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Gravitational waves from merging binary black holes carry the signature of the strong field dynamics of
the newly forming common horizon. This signature pesents itself in the amplitudes and phases of various
spherical harmonic modes as deviations from the point particle description provided by post-Newtonian theory.
Understanding the nature of thesedepartures will aid in (a) formulating better models of the emitted waveforms in
the strong field regime of the dynamics, and (b) relating the waveforms observed at infinity to the common horizon
dynamics. In this work we have used a combination of numerical relativity simulations and post-Newtonian theory
to search for the modes of radiation whose amplitude is most affected by the strong field phase of the evolution.
These modes are identified to carry the signature of the strong field regime due to significant deviations of the
numerical data from the leading order post-Newtonian predictions. We find that modes with large amplitudes or
with spherical harmonic indices ` = m are least modified from their dominant post-Newtonian behavior, while
the weaker ` , m modes are modified to the greatest extent. The addition of spins to the binary components
only affects the current-multipole modes with ` + m = odd at the order of interest and does seem to stabilize
some of these modes, the (`,m) = (3, 2) mode being the exception. This mode is the most promising candidate to
observe the signature of strong field dynamics as it shows the deviations from post-Newtonian behavior equally
for binaries with non-spinning and aligned spinning black holes.

I. INTRODUCTION AND MOTIVATION

The Laser Interferometer Gravitational-Wave Observatory
(LIGO) at two sites in the USA (Hanford, WA and Livingston,
LA) and the Virgo detector in Pisa, Italy, have opened a new
era in multi-messenger astronomy and fundamental physics
via the discovery of binary black hole [1–5] and binary neutron
star [6] mergers. These discoveries have, for the first time,
enabled tests of dynamical gravity in the strongly dissipative
regime of the theory [3, 5, 7, 8], i.e. the period derivative of the
binary Ṗ changes very rapidly during the time of observation
(see Refs. [9–12]). This is in contrast to the Hulse-Taylor bi-
nary [13] where the change in period Ṗ is essentially constant.

Radio measurements of the rate at which the orbital period
decays in a binary neutron star allowed spectacular confirma-
tion of the quadrupole formula [14–17]. However, radio binary
pulsars probe the weak field sector of the two-body dynamics1,
wherein the dimensionless gravitational potential φ of one of
the bodies on the other is φ � 1, or, equivalently, the speed
v obeys v/c ∼

√
φ � 1. In contrast, GW observations of the
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1 We note that the self-gravity of the neutron stars, which must be taken

into account in the measurement of the various binary parameters, are
large. Indeed, the compactness of neutron stars given by the dimensionless
quantity C ≡ GMNS/c2RNS, where MNS is the mass of the neutron star and
RNS its radius, is about C ∼ 0.2. In this sense, the observations do probe the
strong field regime of general relativity; however, the two-body dynamics is
governed by weak fields.

merger make it possible to test GR when φ ∼ 0.5 (the largest it
ever gets) and the system is strongly dissipative. Consequently,
LIGO, Virgo, and other future ground-based GW detectors
(KAGRA and LIGO-India) can test the validity of GR in an
entirely new regime of the theory.

A. Modeling binary black hole dynamics

The dynamics of a binary black hole consists of three phases:
inspiral, merger, and ringdown. Inspiral refers to the early
phase of the binary evolution when the effect of radiation re-
action on the orbital motion is small. The slow-motion, weak-
field dynamics of this phase, when the two black holes are far
apart, is well-modeled by post-Newtonian (PN) theory (see
Ref. [18] for a review) where all the observables are expressed
as a power series in v/c. The strong field dynamics close to
the merger and the dynamics of the highly deformed remnant
black hole can only be modeled using numerical relativity
(NR), where one solves Einstein’s equation for the two-body
problem using numerical techniques (see Ref. [19] for a re-
view). The ringdown phase of the dynamics occurs when
the remnant black hole has become less deformed and can be
well-approximated as a perturbation of a Kerr black hole and
modeled using black hole perturbation theory (see Ref. [20]
for a review).

The waveform emitted by an inspiralling compact binary
predominantly consists of the quadrupole mode. It was pointed
out that controlling the evolution of the orbital phase of the
dominant mode was far more important [21] for the detection
problem than controlling the correction to its amplitude or
the inclusion of higher order modes (called higher harmonics)
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that contain wave frequencies other than twice the orbital fre-
quency of the quadrupole mode. In this so-called restricted
post-Newtonian approximation one neglects the correction to
the amplitude of the waveform arising from higher order mul-
tipoles. However, higher modes are critical for an unbiased
estimation of both the intrinsic parameters of a binary (e.g.
companion masses and spins) but also the orientation of the
binary relative to a detector and its position on the sky [22–
26]. In this work we will show that higher modes also serve
another purpose: they allow us to identify the signature of
non-perturbative, strong field dynamics of the merged horizon.

What is intriguing in the binary black hole dynamics is the
transition of the perturbative dynamics of the two black holes
to the perturbative dynamics of the remnant black hole via the
highly non-perturbative merger. It is hence interesting to ask
how the information about the two black holes from the inspi-
ral phase propagates to the merger and ringdown phases and
whether just observing the latter two, one can infer the prop-
erties of the binary components. Using a spherical harmonic
decomposition of the radiation field, we wish to understand
which of the spherical harmonics modes of the remnant re-
tain the information about the progenitor black holes. Those
which change the least are mostly unaffected by the strong
field physics during the merger phase while those that are al-
tered would carry the imprints of the dynamics of black hole
horizons. This is the main goal of this work.

A critical component needed to achieve this goal is the avail-
ability of analytical models of the binary evolution that are
matched to exact solutions of the two-body problem obtained
by numerical integration of Einstein’s field equations. The
Effective One-Body (EOB) approach maps the general rela-
tivistic two-body problem to an equivalent one-body dynamics
of a test body moving in an effective metric [27–29]. The
model is improved by matching the analytical waveform to nu-
merical relativity simulation [30–33] for the dominant [34, 35]
and higher order modes [36–38], as well as precessing spins
[39, 40]. The evolution of this EOB dynamics is accurate until
very late times, until just after the two bodies have merged to
form a common, apparent horizon (see Ref. [41] for a review
on the apparent and dynamical horizons). The EOB is built on
the post-Newtonian Hamiltonian of two point masses in orbit
around each other. Therefore, it cannot handle the dynamics
of the merged horizon, nor how it loses its hair to settle down
to a quiescent Kerr state. Instead the evolution stops when
the system reaches the light ring of the EOB metric (or the
unstable photon orbit), which is found to be close to the peak
of the amplitude of the NR waveform and the location of the
common apparent horizon.

The other approach to building a frequency domain wave-
form model starts with the construction of “hybrid” waveforms
constructed by matching the post-Newtonian and numerical
relativity waveforms in a regime where both are valid [42–48].
The Fourier transforms of these hybrid waveforms is further
used to construct analytical waveform models for binary black
holes. These phenomenological models, by design, are com-
putationally highly efficient and have been used, together with
EOB, in the detection of gravitational waves from binary black
holes [1–5] and are used in the measurement of source pa-

rameters [3–5, 8, 49]. However, phenomenological models,
too, are unable to handle the dynamics of the merged horizon
or understand how the common horizon loses its additional
“hairs” (acquired from the progenitor system) to settle down to
a quiescent Kerr state.

Understanding the dynamics of the common horizon and
relating it to gravitational waves at null infinity will be critical
in building more refined waveform models and using gravita-
tional wave observations to test predictions of general relativity
in dynamical spacetimes. Recently there have been efforts to
extract the dynamics of the black hole horizons from the nu-
merical simulations Ref. [50], where the authors computed
the multipole moments, fluxes and other relevant quantities of
the horizon in full general relativity. More recently Ref. [51]
proposed an analytical model for binary black hole merger by
considering the strong field effects to be small throughout the
merger and assuming the dynamics at the late stages of the
merger to be a linear perturbation of the space-time of the final
remnant even before the merger has happened.

B. Imprints of progenitors on the BH ringdown spectrum:
Past studies

Previous studies [52, 53] found that the properties of the
progenitor system such as the symmetric mass ratio η =

m1m2/(m1 + m2)2 (where m1,2 denote the binary component
masses) or mass ratio-weighted combinations of component
spins (referred to as “effective spin” parameter) leave their
unique imprints on various ringdown modes of the remnant
black hole. More specifically, Ref. [52] had found that for
mergers of nonspinning black holes, the amplitudes of the
four strongest modes, (2,2), (2,1), (3,3), (4,4), maintain η-
dependencies even 15M after the luminosity of the (2,2) mode
peaks. In a follow-up work Ref. [53] further investigated bina-
ries whose component spins are aligned with the orbital angular
momentum of the system. The authors found that the relative
amplitude of the (2,1) mode 10M after the peak luminosity
could be captured by a fitting formula with two variables: η
and an effective spin parameter.

While the fitting function for the (2,2) mode in Ref. [52] was
chosen based on physical intuition gained from PN theory, the
ansatz for the other modes were based on fits to the numerical
data. Similarly, [53] uses a functional form for the (2,1) mode
inspired by PN theory including not only symmetric mass ratio,
but also spin dependencies. Achieving a good fit required an
effective spin combination that was slightly different from the
one found in PN approximation [54]. These results pointed
to the interesting possibility of inferring the properties of the
progenitor black holes just from the late ringdown signal.

Following a different approach [55], London et al. studied
the η-dependence of the higher modes of the post-merger am-
plitudes. Their study is based on fitting the amplitudes of
higher modes from NR simulations to high-order polynomials
in the symmetric mass ratio. Such fits are useful in building
analytical models of the post-merger waveforms. Indeed, in a
more recent study [56], London et al. developed a new phe-
nomenological waveform model that includes higher modes.



3

The emphasis lay on the construction of a model that captures
the results from NR simulations, and not on relating these
modes to the dynamics of black hole horizons.

C. Present work

In the present work we use a combination of numerical rel-
ativity simulations and post-Newtonian theory to study the
evolution of different modes of gravitational waves as a func-
tion of time, mass ratio and mode-dependent “effective spin”
parameters (see Eq. 3.9). The phase evolution of each mode,
being a multiple of the orbital phase, is essentially the same
for all modes and has been amply studied in the literature; we,
therefore, restrict our study entirely to the mode amplitudes.
The two gravitational wave polarisations h+ and h× from an
inspiralling binary are, in principle, composed of infinitely
many modes as exemplified by the relation [57]

h+ − i h× =

∞∑
l=2

∑̀
m=−`

h`m −2Y`m(θ, φ) , (1.1)

where −2Y`m are the spin -2 weighted spherical harmonics,
(θ, φ) define the direction of propagation of the wave, and
h`m are the spherical harmonic wave modes. Although the
quadrupole (`,m) = (2, 2) mode is the dominant mode, higher
order modes can have comparable, albeit smaller, amplitudes
relative to the quadrupole when the component masses are very
different or the compact objects have significant spin. In the
inspiral regime, using a cocktail of approximation schemes,
post-Newtonian theory provides an effective framework to re-
late the radiative multipoles observed at infinity to the source
multipoles [18, 58] thereby expressing the observed gravita-
tional waveform in terms of the multipole moments of the
source.

Kelly and Baker [59] investigated the effects of mode mixing
between the spherical harmonics, used in NR and PN theory,
and spheroidal harmonics. The latter capture the axial symme-
try of the Kerr spacetime and hence are a more suitable basis to
describe perturbations of the Kerr metric during the ringdown.
In particular, they showed that the (3, 2) spherical harmonic
mode has significant contributions from different spheroidal
harmonic modes, which is referred to as mode mixing. What
causes this mixing is the interaction between the gravitational
waves and the Kerr like spacetime through which they propa-
gate. A spheroidal harmonic decomposition renders the modes
to fall off more smoothly as a function of time, thus allowing a
more accurate modeling of the waveform. While this is true,
we provide an alternate description of mode mixing as arising
due to the failure of the point particle description of PN theory
close to the formation of a common horizon.

Here, extending the works of [52, 53], we compare several
subdominant spherical harmonic modes from SXS numerical
simulations [60] with the leading terms in the corresponding
PN expressions for these modes allowing for one free param-
eter for the nonspinning case and two free parameters for the
spinning case. Our aim is to identify those modes which can
be fitted very well with the above mentioned PN theory-based

fits and those which cannot. We argue that those modes which
cannot be fitted with our model, capture the strong field physics
due to the dynamics of the horizon formed by the merger of
two black holes.

We find that the most dominant mode amplitudes hardly
change their dependence on the symmetric mass ratio, given
from post-Newtonian theory, throughout the evolution of the
binary, even when a common horizon has formed. Further, we
find that the signature of the strong field regime is encoded
in a small number of modes that are sub-dominant, with their
amplitude being less than 10% of that of the quadrupole.

The paper is organized in the following way. Section II
describes the SXS numerical simulations we employ for the
study. The fitting model we use, based on post-Newtonian
expressions for leading order spherical harmonic modes of
the waveform, is explained in Sec. III. Our results on the PN
signatures in the spherical harmonics modes of numerical rel-
ativity are described in Sec. IV and the implications of these
results for the horizon dynamics of BHs are discussed in Sec. V.
Some of the technical details of the simulations are elaborated
in appendix B.

II. NUMERICAL SIMULATIONS

This project utilizes publicly available BBH gravitational
waveforms from the SXS collaboration [60]. The concrete sim-
ulations used are listed in Appendix B. Specifically, Table III
lists the 43 non-spinning simulations that were used, while Ta-
ble IV lists the 121 aligned-spin simulations. The simulations
were originally presented as follows:

• The first SXS waveform catalog [32] (1 ≤ SXS id ≤
174).

• Simulations for developing techniques for very high BH
spins [61, 62] (175 ≤ SXS id ≤ 178).

• Simulations for a waveform surrogate model for non-
spinning BBH systems [63] 180 ≤ SXS id ≤ 201).

• BBH simulations at mass-ratio 7 with particularly many
inspiral cycles [64] (202 ≤ SXS id ≤ 207).

• A study of aligned spin BBH systems [33, 65] (209 ≤
SXS id ≤ 304).

The simulations were computed with the Spectral Einstein
Code (SpEC) [66], a multi-domain pseudo-spectral code de-
signed to solve elliptic and hyperbolic partial differential
equations, in particular the Einstein equations. SpEC com-
putes initial data with the extended conformal thin sand-
wich method [67, 68] utilizing quasi-equilibrium BH excision
boundary conditions [69–71] and iterative eccentricity reduc-
tion [72] to achieve quasi-circular inspirals. SpEC evolves the
Generalized Harmonic form of Einstein’s equations [73, 74]
in first order form [75] with constraint damping [74–76] and
constraint preserving boundary conditions [75, 77, 78]. The
code uses black hole excision [30, 79, 80], coupled with a dual-
frame approach to have the computational grid track the motion
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of the black hole horizons [81]. The gravitational wave data
used in our study was extracted with Regge-Wheeler-Zerilli
wave-extraction [82–84], and corrected for time-dilation ef-
fects at the extraction radius [85, 86] and for mode-mixing
arising from small residual motion of the center of mass [87].
More technical details are given in the original publication
presenting the simulations [32, 33, 61–65].
SpEC simulations are generally run at multiple numerical res-

olutions, in order to be able to assess numerical truncation error.
Indeed, we have restricted the present study only to simulations
that are available at multiple resolutions. The last column in
Tables III and IV lists the resolutions of each simulations that
were used. For each simulation, the accuracy increases with
a larger numerical value in this column. However, because of
improvements to SpEC’s numerical algorithms in the course of
time, it is not possible to assign an absolute meaning to these
resolution values. Using the different numerial resolutions,
we compute an error bar for every numerical value extracted
from the NR data based on the difference in this value when
extracted from the NR data of different resolution.

Visual inspection of the (`,m) modes of the simulations
considered here indicate that the (2, 2) mode is always well-
behaved. The leading sub-dominant modes with m ≤ 4, specif-
ically (2,1), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1), are
also generally well-behaved with only rare visible unphysical
features, like for instance unexpected extraneous oscillations
during ringdown.

Modes with higher frequency, (5,5), (6,6), (7,7), (8,8), un-
fortunately, appear often compromised during merger and ring-
down. The most common symptom is that these modes reach
their maximum a few M earlier than expected, and do not ex-
hibit a clear exponential decay thereafter. These symptoms
are consistent with an insufficiently fine radial grid, on which
the short-wavelength high-frequency merger waves would not
be resolved well enough as they propagate to the extraction
spheres, and are thus unphysically damped away. Moreover,
extrapolation to infinite extraction radius appears to magnify
non-physical features in these high-frequency modes, in about
half of the simulations considered. GW extrapolation is most
important for the early inspiral, where the GW wavelength is
long [85, 88] and is less important for the merger portion con-
sidered here. To mitigate impact on the high-m modes –(5,5)
and above–, we therefore decided in the present study to utilize
the gravitational waveforms extracted at the largest available
extraction radius.

The impact on our analysis of imperfections in the underly-
ing numerical data can be judged in two ways: First, Figs. 2,
4 and 5 show error bars for each data-point, obtained from
the difference in value from numerical simulation of different
numerical resolution. These error bars are generally small
compared to the physical effects being analysed. Second, our
analysis should produce results that are slowly and smoothly
varying with change of the underlying BBH parameters like
mass-ratio or BH spin. In particular, simulations at nearby
parameter points should yield similar answers, and indeed they
do, even if the simulations come from very different epochs.
The results obtained here (e.g. in Fig. 2) vary smoothly with
parameters, with the scatter being consistent with the error

bars. As such, we believe the underlying numerical data to be
reliable for our purposes, except perhaps, for the analyses of
(5, 5) through (8, 8) at τ & 0.

III. LEADING ORDER POST-NEWTONIAN
APPROXIMATIONS OF GW MODE AMPLITUDES

The ‘plus’ and ‘cross’ GW polarizations can be decomposed
in terms of spherical harmonics as shown in Eq. (1.1). The
complete expressions for various spherical harmonics modes
h`m, for the currently available accuracies of the multipole mo-
ments, for nonspinning binaries moving in circular orbits are
reported in Ref. [89], and for systems whose spins are aligned
or anti-aligned with respect to the orbital angular momentum
in Refs. [54, 90]. As we are going to crucially exploit the
leading order dependencies of these modes, we list them below
for convenience. Note that in these expressions v is the post-
Newtonian velocity parameter and η the symmetric mass ratio
defined as the ratio of the reduced mass µ to the total mass,
η = µ/M.

The structure of the various modes in PN theory reads as [89]

h22 = C22 v
2 e−i2ψ η

(
1 + O(v2)

)
, (3.1a)

h21 = C21 v
2 e−iψ η

(
δ v + O(v2)

)
, (3.1b)

h33 = C33 v
2 e−i3ψ η

(
δ v + O(v3)

)
, (3.1c)

h32 = C32 v
2 e−i2ψ η

(
(1 − 3 η) v2 + O(v3)

)
, (3.1d)

h31 = C31 v
2 e−iψ η

(
δ v + O(v3)

)
, (3.1e)

h44 = C44 v
2 e−i4ψ η

(
(1 − 3 η) v2 + O(v4)

)
, (3.1f)

h43 = C43 v
2 e−i3ψ η

(
δ (1 − 2 η) v3 + O(v4)

)
, (3.1g)

h42 = C42 v
2 e−i2ψ η

(
(1 − 3 η) v2 + O(v4)

)
, (3.1h)

h41 = C41 v
2 e−iψ η

(
δ (1 − 2 η) v3 + O(v4)

)
, (3.1i)

h55 = C55 v
2 e−i5ψ η

(
δ (1 − 2 η) v3 + O(v5)

)
, (3.1j)

h66 = C66 v
2 e−i6ψ η

(
(1 − 5 η + 5η2) v4 + O(v6)

)
, (3.1k)

h77 = C77 v
2 e−i7ψ η

(
δ (1 − 4 η + 3η2) v5 + O(v7)

)
, (3.1l)

h88 = C88 v
2 e−i8ψ η

(
(1 − 7η + 14η2 − 7η3) v6 + O(v7)

)
,

(3.1m)

where C`m are complex constants, v is the PN velocity parame-
ter which captures the time dependency of the wave modes, ψ
is the PN phase variable, and δ = m1−m2

m1+m2
is a mass asymmetry

parameter which can be rewritten as δ =
√

1 − 4 η for m1 > m2.
It vanishes for equal mass binaries.

Based on the structure of the expressions in Eqs. (3.1) we
introduce the leading order PN approximations which capture
the leading order η and spin dependencies for fixed v—i.e. at a
fixed time—and thus allow us to examine the NR waveforms
for PN signature or rather deviations from it. Our goal is
somewhat diffent from the usual approach in the literture as
we are aiming to study the behavior of the mode amplitudes in
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terms of the intrinsic paramters of the binary system and not
as a function of time.

A. Nonspinning binaries

In order to gain insight into the behavior of the amplitudes of
the nonspinning modes, we choose the following fitting func-
tions A`m = |h`m| which capture the leading order dependencies
of the PN expressions (3.1) on the mass ratio parameters η and
δ:

A22 = α22 η , (3.2a)

Â21 = α21 δ , (3.2b)

Â33 = α33 δ , (3.2c)

Â32 = α32 (1 − 3 η) , (3.2d)

Â31 = α31 δ , (3.2e)

Â44 = α44 (1 − 3 η) , (3.2f)

Â43 = α43 δ (1 − 2 η) , (3.2g)

Â42 = α42 (1 − 3 η) , (3.2h)

Â41 = α41 δ (1 − 2 η) , (3.2i)

Â55 = α55 δ (1 − 2 η) , (3.2j)

Â66 = α66

(
1 − 5 η + 5η2

)
, (3.2k)

Â77 = α77 δ
(
1 − 4 η + 3η2

)
, (3.2l)

Â88 = α88

(
1 − 7η + 14η2 − 7η3

)
, (3.2m)

where α`m are the scaling factors that we fit for. The hatted
amplitudes Â`m = A`m/A22 have been normalized with respect
to the (2,2) mode to cancel the overall η-factor present in every
mode.

B. Aligned spin binaries

In PN theory, spin effects are sub-dominant and are not
present at leading order for any mode [54]. Current-multipole
modes which obey ` + m = odd contain spin-dependent terms
at 0.5 PN order above the leading term and thus are more
likely to exhibit spin effects [53]. We focus on the four current
multipole modes with ` ≤ 4, (2, 1), (3, 2), (4, 3), and (4, 1). The
PN expression for the (2,1) mode to the next-to-leading order
in v is given by

h21 = C(v, ψ) η
(
δ v −

3
2

(χa + δχs) · L̂N v
2
)

+ O(v3) , (3.3)

where C is a function of the orbital velocity v and the PN phase
variable ψ, LN is the orbital angular momentum, and

χs =
1
2

(χ1 + χ2) (3.4)

χa =
1
2

(χ1 − χ2) (3.5)

denote, respectively, the symmetric and antisymmetric spin
combinations of the initial BH spins χ1 and χ2. Since we as-
sume that spins and the orbital angular momentum are aligned,
we can write instead

h21 = C(v, ψ) η
(
δ v −

3
2
χeff

21 v
2
)

+ O(v3) , (3.6)

where χeff
21 = χa+δ χs, with χa,s = χa,s·L̂N being the projection

of the symmetric/antisymmetric spin vectors along the orbital
angular momentum. This form motivates the fitting ansatz,
with non-spinning Âns

21 = δ from (3.2), which reads as

Â21 = γ21 Âns
21 + β21 χ

eff
21 . (3.7)

This can be generalized to arbitrary `m as

Â`m = γ`m Âns
`m(η) + β`m χ

eff
`m(η, χ1, χ2) , (3.8)

with different effective spin parameters for different modes
defined by the linear combination of the spin parameters in the
PN expressions for those modes. The functional forms of the
effective spin parameters for the different modes are motivated
by Eqs. (12) of Ref. [90] and are given by

χeff
21 = χa + δ χs , (3.9a)

χeff
32 = η χs , (3.9b)

χeff
43 = χeff

41 = η (χa − δ χs) . (3.9c)

Equation (3.8) has two fit parameters β`m, γ`m whereas Eqs.
(3.2) only need one. The additional parameter is aimed to
capture the extra degrees of freedom due to spins and account
for the fact that the nonspinning and spinning effects enter at
different PN orders.

IV. POST-NEWTONIAN SIGNATURE IN NR WAVEFORM
AMPLITUDES

A. Numerical wave mode amplitudes

From each of the NR simulations summarized in Sec. II and
detailed in Appendix B, we extract the time series of real and
imaginary components of the spherical harmonic wave modes
h`m (see Eq. (1.1)) for the 13 modes with (`,m) ∈ {(2,2), (2,1),
(3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1), (5,5), (6,6), (7,7),
(8,8)}. The remaining numerical modes with ` ≥ 5,m , ` are
excluded from this study due to their relatively small ampli-
tudes and large numerical errors. Fig. 1 shows the real and
imaginary components of six of the 13 wave modes together
with their amplitude for an example SXS run: SXS:BBH:0169,
mass ratio q = 2, and non-spinning.

Our goal is to examine the behavior of various spherical
harmonic modes for PN signature and deviations from it around
the time of merger to gain more insight into which modes are
possible candidates to extract information about the horizon
dynamics of binary coalescences. We concentrate this study
on the evolution of the real amplitude

A`m =
√

Re(h`m)2 + Im(h`m)2, (4.1)
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FIG. 1: The SXS waveform catalog provides access to many compact bianry simulations. As a representation of the catalog, we show the
numerical data of six wave modes h`m from the non-spinning run SXS:BBH:0169, with mass ratio q = 2. The figure plots the real and imaginary
parts of the wave modes and their amplitude A`m =

√
(Re(h`m))2 + (Im(h`m))2 for the (2,2), (2,1), (3,3), (3,2), (4,4), and (4,3) modes as a

function of τ = t − t22
max. The position of the peak amplitude of the (2,2) mode is highlighted with a solid, black line, while the dashed, green line

corresponds to the maximum of each mode.

of the spherical harmonic wave modes h`m, where both A`m
and h`m are functions of time τ, as well as binary parameters
M, η, ~χ1, ~χ2. The time variable τ = t − t22

max has been shifted
such that the peak amplitude of the (2,2) mode is located at
τ = 0. In the case of non-spinning BBH with quasi-circular
orbits the parameter tuple θ = (M, η, ~χ1, ~χ2) reduces to the two
mass parameters, the total mass M and the symmetric mass
ratio η. If the BHs are aligned spinning, θ = (M, η, χ1, χ2) also
contains the spin magnitudes.

B. Results for non-spinning binaries

Figure 2 contains the condensed results of our study of PN
signature in the waveform amplitudes of initially non-spinning
BBHs around the time of merger. The individual symbols
in these plots are the amplitudes of the various GW-modes
extracted from the SXS simulations. Each symbol carries
an error bar that is derived as the difference in the extracted
amplitude for at least two different numerical resolutions har-
ald(often, the error bar is too small to be visible). The solid

lines in Fig. 2 represent our leading order PN approximations
in Eq. (3.2) fitted to the numerical data for various wave mode
amplitudes as a function of the symmetric mass ratio. The
temporal evolution is presented via snapshots at four different
times τ/M = −100,−10, 0, 10, corresponding to the columns
in Fig. 2. The three rows group the different modes by numer-
ical strength. The first row contains the data and fits for the
four strongest modes (2,2), (2,1), (3,3), and (4,4), the second
row shows the remaining ` = m modes, and the sub-dominant
modes with ` = 3, 4 are bundled in the last row. The larger
subfigures plot relative amplitudes Â`m(τ) = A`m(τ)/A22(τ),
`m , 22, with only A22 being shown as an absolute amplitude.
The error bars correspond to twice the numerical errors σ`m
shown in the smaller subplots.

The amplitude of the (2,2) mode behaves as expected and in-
creases towards its maximum at τ = 0. Due to the suppression
of the two next strongest modes, (3,3) and (2,1), for equal mass
binaries, the (2,2) mode stays most significant in the realm
between q = 1 to q = 2 which is where all detections by the
LIGO Virgo Collaboration were made [3–5, 8]. The situation
for the other modes paints a more interesting picture for low
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FIG. 2: Non-spinning simulations: The PN inspired amplitude fits for 13 spherical harmonic modes (lines) with spin weight −2 are plotted
together with the numerical data (points) of simulations of the coalescence of two non-spinning BHs at four different times τ = t − t22

max. The data
has been spread over 24 subplots with columns representing different times τ/M = −100,−10, 0, 10 and rows grouping the modes by strength,
fit agreement, and numerical errors. The 12 large plots present the relative amplitudes Â`m ≡

A`m
A22

against the symmetric mass η, with A22 as an
exception, while the accompanying smaller plots show the numerical errors of the simulations which are also visible as error bars in the main
plots. The plots show that the four dominant and the ` = m modes maintain a PN-like signature throughout the studied time range, while the
` , m modes start to deviate from this PN-like behavior and thus capture the merger dynamics more efficiently.

symmetric mass ratios η < 0.15 where their amplitudes in-
crease more quickly relative to the (2,2) mode. This tendency
shows the importance of the inclusion of higher modes for
medium to extreme mass ratio binary coalescences.

The first column in Fig. 2 shows the comparison of the
leading order PN approximations to the numerical data at time
τ = −100M. The approximations work beautifully and confirm
the expectation that PN theory describes the functional depen-
dence of the GW amplitudes on η very well during the inspiral.
The level of agreement between the data and the fits is quan-
tified by the correlation coefficients in Table I. The situation

stays very similar close to merger at τ = −10M, even though
the amplitude of the (3,2) mode is starting to show deviations
from the PN inspired fitting. The fits for the remaining modes
capture the data extremely well despite the common belief that
PN theory should fail in this regime due to the increase in the
orbital velocity parameter v.

The picture becomes truly exciting at τ = 0, after the com-
mon horizon has already formed. The amplitudes of the four
dominant modes are fitted exceptionally well by the leading
order PN approximations, hence giving us an insight into how
little these amplitudes are affected by the dynamics during the
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FIG. 3: Aligned spin simulations: The relative amplitudes Â`m ≡
A`m
A22

of 13 spherical harmonic modes with spin weight −2 are plotted against
the symmetric mass η, with A22 as an exception. The data was taken from 135 numerical simulations of the coalescence of two BHs whose spins
is aligned with respect to the orbital angular momentum of the binary. The amplitudes are shown at four different times, τ

M = −100,−10, 0, 10,
τ = t − t22

max. The data is presented by 12 subplots dividing the modes in three groups by strength. The vertical spread at a fixed symmetric mass
ratio indicates that the spin information cannot be captured in an one dimensional plot over the symmetric mass ratio (compare against Fig. 2).
The effective spin is the standard symmetric, mass weighted version: χeff =

m1χ1+m2χ2
M (full symbol: χeff ≥ 0, empty symbol: χeff < 0).

The amplitudes of the (2,1) and (3,2) modes show especially large variations at a given value of η, hence pointing towards their strong dependence
on the spin properties of the system. From PN theory we would also expect any other mode with ` + m = odd to have a strong spin dependence.

coalescence of the binary system. The PN-inspired fits to the
` = m modes in the second row of Fig. 2 are still remarkably
well captured, especially for ` = 5, 6. The amplitudes of the
modes with ` = 3, 4, m < ` exhibit a different behavior: their
numerical amplitudes deviate strongly from the PN-inspired
fitting and thus indicating that the merger process affects the
dynamics of these mode amplitudes more than the four domi-
nant modes or the modes with ` = m.

Finally, the last column of Fig. 2 contains the data and fits
during the early ringdown at τ = 10M. The deviations from the
leading order PN approximations have increased, compared
to time τ = 0 which is reflected in the correlation coefficients
in Table I. The amplitude data for τ = 10M in the second
row of Fig. 2 appears to be well captured by the leading order

PN approximations, but it exhibits large numerical errors that
make a quantitative evaluation of the approximations impracti-
cal, see Table I. The dominant modes show a very intriguing
outcome. Their amplitudes seem to maintain the PN signature
from earlier times fairly well. This reproduces the earlier find-
ings [52] that found η-dependences in these amplitudes during
the ringdown. Our analysis goes beyond that and shows that
this dependence is still mostly of PN signature 10M after the
merger.

In summary, we can say that the four dominant modes with
large amplitudes and the wave modes with ` = m maintain the
PN signature of the inspiral phase exceptionally well from the
inspiral throughout the merger into the ringdown, while the
spherical harmonic wave modes with ` , m deviate from this
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Mode τ = −100M τ = −10M τ = 0M τ = 10M
(2,2) 0.999998 0.999779 0.999703 0.999798
(2,1) 0.999579 0.999854 0.999838 0.998717
(3,3) 0.999912 0.999787 0.999301 0.997751
(4,4) 0.999667 0.999299 0.998743 0.991130
(5,5) 0.999842 0.999204 0.997655 0.993545
(6,6) 0.999722 0.998421 0.994847 0.976633
(7,7) 0.999698 0.996487 0.982980 0.939223
(8,8) 0.999491 0.994833 0.965470 0.848470
(3,2) 0.999376 0.996502 0.972295 0.585903
(3,1) 0.997824 0.993977 0.981189 0.908449
(4,3) 0.999719 0.999168 0.998515 0.974125
(4,2) 0.998844 0.997680 0.995446 0.908354
(4,1) 0.984923 0.948784 0.863388 0.976998

TABLE I: Correlation coefficients of the non-spinning fits to the SXS
data for spherical harmonic modes (2,2), (2,1), (3,3), (3,2), (3,1), (4,4),
(4,3), (4,2), (4,1), (5,5), (6,6), (7,7), and (8,8) at τ

M = −100,−10, 0, 10.

PN-like behavior as the evolution of the binary approaches the
merger. Thus, these present interesting candidates for BBH
merger and BH horizon dynamics studies, with the (3,2) being
especially intriguing as it is the strongest of these modes and
hence the most significant for future detections.

C. Results for aligned spins

Let us now discuss the aligned-spin simulations. We ex-
tract amplitudes A22 and Â`m as above for all simulations with
aligned spins. Fig. 3 plots the amplitudes of all 13 modes for
each aligned spinning SXS simulations in a distinct data point.
For a given value of η, there are generally multiple simula-
tions with different spins; these simulations lead to different
amplitudes, resulting in the vertical scatter of data-points at
each η. Most modes show a small amount of vertical scatter
whereas the (2,1) and (3,2) mode exhibit significant variation
amongst the different simulations at a given symmetric mass
ratio. This large amount of spread in the amplitudes of the
aforementioned modes is a consequence of a strong depen-
dence on the omitted two parameters, the spin magnitudes χ1
and χ2 of the component BHs.

Not only show the (2,1) and (3,2) modes the most pro-
nounced scatter in Fig. 3, but they are also among the current
multipole modes with ` + m = odd, which exhibit spin ef-
fects at low PN order (cf. Sec. III B). We will therefore now
investigate the spin dependence of the relevant four modes
(2,1), (3,2), (4,3), and (4,1) in more detail. The results and
corresponding correlation coefficients for the amplitude data
and the PN-inspired fits for the (2,1), (3,2), (4,3), and (4,1) are
presented in Fig. 4 and Table II, respectively. While Fig. 4
spreads the temporal evolution of the mode amplitudes for
given mass ratios q in columns, we give another representation
of the same information in Fig. 5 in Appendix A, where the
roles of mass ratio q and time τ are flipped. This gives a better
intuition of how each mode amplitude evolves for fixed mass
ratio throughout the merger.

The (2,1) modes appears to behave similarly to the non-

spinning case and maintain the PN signature of the inspiral
throughout the merger into the early ringdown. The leading
order PN approximations capture the NR data exceptionally
well for mass ratios q = 1, 1.5, 7. Mass ratios q = 2, 3 show a
larger scatter around the linear fit line which appears to be a
result of the larger variation of initial spin combinations of the
SXS waveforms for lower mass ratios, see Table IV (in partic-
ular, the SXS simulations explore variations of anti-symmetric
spin χ1 − χ2 much more exhaustively for q = 1, 2, 3). This
scatter is not visible in the data for mass ratio q = 1 due to the
suppression of asymmetries for equal mass binaries.

The results are similar for the (4,3) and (4,1) modes. Mass
ratio q = 1 is again extremely well captured by the leading
order PN approximations. While mass ratios q = 1.5, 7 appear
to be fitted well in Fig. 4, the correlation coefficients show that
the PN inspired fit performs less admirably than for the (2,1)
mode. The scatter around the approximation lines for q = 2, 3
is also much more prevalent, especially at times τ/M = 0, 10.

Our analysis of the (3,2) mode does not include mass ratio
q = 1.5: Two of the three distinct initial spin combinations
reduce to the same effective spin χeff

32 = η χs due to its symme-
try and thus make a linear fit to two points a mood exercise.
The analysis of the (3,2) mode shows that it takes a special
role amongst the four studied modes when the system includes
spins. The (3,2) mode amplitude is the only to show major
deviations from the PN signature for equal mass binary wave-
forms, q = 1, and even during the inspiral at τ = −100M.
The picture for mass ratios q = 2, 3, 7 is the same as what we
observed for the (4,3) and (4,1) modes.

In summary, the (2,1) mode seems to do as well as we saw
from the non-spinning scenario, while the three weaker modes
exhibit various different effects. All modes, even (2,1), showed
some level of scatter for mass ratios q = 2, 3 that probably is a
result of variations in the initial spin data, which did not show
up for equal mass binaries for the three modes with odd m,
(2,1), (4,3), and (4,1). Hence, it appears that the addition of
aligned spin has a stabilizing effect against deviations from a
PN signature for these modes, if the mass ratio is q = 1. The
(3,2) mode takes a distinct role as its amplitude for mass ratio
q = 1 shows deviations from the leading order PN approxi-
mation already during the inspiral. Hence, it again stands out
as the mode of interest in the search for merger and horizon
dynamics during the coalescence of BBHs.
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FIG. 4: The relative amplitudes Âlm = Alm/A22 of the (2,1), (3,2), (4,3), and (4,1) modes are presented against their respective effective
spin combinations χeff

lm . The columns represent four times τ/M = −100,−10, 0, 10, and the χeff
lm are defined in Eqs. (3.9). The plotted modes

l + m = odd, have low order effective spin contributions in PN theory due to their current multipole nature. The PN inspired fits (lines) in Eq.
(3.8) are linear in these effective spin combinations, thus three data points (SXS data) give an indication as to whether the amplitudes behave
in a PN-like way. The figure consists of four major rows, each dedicated to one of the wave modes, and four columns, capturing the times,
with subfigures showing the relative amplitudes and in a smaller window the error of the numerical data. The restriction to the four mass ratios
q = 1, 1.5, 2, 3, 7 is due to the requirements for numerical error estimation and having three simulations with different effective spins χeff

lm per
mass ratio for the linear fits. For the available set of simulations with q = 1.5, symmetry reduces, in the case of the (3,2) mode, the three different
sets of χ1 and χ2 to two.
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V. IMPLICATIONS OF THE RESULTS FOR THE
HORIZON DYNAMICS OF THE REMNANT BLACK HOLE

In this Section we will discuss the behavior of the various
modes as a function of time and the system’s mass ratio η
and mode-dependent ‘effective spin’ (which is different for
different modes) to gain further insight into the dynamics of
the common horizon.

a. Time evolution Our study has shown that for most part
of the adiabatic evolution when ω̇/ω2 � 1, where ω is the
orbital frequency, the mass-ratio dependence of the amplitudes
of the various spherical harmonic modes are as predicted by
post-Newtonian theory to lowest order. The overall multipole
structure is set in when the two black holes are well-separated;
it is difficult to deform this multipolar structure because space-
time has a large bulk modulus. Remarkably, most ` = m
mode amplitudes continue to agree with the post-Newtonian
prediction well after the common horizon has formed and into
the quasi-normal mode regime. This includes the dominant
` = m = 2, 3, 4 modes as well as the weaker ` = m > 4 modes
(cf. Fig. 2, first and second row). The strong field dynamics
does affect the ` , m modes (except the strong (2, 1) mode), es-
pecially when the two bodies get closer together as evidenced
by the change in the weaker ` , m modes (cf. Fig. 2, last
row). Our analysis shows that as we get close to the merger
phase, say τ ∼ −10M (this is about when the common apparent
horizon forms) the moments begin to deform from their post-
Newtonian behavior. The common apparent horizon is initially
highly dynamical and this signature is imprinted in the weaker
` , m modes, the (3, 2) being the strongest. Interestingly, the
modes continue to deviate from their post-Newtonian behavior
after the common horizon has settled down to its quiescent
Kerr state (i.e., τ & 10 M), possibly reflecting the strong field
dynamics of the horizon.

b. η-dependence Figures 2 and 4 show the behavior of
the mode amplitudes as a fucntion of symmetric mass ratio
η at different epochs and as a function of ‘effective spin’ for
different mass ratios q and epochs, respectively. For nonspin-
ning systems, the ` = m modes are in pretty good agreement
with the leading order post-Newtonian behavior as a function
of η (see Eqs. 3.2). This is true both at earlier times τ ∼ 100 M
when post-Newtonian equations are expected to provide a good
description of the mode amplitudes, as well as at epochs when
the post-Newtonian equations are believed to be invalid. In
fact, even at the onset of merger at τ ' −10 M and beyond
τ = 0 when the black hole begins to settle down (i.e. τ ∼ 10 M)
` = m modes show little departure from the post-Newtonian
behavior.

However, the weaker ` , m modes are altered significantly
already at the onset of the merger (τ ∼ −10 M), especially for
comparable mass binaries (i.e. η ' 1/4). One exception to
this rule is the ` = 2, m = 1 mode. This mode is the strongest
sub-dominant mode after ` = m = 3 (see Fig. 2) and is not
easily modified by the strong field dynamics. The amplitude
of the other ` , m modes are at the level of . 8% (for highly
asymmetric systems) of the (2, 2) mode amplitude, while the
` = 2, m = 1 mode could be as large as 30% of the overall
amplitude. This gives further evidence that stronger modes

Mode q τ = −100M τ = −10M τ = 0M τ = 10M

(2,1)

1 0.999325 0.999773 0.999988 0.999619
1.5 0.999980 0.999931 0.999807 0.999291
2 0.997846 0.995953 0.991763 0.984452
3 0.997914 0.994403 0.991027 0.985538
7 0.999152 0.998667 0.999101 0.998829

(3,2)

1 0.990234 0.981084 0.968417 0.897599
2 0.980074 0.960144 0.914401 0.581929
3 0.964765 0.952854 0.938971 0.784182
7 0.993511 0.953335 0.056356 0.980378

(4,3)

1 0.998952 0.999922 0.998798 0.995412
1.5 0.999844 0.999494 0.998659 0.874023
2 0.961789 0.958457 0.960024 0.472553
3 0.844141 0.843969 0.837170 0.222383
7 0.987371 0.938732 0.759405 0.621659

(4,1)

1 0.991669 0.995539 0.985739 0.988915
1.5 0.608697 0.623753 0.916280 0.954856
2 0.684519 0.041862 0.220282 0.144261
3 0.485186 0.233015 0.002791 0.334364
7 0.926836 0.992870 0.981711 0.982951

TABLE II: Correlation coefficients of the aligned spinning fits to the
SXS data for spherical harmonic modes (2,1), (3,2), (4,3), and (4,1)
and mass ratios q = 1, 1.5, 2, 3, 7 at τ

M = −100,−10, 0, 10.

are harder to modify from their weak-field predictions by the
dynamics of the strong field regime.

c. Spin-dependence Figures 4 and 5 present the mode
amplitudes of the four ` + m = odd modes (2,1), (3,2), (4,3),
and (4,1) as a function of their respective effective spins (see
Eq. 3.9) for different mass ratios and epochs. Again, the post-
Newtonian approximation does remarkably well at capturing
the behavior of the numerical data for the strong (2,1) mode, for
all epochs and mass ratios. However, the three weaker modes
whose amplitudes show deviations from the post-Newtonian
behavior for non-spinning systems as early as τ ∼ −10 M,
agree with the post-Newtonian approximation to some extent
when the system includes aligned spins. Hence, it appears that
the addition of spin to the system has a stabilizing effect on the
post-Newtonian signature.

That being said, the situation is much more complicated
than for non-spinning systems as the quality of the agreement
with the post-Newtonian signature depends not only on the
mode and epoch, but also the mass ratio and the sample spread
of initial black hole spins. The agreement is good for mass
ratios q = 1.5, 7 for which the data shows the linear behavior in
the respective effective spin combination for all modes. Mass
ratios q = 2, 3 were sampled with a much larger distribution
in the initial spins (cf. Table IV), resulting in an envelope of
data points around the linear post-Newtonian approximation.
These envelopes widen during laterepochs and for weaker
modes. This contrast between the mass ratios with high and
low sampling of spins hints at an more elaborate relation of
the inital black hole spins and the mode amplitudes during
the ringdown that cannot be captured in one effective spin
combination. Finally, the equal mass systems were sampled
with a similarly large spread in the intial spins, but do not show
the envelope characteristics of the higher mass ratios which
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is a result of the symmetry in the system. The amplitudes of
the three odd-m modes (2,1), (4,3), and (4,1) are wonderfully
captured by the linear post-Newtonian approximations at all
epochs.

The major exception is presented by the (3,2) mode’s am-
plitude for equal mass systems which shows a curious, but
definite nonlinear dependence on its effective spin at all stud-
ied epochs. This behavior is curious for two reasons: The
post-Newtonian signature is the strongest for the other three
modes at mass ratio q = 1 and all epochs (cf. Fig. 5, first
column). Further, it is the only case (i.e. the only mode for
both the aligned and non-spinning simulations) where the post-
Newtonian approximation seems to already fail at τ = −100 M.
It shows that the (3,2) modes takes a special place amongst
the ` + m = odd modes with ` ≤ 4. This is captured by its
even azimuthal number m = 2 whereas the other three are
odd m modes. Thus, the (3,2) mode is the most interesting
mode amongst all the weaker ` , m modes to study deviations
from the post-Newtonian signature: It is the strongest of these
modes and thus the easiest to detect, it does not vanish for
non-spinning, equal mass systems, and it is affected by spin
effects where it can capture departures from post-Newtonian
theory well into the inspiral-regime.

VI. CONCLUSIONS

In this paper we have provided a comparison of the am-
plitudes of spherical harmonic modes of gravitational waves
from merging binary black holes computed using the leading
order post-Newtonian approximation with those obtained from
numerical relativity simulations.

The post-Newtonian approximation is based on the point-
particle description of the two-body problem in general rela-
tivity. It is a good approximation when the two bodies are far
from each other (i.e., their distance of separation r is far greater
than the scale of the horizon Rs ∼ 2GM/c2 of the companion
masses), but expected to breakdown when the two bodies are
close to coalescence r ∼ few × 2GM/c2. In particular, post-
Newtonian approximation does not know anything about the
horizons of the companion masses, nor the dynamics of the
common horizon that forms in the process of merger. While
the post-Newtonian approximation is now known to a high
order in the expansion parameter v/c =

√
GM/c2r, it is not

expected to capture the strong field dynamics of the theory
close to merger.

Numerical relativity simulations, on the contrary, are exact
solutions to Einstein’s equations for the two-body problem.
They capture the strong field dynamics, including the dynam-
ics of the common horizon and how that horizon approaches
the final Kerr state. While these simulations can, in principle,
resolve the full spectrum of modes emitted by the binary, in
practice finite resolution and numerical accuracy limit the num-
ber of modes that can be extracted reliably to the quadrupole,
octupole, and hexadecapole modes, corresponding to spherical
harmonic index of ` = 2, 3,and 4, respectively.

The chief finding of our study is that the the dependencies
of these dominant mode amplitudes on the symmetric mass

ratio and the binary’s spins, computed in the leading order
post-Newtonian approximation, agree remarkably well with
those extracted from numerical relativity simulations, deep into
the regime where the approximation should not have worked.
In particular, the quadrupole modes (2, 2) and (2, 1), extracted
from numerical relativity simulations, show little departure
from the leading order post-Newtonian expression throughout
the inspiral and merger and well after the formation of the
common horizon. This is also true for the (3, 3) and the (4, 4)
modes. This implies that the dominant multipole structure of
the system remains frozen as determined by the point-particle
approximation. All the modes begin to show significant de-
parture from post-Newtonian description in the quasi-normal
mode regime, ∼ 10GM/c3 after the waveform reaches its peak
amplitude.

The weaker modes with `=3, m=1, 2 and `=4, m=1, 2, 3
modes also agree with the leading order post-Newtonian ex-
pressions when the system is ∼ 100GM/c3 away from coales-
cence, but begin to show significant departure from the leading
order post-Newtonian behavior well-before the epoch when
the waveform reaches its peak amplitude. In other words, the
point-particle approximation of post-Newtonian theory to the
leading order is no longer adequate in describing the behavior
of the amplitude of these modes. It is for this reason that we
conclude that these weaker modes are affected far more by the
strong field, horizon dynamics of the binary than the stronger
modes (2, 2), (2, 1), (3, 3) and (4, 4).

It is well know that the (` = 3,m = 2) spherical harmonic
mode has a mixture of several spheroidal harmonic modes,
which causes it to decay non-monotonically in the ringdown
regime of the signal [55, 56, 59]. While this is true, the new
insight from our study is that we can exploit the leading or-
der post-Newtonian expressions in any analytical modeling of
(most of) the mode amplitudes. We believe that understanding
the multipole structure of the common horizon could provide
further insight into why certain modes are affected far more by
the strong field dynamics than others.

Acknowledgments

We thank Abhay Ashtekar, Michael Boyle, Mark Hannam,
Lionel London, Sean McWilliams and Leo Stein for helpful
comments on the manuscript. KGA and BSS acknowledge
the support by the Indo-US Science and Technology Forum
through the Indo-US Centre for the Exploration of Extreme
Gravity, grant IUSSTF/JC-029/2016. SB and BSS are sup-
ported in part by NSF grants PHY-1836779, AST-1716394
and AST-1708146. KGA is partially support by a grant from
Infosys Foundation. KGA also acknowledge partial support
by the grant EMR/2016/005594. Computing resources for this
project were provided by The Pennsylvania State University.
This document has LIGO preprint number LIGO-P1800367.



13

Appendix A: Alternative representation of the results for
aligned spin fits

Fig. 5 presents the same information as Fig. 4, but with the
roles of the time τ and mass ratio q flipped in the figure. This
presentation allows a more streamlined look at how each mode
behaves as function of time for a given mass ratio, this making
very evident, how strongly the (3,2) modes deviates from the
leading order post-Newtonian approximation for mass ratio
q = 1.

Appendix B: NR simulations from the SXS project

For each numerical resolution, the SXS waveform catalog
provides a metadata file with information about the specifics
of the run as well as the gravitational waveforms decomposed
into spherical harmonics for both the Newman-Penrose scalar
Ψ4 and the GW strain h. Our analysis focuses on the lat-
ter and was conducted with the data contained in the files
‘rhOverM Asymptotic GeometricUnits CoM.h5’, which pro-
vide the spherical harmonic modes of h, at the outermost ex-
traction radius, nad extrapolated to asymptotic null infinity.
Furthermore, the data in these files are corrected for mode mix-
ing that can arise if initial transients during start of the evolution
induce a motion of the center of mass of the BBH [87, 91]. The
retarded time-coordinate is corrected for gravitational redshift
effects [85].
These HDF5 files structure the data into four groups contain-
ing the same 77 datasets, but for different extrapolation orders
N = 2, 3, 4, as well as the outermost extraction radius. The
datasets store the simulation output as a time series of real and
imaginary components of the coefficients h`m in the expansion
in spherical harmonics with spin-weight s = −2 (1.1) of the
GW strain h for all 77 modes with ` = 2, . . . , 8, m = −`, . . . , `,
In order to put errors on the numerical data we restricted our
analysis to the 43 non-spinning and 121 aligned spinning sim-
ulations that are provided at a minimum of two different res-
olution levels, see Tables III and IV. Further, we restrict our
analysis to the outermost extraction radius which yields the
most accurate numerical results for the merger and ringdown
regimes.

SXS Id q Resolutions
2 1.00 4, 5, 6

180 1.00 2, 3, 4
198 1.20 3, 4, 5

7 1.50 4, 5
8 1.50 4, 5

194 1.52 2, 3
169 2.00 3, 4, 5
184 2.00 2, 3, 4
201 2.32 1, 2, 3
259 2.50 3, 4, 5
191 2.51 2, 3
30 3.00 3, 4, 5
168 3.00 3, 4, 5
183 3.00 2, 3, 4
200 3.27 1, 2, 3
193 3.50 2, 3
294 3.50 3, 4
182 4.00 2, 3, 4
190 4.50 2, 3
54 5.00 3, 4, 5
56 5.00 3, 4, 5
107 5.00 3, 4, 5

SXS Id q Resolutions
113 5.00 3, 4, 5
187 5.04 1, 2, 3
296 5.50 3, 4, 5
197 5.52 2, 3
181 6.00 3, 4
297 6.50 3, 4, 5
192 6.58 2, 3
298 7.00 3, 4, 5
188 7.19 1, 2, 3
299 7.50 3, 4, 5
195 7.76 2, 3
63 8.00 3, 4, 5

186 8.27 1, 2, 3
300 8.50 3, 4, 5
199 8.73 2, 3
301 9.00 3, 4, 5
189 9.17 2, 3
302 9.50 3, 4, 5
196 9.66 2, 3
185 9.99 1, 2, 3
303 10.00 3, 4, 5

TABLE III: List of 43 SXS simulations for initially non-spinning
BBHs, showing the SXS simulation ID, the mass ratio q, and the
numerical resolutions used for our analysis.
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FIG. 5: The same as Fig. 4, albeit the columns now represent the five mass ratios q = 1, 1.5, 2, 3, 7 and each plot contains the data and fits at the
four different times τ

M = −100,−10, 0, 10. The χeff
lm are defined in Eqs. (3.9). This presentaion shows more clearly how well the data is captured

by the PN inspired fits (lines) in the case of the (2,1) mode for q = 1, 7 and how the data (data points from SXS) slightly scatters around fit lines
for q = 2, 3. Similarly, this presentation makes it much clearer that fits cannot capture the amplitudes of the (3,2) mode for q = 1, even though
q = 7 seem to be fine. Further, it shows beautifully that these modes gain in importance as time advances as well as for increasing mass ratios.
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Id q χ1 χ2 Res.
4 1.00 −0.50 0.00 5, 6
5 1.00 0.50 0.00 4, 5

148 1.00 −0.44 −0.44 4, 5
149 1.00 −0.20 −0.20 3, 4
150 1.00 0.20 0.20 3, 4
151 1.00 −0.60 −0.60 3, 4
152 1.00 0.60 0.60 3, 4
154 1.00 −0.80 −0.80 3, 4
155 1.00 0.80 0.80 3, 4
156 1.00 −0.95 −0.95 4, 5
157 1.00 0.95 0.95 3, 4
158 1.00 0.97 0.97 5, 6
159 1.00 −0.90 −0.90 3, 4
160 1.00 0.90 0.90 3, 4
170 1.00 0.44 0.44 5, 6
171 1.00 −0.44 −0.44 5, 6
172 1.00 0.98 0.98 3, 4
175 1.00 0.75 0.75 2, 3
176 1.00 0.96 0.96 3, 4
177 1.00 0.99 0.99 3, 4
178 1.00 0.99 0.99 4, 5
209 1.00 −0.90 −0.50 4, 5
210 1.00 −0.90 0.00 4, 5
211 1.00 −0.90 0.90 4, 5
212 1.00 −0.80 −0.80 4, 5
213 1.00 −0.80 0.80 4, 5
214 1.00 −0.62 −0.25 4, 5
215 1.00 −0.60 −0.60 4, 5
216 1.00 −0.60 0.00 4, 5
217 1.00 −0.60 0.60 4, 5
218 1.00 −0.50 0.50 4, 5

Id q χ1 χ2 Res.
219 1.00 −0.50 0.90 4, 5
220 1.00 −0.40 −0.80 4, 5
221 1.00 −0.40 0.80 4, 5
222 1.00 −0.30 0.00 4, 5
223 1.00 0.30 0.00 4, 5
224 1.00 0.40 −0.80 4, 5
225 1.00 0.40 0.80 4, 5
226 1.00 0.50 −0.90 4, 5
227 1.00 0.60 0.00 4, 5
228 1.00 0.60 0.60 4, 5
229 1.00 0.65 0.25 4, 5
230 1.00 0.80 0.80 4, 5
231 1.00 0.90 0.00 4, 5
232 1.00 0.90 0.50 4, 5
304 1.00 0.50 −0.50 3, 4
12 1.50 −0.50 0.00 4, 5
14 1.50 −0.50 0.00 4, 5
16 1.50 −0.50 0.00 5, 6
19 1.50 −0.50 0.50 4, 5
25 1.50 0.50 −0.50 4, 5

162 2.00 0.60 0.00 3, 4
233 2.00 −0.87 0.85 4, 5
234 2.00 −0.85 −0.85 4, 5
235 2.00 −0.60 −0.60 4, 5
236 2.00 −0.60 0.00 4, 5
237 2.00 −0.60 0.60 4, 5
238 2.00 −0.50 −0.50 4, 5
239 2.00 −0.37 0.85 4, 5
240 2.00 −0.30 −0.30 4, 5
241 2.00 −0.30 0.00 4, 5
242 2.00 −0.30 0.30 4, 5

Id q χ1 χ2 Res.
243 2.00 −0.13 −0.85 4, 5
244 2.00 0.00 −0.60 4, 5
245 2.00 0.00 −0.30 4, 5
246 2.00 0.00 0.30 4, 5
247 2.00 0.00 0.60 4, 5
248 2.00 0.13 0.85 4, 5
249 2.00 0.30 −0.30 4, 5
250 2.00 0.30 0.00 4, 5
251 2.00 0.30 0.30 4, 5
252 2.00 0.37 −0.85 4, 5
253 2.00 0.50 0.50 4, 5
254 2.00 0.60 −0.60 4, 5
255 2.00 0.60 0.00 4, 5
256 2.00 0.60 0.60 4, 5
257 2.00 0.85 0.85 4, 5
258 2.00 0.87 −0.85 4, 5
31 3.00 0.50 0.00 4, 5
36 3.00 −0.50 0.00 5, 6
174 3.00 0.50 0.00 5, 6
260 3.00 −0.85 −0.85 4, 5
261 3.00 −0.73 0.85 4, 5
262 3.00 −0.60 0.00 4, 5
263 3.00 −0.60 0.60 4, 5
264 3.00 −0.60 −0.60 4, 5
265 3.00 −0.60 −0.40 4, 5
266 3.00 −0.60 0.40 4, 5
267 3.00 −0.50 −0.50 4, 5
268 3.00 −0.40 −0.60 4, 5
269 3.00 −0.40 0.60 4, 5
270 3.00 −0.30 −0.30 4, 5
271 3.00 −0.30 0.00 4, 5

Id q χ1 χ2 Res.
272 3.00 −0.30 0.30 4, 5
273 3.00 −0.27 −0.85 4, 5
274 3.00 −0.23 0.85 4, 5
275 3.00 0.00 −0.60 4, 5
276 3.00 0.00 −0.30 4, 5
277 3.00 0.00 0.30 4, 5
278 3.00 0.00 0.60 4, 5
279 3.00 0.23 −0.85 4, 5
280 3.00 0.27 0.85 4, 5
281 3.00 0.30 −0.30 4, 5
282 3.00 0.30 0.00 4, 5
283 3.00 0.30 0.30 4, 5
284 3.00 0.40 −0.60 4, 5
285 3.00 0.40 0.60 4, 5
286 3.00 0.50 0.50 4, 5
287 3.00 0.60 −0.60 4, 5
288 3.00 0.60 −0.40 4, 5
289 3.00 0.60 0.00 4, 5
290 3.00 0.60 0.40 4, 5
291 3.00 0.60 0.60 4, 5
292 3.00 0.73 −0.85 4, 5
293 3.00 0.85 0.85 4, 5
202 7.00 0.60 0.00 3, 4
203 7.00 0.40 0.00 2, 3
204 7.00 0.40 0.00 2, 3
205 7.00 −0.40 0.00 2, 3
206 7.00 −0.40 0.00 2, 3
207 7.00 −0.60 0.00 3, 4

TABLE IV: List of 121 SXS simulations for aligned-spin BBHs, showing the SXS simulation ID, the mass ratio q, the spins represented by χ1,2

via ~χ1,2 = χ1,2L̂, and the numerical resolutions used for our analysis.
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