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Abstract

Gyrokinetic stability of plasmas in different magnetic geometries is
studied numerically using the GENE code. We examine the stability of
plasmas, varying the mass ratio between the positive and negative charge
carriers, from conventional hydrogen plasma through to electron-positron
plasma. Stability is studied for prescribed temperature and density gradi-
ents in different magnetic geometries: (i) An axisymmetric, circular flux
surface, low β (tokamak) configuration. (ii) A non-axisymmetric quasi-
isodynamic (optimised stellarator) configuration using the geometry of
the stellarator Wendelstein 7-X. We also present the analytic theory of
trapped particle modes in electron-positron plasmas. We found similar
behaviour of the growth rate and real frequency compared to previous
studies on the tokamak case. We are able to identify two distinct regimes
dominated by modes propagating in the electron diamagnetic direction
and modes propagating in the ion / positron diamagnetic direction, de-
pending on the mass ratio. In both the tokamak and the stellarator case
we observed the real frequency tend to zero as the mass ratio approaches
unity and are able to explain this using gyrokinetic theory.

1 Introduction

The prospects of creating electron-positron pair plasmas magnetically confined
in dipole or stellarator geometries have been discussed since early 2000s (Ped-
ersen et al., 2003). In near future, the first experiment aiming at this goal will
be constructed (Pedersen et al., 2012). Recently, efficient injection and trap-
ping of a cold positron beam in a dipole magnetic field configuration has been
demonstrated by Saitoh et al. (2015) using a supported permanent magnet.
This result is a key step towards the further studies using the levitated mag-
netic coil with the ultimate aim of creating and studying of the first man-made
magnetically-confined pair plasma in the laboratory.
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It has been shown by Helander (2014) that pair plasmas possess unique gy-
rokinetic stability properties due to the mass symmetry between the particle
species. For example, drift instabilities are completely absent in straight ge-
ometry, e. g. in a slab, provided that the density and temperature profiles of
the two species are identical (“symmetric” pair plasmas). The symmetry be-
tween the two species is broken if the temperature profiles of the electrons and
positrons differ or there is an ion contamination. In these regimes, drift instabil-
ities can be excited even in unsheared slab geometry (Mishchenko et al., 2018b).
In a sheared slab, pure pair plasmas are prone to current-driven reconnecting
instabilities Zocco (2017), but there are no drift waves. Note that asymmetry
between the species is needed also in this case since the ambient electron flow
velocity must differ from the positron one for the ambient current to be finite.
In contrast to slab geometry, a dipole magnetic field has finite curvature. In this
case, the symmetry between the species is broken by curvature drifts and the
plasma can be driven unstable by temperature and density gradients (Helander,
2014), even without ion contamination and for identical temperature profiles
of the two species. This result also persists in the electromagnetic regime (He-
lander & Connor, 2016). The nonlinear stability of dipole pair plasmas has also
been addressed by Helander (2017). More recently, Mishchenko et al. (2018a)
performed a detailed study of the gyrokinetic stability of pure pair plasma in
the dipole geometry, making use of both the Z-pinch and point-dipole limits.
Again, it was found that such pair plasmas can be driven unstable by magnetic
curvature, density and temperature gradients.

In this paper, we use the gyrokinetic code GENE (Jenko et al., 2000) to
study the linear stability of plasmas with artificially varied mass ratios ranging
from conventional deuterium plasma to electron-positron plasmas in a variety
of different magnetic geometries. In §2 we introduce the GENE code and the
assumptions and modifications required to run simulations for electron positron
plasmas. In §3 we show the setup and results for simulations in two different
magnetic geometries. We employ the ŝ−α model for an axisymmetric tokamak
configuration and compare these with Pedersen et al. (2003). We also run
simulations for the W7-X stellarator geometry. We present the analytic theory
of trapped particle modes in electron-positron plasmas to explain the results of
the numerical simulations. In §4 we present our conclusions and outlook.

2 Physical assumptions

In this work GENE is operated in a linear mode, employing local (“flux-tube”)
geometry. Throughout this paper we have considered only collisionless, electro-
static simulations, we have also assumed that the plasma density of species a
denoted by na is sufficiently large when compared to the Brillouin density

na � nBa :=
ε0maΩ2

ca

2e2a
. (1)
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Here ε0 is the vacuum permittivity, ma the mass of the plasma species, Ωca =
eaB/ma the gyrofrequency, B the magnitude of the magnetic field, and ea
the charge of each plasma species. This assumption ensures that that Debye
shielding can be neglected provided k⊥ρ < 1. Henceforth, we are working in a
limit where k⊥λD � 1. Here, the following notation is employed

1

λ2Da
=
e2ana
ε0Ta

,
1

λ2D
=
∑
a

1

λ2Da
, (2)

where Ta is the temperature of each species. It is important to note that this
limit may not be satisfied in practice and this area warrants further study.

The GENE code can handle plasmas of different mass ratios by changing
the mass of the lighter species (electrons). Electron positron plasma is obtained
when the mass of the electrons is equal to the mass of the singly charged ion
species - thus obtaining charge asymmetry and a mass ratio of unity.

The numerical resolution in the field-line-following direction is 128 grid
points, while 16 and 8 grid points are employed for the parallel velocity and
magnetic moment directions respectively. GENE employs numerical dissipation
(hyperdiffusion). In this work, the strength of the hyperdiffusion is set to 0.2
for the parallel velocity and to 0.25 in the parallel direction.

3 Results

In toroidal fusion plasmas, transport is generally dominated by turbulence which
is driven by microinstabilities. We have begun to investigate the microstability
of quasineutral electron-positron plasmas in different magnetic configurations:
a simple tokamak geometry and a stellarator geometry. Although drift waves
and acoustic waves are not easily found in a pair plasma, it has been shown that
the basic curvature-driven interchange instability can threaten the confinement
of such plasmas in experimental devices. In the absence of magnetic shear,
magnetic field curvature induces an interchange instability with a growth rate
which scales like γ ∼ vt/

√
RL, where vt is the thermal velocity, R is the radius

of curvature and L is the characteristic pressure gradient length scale of the
plasma. In the absence of other microinstabilities, the interchange is thus a
strong candidate for driving turbulence in a laboratory pair plasma.

3.1 Tokamak geometry

A simple test case for a magnetic geometry which is unstable to the collision-
less interchange, is a circular tokamak with aspect ratio a/R. To this end we
employ the well known ŝ − α geometry (Connor et al., 1971) model for which
many studies have already been performed e.g. Dimits et al. (2000). Numerical
simulations with varying plasma ratio toward electron-positron plasmas have
also been addressed by Pedersen et al. (2003) using the GS2 gyrokinetic code,
this provides an excellent starting case for the work presented here and gives a
basis for the comparison of different gyrokinetic codes.
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Figure 1: Growth rate γ and corresponding real frequency ωr plotted as a
function of the mass ratio. Simulations shown for an ŝ− α geometry.

The magnetic flux tube used for simulations orginiates at radial position
r/R = 0.36. The normalised density and temperature gradients read

ωn,a = − R
na

dna
dr

, ωT,a = − R
Ta

dTa
dr

(3)

where the subscript a is the species index.
In this case, as in the aforementioned work of Pedersen et al. (2003), we take

the density gradient R/Ln = 3, the temperature gradient R/LT = 3, the safety
factor q = 1.4, the magnetic shear ŝ = 0.8, and equal temperatures Ti = Te.

In Figure (1) the growth rate γ (normalised by ci/a, where ci =
√
Ti/mi is

the ion sound speed) and the corresponding real frequency ωr are plotted against
the ratio of the electron mass to the ion mass. The sign of ωr is such that ωr > 0
corresponds to propagation in the ion / positron diamagnetic direction. The
growth rate of the fastest growing mode for different values kyρi is shown, where
ky is the binormal wave number and ρi is the reference gyroradius, ρi = ci/Ωi.
Standard plasma mass ratios are shown on the left side of the figure, with the
standard electron-hydrogen plasma occupying the left-most point. Pair plasma
is at unity on the horizontal axis, where me = mi.

When the mass ratio is varied to approach unity, we see an increase in the
growth rate of the most unstable mode - the associated change in the sign
of ωr corresponds to a regime switch from modes propagating in the electron
diamagnetic direction, to modes propagating in the ion / positron diamagnetic
direction.

In Figures (2) to (5) we see how the modulus of the electrostatic potential
Φ = |φ|, the curvature κ and the magnetic field strength B vary along the flux
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Figure 2: ŝ − α geometry. Φ, κ vs. θ,
me/mi = 1/1836
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Figure 3: ŝ − α geometry. Φ, B vs. θ,
me/mi = 1/1836
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Figure 4: ŝ − α geometry. Φ, κ vs. θ,
me/mi = 1.0
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Figure 5: ŝ − α geometry. Φ, B vs. θ,
me/mi = 1.0

tube.
It is not possible to easily classify these modes as so-called temperature-

gradient driven modes and trapped-particle modes from the mode structure
alone. Indeed, in this simple model tokamak both the magnitude of the magnetic
field B and the curvature κ have their minimum at the outboard midplane.
Negative values of κ correspond to “bad” curvature. It is also important to
note that both species are treated kinetically in the code and therefore particle
trapping effects are present at all mass ratio values.

The growth rate is shown for different mass ratios in Figure (6) as a function
of kyρi

It is important to recall that we are considering plasmas with a sufficiently
high density to neglect Debye shielding effects. For low enough density, the
positron-electron interchange instability can be stabilised by the finite Debye
length. The effects of Debye length have recently been investigated by Horn-
Stanja et al. (2018).

We note the excellent agreement of our results using the GENE gyrokinetic
code operating in a linear flux-tube mode shown in Figure (1) with those ob-
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Figure 6: Growth rate γ plotted as a function of kyρi for different mass ratios.
Simulations shown for an ŝ− α geometry.

tained by Pedersen et al. (2003) using the GS2 gyrokinetic code (their Figure
(4)). It is important to note that our growth rate is normalised using the ion
sound speed, ci, whereas the results of Pedersen et al. (2003) are normalised to
the ion thermal speed vti =

√
2Ti/mi =

√
2ci, this accounts for the apparent

discrepancy in the y−axis.

3.2 Wendelstein 7-X geometry

We further extend the results of Pedersen et al. (2012) by also using the GENE
code to study stability in a non-axisymmetric configuration. The stellarator
has been proposed as a suitable trap for such a plasma. In this work we use
the Wendelstein 7-X geometry to investigate plasma stability in a stellarator
when the mass ratio is varied. Whilst this is unlikely to be experimentally
relevant to the ongoing W7-X campaigns, the study of electron-positron plasmas
in stellarators is nevertheless relevant since this type of device is one of the main
candidates for a pair plasma trap.

For the stellarator geometry considered we will find it useful to employ the

Boozer coordinate system (
√
s, α, θ) where α =

√
s0
q0

(qθ − ζ). Here, θ, ζ are the
Boozer poloidal and toroidal angles, respectively, s0 is the radial location of the
magnetic surface in terms of the normalised toroidal flux, and q is the safety
factor. The magnetic shear is defined as

ŝ =
d ln q

d ln r
, (4)

where r is the minor radius of the flux surface.
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Figure 7: Growth rate γ and corresponding real frequency ωr plotted as a
function of the mass ratio. Simulations shown for the Wendelstein 7-X geometry
in the flux tube originating in the bean cross section.

We take the density gradient a/Ln = 3 and the temperature gradient a/LT =
3 with

Ln = − 1

n

dn

dx
, LT = − 1

T

dT

dx
, (5)

where x = a
√
s. Our simulations are performed in a magnetic flux tube at the

normalised radial position of r/a = 0.49. Geometrically, this is the flux tube
which originates at the centre of the bean shaped cross section in the device.
This surface has a safety factor value of q = 1.4, and a magnetic shear of
ŝ = −0.05.

In Figure (7) the normalised growth rate γ (maximised over kyρi) and the
corresponding real frequency ωr are plotted against the ratio of the electron mass
to the ion mass. (The peak value tends to be in the interval 0.2 < kyρi < 0.6.)
Conventional plasma mass ratios correspond to the left side of the figure, with
the standard electron-hydrogen plasma occupying the left most point. The pair
plasma is at unity on the x−axis, where me = mi.

As before, we see an increase in the growth rate of the instability as the mass
ratio approaches unity. We can also once again identify two distinct regimes
which are dominated by modes propagating in the electron diamagnetic direc-
tion (ωr < 0) and modes propagating in the ion / positron diamagnetic direction
(ωr > 0).

We note the interesting result that the real frequency is exactly zero for pair
plasmas. In Section 4 we show that this result can be derived analytically.

In Figure (8) we see how the growth rate varies as a function of kyρi. It is
interesting to compare these results with those shown in Figure (6) for the ŝ−α
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Figure 8: Growth rate γ plotted as a function of kyρi for different mass ratios.
Simulations shown for the W7-X geometry in the flux tube originating in the
bean shaped cross section.
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Figure 9: W7-X geometry, bean flux
tube Φ, κ vs. θ, me/mi = 1/1836
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Figure 10: W7-X geometry, bean flux
tube. Φ, B vs. θ, me/mi = 1/1836
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Figure 11: W7-X geometry, bean flux
tube. Φ, κ vs. θ, me/mi = 1.0
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Figure 12: W7-X geometry, bean flux
tube. Φ, B vs. θ, me/mi = 1.0

geometry. We note in passing that in the stellarator, plasmas with a mass ratio
close to unity tend to have their growth rates maximised for larger values of
kyρi than in the ŝ− α geometry, this is due to the smaller connection length.

In the stellarator geometry considered, the regime change between the mode
propagation direction appears to occur for a larger mass ratio than in the toka-
mak case. Indeed the threshold mass ratio is an order of magnitude higher in
the W7-X geometry than in the ŝ− α tokamak case.

In Figures (9) and (10) we see how the modulus of the electrostatic potential
Φ = |φ|, the curvature κ and the magnetic field strength B vary along the flux
tube. We can also examine the mode structure for electron-positron plasmas
[Figures (11) and (12)]. In contrast to the tokamak case [Figs (2) - (5)], the mode
structure is sensitive to the mass ratio me/mi. Presumably, this is because the
regions of bad curvature (κ < 0) and particle trapping (low B) do not conincide
in the stellarator in constrast to the tokamak. In section 4 we show analytically
that particle-trapping plays a large role in the stability of pair plasmas.

We have also performed simulations using a variety of different temperature
gradients and density gradients and using a different flux tube (not shown). In
each case we observed similar trends in both the behaviour of the growth rate
of the fastest growing mode and the structure of the modes along the flux tube
for different mass ratios.

4 Analytic theory of trapped particle modes for
electron-positron plasmas

We note the interesting result that ωr → 0 as me → mi with ωr = 0 at a mass
ratio of unity. This can be accounted for from the analytic theory of trapped
particle modes. The theory of trapped electron modes in conventional plasmas
has been studied extensively in Helander et al. (2013). Here we follow a similar
calculation but for plasmas of equal mass, which we will see plays an important
role in the mode structure.
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We consider an arbitrary configuration with nested magnetic flux surfaces,
so that the magnetic field can be written as B = ∇ψ×∇α, with ψ the toroidal
magnetic flux and α = θ − ιφ the Clebsch angle, constructed as usual from
the poloidal and toroidal magnetic coordinates. In a gyroradius expansion, it
follows from the zeroth-order drift kinetic equation that the equilibrium distri-
bution function, fa0, of each species a is a Maxwellian at rest whose density and
temperature are constant on each flux surface. The linear stability of this equi-
librium against drift-wave-ordered instabilities is governed by the gyrokinetic
equation

iv||∇||ga + (ω − ωda)ga =
eaφ

Ta
J0

(
k⊥v⊥

Ωa

)
(ω − ωT?a)fa0, (6)

in the collisionless and electrostatic approximation. Here φ is the electrostatic
potential perturbation, J0 is a zeroth-order Bessel function, Ωa = eaB/ma the
gyrofrequency, and

ga(R, v, λ, t) = fa1(r,v, t) +
eaφ(r, t)

Ta
fa0(v) (7)

denotes the non-adiabatic part of the perturbed distribution function, which in
lowest order becomes independent of the gyroangle when written as a function
of the guiding-center position R = r−b×v/Ωa rather than the particle position
r. The parallel derivative is taken at constant magnetic moment µ = mav

2
⊥/2B,

and we shall use v and λ = v2⊥/(v
2B) as our independent velocity-space vari-

ables. In addition to the mode frequency ω = ωr+iγ, two characteristic frequen-
cies appear in Eq. (1), the drift frequency ωda = k · vda, and the diamagnetic
frequency ω?a = (Takα/ea)d lnna/dψ appearing in

ωT?a = ω?a

[
1 + ηa

(
x2 − 3

2

)]
, (8)

with x2 = mav
2/2Ta. Here, na denotes the density, Ta the temperature, ηa =

d lnTa/d lnna, and the wave vector has been written as k⊥ = kψ∇ψ + kα∇α.
The system of equations is closed by the quasineutrality condition,∑

a

nae
2
a

Ta
φ =

∑
a

ea

∫
gaJ0 d3v. (9)

Apart from the usual assumptions in gyrokinetics, two approximations have
been made in Eq. (6): electromagnetic effects and collisions have been neglected.
The former are unimportant in the limit β → 0, but it is in practice difficult
to know a priori just how small β needs to be (typically below one or a few
percent, depending on the magnetic geometry). Collisions are negligible as long
as the collision frequency is smaller than ωf2t where ft denotes the fraction of
trapped particles.

From here we can obtain the dispersion relation obtained in Helander (2014)
in the limit of zero Debye length and using the assumption that the mode
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frequency is much smaller than the bounce frequency, namely we obtain

φ =
1

n

∫
φ̄

(
1 +

ω̄d(ω̄d − ωT? )

ω2 − ω̄2
d

)
f0 d3v, (10)

where the overbar notation denotes the bounce average, defined for φ as

φ̄ =

∫
φ(l) dl√
1− λB(l)

/∫
dl√

1− λB(l)
(11)

the integrals which appear in this definition are taken along the magnetic field
between two consecutive bounce points λB = 1.

We can now declare an interest in modes satisfying ωT? � ω̄d. This assump-
tion is not satisfied in general magnetic geometry but is well satisfied in the
scenarios considered here. In this limit the dispersion relation reduces to

φ =
1

n

∫
φ̄

(
1− ω̄dω

T
?

ω2

)
f0 d3v. (12)

From here we can make our first deduction. Namely, this dispersion relation is a
linear function of the square of the complex frequency in which the coefficients
are real variables. As such, it follows that ω is either purely real (oscillatory
modes) or purely imaginary (exponential growth). This explains why it is not
unreasonable that we see the real frequency reaching exactly zero for electron-
positron plasmas.

We can further explore this dispersion relation by transforming to pitch angle
coordinates d3v =

∑
σ(πv2/

√
1− λB)Bdvdλ where σ = sgn(v||) and writing

ω̄d = x2ω̃d(λ). We can then reformulate Equation (12) as a variational principle.
This is accomplished by multiplying the equation by φ?/B, where φ? is the
complex conjugate of φ, and then integrating along the entire field line, using∫ ∞

−∞
φ?(l) dl

∫ 1/B

1/Bmax

φ̄j dλ√
1− λB

=

∫ 1/Bmin

1/Bmax

∑
j

τj |φ̄j |2 dλ (13)

where the sum is taken over all relevant magnetic wells, i.e. over all regions
where the magnetic field strength B < 1/λ, and

φ̄j(l) =
1

τj(l)

∫
φ(l) dl√
1− λB

(14)

denotes the bounce average of φ over the j−th such well, with

τj(λ) =

∫
dl√

1− λB
. (15)

Performing this calculation we obtain

ω2 = S[φ] =
N [φ]

D[φ]
(16)
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where

N [φ] = −3

4

∫ 1/Bmin

1/Bmax

∑
j

τj(1 + η)ω?ω̃d|φ̄j |2 dλ (17)

and

D[φ] =

∫ ∞
−∞
|φ|2 dl

B
− 1

2

∫ 1/Bmin

1/Bmax

∑
j

τj |φ̄j |2 dλ. (18)

The denominator of Eq. (16), D[φ], is positive since the Cauchy-Schwarz
inequality, |φ̄|2 ≤ |φ|2, implies

1

2

∫ 1/Bmin

1/Bmax

∑
j

τj |φ̄j |2 dλ ≤ 1

2

∫
|φ2|dl

∫ 1/Bmin

1/Bmax

dλ√
1− λB

≤
√

1− Bmin

Bmax

∫
|φ|2 dl

B
.

(19)
Hence, we see that the stability of modes is driven by pressure gradient through
the quantity (1 + η)ω?ω̄d. The sign of this quantity sets the stability.

Equation (16) is variational and assumes its minumum for the particular
function φ(l) which satisfies the integral equation (12), as follows from the fact
that the variation vanishes,

δω

ω2
=
δN

N
− δD

D
=

1

N

(
δN − ω2δD

)
= 0 (20)

if, and only if, the integral equation (12) is satisfied. This follows directly from

δN [φ] = −3

2

∫ 1/Bmin

1/Bmax

∑
j

τj(1 + η)ω?ω̃dφ̄jδφj dλ (21)

and

δD[φ] = 2

∫ ∞
−∞

φδφ
dl

B
−
∫ 1/Bmin

1/Bmax

∑
j

τj φ̄jδφj dλ. (22)

We can use this variational principle to deduce that any unstable mode is
purely growing i.e. ω = iγ provided there is at least one value of λ for which
the quantity (1 + η)ω?ω̄d is positive. We note that for the most unstable mode

min
φ
S[φ] = ω2 (23)

where ω2 is the frequency associated with the most unstable mode. Suppose
now that (1+η)ω?ω̄d is positive for at least one value of λ, then we can construct
a trial function φtrial, which is positive when (1 + η)ω?ω̄d is positive and zero
otherwise. Note that φtrial need not (and indeed will not generally) satisfy the
integral equation (12). It follows immediately that for such a trial function

S[φtrial] < 0. (24)
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As the functional S[φ] attains its minimum for the value of φ which does satisfy
the integral equation, it follows that for the most unstable mode

ω2 = S[φ] ≤ S[φtrial] < 0 (25)

Hence the most unstable mode is purely growing. This allows us to explain the
trends shown in Fig. (1) and (7). Eq. (16) tells us that ω is purely real or
purely imaginary. The curvature is bad for at least one value of λ which implies
that ω2 < 0 for any unstable mode. Hence we deduce that ω = iγ for the any
unstable mode in electron-positron plasmas.

One final result to which attention should be drawn is the following. If we
take some estimate for the function φ = φ0 then provided

|φ− φ0| < ε (26)

the variational principle ensures

ω2 − S[φ0] < Cε2 (27)

for some constant C. That is, we obtain higher accuracy for the frequency than
for the associcated eigenfunction.

5 Conclusions

We have used the gyrokinetic code GENE to examine microinstabilities driven
by temperature and density gradients in plasmas confined in different magnetic
geometries for a range of different mass ratios between conventional hydrogen
plasma and electron-positron pair plasmas.

We considered an axisymmetric, circular flux surface, low β (tokamak) and
were able to reproduce the results of Pedersen et al. (2003) and also examine the
behaviour of the real frequency of the modes as we varied the mass ratio. The
change in regime from ion temperature gradient driven instabilites to trapped
particle driven instabilities is clear as the plasma mass ratio approaches that of
electron-positron plasmas. We considered a quasi-isodynamic stellarator config-
uration using the geometry of the W7-X device. We found similar behaviour of
the growth rate and real frequency compared to the tokamak case. In particular
we were able to identify two distinct regimes dominated by modes propagating
in the electron diamagnetic direction (for mass ratio close to conventional values
me/mi = 1/1836) and modes propagating in the ion / positron diamagnetic di-
rection (for mass ratios close to pair plasma me/mi = 1). In both the tokamak
and the stellarator case we observed the real frequency tend to zero as the mass
ratio approaches unity.
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