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We study equilibration and ordering in the classical dipolar kagome Ising antiferromagnet, which
we show behaves as a disorder-free fragile spin glass. By identifying an appropriate order parameter,
we demonstrate a transition to the ordered state proposed by Chioar et al. [Phys. Rev. B 93, 214410
(2016)] with a 12-site unit cell that breaks time-reversal and sublattice symmetries, and further
provide evidence that the nature of the transition is first order. Upon approaching the transition,
the spin dynamics slow dramatically. The system readily falls out of equilibrium, overshooting
the transition and entering a supercooled liquid regime. Using extensive Monte Carlo simulations,
we show that the system exhibits super-Arrhenius behavior above the ordering transition. The
best fit to the relaxation time is of the Vogel-Fulcher form with a divergence at a finite “glass
transition” temperature in the supercooled regime. Such behavior, characteristic of fragile glasses,
is particularly remarkable as the model is free of quenched disorder, does not straightforwardly
conform to the avoided criticality paradigm, and is simple and eminently realizable in engineered
nanomagnetic arrays.

I. INTRODUCTION

It is well known that the presence of disorder in a sys-
tem can generate a rugged free-energy landscape result-
ing in slow or glassy dynamics. The converse—the ap-
pearance of glassiness in the absence of disorder—is far
less understood. Due to their complex energy landscapes
exhibiting multiple minima, geometrically frustrated sys-
tems with long-range interactions are natural candidates
in this regard1,2. In recent years, interesting glassy slow
dynamics in the absence of disorder has been uncovered
in electronic Coulomb liquids on the triangular lattice at
quarter-filling3. The dynamics of electrons on the frus-
trated kagome lattice has also received some attention
of late4, but strong metastability effects mean there re-
main open questions about the nature of the ground state
in that system. Slow dynamics persist even for faster-
decaying interactions (dipolar instead of Coulomb) in
systems without particle-number conservation, i.e., spin
systems. This was demonstrated, for instance, in Ref. 5
where due to strong freezing and metastability effects the
nature of the ground state could not convincingly be es-
tablished.

In this paper, we explore in greater detail the lat-
ter case, namely, that of frustrated Ising spins on the
kagome lattice subject to dipolar interactions—the dipo-
lar kagome Ising antiferromagnet (DKIAFM). We begin
by identifying an order parameter for the state proposed
by Chioar et al.5. This allows us to confirm the na-
ture of the ground state in extensive simulations of small
systems and to provide evidence that the nature of the
transition is first order. Approaching the transition, the
spin dynamics slow dramatically, and a supercooled liq-
uid regime can appear upon further cooling. Despite the
propensity of the system to fall out of equilibrium, we are
able to reach thermodynamic equilibrium in Monte Carlo
simulations for systems of up to around 300 spins. At

equilibrium above the ordering transition we find robust
evidence of super-Arrhenius behavior. The relaxation
time τ appears to diverge according to a Vogel-Fulcher
law τ ∼ exp[∆/(T −T0)], characteristic of fragile glasses,
at a temperature lower than the thermodynamic transi-
tion temperature. The glassy slowing down may be re-
lated to the existence of many low-lying metastable states
exhibiting dendritic arrangements of emergent charges.

Our results highlight the DKIAFM as particularly suit-
able for the study of disorder-free glassy dynamics. On
one hand, fragile glass behavior where the timescale di-
verges at a finite temperature in the supercooled liq-
uid regime, is hard to come by in nondisordered sys-
tems in two dimensions6. On the other hand, theoretical
models of glasses without disorder where the thermody-
namic behavior is well understood are typically limited to
the rather artificial multispin Hamiltonians of kinetically
constrained models7, difficult to realize in a laboratory,
and unlikely to occur in real materials. The DKIAFM ex-
hibits the above interesting features with a Hamiltonian
that is eminently realistic.

Experimental realizations of the DKIAFM have al-
ready been obtained using artificial nanomagnetic ar-
rays8 (indeed it is these realizations that motivated the
authors of Ref. 5 to first study this model), and one may
be able to study similar systems in real time on a “micro-
scopic” scale9. The behavior exhibited by the DKIAFM
may also be relevant to monolayer colloidal crystals10,11

where recent advances have enabled the study of slow
dynamics of frustrated systems in real time. Another
potential avenue where this model could be realized in
experiments is that of cold polar molecules12 and atomic
gases with large magnetic dipole moments13. Of partic-
ular interest there would be the possibility of investigat-
ing how the relaxation time scales and glassy behavior
may be affected by quantum dynamics. Finally, (lay-
ered) kagome spin lattices occur in solid-state materials
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FIG. 1. The dipolar kagome Ising antiferromagnet. The
spins Si (red arrows) share a global Ising easy axis perpendic-
ular to the plane (in the êz direction) and interact via nearest-
neighbor exchange interactions of strength J and long-range
dipolar interactions of characteristic strength D. The sublat-
tices a = {1, 2, 3} are numbered.

and can be combined with the crystal-field physics of
rare-earth ions to achieve the desired easy-axis (Ising)
nature and leading dipolar interactions14–16.

The remainder of the paper is organized as follows. In
Sec. II we introduce the DKIAFM model. In Sec. III we
discuss the ordering displayed by the model and the na-
ture of the transition to the ground state. In Sec. IV we
discuss the dynamic properties of the model at low tem-
peratures, in particular, the spin relaxation. In Sec. V we
consider the dynamics of the model out of equilibrium.
Finally in Sec. VI we conclude and discuss the connection
to experiments.

II. MODEL

We consider the dipolar kagome Ising antiferromagnet5

(illustrated in Fig. 1) in which N classical spins Si are
arranged on the kagome lattice and share a global Ising
easy axis perpendicular to the plane (in the êz direction).
As such, the spins Si = µσiêz can be described by the
Ising pseudospin variables {σi = ±1}, and µ is the mag-
nitude of the spin magnetic moment (we set µ = 1 where
relevant in the remainder of the paper).

The Hamiltonian comprises an exchange term of
strength J between spins at nearest-neighbor lattice sites
〈ij〉 and long-range dipolar interactions of characteristic
strength D = (µ0/4π)µ2/r3

nn between all pairs of spins,
where rnn is the nearest-neighbor distance of the lattice.
The Hamiltonian is given by

H = −J
∑
〈ij〉

σiσj +Dr3
nn

∑
j>i

σiσj
|rij |3

, (1)

where rij ≡ rj−ri is the separation between spins at lat-
tice sites i and j. The Hamiltonian (1) is equivalent to
dipolar spin ice on the kagome lattice (see, e.g., Ref. 17)
in the limit of spins rotated so that they are perpendic-
ular to the plane.

We are interested here in the case where both interac-
tions are antiferromagnetic, namely, J < 0 and D > 0.
The case where D = 0 is known to be fully frustrated and
does not order down to zero temperature18. The phase
diagram of the case where J = 0 is less well understood
but the system is again strongly frustrated with any or-
dering (if present at all) suppressed down to temperatures
T � D8. A more detailed discussion of the frustration in
Eq. (1) is given in Appendix A. Throughout the remain-
der of this paper we consider the coupling parameters
from Ref. 5, namely, D = 1 K and J = −0.5 K (we set
kB = 1 and measure all energies in Kelvin).

III. ORDER PARAMETER AND NATURE OF
THE TRANSITION

Long-range ordering has not yet been directly observed
in the DKIAFM. In Ref. 5 it was found that at very low
temperatures the system exhibits freezing of single spin
flip and loop dynamics while seemingly being on the verge
of an ordering transition as evidenced by the onset of a
pronounced peak in the specific heat. A candidate for
the ground state of the present model was proposed and
shown to be consistent with the available thermodynamic
data from simulations. The state, illustrated in Fig. 2,
has a 12-site magnetic unit cell that can be visualized
as arising from tesselating trapezoids of alternating spins
to form 7 shapes. For more details on this construction
see Ref. 5; in the following we refer to this state as the
proposed ground state.

The state is sixfold degenerate—under threefold ro-
tation (sublattice) symmetry and twofold time-reversal
symmetry. Upon assigning an emergent charge variable
to each of the up- and down-type triangles (4 and 5)
on the kagome lattice,

Q4 =
∑
i∈4

σi; (2)

Q5 = −
∑
i∈5

σi, (3)

the proposed ground state can be seen to exhibit a
charge-stripe pattern [see Fig. 2(b)]. Here we confirm
the proposed low-temperature ordered state and study
in detail the thermodynamic behavior of the system by
devising an appropriate order parameter and perform-
ing extensive Monte Carlo simulations that manage to
achieve thermodynamic equilibrium below the ordering
temperature.

Upon inspecting the spin configuration in Fig. 2(a),
we note that one sublattice of the kagome triangles (in
this instance, sublattice 1) is completely polarized with
the state having zero magnetization overall. This obser-
vation leads us to postulate that the proposed ground
state, which breaks time-reversal and sublattice symme-
tries, can be described by an appropriate order parameter
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FIG. 2. Proposed ground state of the dipolar kagome Ising
antiferromagnet. (a) The spins exhibit a pattern which breaks
both time-reversal and sublattice symmetries with one sub-
lattice polarized (here, sublattice 1). The 12-site magnetic
unit cell is outlined (rhomboid box). Black points indicate up
spins (σ = 1), and white points indicate down spins (σ = −1).
(b) The charges Q (defined in the text) exhibit a charge-stripe
pattern: red dots indicate positive charges (Q = 1), and blue
dots indicate negative charges (Q = −1).

for the transition, namely, the sublattice magnetization,

ma =
3

N

∑
i∈sublat. a

σi, (4)

where a ∈ {1, 2, 3}. The proposed ground state has one
sublattice a ≡ a′ polarized such that ma′ = ±1 and the
other two sublattices with

∑
a 6=a′ ma = ∓1, such that the

state has zero magnetization overall. Notice the spin pat-
tern on the two non-polarized sublattices: it has period
four with three spins σ = ∓1 followed by one spin σ = ±1
[along the horizontal bonds in Fig. 2(a)]; such lines of
spins are stacked in a specific chiral structure.

To verify this, we performed extensive Monte Carlo
(MC) simulations of the DKIAFM Hamiltonian (1) us-
ing a 12-site unit cell commensurate with the proposed
ground state. Our system contains N = 12L2 spins.
To ensure that we do not exclude other possible ordered
states, we also considered system sizes that are commen-
surate with plausible competing phases, which include
the
√

3 ×
√

3 state19. Unlike Chioar et al. (see Ref. 5)
and Chioar (see Ref. 20), we sum the pairwise dipolar
interactions via the method of summation of copies em-
ployed in Refs. 17 and 21 until convergence of one part
in 106. Since loop dynamics do not appear to help in al-
leviating the freezing5, we use Metropolis single spin-flip
dynamics throughout. We cool the system from equi-
librium at T/D = 1 in increments of 0.5× 10−3D using
2 × 104 modified MC sweeps for equilibration at each
temperature step. Following Ref. 5, we take a modified
Monte Carlo sweep at a given temperature to correspond
to N × r−1 single spin-flip attempts, where r is the ac-
ceptance ratio at that temperature22. We time average
at each temperature by measuring quantities 400 times,
each measurement separated by 50 modified MC sweeps,
and we ensemble average the results over 64 indepen-
dent simulations. We note that this simulation protocol
requires a substantial investment of computational re-
sources but, by careful analysis of spin autocorrelation
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FIG. 3. (a) Specific heat C and (b) sublattice magnetization
ma of the DKIAFM for system sizes L = {2, 3, 4, 5}. The
ordering transition to the proposed ground state is signaled
by a peak in the specific heat C and concomitant increase
in the sublattice magnetization ma which acts as an order
parameter.

functions, we are able to ensure thermodynamic equi-
librium down to temperatures lower than the transition
temperature, at least for sufficiently small system sizes
as discussed below.

The specific heat C and sublattice magnetization ma

are shown in Figs. 3(a) and 3(b), respectively, for sys-
tem sizes L = {2, 3, 4, 5} with N = {48, 108, 192, 300}
spins. The ordering transition is signaled by a peak in
the specific heat (at around Tc/D ' 0.05 for L = 5) and
a clear concomitant increase in ma from zero to one, sig-
naling the complete development of order consistent with
the proposed ground state. Direct inspection of the spin
configurations confirms that indeed the system in each
case reaches the proposed ground state. The freezing of
spin dynamics at low temperatures is remarkably strong,
and we were unable to fully equilibrate systems larger
than L = 5 (300 spins) in times compatible with also
obtaining enough data for averaging purposes.

As shown in Fig. 3(b), the order parameterma presents
a jump which becomes increasingly sharp for larger sys-
tem sizes. This trend towards discontinuous behavior
(rather than power-law behavior) is suggestive of a first-
order phase transition. The average energy per spin 〈e〉,
which can be seen in the inset of Fig. 4, also displays
an abrupt decrease at the transition temperature, the
sharpness of which increases for larger systems23. This is
consistent with the latent heat expected to accompany a
first-order transition.

The associated energy histogram p(e) is shown in
Fig. 4, at temperatures just above (T/D = 0.060),
approximately at (T/D = 0.052), and just below
(T/D = 0.0505) the transition (for L = 5). Above the
transition, there is a single Gaussian-like peak which
indicates a unique phase. The emergence close to the
transition temperature of a double-peaked structure in-
dicates the coexistence of two distinct phases of different
energies (one of which is the ground state) and thus a
first-order transition. At lower temperatures, the higher-
energy peak disappears as the system increasingly occu-
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FIG. 4. Energy histogram p(e) around the transition tem-
perature for L = 5 (the largest system size we are able
to fully equilibrate). Just above the transition temperature
(T/D = 0.060), a single Gaussian-like peak indicates the pres-
ence of a unique phase. Around the transition temperature
(T/D = 0.052), p(e) displays a double-peaked structure indi-
cating the coexistence of two distinct phases (one of which
is the ground state) and thus a first-order transition. At
lower temperatures (T/D = 0.0505), the higher-energy peak
becomes comparatively much less pronounced as the system
increasingly occupies the low-energy state. Inset: average en-
ergy per spin 〈e〉 as a function of temperature T for two dif-
ferent system sizes L = {2, 5}. The transition is signaled by
an abrupt decrease in the energy 〈e〉, the sharpness of which
increases with system size.

pies the ground state.
We have examined the scaling of the maximum of the

specific heat peak Cmax with the system size L but do not
find convincing evidence for it scaling with the volume of
the system (∝ L2) as expected for a first-order transition
(not shown). Possible deviations could be due to strong
finite-size effects for the modest system sizes that we are
able to equilibrate reliably. Similar behavior has been
found in studies of first-order transitions in long-range
interacting Ising spin systems on the square lattice24.

IV. SPIN RELAXATION AT LOW
TEMPERATURES

Upon approaching the thermodynamic phase transi-
tion, the DKIAFM exhibits noticeable freezing of its spin
dynamics, which we study quantitatively using the spin
autocorrelation function,

C(t) =
1

N

∑
i

σi(0)σi(t). (5)

We consider single spin-flip dynamics and measure time
in Monte Carlo sweeps (that is to say, regular MC sweeps
defined as the number of MC spin-flip attempts per spin,
in contrast to the modified MC sweeps used in the pre-
vious section). We focus on the behavior of the autocor-
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FIG. 5. Top: examples of spin autocorrelation functions
(symbols) and relative stretched exponential fits (solid lines),
used to extract τ and β. The behavior of the latter as a
function of temperature is shown in the inset. The system
size is L = 3. Bottom: spin autocorrelation time τ as a
function of inverse temperature (black squares) on a semilog-
arithmic scale. The noticeable departure from linear scaling
at low temperatures is characteristic of super-Arrhenius be-
havior (black solid squares). The vertical line indicates the
finite-size transition temperature Tc/D ' 0.057. The same
data are also plotted against D/(T − T0) to show that τ di-
verges according to a Vogel-Fulcher form with T0/D = 0.0206
and ∆/D = 0.292 (the dashed blue line is the corresponding
fit to the data).

relation function in thermodynamic equilibrium, equiva-
lent to the tw →∞ limit of the two-time autocorrelation
function C(t, tw). The decay of C(t) is not captured by a
simple exponential but is rather described by a stretched
exponential,

C(t) = exp[−(t/τ)β ], (6)

where τ is the relaxation timescale and β ≤ 1 is the
Kohlrausch exponent. Stretched-exponential relaxation
is typical of systems with complex energy landscapes and
often associated with glassy or supercooled liquid behav-
ior25. We fit a stretched exponential to C(t) and ex-
tract both the relaxation time τ and the stretching ex-
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ponent β for different temperatures T (see the top panel
of Fig. 5)26.

The relaxation time τ for an L = 3 system obtained
from the fit to C(t) is plotted as as a function of in-
verse temperature T (in units of D) in the bottom
panel of Fig. 5 (black solid squares). The approximate
finite-size transition temperature for the L = 3 system
Tc/D = 0.057± 0.002 is indicated by the vertical dashed
line. There is clear evidence of super-Arrhenius behavior
as the temperature is lowered (above Tc). The stretching
exponent β as a function of temperature is shown in the
inset of Fig. 5 top panel, demonstrating that the decay of
C(t) becomes increasingly stretched at low temperatures.

Thanks to the two-dimensional nature of the system,
we were able to push the numerical simulations to ex-
plore a reasonably large range of relaxation timescales.
We attempted to fit the temperature dependence using
several known forms, and found that only two of them
produce good agreement27—the Vogel-Fulcher form

τ ∼ exp

(
∆

T − T0

)
, (7)

and a parabolic law28,

τ ∼ exp

(
A

T
+
B

T 2

)
(8)

(note that both have the same number of fitting param-
eters). Our data show that the former yields a quanti-
tatively better fit, and we focus on it presently. How-
ever, the difference is marginal, and for completeness we
report a detailed comparison between the two forms in
Appendix B. Both forms for the relaxation time τ are
characteristic of fragile glass behavior25,29, which goes
hand in hand with the propensity of the system to ex-
hibit supercooled liquid behavior across the thermody-
namic transition.

In the bottom panel of Fig. 5 we plot the timescale
τ on a logarithmic scale as a function of D/(T − T0)
for different values of T0. Our best-fitting parameters
are T0/D = 0.0206± 0.0002 and ∆/D = 0.292± 0.001.
Note the long relaxation times (τ ∼ 105 MC sweeps)
at the lowest temperatures.

V. BEHAVIOR OUT OF EQUILIBRIUM

We also ran simulations with larger systems of size
L ∈ {9, 12, 15}, the features of which we discuss briefly
here in regard to out-of-equilibrium behavior. For these
system sizes, the cooling protocol described in Sec. III is
not sufficient to thermalize the system. However, the
slower the cooling protocol, the more pronounced the
peak in the specific heat signaling the incipient transition
becomes. To illustrate the development of order out of
equilibrium, we simulate systems of sizes L = {4, 12, 15}
with a protocol that results in substantial (but not com-
plete) ground-state order in the L = 4 system; we then
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FIG. 6. Behavior of (a) the specific heat C and (b) the
sublattice magnetization ma for system sizes L = {4, 12, 15}
as a function of temperature T in the case where the number
of sweeps per temperature step is insufficient to equilibrate
the system.

increase the system size. The specific heat C and or-
der parameter ma that we identified in this paper (see
Sec. III) are illustrated in Figs. 6(a) and 6(b) respectively.
The developing order in the system is most visible in the
behavior of the order parameter ma. Even though the
value of the order parameter remains rather smaller than
the saturated value at all temperatures, it becomes dis-
tinctly nonzero—well above statistical fluctuations—at a
well-defined temperature that we identify as a reasonable
proxy for the thermodynamic transition temperature Tc
of the system [see Fig. 6(b)]. The specific heat C be-
haves in a largely L-independent manner and lacks the
pronounced L-dependent peak present when the system
is able to reach equilibrium [see Fig. 3(a)]. This is a
signature of the supercooled liquid behavior.

Understanding the onset of the ordered phase below Tc
when the system is out of equilibrium is hindered by the
elaborate spin pattern of the 12-site magnetic unit cell.
We can gain some visual intuition by taking advantage
of the fact that one of the sublattices is fully polarized in
the ordered state. In Fig. 7, we plot separately the indi-
vidual sublattices a = {1, 2, 3} of a low-temperature spin
configuration in a L = 9 system. Each sublattice forms
a triangular lattice. A system which is fully ordered in
the ground state [see Fig. 2(a)] would have one sublattice
fully polarized (say, all black) and the two other sublat-
tices partially polarized in the opposite direction (say,
mostly white)—with a pattern where one row is fully
polarized and the next row has alternating signs. This
behavior can indeed be recognized in some regions of the
system in Fig. 7 (for example, the white top-right region
for a = 1 and corresponding regions for the other sublat-
tices). By examining individual sublattices in this way,
it is clear that the system exhibits some domains con-
sistent with the ground-state order, although identifying
boundaries between domains is difficult.

In the right panel of Fig. 7, we plot the corresponding
configuration of the charges Q. In the charge picture, it
is not immediately easy to identify ordered domains, but
on more detailed inspection one can recognize patches of
parallel charge stripes, reminiscent of the charge order of
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a = 1 a = 2 a = 3 charges

FIG. 7. Individual sublattices a = {1, 2, 3} of a low-temperature spin configuration in a L = 9 system are plotted separately in
the first three panels from the left. Each sublattice constitutes a triangular lattice. Regions of full polarization in one sublattice
can clearly be seen (for example, the white top-right region for a = 1) with the corresponding regions in the other sublattices
polarized mostly in the opposite direction (mostly black). Note the typical pattern of the partially polarized sublattices with
rows of spins that alternate between fully polarized and alternating signs. The values for the overall sublattice magnetizations
of this configuration are m1 = −0.074, m2 = −0.185, and m3 = 0.259. The corresponding charge configuration is shown in the
right panel, exhibiting a characteristic dendritic stripe pattern.

the ground state [see Fig. 2(b)]. The different domains
with charge stripes oriented along different lattice direc-
tions compete with one another, leading to a dendritic
arrangement of charge stripes. The charge configuration
corresponds thus to a kind of “stripe liquid,” reminiscent
of that observed in a study by Mahmoudian and cowork-
ers3 of frustrated Coulomb liquids on the triangular lat-
tice at half-filling (cf., for example, Fig. 2(c) in Ref. 3). In
that work, the authors also observe glassy slow dynamics
due to a large manifold of low-lying metastable states;
however the divergence of the relaxation timescales at
low temperatures in that system is of the more com-
mon Arrhenius behavior, characteristic of strong rather
than fragile glasses. In our system, patches with packed
parallel stripes of charges require coordinated “topolog-
ical” (system-spanning) rearrangements of the spin ori-
entations in order to move between low-energy states. It
is tantalizing to speculate that an appropriate effective
modeling of such spin rearrangements may be key to un-
derstanding the glassy slow dynamics (see Appendix C).

VI. DISCUSSION AND CONCLUSIONS

To summarize, we have investigated the nature of the
ordered phase and phase transition in the DKIAFM. By
means of extensive Monte Carlo simulations and the iden-
tification of a suitable order parameter, we were able to
confirm the ground state proposed in Ref. 5. We also pro-
vided evidence that the nature of the transition is first
order.

Interestingly, we notice that a Coulombic system of
charges hopping on a kagome lattice4 appears to exhibit
a remarkably similar ordering tendency to the present
system, which is also prevented by slow dynamics. We
wonder whether the hitherto puzzling ordered state un-
derlying Fig. 1 in Ref. 4 may be the same ordered state
demonstrated in our paper. Indeed, it may be possible
to establish an intuitive connection between the orders

exhibited by the two models via the charge mapping dis-
cussed in Appendix C.

Upon approaching the phase transition, the DKIAFM
exhibits a remarkable propensity to fall out of equilib-
rium and enter a supercooled liquid phase, avoiding any
sign of the full transition altogether5. We studied the
equilibrium behavior of the spin autocorrelation function
above the transition and observed that it is well described
by a stretched exponential form, typical of glass-forming
systems. From the stretched exponential relaxation we
obtained the temperature dependence of the equilibrium
relaxation time scale and found it to obey a Vogel-Fulcher
law, typical of fragile glasses.

This is a remarkable result in a system without disor-
der with an eminently simple two-body Hamiltonian in
the absence of dynamical constraints (single spin-flip up-
dates). The behavior cannot be related—to the best of
our understanding—to the avoided criticality paradigm:
the short range interaction terms in the Hamiltonian are
frustrated and do not lead per se to a continuous phase
transition; moreover, dipolar interactions are not suffi-
ciently long ranged to suppress an ordering transition
irrespective of their strength. Interestingly, recent ex-
perimental work has hinted that a state similar to a su-
percooled liquid might exist at low temperatures in the
frustrated pyrochlore material Dy2Ti2O7

30.

Our paper propels the DKIAFM in the study of glassy
dynamics in systems without disorder. Further work is
needed to understand the origin of the dynamical slowing
down—here we merely speculate that it may be related
to topological spin rearrangements between low-lying en-
ergy states via an effective dumbbell and charge descrip-
tion (discussed in Appendix C). What makes this system
even more interesting is the potential for experimental
verification in several realistic setups from colloidal crys-
tals to artificial nanomagnetic arrays to (layered) bulk
kagome materials.
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FIG. 8. Illustration of second- (J2) and third- (J3) neighbor
interaction distances on the kagome lattice, indicated by the
dashed lines.
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Appendix A: Quantifying frustration

In the following we study the level of frustration
present in the DKIAFM by considering Pauling estimates
of the ground-state degeneracy as the range of the inter-
actions is progressively increased. This illustrates how or-
dering in the model is expected to arise only from (some)
third-neighbor or longer-ranged terms. We also compute
the Fourier transform of the full interaction matrix, show-
ing a lowest band that is substantially flatter than the
full spectrum bandwidth: another hallmark of a highly
frustrated system.

1. Pauling estimates for truncated interactions

We consider here the Hamiltonian (1) truncated at
third-neighbor distance and written for convenience as

H = J1

∑
〈ij〉

σiσj + J2

∑
〈〈ij〉〉

σiσj + J3

∑
〈〈〈ij〉〉〉

σiσj . (A1)

In accordance with the choice of parameters in Sec. II, we
set J1 = 1.5, J2 ' 0.692, and J3 = 0.625. The second-
and third-neighbor distances on the kagome lattice are
illustrated for convenience in Fig. 8. Note that there
are two types of third-neighbor distances, whose length

is exactly twice the kagome lattice constant: one type
is across the hexagonal cells, and the other is along two
aligned consecutive bonds (not shown). The J3 term in
Eq. (A1) encompasses both types.

A simple Pauling argument allows to estimate the
ground-state degeneracy of the J1-J2-J3 model in vari-
ous regimes. For J2 = J3 = 0, the model reduces to the
nearest-neighbor kagome spin ice model of Wills, Ballou
and Lacroix31, for which a Pauling estimate gives an en-
tropy of ln[2(3/4)2/3] ' 0.5014 per spin (this is very close
to the known exact value 0.501832).

The J2 interactions form three independent kagome su-
perlattices on which they try to enforce the ice rules (the
triangles of these superlattices live inside the hexagons
of the original lattice). Each kagome superlattice has
N ′tri = Ntri/3 triangles, where Ntri = 2Ns/3 is the num-
ber of triangles in the original kagome lattice (Ns being
the total number of spins). Therefore the number of pos-
sible states can be estimated starting from the nearest-
neighbor J1 result as

Ω ' 2Ns ×
(

6

8

)Ntri

︸ ︷︷ ︸
kagome ice rule result

×
(

6

8

)N ′
tri

×
(

6

8

)N ′
tri

×
(

6

8

)N ′
tri

︸ ︷︷ ︸
constraint from three kagome superlattices

= 2Ns ×
(

6

8

)2Ntri

= 2Ns ×
(

6

8

)4Ns/3

' (1.363)Ns . (A2)

This leads to an entropy SJ1-J2 = ln Ω ' 0.309Ns.
Similarly, the J3 interactions form three triangular su-

perlattices on which they try to enforce the ice rules
(these are simply the three sublattices of the original
kagome lattice). Each triangular superlattice has N ′′s =
Ns/3 spins and thus N ′′tri = 2N ′′s = 2Ns/3 = Ntri tri-
angles. Therefore the number of possible states can be
estimated starting with the J1-J2 result as

Ω ' 2Ns ×
(

6

8

)2Ntri

︸ ︷︷ ︸
J1-J2 interactions

×
[(

6

8

)N ′′
tri

]3

︸ ︷︷ ︸
constraint from three triangular superlattices

= 2Ns ×
(

6

8

)10Ns/3

' (0.767)Ns . (A3)

This leads to an entropy SJ1-J2-J3 = ln Ω ' −0.266Ns,
which is negative and suggests that the system orders.
(Alternatively, one could use the known residual en-
tropy per spin of a triangular Ising antiferromagnet,
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FIG. 9. Specific heat C and entropy S of the effective J1-J2-J3 model (plotted on the same axis). (a) J1 only. This model
is equivalent to the nearest-neighbor kagome spin ice model. It exhibits a ground-state entropy in good agreement with the
Pauling estimate of 0.501 per spin (dashed line). (b) J1-J2. This model exhibits a second peak in the specific heat at lower
temperatures, associated with the onset of the ice rules on the kagome superlattices dictated by the J2 interactions. The
ground-state entropy is in good agreement with the Pauling estimate of 0.309 per spin (dashed line). (c) J1-J2-J3. After the
second feature in the specific heat, the model falls out of equilibrium, as indicated by the difference between the ensemble-
averaged results (points) and time-averaged results (dashed line) for the specific heat and the spin entropy. Also plotted is the
sublattice order parameter ma, which displays an increase from zero, hinting at ordering consistent with the dipolar ground
state. The system size is L = 3, and the coupling constants where not vanishing are J1 = 1.5, J2 ' 0.692, and J3 = 0.625.

STIAFM = 0.32306, to estimate a Pauling-like reduction
factor for each of the three triangular superlattices of
(0.691)N

′′
s . Substituting this term inside the square

bracket in the second line of Eq. (A3), one obtains
Ω ' (0.94)Ns and SJ1-J2-J3 ' −0.06Ns, which is still
negative but only very marginally so.)

It is interesting to notice that, if only a subset
of the third-neighbor (J3) interactions are kept (those
across the hexagons as illustrated in Figure 1, but not
those along the bonds of the lattice), and if we set
J1 = J2 = J3, then the effective model is one where the
energy can be written in terms of a sum over all hexagons
of the squared magnetization of each hexagon. The
ground states of this model have zero total magnetization
on each hexagon and a Pauling estimate suggests a resid-
ual ground state degeneracy of Shex = (Ns/3) ln(5/2) '
0.305Ns (20 out of the 64 possible spin arrangements on
a hexagon have null magnetization, and there are Ns/3
hexagons in a kagome lattice of Ns spins). This is an
interesting model which might warrant further investiga-
tion in the future.

2. Simulations

We investigate the above predictions with Monte Carlo
simulations of the J1-J2-J3 Hamiltonian (A1).

Figure 9 shows the results for (a) the specific heat per
spin C and entropy S for the J1 only case, (b) the J1-J2

case, and (c) the J1-J2-J3 case, for a system of size L = 3.
As mentioned above, only the J1 case is equivalent to the
nearest-neighbor kagome ice model of Wills et al.31 and
correspondingly displays a broad Schottky peak in the

specific heat C at around T ∼ 2 (in units where J1 = 1.5)
signaling the onset of the kagome ice rules and a drop in
the entropy S down to a value in good agreement with
the Pauling estimate of 0.501 per spin (dashed line).

The J1-J2 case displays an additional bump in the spe-
cific heat at a slightly lower temperature around T ∼ 0.5
and a drop in the entropy to a value close to the Pauling
estimate of 0.309 per spin (dashed line) We therefore as-
cribe the lower-temperature feature in the specific heat
to the onset of the ice rules on the three kagome super-
lattices.

In the J1-J2-J3 case, after the onset of the kagome ice
rules, the second feature in the specific heat is pushed to
lower temperatures, and the system falls out of equilib-
rium, signaled by the difference between the ensemble-
averaged results and the purely time-averaged results.
The divergence of the specific heat at low temperatures
in the ensemble-averaged case indicates that the system
does not find a unique energy minimum despite us using
extremely slow annealing protocols at low temperatures
as in the study of the full dipolar case above (for con-
creteness, we cool from T = 1 in decrements of 5× 10−4

using 2× 104 modified MC sweeps for equilibration at
each temperature step).

Despite our inability to equilibrate the system, we do
find a small signature of a trend towards the proposed
ground state. The order parameter ma from Eq. (4) re-
mains zero up to fluctuations for the J1-J2 case at all
temperatures, whereas for the J1-J2-J3 case it increases
from zero to a value of about 0.13 for temperatures lower
than approximately T = 0.03, signaling some develop-
ment of order consistent with the proposed ground state
[see Fig. 9 (c)]. However, other types of order are consis-
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FIG. 10. Eigenvalues λn(q) of the Fourier transform of
the interaction matrix Jab(q) on a path in the Brillouin zone
Γ→ Y→ X→ Γ. There are three branches due to the three
sites in the unit cell. The flatness of the bottom branch
is characteristic of frustration. Inset: zoom on the bottom
branch λmin(q), which presents a minimum at the Γ point.

tent with this signature, and further work is needed to
say anything conclusive on the matter. It seems that the
J1-J2-J3 model is perhaps even more frustrated than the
full dipolar model and that further-neighbor interactions
play a key role in relieving some frustration and selecting
the ground state.

3. Interaction matrix

Each lattice site i ≡ (l, a) has an index l which labels
the sites of the Bravais lattice formed by the centers of
the up-type kagome triangles and an index a ∈ {1, 2, 3}
which labels the sublattice (see Fig. 1). Namely, the spins
Si ≡ Sal ≡ µσal êz have positions ri ≡ ral ≡ Rl+ea, where
{Rl} point to the centers of the up triangles, and {ea}
are the vectors from the centers of the triangles to each
of the three spins,

e1 = (0, 1/
√

3, ) (A4)

e2 = (−1,−1/
√

3)/2, (A5)

e3 = (1,−1/
√

3)/2, (A6)

in units of the kagome lattice constant.
The Hamiltonian (1) can then be written as

H =
∑
lm

∑
ab

Jab(Rlm)σal σ
b
m , (A7)

where Rlm ≡ Rm −Rl. In Fourier space,

H =
∑
q

∑
ab

Jab(q)σaqσ
b
−q, (A8)

where σal =
∑

q σ
a
q exp(iq · ral ) and

Jab(Rlm) =
∑
q

Jab(q) exp(iq · rablm) (A9)

2 4 6 8 10 12 14 16
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3

FIG. 11. Best fits to the dependence of the relaxation time τ
(squares) vs inverse temperature T using Vogel-Fulcher (red
solid line) and parabolic (blue dashed line) forms. The Vogel-
Fulcher form provides a better fit to the data.

is the 3× 3 interaction matrix, where rablm ≡ rbm − ral .
The eigenvalue spectrum λn(q) of Jab(q) is shown in

Fig. 10. It has three branches due to the three sites in the
unit cell. The flatness of the bottom branch λmin(q) (il-
lustrated in detail in the inset of Fig. 10) is characteristic
of frustration in the model. Note that its bandwidth is
only about 2% of that of the full spectrum. The minimum
at the Γ point suggests that, at the mean-field level, the
leading ordering instability from the high-temperature
phase is expected to be at q∗ = (0, 0). (Our results are
the extension to the Ising case of the results found for
Heisenberg spins by Maksymenko and co-workers33).

Appendix B: Vogel-Fulcher vs parabolic fit

In order to compare the temperature dependence of
the relaxation time scale in the DKIAFM to the Vogel-
Fulcher and parabolic laws, we fit ln τ(T ) to

ln τ0 +
∆

T − T0
, (B1)

and to

ln τ0 +
A

T
+
B

T 2
, (B2)

with three fitting parameters each. The best fits give
τ0 ' 1.83, ∆/D ' 0.292, T0/D ' 0.0206, and τ0 ' 1.94,
A/D ' 0.252, B/D2 ' 0.0112, respectively, and are
shown in Fig. 11.

We use the full range of numerical values of τ(T ) for
the fit, and we find a marginally better result using the
Vogel-Fulcher form. This can be quantified by computing
the squared difference between the best fit and the nu-
merical data, summed over all temperature data points;
the resulting variance is 3.5 times larger for the parabolic
law than for the Vogel-Fulcher form. The difference is
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θ ≃ 19◦

Q = −1

Q = −1

FIG. 12. Each spin of magnitude µ is decomposed into a
dumbbell, i.e., a pair of charges of strength ±q separated by
a distance a such that µ = qa. Starting in-plane charges,
with the distance a chosen so that the charges at the end of
the dumbbells overlap at the centers of the triangles, we pro-
gressively tilt the spins out of the plane of the lattice. In the
process, we increase a and correspondingly reduce q so that
the charges remain overlapping and µ = qa is kept constant.
The sum of three overlapping charges is proportional to the
corresponding triangular charge Qα introduced in the main
text (and shown as Q in the figure). The limiting case of
spins perpendicular to the kagome plane corresponds to the
DKIAFM, which can then be seen as two infinitely separated
triangular layers of charges (indicated by the dashed lines).

however visibly marginal as demonstrated by the com-
parison in Fig. 11.

Appendix C: Effective charge picture, emergent
charge stripes, and freezing

To better understand the nature of the low-energy
states in the DKIAFM, it is interesting to draw a par-
allel with a related model: kagome ice31. In the latter,
the Ising spins lie within the plane of the lattice, and
point directly into or out of a triangle. A useful way
for understanding kagome ice derives from the so-called
dumbbell picture where each spin is represented as a pair
of magnetic charges ±q separated by a distance a such
that µ = qa34,35. Specifically, it is customary to choose a
so that the three charges in each triangle of the kagome
lattice meet precisely at its center. To leading order, the
Hamiltonian of kagome ice can then be written in terms
of the total charges Qα inside each triangle (labeled by

α),

Heff =
∑
α

1

2
v0Q

2
α +

µ0

8π

∑
β<α

QαQβ
rαβ

. (C1)

The first term is a chemical potential of strength v0 for
the charges, and the second term is a long-range Coulomb
interaction between them. Notice that the lattice formed
by the centres of the triangles is a honeycomb lattice dual
to the original kagome lattice. Much of the physics of
kagome ice can be understood more intuitively in terms
of such system of interacting charges than in terms of the
original spins.

Inspired by the dumbbell construction of the charges in
kagome ice, one can view the DKIAFM as the limit where
the spins are progressively tilted until they become per-
pendicular to the kagome plane (as illustrated pictorially
in Fig. 12). In the process, one ought to take the limit
a → ∞ (and, correspondingly, q → 0) to preserve the
charges at the end of the dumbbells overlapping at the
same location. (Note that the magnetic charges Qα asso-
ciated with each triangle in the dumbbell picture are, in
fact, proportional to the charges Q4 and Q5 introduced
in Sec. III.) Of course, the greater the tilt, the less accu-
rate the dumbbell picture becomes, and at some point the
description in terms of resummed charges ought to break
down. However, we are tempted to ignore this issue and
see what the naive limiting scenario suggests about the
behavior of the system. Resumming the charges as above
leads to a description in terms of two triangular layers
(one formed by the centers of the up-kagome triangles;
the other by the centers of the down-kagome triangles,
shown as dashed lines in Fig. 12) that, to first approxi-
mation, are decoupled from one another. The coupling
within each triangular layer is due to the (antiferromag-
netic) Coulomb interaction between charges given by the
second term in the effective Hamiltonian (C1). Such a
Coulomb-interacting system on the triangular lattice is
predicted36,37 to be partially frustrated and have ground
states where charges alternate in one lattice direction but
are random in the other direction. An example is illus-
trated in Fig. 13 (top panel). These states can be viewed
as charge-stripe patterns on the triangular lattice with
alternating lines of like charges that correspond to the
path of a random walk that can either turn left or right
as it moves vertically from one row to the next. There is
a whole family of ∼ 2L such states, each corresponding
to a particular choice of path for the stripes.

The two triangular layers appear decoupled in terms of
the Coulomb interaction between the resummed charges
Qα, which, in the limit of dumbbells perpendicular to the
plane, are infinitely separated from one another. How-
ever, the dipolar interaction between the original spins
can be seen to favor like charges to sit close to one an-
other across layers. Indeed, a charge in one layer adjacent
to a charge of the same sign in the other layer corresponds
to a mainly antiferromagnetic (and thus energetically fa-
vored) spin arrangement as illustrated in Fig. 12(b). If we
pair the top and bottom triangular charge layers, each in
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FIG. 13. Coulomb-interacting positive (magenta) and neg-
ative (cyan) charges on the triangular lattice are expected to
order in patterns, such as that in the top panel, with charges
alternating along one lattice direction and random along the
other. Note that one can view the charge pattern in terms of
stripes along the lattice bonds (running largely from top to
bottom in the configuration chosen here). The interactions
between the two layers, dictated by the dipolar coupling be-
tween the underlying spins, favors like charges close to one
another across layers, and leads to an overall charge arrange-
ment, such as the one in the bottom panel, also exhibiting
charge stripes. There is a whole class of these energetically
low-lying states, which includes the dipolar ground state.

one of their stripe configurations, so as to maximize the
proximity between like charges across layers, we obtain
overall charge arrangements, such as the one illustrated
in Fig. 13 (bottom panel). One triangular layer becomes
a slave to the other, but an ∼ 2L degeneracy survives and
it again takes the form of charge stripes randomly turn-
ing left and right as they stretch across the lattice. The
total number of states in this family is thus subextensive,
i.e., its entropy scales with the linear size of the system.
Remarkably, one of these states is indeed the 7-shape
ground state of the DKIAFM, illustrated in Fig. 2(b).

Although we have clearly taken the dumbbell picture
and corresponding charge representation well beyond its
limit of validity and the energetic arguments above can-
not be trusted per se, one can compute the actual ener-
gies of various charge-stripe configurations, such as that
in Fig. 13 (bottom panel) in terms of original spins via
the Hamiltonian (1). We find that many of them lie very
close in energy to the ground state (with an energy dif-
ference of as little as 1.3%), whilst differing from it in
configuration space by a topological rearrangement of at
least O(L) spins. Indeed, in order to change a charge
stripe state into another without introducing costly de-
fects (dislocations, namely, stripe endpoints and branch-
ing), one needs to modify the spin configuration so as
to move the charge stripes consistently across the whole
system, which amounts to a system-spanning topological
update.

We speculate that the existence of this subextensive
manifold of energetically low-lying but configurationally
topologically distinct states may be one of the key rea-
sons underpinning the strong freezing observed in the
DKIAFM at low temperatures. We stress that this is a
mere speculation, and, in particular, we make no claim
to have identified all low-lying energy states, which may
well be extensive in number, as more typically expected
in glassy systems.
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32 K. Kanô and S. Naya, Prog. Theor. Phys. 10, 158 (1953).
33 M. Maksymenko, V. R. Chandra, and R. Moessner,

Phys. Rev. B 91, 184407 (2015).
34 C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature

451, 42 (2008).
35 G.-W. Chern, P. Mellado, and O. Tchernyshyov,

Phys. Rev. Lett. 106, 207202 (2011).
36 J.-R. Lee and S. Teitel, Phys. Rev. Lett. 66, 2100 (1991).
37 J.-R. Lee and S. Teitel, Phys. Rev. B 46, 3247 (1992).
38 M. Grousson, G. Tarjus, and P. Viot, Phys. Rev. E 65,

065103 (2002).
39 M. Grousson, G. Tarjus, and P. Viot, J. Phys.: Con-

dens. Matter 14, 1617 (2002).

http://dx.doi.org/10.1038/ncomms13842
http://dx.doi.org/10.1103/PhysRevB.95.104439
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1143/JPSJ.62.3943
http://dx.doi.org/10.1143/JPSJ.62.3943
https://tel.archives-ouvertes.fr/tel-01310158/
http://dx.doi.org/10.1103/PhysRevB.80.140409
http://dx.doi.org/10.1103/PhysRevB.80.140409
http://dx.doi.org/10.1103/PhysRevE.80.021114
http://dx.doi.org/10.1103/PhysRevE.80.021114
http://dx.doi.org/10.1063/1.1560937
http://dx.doi.org/10.1021/jp810362g
http://dx.doi.org/10.1063/1.4795539
http://dx.doi.org/10.1063/1.4795539
http://dx.doi.org/ 10.1073/pnas.1511006112
http://dx.doi.org/10.1103/PhysRevB.66.144407
http://dx.doi.org/10.1103/PhysRevB.66.144407
http://dx.doi.org/10.1143/ptp/10.2.158
http://dx.doi.org/10.1103/PhysRevB.91.184407
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1103/PhysRevLett.66.2100
http://dx.doi.org/10.1103/PhysRevB.46.3247
http://dx.doi.org/10.1103/PhysRevE.65.065103
http://dx.doi.org/10.1103/PhysRevE.65.065103
http://stacks.iop.org/0953-8984/14/i=7/a=318
http://stacks.iop.org/0953-8984/14/i=7/a=318

	Supercooling and fragile glassiness in a dipolar kagome Ising magnet
	Abstract
	I Introduction
	II Model
	III Order parameter and nature of the transition
	IV Spin relaxation at low temperatures
	V Behavior out of equilibrium
	VI Discussion and conclusions
	VII Acknowledgements
	A Quantifying frustration
	1 Pauling estimates for truncated interactions
	2 Simulations
	3 Interaction matrix

	B Vogel-Fulcher vs parabolic fit
	C Effective charge picture, emergent charge stripes, and freezing
	 References


