) is more advantageous.

However, a comparative genome analysis of 287 P. sy-

ringae strains showed that COR is not the dominating

JA-activating molecule over other JA-manipulating

effectors [63]. Although more comprehensive analysis

including COR-like molecules would be helpful, these

data imply that there are additional factors that deter-

mine the value of these virulence molecules. It was pro-

posed that, while COR and HopX1a fully activate JA

responses, HopBB1 targets only a subset of the JAZ

proteins and activates a subset of JA-mediated

responses, potentially minimizing pleiotropic negative

effects on the hosts, which could lead to the benefit of

the pathogens [63]. Since biosynthesis of COR requires

a series of chemical reactions and enzyme-encoding

genes, one can speculate that COR production may be

costly for bacteria compared with T3Es as a single T3E

can provide an added value [76].

Effector-triggered immunity can effectively suppress

pathogen growth despite the existence of many viru-

lence T3Es and toxins that interfere with the plant

immune networks. An emerging idea for explaining

this is that ETI can counteract virulence actions of

pathogen effectors. For instance, ETI triggered by

AvrRpt2 induces S-nitrosylation and inactivation of

the bacterial effector HopAI1 that suppresses MAPKs,

important components of plant immunity [77], thereby

restoring plant immunity [78]. Also, AvrRpt2-triggered

ETI cancels COR-triggered gene regulation that causes

MAPK inactivation [67]. Understanding the precise

mechanisms of pathogen virulence and its suppression

by plant immunity is key to engineer the plant immune

networks. In a pioneering work, based on the crystal

structure of the receptor-ligand complexes, the JA

receptor COI1 was engineered to avoid binding to

COR while maintaining the binding with JA-Ile [79].

Transgenic plants expressing the modified COI1 recep-

tor in coi1 background showed insensitivity against

COR while maintaining the functions of endogenous

JA [79].

The virulence networks of plant–
bacterial pathogens

Bacterial genes and processes that are important for

virulence in plants have been characterized in different

bacterial species. These include T3SSs, T3Es, quorum

sensing, and iron homeostasis. However, how these

processes are regulated in planta is poorly understood.

In addition, the regulatory mechanisms of pathogen

virulence pathways appear to be different even

between closely related bacterial strains, which makes

it difficult to distil a general concept. Nevertheless, in

this section, we highlight relatively well-studied
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bacterial virulence factors and their regulations in

planta and discuss the possible feature of the bacterial

virulence networks.

T3SSs and T3Es are the best studied bacterial fac-

tors in plant pathogens that are crucial for virulence

and for structuring host range [80–83]. Genes related

to T3SS and T3Es are involved in so-called the hrp

regulon and are regulated in a synchronized manner,

e.g., they are induced upon infection to the host or in

growth media mimicking plant environments [80].

HrpL, an ECF sigma factor, is the primary regulator

of this regulatory pathway in many plant–bacterial
pathogens [80]. hrpL mutants of P. syringae show

impaired virulence in tomato and A. thaliana [84,85].

HrpL also regulates several non-T3E genes, some of

which are important for pathogen virulence. These

include iaaL, an IAA-amino acid conjugate synthase,

matE, a putative MATE family transporter, and corR,

a COR regulator, all of which are important for the

virulence of Pto [84,86,87].

Quorum sensing (QS) is a cell–cell communication

process with which bacteria orchestrate their responses

as a community and is important for bacterial viru-

lence [88]. QS is mediated by signaling molecules called

autoinducers that are produced and secreted into the

environment and are perceived by specific receptors.

Acyl-homoserine lactones (AHLs) are the most com-

mon autoinducer in gram-negative bacteria [88]. In

P. syringae pv. syringae (Pss), a mutant lacking both

the AHL synthase and AHL receptor showed reduced

virulence in bean leaves [15]. The QS system was

shown to regulate many genes related to virulence,

such as plant cell wall degrading enzymes and T3SS in

Pectobacterium atrosepticum during infection in potato

[89]. Bacteria likely employ QS systems to respond to

host signals in addition to their own signals. Typically,

genes encoding an AHL synthase and AHL receptor

are linked on the genome, but some receptor genes

lack their paired AHL synthase genes; these are called

orphan or solo receptors [90]. A subgroup of the

orphan receptors, found in plant-associated bacteria,

responds to plant-derived compounds and regulates

virulence-related genes [91,92]. For instance, an orphan

receptor of Xanthomonas oryzae pv. oryzae, OryR, is

important for responding to rice-derived compounds

and positively regulating the expression of genes

important for virulence [93–95].
Iron is an essential element for most organisms,

including plants and bacteria and iron homeostasis is

known to be important for bacterial virulence in plant

and animal hosts [13,96]. Fur is the primary regulator

of iron homeostasis in many bacteria, which typically

functions as a transcriptional repressor of its target

genes in the presence of Fe2+ and this negative regula-

tion is released under an iron-deficient condition [97].

Among the Fur-regulated genes is pvdS, encoding an

ECF sigma factor, which regulates genes related to the

production of a siderophore, pyoverdine, and other

genes [98,99]. Siderophores have been shown to be

important for virulence of P. syringae pv. tabaci in

tobacco [100], but are dispensable for virulence of Pto

in tomato and A. thaliana [101].

Another ECF sigma factor, AlgU, is known to be

important for the virulence of bacterial pathogens

[102]. AlgU controls alginate biosynthesis and other

processes and algU mutants of Pto, P. syringae pv.

glycinea (Psg) PG4180, and Pss B728a showed reduced

virulence in plants [102–104]. Despite the important

role of alginate in the virulence of P. aeruginosa and

Pss [105,106], alginate production was shown to be

dispensable for the virulence of Pto and Psg PG4180

[102,103], suggesting that other processes controlled by

AlgU are important for bacterial virulence. Indeed,

RNA-seq analysis of in vitro-cultured Pto showed that,

in addition to alginate biosynthesis, AlgU regulates

genes related to osmotic and oxidative stress responses

and T3SS, which might explain the role of AlgU in

bacterial virulence [102]. Moreover, a microarray anal-

ysis of the algU mutant of Pss B728 showed that AlgU

impacts a large number of genes in planta [104].

In some plant bacterial pathogens, T3SS and QS

systems are influenced by AlgU and/or iron availabil-

ity. The hrp regulon of Pto is positively regulated by

AlgU and external iron [102,107]. Fur positively regu-

lates psyI and psyR, which encode an AHL synthase

and receptor, respectively, in P. syringae pv. tabaci

[108]. A PvdS-binding site was found in the upstream

region of psyI in Pto [99], although the functional rele-

vance of this remains elusive. In addition, Dulla et al.

[109] showed that iron availability affects QS processes

in Pss. Thus, bacterial virulence signaling pathways

appear to be interconnected to form the bacterial viru-

lence networks. Similar to plant immune networks, this

interconnected feature would provide regulatory poten-

tial that benefits bacterial pathogens inside and outside

the host. This deserves further research.

Impacts of plants on bacterial
virulence networks

Plant-derived compounds affect bacterial

virulence-related processes

The role of plant-derived compounds during plant–
bacterial interactions is well studied in the legume–
rhizobium symbiosis. Phenolic compounds, especially
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flavonoids, secreted by legume plants are recognized

by rhizobia in a species-specific manner, thereby

inducing rhizobial genes important for establishing

symbiotic interactions [110]. However, how plant-

derived compounds affect bacterial pathogens in

plants is scarcely understood.

Despite our poor understanding of how plants disrupt

or exploit the bacterial virulence networks, accumulat-

ing evidence suggests that plant-derived compounds can

affect bacterial physiology. The QS signaling of multiple

bacterial species was shown to be affected by plant-

derived compounds in vitro [19,111–118]. For instance,

SA and c-aminobutyric acid activate the quorum-

quenching system, attKLM operon, in Agrobacterium

tumefaciens and suppress QS responses [19]. Also, flavo-

noids derived from citrus inhibit the QS system, biofilm

formation, and T3SS expression of Vibrio harveyi [118].

Rosmarinic acid was shown to directly bind to a QS

receptor RhlR of P. aeruginosa and act as an AHL

mimic [119]. These examples illustrate the possibility

that plants modulate bacterial QS processes as an

immune mechanism.

Evidence supports that phytohormones not only reg-

ulate plant responses but also directly affect bacterial

physiology. SA was shown to suppress the expression

of virulence genes in A. tumefaciens and P. aeruginosa

[19,120]. Lebeis et al. showed that SA directly affects

in vitro growth of some bacterial strains isolated from

A. thaliana plants grown in a wild soil [121]. Impor-

tantly, the accumulation of SA in the apoplast was

shown to increase upon pathogen infection [122].

These results suggest that SA can affect metabolism of

bacterial pathogens directly as well as through well-

described SA-mediated plant immune signaling [123].

In addition, a plant-derived auxin, IAA, negatively

affects expression of virulence genes in A. tumefaciens

and the T3SS in Pseudomonas savastanoi in vitro

[19,124]. On the other hand, plant-produced IAA in

plants and the exogenous application of IAA in vitro

positively regulate the expression of virulence genes in

Dickeya dadantii 3937 [125] and genes encoding com-

ponents of the type VI secretion system of P. savas-

tanoi [124], respectively. Although it is evident that

phytohormones can affect bacterial metabolism and

behaviors, how bacteria perceive phytohormones and

if phytohormone perception is important for bacterial

virulence are poorly understood.

The hrp regulon is also responsive to plant-derived

compounds [80]. For instance, the hrp genes are

induced when bacteria contact plant cells [80]. Also,

plant apoplastic extracts can induce the hrp genes

[126]. Several organic acids produced by plants were

shown to induce the hrp genes of Pto in vitro as well

as in planta [127]. Plant-derived flavonoids suppress

the expression of hrp genes and flagella [128]. Further-

more, the A. thaliana mutant of att1, a cytochrome

P450 monooxygenase catalyzing fatty acid hydroxyla-

tion, showed higher expression of T3SS genes of

P. syringae pv. phaseolicola (Pph) compared with

wild-type plants [129], implying that plant-derived

fatty acids may suppress the expression of T3SS. Col-

lectively, various plant-derived compounds might

function as signaling cues for bacterial pathogens to

induce the virulence pathways and also function as

defense molecules for plants to suppress bacterial

virulence.

How does plant immunity affect bacterial

signaling networks?

It has been shown that PTI, but not ETI, suppresses

the translocation of T3Es into plant cells [130–132].
Consistently, PTI, but not ETI, suppresses the

expression of T3SS genes in Pto [130,132,133]. PTI

also suppresses the expression of genes related to

biosynthesis of COR, siderophore, and alginic acid

[133]. Yet, the mechanism of how plant immunity

affects bacterial gene expression is mostly enigmatic.

It was shown in A. thaliana that the immune-related

MAPK, MPK6, suppresses the production of

organic acids that induce T3SS expression and T3E

translocation, thereby inhibiting bacterial growth

[127]. These organic acids are most likely secreted

into the plant apoplast, an important growth niche

for bacterial pathogens, and changing apoplastic

conditions may be a major plant immune strategy to

control bacterial pathogens. During ETI triggered by

the infection of Pph, the leaf apoplast of Phaseolus

vulgaris showed many changes including increased

pH and accumulation of GABA and metal cations,

some of which may be responsible for pathogen

growth inhibition [134]. Limiting or over-supplying

metals is known to be a defense strategy in animals

[96]. Thus, it is possible that plants change the con-

tent of metals in the apoplast for inhibiting bacterial

growth [13]. A transcriptome study of Pto in A.

thaliana leaves revealed that bacterial genes sup-

pressed in an iron-rich in vitro condition were also

suppressed by PTI and ETI, suggesting plant immu-

nity causes iron-rich-like responses in the bacterial

pathogen [133]. However, the apoplastic iron content

remained unchanged during PTI or ETI activation

[133]. Thus, plants might regulate bacterial iron

homeostasis by means other than directly changing

iron content in the apoplast (e.g., producing iron

mimics).
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Other factors are also changed in the apoplast dur-

ing plant immunity. Sugar transporters in A. thaliana

are activated during PTI and sequester apoplastic

sugar to inhibit the activity of the T3SS and bacterial

growth [135]. Plant immunity might also control

pathogen virulence by keeping water content in the

apoplast low, as Pto creates an aqueous apoplast for

virulence [136]. The temperature of the apoplastic

space in relation to plant immunity is one of the unex-

plored research topics. The activation of plant immu-

nity causes stomatal closure [137] and stomatal closure

is known to lead to higher leaf temperature [138].

Thus, it may be possible that apoplastic temperature

rises during plant immune activation and affects bacte-

rial virulence as analogous to the fever response of

vertebrates, a hallmark of infection and inflammatory

response [139]. Understanding how these changes in

the apoplast caused by plant immunity affect bacterial

metabolisms in planta is understudied and an impor-

tant future research area.

In planta bacterial transcriptome

An effective approach to understanding the impact of

plant immunity on bacterial signaling networks is to

profile bacterial transcriptome responses in planta. In

planta bacterial transcriptome studies using microarray

have been conducted in root nodules and xylem, in

which bacterial cells are relatively highly abundant and

are compartmentalized in specific organs [140–143].
However, it is very challenging to profile transcrip-

tomes of bacteria colonizing in the apoplast because

bacteria are in low abundance and difficult to isolate

without affecting their gene expression. Yu et al. pio-

neered the transcriptome analysis of the bacterial

pathogen, Pss B728a, in the apoplast of bean leaves as

well as leaf surface by using microarray [144]. Later,

the same group performed microarray analysis of bac-

terial mutants and highlighted the contribution of

sigma factors in regulating the bacterial transcriptome

in planta [104]. In planta transcriptome analysis was

also reported in D. dadantii infecting A. thaliana using

microarray [145]. Recently, RNA sequencing (RNA-

seq) approaches were applied to profile in planta tran-

scriptomes of Xanthomonas axonopodis infecting bean

[146], and Pto infecting A. thaliana [133,147]. RNA-seq

profiling of wild-type and mutant strains of Pto in a

variety of A. thaliana immune compromised mutants

revealed the global impact of PTI and ETI and

phytohormone signaling pathways on bacterial gene

expression [133]. In susceptible plants, the bacterial

pathogen-induced genes related to T3SS, T3Es, COR,

siderophores, and alginate at an early stage of

infection; and these genes were suppressed in PTI-acti-

vated plants [133]. On the other hand, ETI suppressed

only a subset of these PTI target genes, namely sidero-

phore-related genes, although both PTI and ETI can

effectively suppress pathogen growth, suggesting differ-

ent modes of action for PTI and ETI [133]. Notably,

bacterial genes related to protein translation (ribosomal

proteins) were induced in susceptible plants and sup-

pressed by PTI, but not by ETI [133]. In nature, plants

are colonized by a multitude of microbes including bac-

teria collectively called the plant microbiota, which is

important for plant health [148], and plant immunity is

known to affect microbial community composition and

microbial load in plants [121,136,149]. Targeting of

such a fundamental process for life (i.e., not specific for

pathogens) by PTI may suggest a role in affecting

metabolisms of microbiota members. Profiling in planta

transcriptome of a variety of plant-associated bacteria

would reveal mechanisms by which plants control

metabolisms of bacterial community colonizing in

plants. For this, it is important to develop high-

throughput methods for in planta bacterial transcrip-

tome as current approaches are limited in throughput

because they are still labor-intensive or costly.

Toward the holistic understanding of
interactions between plants and
bacteria

As discussed, both plants and bacterial pathogens have

evolved their own molecular signaling networks. The

molecular networks of plants and bacterial pathogens

appear to be interconnected to form supernetworks, as

bacterial pathogens interfere with plant immune net-

works by multiple means and plant immunity also

affects components of the bacterial virulence networks

(Fig. 1). Here, we discuss small molecules produced by

plants and bacteria that potentially play a role in assem-

bling the supernetworks between the two organisms.

Bacteria produce a variety of phytohormones (mim-

ics), such as IAA, SA, ET, ABA, cytokinin, gib-

berellin, and COR [16,68,71,150,151]; some of these

phytohormones (mimics) produced by bacteria have

been shown to affect plant physiology including plant

immunity [16,68]. On the other hand, bacteria also use

phytohormones to regulate their own responses. For

instance, IAA is used as a QS signal in some bacteria

[152], suggesting that plant-derived IAA has a poten-

tial to affect bacterial physiology, including virulence

via the QS system. The ability of both plants and bac-

teria to produce and perceive phytohormones raises

the possibility that phytohormones are key molecules

that connect the plant immune and bacterial virulence
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networks. Moreover, plants can perceive siderophores

[153] and AHLs [154–156] produced by bacteria to

trigger defense responses, suggesting that the role of

these small molecules is not restricted within or

between bacterial species but that they might be used

for direct interactions between plants and bacteria.

Intriguingly, a number of bacterial strains produce

pipecolic acid and appear to release a large amount of

this chemical into the soil [157]. Pipecolic acid is also

produced by plants and plays an important role in

mediating systemic acquired resistance, which is effec-

tive against a broad range of pathogens [158]. There-

fore, bacteria-derived pipecolic acid may have a

significant effect on inducing systemic acquired resis-

tance, thereby protecting plants from potential patho-

gens. Reciprocally, plant-derived pipecolic acid may

affect bacterial networks. Indeed, it is known that a

number of bacterial strains assimilate pipecolic acid

[157]. Collectively, small molecules that play important

roles in the signaling networks within plants and/or

bacteria can potentially connect these two networks,

assembling supernetworks and potentially driving the

evolution of the plant–bacterial pathogen holobiont

(Fig. 2).

The concept of supernetwork is not specific to the

interaction between plants and pathogenic bacteria.

For instance, in legume–rhizobium symbiosis, regula-

tion of symbiosis-related genes of the hosts and bacte-

ria are tightly connected by the exchange of small

molecules produced by both sides [110]. Plants would

form molecular supernetworks also with various com-

mensal bacteria in the plant microbiota, in which inter-

and intrakingdom communications occur via diverse

signals [159]. Recent development of in planta bacterial

transcriptome analysis using RNA-seq, together with

transcriptome analysis of plants, will open a new ave-

nue for dual ‘-omics’ analyses of various combinations

of plant and bacterial genotypes/species during interac-

tions. Currently, in planta bacterial transcriptome anal-

ysis is mostly limited to studies of binary interactions

between plants and single bacterial species. Establish-

ment of in planta metatranscriptome analysis of bacte-

rial communities would pave the way for comparing

the structure of molecular supernetworks between

plants and various microbiota members including

pathogens, mutualists, and commensals under more

ecologically relevant conditions. Understanding the

commonalities and differences of molecular supernet-

works in different plant–bacterial interactions is an

important future research area for unlocking the com-

plex molecular interactions between plants and micro-

biota, which will provide untapped engineering

potential in plant breeding.
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