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Abstract

Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even

during anesthesia. It was suggested that criticality could serve as a unifying principle under-

lying the diversity of dynamics. This view has been supported by the observation of sponta-

neous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal

avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuro-

nal avalanches in spiking activity has been equivocal with studies reporting both its presence

and absence. Here, we show that signs of criticality in spiking activity can change between

synchronized and desynchronized cortical states. We analyzed the spontaneous activity in

the primary visual cortex of the anesthetized cat and the awake monkey, and found that neu-

ronal avalanches and thermodynamic indicators of criticality strongly depend on collective

synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchro-

nized states are associated to criticality, large dynamical repertoire and prolonged epochs of

eye closure, while desynchronized states are associated to sub-criticality, reduced dynam-

ical repertoire, and eyes open conditions. Our results show that criticality in cortical dynam-

ics is not stationary, but fluctuates during anesthesia and between different vigilance states.

Author summary

Cortical activity spontaneously displays a large diversity of dynamics in different behav-

ioral states and at multiple spatiotemporal scales. In the last decades, a unifying principle

has been proposed to underlie the diversity and scale-invariance of brain dynamics: Criti-

cality, a particular state of complex systems in which order and disorder coexist. On the

other hand, the cortex can exhibit a continuum of states with different levels of collective

synchrony and LFP fluctuations. Here, we ask how criticality measures vary as the cortex
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spontaneously fluctuates across different states. Using recordings from the primary visual

cortex of the anaesthetized cat and awake monkey, we show that spiking patterns of corti-

cal states differ in their proximity to criticality and their relation to the vigilance state.

Introduction

The cortex continuously generates coordinated ongoing patterns of activity during varying

behavioral states such as restful wakefulness [1], focused attention [2], sleep and anesthesia [3].

Patterned spontaneous activity has been reported at multiple scales as revealed by multi-elec-

trode arrays [4], optical imaging [5,6] magnetencephalography [7] and functional MRI [1]. In

spite of early findings that the statistics of cortical activity are highly variable [8], interest arose

to find an overarching physical principle that explains in a unified way the dynamical organi-

zation of the brain. Theoretical reasoning made criticality, a concept borrowed from statistical

physics, a plausible candidate for such a unifying concept as it has been proposed to account

for the brain’s inherent complexity necessary to process and represent its environment [9]. In

the critical regime, cascading dynamics are expected to produce a great diversity of transient

co-activations or “neuronal avalanches” [10,11]. Within this framework, power laws and high

levels of long-range correlations are two strong indicators of critical dynamics [11,12].

Even though first reported in in vitro preparations [13–18], evidence for criticality in the

cortex was found during anesthesia [19,20], sleep [21], resting state in animals and humans

[22–27], task-related conditions [28] and stimulus evoked activity [29,30]. However, other

studies failed to find the typical signs of criticality, either refuting the neuronal avalanche

hypothesis [31–33] or explaining the negative result by subsampling of neuronal activity due

to fundamental measurement limitations of current multi-electrode recording techniques

[21,28,34]. Alternatively, criticality or its absence in the cortex may not be a constant feature of

brain activity, but fluctuates with the ever-varying dynamics of the cortex and associated

arousal states. Indeed, the statistics of neuronal population spike activity in the cortex substan-

tially vary over time, continuously moving between highly synchronized burst dynamics and

desynchronized, irregular activity [35]. Synchronized cortical states are the hallmark of in vitro
preparations [13], but also appear during slow wave sleep [36], anesthesia [21,37,38] and also

in awake animals during quiet waking and drowsiness [39,40]. In contrast, desynchronized

activity is associated with active behavior [41,42], responses to visual stimuli [43] and sug-

gested to be a neuronal correlate of attention [35]. In line with this hypothesis, putative transi-

tions between critical, supercritical and subcritical dynamics have been observed during

anesthesia [20,44], shifts between anesthesia and the physiological sleep-wake cycle [21,22,45–

48], prolonged waking [49], and in a rest versus task setting [50]. Here, we tested whether the

signature of criticality at the level of collective spiking activity remains robust across different

cortical states or fluctuates together with changing cortical dynamics recorded in the primary

visual cortex of the anesthetized cat and awake monkey using classical criticality markers and

data modeling. We found time varying criticality properties which were associated with the

local cortical state, both during anesthesia and in the awake state, and changed with prolonged

epochs of eye closure in the awake condition.

Results

In this study, we recorded spontaneous spiking activity and local field potentials (LFP) from

the primary visual cortex of four anesthetized cats (~1 hr/animal) and one awake monkey

using 32-channel silicon probes (cats) and a chronically implanted 96-channel Utah array
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(monkey, 4x10 minutes, total of 40 minutes). To avoid interference of visually evoked activity

with the ongoing dynamics all recordings were performed in the dark. Visual inspection of the

LFP spectrogram of both cat and monkey datasets showed non-stationary dynamics with

prominent power fluctuations in a frequency band between 1 and 15 Hz and stronger alpha

oscillations (9–13 Hz) in the monkey recordings (Fig 1A).

State separation

In order to account for the variability of cortical dynamics, we attempted to pool short seg-

ments of the data into sets which were characterized by a similar frequency composition of the

Fig 1. Separation of cortical states in spontaneous activity of anesthetized cat and awake monkey. (A) LFP spectrograms of two

100s segments computed with non-overlapping windows of 1s. Bottom: colored bars indicate cortical state as defined in the main text.

(B) Coefficients for first three principal components as a function of power spectrum frequency. (C) Principal component space for two

entire datasets (cat: 6000s, monkey: 600s). Each circle represents a data segment of 1s duration. Colors indicate different cortical

states. (D) Dunn index as a function of the cluster number extracted by k-means. (E) Average (+SD) duration of different states across

all datasets of a species. (F) Average power spectrum of different cortical states for all cat and monkey datasets. Dashed lines indicate

standard deviation (±SD). Inset: same as in main figure, but in log-log coordinates to show peak in alpha band.

https://doi.org/10.1371/journal.pcbi.1005543.g001
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LFP power spectrum. Each set is referred to as a different cortical (or dynamical) state in

accordance with previous studies [35,38,41].

We first used a combination of principal component analysis (PCA) and subsequent k-

means clustering to find frequency bands that showed the highest variance across an entire

dataset and subsequently cluster data epochs with similar power in these bands (see Materials

and methods). The first three principal components (PC) explained 97% (cats) and 99% (mon-

key) of the variance and corresponded to different bands of the frequency spectrum within a

range between 1 and 15 Hz (Fig 1B). Each data segment was represented in a three dimen-

sional PC space and we observed a characteristic pattern of segment clusters across cat and

monkey datasets. Most segments were concentrated at the origin of the PC space around

which the remaining ones were scattered along the three dimensions (Fig 1C). We performed

a k-means cluster analysis to extract different clusters in each dataset. The optimal number of

clusters was estimated using a validation procedure based on the Dunn index (DI). On aver-

age, the optimal number of clusters, as indicated by a peak in the DI distribution, was found to

be five in the cat datasets and four in the monkey recordings (Fig 1D), each of which corre-

sponded to different cortical states. In order to compare states across different datasets and

species, we coded clusters at the same location in the PC space with the same color (see color

code in Fig 1C). Analysis of cluster duration revealed that the cortex spent most of the time in

the cluster centered around the origin of the PC space (58 ± 0.07% and 75 ± 0.17%, mean ± SD

of the data in the cat and monkey, respectively), while cortical dynamics represented in the

other clusters was much less frequent (Fig 1E).

Next, we computed average power spectra across all data segments in one cluster and the

analysis results confirmed that the separation algorithm extracted power spectra with a similar

frequency composition across different time epochs (Fig 1F). The black clusters consistently

corresponded to dynamics with little power in lower frequencies (1–5 Hz) as opposed to the

red and green clusters in which the power in slower (red) or faster frequencies (5–15 Hz,

green) was high. The blue and magenta clusters had intermediate power at slower frequencies

approaching either the black or red cluster, respectively. In the subsequent analysis we will

refer to states with relatively lower power in slow frequencies as “desynchronized states”—

denoted as Desyn I (black) and Desyn II (blue, only for cat)—, with higher power in slow fre-

quencies as “slow synchronized states”—denoted as SynSlow I (magenta) and SynSlow II (red)

—and with high power in faster frequencies as “fast synchronized state”—denoted as SynFast

(green).

Characteristics of spiking activity across cortical states

Spiking activity consistently varied with the cortical states as defined by the LFP (see Fig 2A

for an example taken from a cat recording). During epochs of desynchronized LFP with small

amplitude fluctuations, spiking activity was characterized by continuous and irregular firing of

neurons without apparent synchronization across the different channels. When the LFP

shifted to dynamics with larger amplitude fluctuations, the underlying firing pattern of neu-

rons was characterized by bursts of spiking activity that occurred synchronously across most

of the channels and was followed by periods of silence.

The mean channel firing rates consistently varied across different states (Fig 2B). Neuronal

activity in the anesthetized cat showed a trend to increased firing rates as LFP entered into syn-

chronized states, but differences across states were not significant (one-way rm-ANOVA:

p> 0.11). In contrast, neurons in the awake monkey fired significantly more vigorously in

desynchronized states than during synchronized activity (one-way rm-ANOVA: F3,9 = 39.03,

p = 0.0005, ε = 0.62).

Neuronal activity is transiently poised close to criticality
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To further quantify the relationship between spikes and LFP we computed spike-triggered

averages (STA) for each dataset and cortical state (see Fig 2C for two examples of a cat and a

monkey dataset). In all cases, as expected, spikes were associated with the negative trough of

LFP deflections, whose area between the negative deflection and the zero baseline (one-way

rm-ANOVA: F4,12 = 7.26, p = 0.019, ε = 0.56 (cat) and F3,9 = 6.63, p = 0.027, ε = 0.71 (mon-

key)) varied between states. In desynchronized states the LFP peaks were small and thin, while

they increased in amplitude and width in more synchronized states. The synchronized cluster

with faster deflections displayed peaks with the highest amplitude, but its width was smaller

than synchronized states with lower frequency fluctuations. These results were confirmed

across all datasets and both species (Fig 2D).

To assess the level of correlation in the population spiking activity, we computed the popu-

lation auto-correlation histograms (pACH) of the population spike trains for each state (Fig

2E) which captures all possible correlations either generated intrinsically by neurons (i.e.

bursting behavior) or through neuronal interactions. The area of pACH peaks was signifi-

cantly state dependent (one-way rm-ANOVA: F4,12 = 15.91, p = 0.002, ε = 0.6 (cat) and F3,12 =

4.27, p = 0.018, ε = 1 (monkey)). The pACH of the Desyn I state had lower amplitude and area

Fig 2. Characteristics of LFP-spike relationship and spiking activity for different cortical states. (A) LFPs (top) and spike

rasters (bottom) for 1s segments of a desynchronized and synchronized cortical state from one cat dataset. Spike counts were

computed with a Gaussian kernel (20ms window-size). (B) Average (+SD) population firing rate for all recordings of a species. (C)

Examples of spike-triggered averages (STA) for different cortical states. (D) Average (+SD) STA area across all cat and monkey

datasets. The area is normalized to the state with the largest value within a dataset. (E) Autocorrelation histograms of the population

spike trains (pACH) for all cortical states in one cat and one monkey recording. (F) Average (+SD) area and of ACH peaks

computed for all cat and monkey datasets. The values were normalized to the states with maximum area within a dataset.

Horizontal bars: significant Bonferroni multiple comparison test (p<0.05).

https://doi.org/10.1371/journal.pcbi.1005543.g002
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compared to the other states, while the pACHs of SynSlow II and SynFast states had the largest

peaks. The pACHs of the slow synchronized states had the largest spread, while the temporal

correlations were shortened in the other states. In addition, spike synchronization in faster fre-

quency bands (alpha range) was clearly visible in the pACH of the monkey, especially in the

SynFast state. These results were consistent across all datasets and species (Fig 2F).

Cortical states and criticality

To study criticality in spiking activity, we first applied a classical analysis [13] that is based on

binning point processes like spike trains and extracting clusters defined as consecutive bins

with a number of spikes above a predefined threshold (Fig 3A, threshold� 1). Bin-sizes were

given by the average inter-spike interval of each state (see Table 1 for detailed values). Suffi-

ciently sampled critical dynamics underlying the generated spikes predicts power laws in the

cluster size distributions, i.e. a straight line in log-log plots. Such analysis was consequently

performed for each cortical state separately and the full datasets for comparison (Fig 3B). The

distributions in the most desynchronized states (black solid lines) did not follow a power law,

albeit not being as curved as expected from shuffled data (Fig 3B, dashed lines). However,

moving from desynchronized to more synchronized states, the tail of the cluster size distribu-

tion increased and came closest to a power law in the most synchronized states (red lines).

This pattern was consistent in both cat and monkey recordings. Analysis of the full datasets

revealed clearly curved distributions similar to the desynchronized state in accordance with

previous studies in spiking data [21,31,32,51](Fig 3B, solid black line)

To quantify these tails, we fitted both lognormal and power law distributions to the cluster

size distributions. Lognormal functions are more flexible and support different degrees of hea-

vytaildness as opposed to power laws with extreme tails. Thus, comparing the goodness of fit

between both distributions provides a relative quantification of how closely a distribution

approaches a power law. We performed comparisons using loglikelihood ratios (LLR) with

positive values indicating superior power law fit and negative values giving more evidence for

lognormal fits with reduced tails [22,52]. In our recordings, LLRs were in general negative

across all states in both cat and monkey datasets (all datasets: p< 0.001), indicating that tails

were less pronounced than expected by a power law. However, how much each state deviated

from a power law varied between states as indicated by the absolute values of the LLR. These

were more negative during desynchronized states and when analyzing the full datasets, while

the discrepancy between lognormal and power law fit was less pronounced during states with

more synchronization (Fig 3C). We repeated this analysis using different thresholds for ava-

lanche detection (see Methods and material)[22,53]. In the cat, significant state differences

(rm-ANOVA: p< 0.05) were found for all but the lowest and highest thresholds, which only

yielded a trend (p< 0.1) or were non-significant, respectively. In the monkey, state differences

were found for all thresholds (see example in Fig 3D and S1 Fig for a detailed analysis). We

also determined the exponent of the fitted power law distributions for all states which yielded

values for each species close to the theoretically expected and experimentally found value

[13,54] of -1.5 (cats: -1.62 ± 0.05, monkey: -1.58 ± 0.03), desynchronized states included.

Even though power laws can be predictive of criticality, a failure to detect straight lines does

not entirely rule out absence of criticality [21,28]. Another test for criticality is the existence of

universal scaling functions that capture the system dynamics at different scales. In cortical cul-

tures, it has been observed that the time-courses of long avalanches are scaled versions of short

avalanches as predicted close to a critical point [15]. Such invariance across scales, or self-simi-

larity, known as “shape collapse”, was also found in spiking data of rats undergoing all stages

of the sleep-wake cycle and resting state EEG recordings of humans [21,50]. Here, we used the

Neuronal activity is transiently poised close to criticality
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Fig 3. Neuronal avalanche analysis of spiking activity. (A) Spike clusters were defined as a sequence of

bins containing spikes�1 threshold (in this example threshold = 1). The size of a spike cluster is given by the

total number of spikes within a cluster. The lifetime of a cluster is defined as the number of bins. Δt was

chosen as the average ISIpop interval of the population spike train for each state. (B) Cluster size distributions

of different states. Dotted black lines indicate power law with exponent = -1.5. Dashed lines with gray squares

represent an inhomogenous Poisson process created from the desynchronized I state by spike time

randomization within all 1s segments. Dashed lines with empty squares indicate homogenous Poisson

process with the same rate and duration as the entire desynchronized I state. (C) Loglikelihood ratios for

power law and lognormal fits to cluster size distributions of different cortical states across all cat (threshold: 3

spikes) and monkey data (threshold: 2 spikes). Negative values indicate a better lognormal fit. Horizontal

bars: significant Bonferroni multiple comparison test. (D) Significance between different states expressed as

the p-value of an rm-ANOVA test for different thresholds defining a cluster.

https://doi.org/10.1371/journal.pcbi.1005543.g003
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method of Marshall et al. [55] to examine whether avalanches time-courses are self-similar for

the different states and show shape collapse (for details see Supplementary Material). Since this

analysis requires a large amount of data, we restricted our analysis to the cat data. The good-

ness of collapse was quantified by the collapse index (CI), defined as the variance across re-

scaled avalanche profiles. We found that the empirical avalanche profiles collapse significantly

(p = 0.027) more for the synchronized states (SynSlow I/II) than for the desynchronized states

(Desyn I/II) (S3A–S3F Fig). These results are consistent with the power law analysis showing

that the presence of curved avalanche size distributions is accompanied by a reduction in self-

similarity and indicate stronger deviations from a critical state in desynchronized cortical

dynamics.

Predicting criticality from LFP fluctuations and spike correlations

Next, we attempted to synthesize the above findings by showing how different measures of

LFP and spiking activity are linked and relate to criticality in neuronal discharges. To this end,

we quantified the correlation between the loglikelihood ratio fitted to all spike cluster size dis-

tributions, and the mean autocorrelation between neurons (i.e. area of the population ACH,

representing the total amount of correlation in the neuronal population) as well as the amount

of spike-triggered LFP fluctuations (i.e. the average STA area across channels). As the STA and

ACH peaks became larger, the tails of the cluster size distributions and the associated loglikeli-

hood ratios significantly increased or followed a trend (Fig 4). This linear dependence indi-

cates that the size of the STA and the level of population autocorrelation in spiking activity are

directly translated into the degree of tailedness of the spike cluster size distributions. As the

LFP varied with cortical state, the results of the neuronal avalanche analysis changed from

more power law like to more curved distributions indicating the absence of correlated popula-

tion activity.

Lifetime distributions

Another signature of criticality is a power law in the distribution of lifetimes, i.e. the duration

of neuronal event clusters (Fig 5A), which decays with a characteristic exponent of -2. This the-

oretically obtained result [54] was indeed found in neuronal networks in vitro and in vivo

using LFP events and spiking activity [13,22]. Here, we also calculated lifetime distributions

and assessed their closeness to power laws by comparing LLRs between power laws and log-

normals across different states. Similar to the cluster size distributions, LLRs indicated a gener-

ally better lognormal fit (all datasets: p< 0.001). However, LLR values during synchronized

states were significantly less negative during synchronized states compared to desynchronized

states and the full datasets (Fig 5B). These differences were significant (rm-ANOVA: p<0.05)

for thresholds one and three in the cat, and for all thresholds in the monkey (Fig 5C and

Table 1. Average inter-spike intervals (in ms) of the population spike train for all cat and monkey datasets.

Cortical State: Cat Monkey

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4

Desyn I 14 43 28 30 27 14 21 16

Desyn II 26 31 23 43 - - - - - - - -

SynFast 16 47 26 55 21 24 19 29

SynSlow I 56 38 27 22 25 22 30 19

SynSlow II 16 54 18 37 24 15 31 28

Full 28 48 26 45 23 15 21 16

https://doi.org/10.1371/journal.pcbi.1005543.t001
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S2 Fig). Exponents of fit power law distributions remained unchanged across different states

and approached a value of -2 (cats: -1.84 ± 0.06, monkey: -1.74 ± 0.04), as predicted by theory

and other experiments [13,54].

Inter-spike interval distributions

Previous studies reported heavy tails in the inter-spike interval distributions of individual neu-

rons [56,57] and spike trains of neuronal populations [20,58]. In this study, we also compared

inter-spike interval distributions of population spike trains (ISIpop) for each state quantifying

differences through the coefficient of variation (CV = std(ISIpop) / mean(ISIpop)). In both cat

and monkey recordings the distributions of desynchronized states and the entire datasets were

clearly curved (Fig 5D) and approached a CV of ~1 (Fig 5E), which is expected for indepen-

dent Poisson processes. In contrast, synchronized states were associated with heavier tails as

expressed by significantly larger CVs (one-way rm-ANOVA: F4,12 = 9.66, p = 0.03, ε = 0.35

(cats) and F4,12 = 18.18, p< 0.001, ε = 1 (monkey)).

Temporal evolution of cortical states

Having identified different cortical states and their statistical properties, we next studied how

synchronization in the visual cortex evolved over time in the cat, where we had acquired con-

tinuous recordings up to one-hour duration. In general, the cortex not only fluctuated between

the different states at a time scale of seconds, but the probability to find synchronized or desyn-

chronized states also changed at much longer time scales (Fig 6A). These fluctuations appeared

at very slow timescale (<0.01 Hz) with a peak at ~ 0.001–0.002 Hz (Fig 6B), indicating the

presence of ultra-slow dynamics during anesthesia with long periods of predominant synchro-

nization or desynchronization.

Fig 4. Correlation between LFP, spike synchronization and the level of criticality measured by the

loglikelihood ratio for power law and lognormal fits. Top: LLR as a function of STA area for all cat and

monkey datasets. Bottom: LLR as a function of ACH area.

https://doi.org/10.1371/journal.pcbi.1005543.g004
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Fig 5. Lifetime and ISIpop distributions of spiking activity. (A) Lifetime distributions of different states.

Dotted black lines indicate power law with exponent = -2. (B) Loglikelihood ratios for power law and lognormal

fits to lifetime distributions of different cortical states across all cat (threshold: 3 spikes) and monkey data

(threshold: 2 spikes). Negative values indicate a better lognormal fit. Horizontal bars: significant Bonferroni

multiple comparison test. (C) Significance between different states calculated as the p-value of an rm-ANOVA

test for varying thresholds constituting a cluster. (D) ISIpop distributions of population spike trains for one cat

Neuronal activity is transiently poised close to criticality
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In the monkey, short periods of synchronization (several seconds) alternated with longer

temporal epochs of desynchronization (Fig 1A). As the monkey was resting in the dark, we

hypothesized that state changes coincided with the monkey becoming drowsy and closing the

eyes. Eye tracking analysis revealed that the animal indeed closed the eyes during extended

periods of time, on average 8 ± 4.8s (Fig 6C). These epochs of eye closure were associated with

the cortex shifting to synchronized states (Fig 6D). In particular the occurrence of fast

(p< 0.001) and slower synchronized (SynSlow II) states (p< 0.001) was highly correlated

with the closed eye condition, while desynchronization showed significant anticorrelation

(p< 0.001) (Fig 6E). This confirms that the level of spike synchronization and hence criticality

is closely related to the vigilance state of the animal.

Statistics of the joint neuronal activity patterns

Next, we studied the patterns of the ensemble spiking activity from N recording sites during

the different cortical states and examined their statistics in the framework of statistical

and one monkey recording. (E) Coefficient of variation for ISIpop distributions of different states across all cat

and monkey datasets.

https://doi.org/10.1371/journal.pcbi.1005543.g005

Fig 6. Evolution of cortical states over time. (A) LFP spectrogram of an entire recording in one cat

calculated with non overlapping windows of 1s duration (top) and the probability of synchronized states

(synchronized slow I, II and synchronized fast states) computed with a sliding window of size 100s and an

overlap of 1s (bottom). (B) Average power spectrum (SEM: dashed lines) of the time courses of synchronized

states across all four cats. (C) Probability to find periods of eye closure with a given duration across all

monkey datasets. (D) Time course of synchronized states (synchronized slow II and synchronized fast) (top)

and periods of full eye closure (bottom) in one monkey dataset. Vertical bars represent 1s time segments. (E)

Pearson correlation coefficient calculated between the time course of eyes closure and the time courses of

different cortical states.

https://doi.org/10.1371/journal.pcbi.1005543.g006
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mechanics. This enabled us to have further physical characterization of the different cortical

states in terms of criticality. Time was discretized in non-overlapping bins. In a time bin Δt,
the state of the neural ensemble is described by a binary pattern~s ¼ ½s1; s2; . . . ; sN �, where

σi = +1 if the i-th electrode site recorded one or more spikes (activation) and σi = −1 otherwise

(quiescence). Δt was chosen to obtain homogeneous averaged activation rates across datasets

and cortical states (Fig 7A, see also Table 2). We aimed at obtaining the probability distribu-

tion Pð~sÞ over the 2N possible binary patterns. For this, we used a Maximum entropy model

(MEM) to find Pð~sÞ by maximizing its entropy under the constraint that the activation

rates (<σi>) and the pairwise correlations (<σiσj>) are preserved (see Methods). The

resulting distribution is Pð~sÞ / e� Eð~sÞ, where Eð~sÞ is the energy of the pattern~s, and

Eð~sÞ ¼ �
XN

i
½hisi þ

1

2

XN

j
Jijsisj�, where hi represents the intrinsic tendency of site i towards

activation and Jij represents the effective interaction between sites i and j (see Methods). Note

that energies are proportional to the patterns’ minus log probabilities, or “surprise”. The

model parameters O = {h; J} were estimated from the data using a gradient descent algorithm

Fig 7. Maximum entropy models (MEMs) of different cortical state. (A) Probability that an electrode site i has σi = +1 (emission

probability) using the bin sizes indicated in Table 2 (error bars indicate SEM). The emission probabilities do not significantly depend on the

cortical state (p = 0.092 for cat data, p = 0.058 for monkey data, rm-ANOVA). (B) Goodness-of-fit (1/DJS) of pairwise-MEMs (filled bars) and

independent-MEMs (open bars) for each cortical state (averaged over the 10 groups of N signals and all datasets; error bars indicate SEM).

(C) Prediction of the cortical state using pairwise- and independent-MEMs. The percentage of correct classifications is shown for each cat

(left) and monkey (right) dataset. Squares indicate the medians and error bars delineate the 5–95th percentiles of the classification

performance. Dash lines: mean and 95th percentile of the number of correct classifications expected by chance. *: significant classification

performances (p < 0.05). (D–E) Effect of changing the temperature parameter T on the model activity. The MEM in this example was

estimated using the activity of a neural ensemble of the cat in the SynSlow II state. D: model activity (1000 steps are shown out of 106 steps).

At low temperature (T = 0.5) the activity is sparse and correlations are low (<rc> = 0.07); at high temperature (T = 2) the activity is dense and

random and correlations are low (<rc> = 0.06); for an intermediate temperature (T = 1) the activity is more patterned and correlations are

higher (<rc> = 0.10). E: Left, occupied energy levels. The size of the horizontal lines is proportional to log(nE), where nE is the number of

patterns that have the energy E. Right, the entropy S(T) increases with T and the heat capacity C(T) peaks at a given temperature Tmax (for

this particular example neural ensemble Tmax = 1). (F–G) Heat capacity as a function of the temperature parameter (T), for each cortical

state, for two example anesthetized cat datasets (F) and two example awake monkey datasets (G) (10 random choices of groups of N

signals were used; trace thickness indicates SEM). Inset: Peak temperature (Tmax) for each neuronal ensemble and for each cortical state.

Tmax significantly depends on cortical state (p: p-value, rm-ANOVA). (H–I) Tmax averaged over all cat datasets (H) and over all monkey

datasets (I) for each cortical state (rm-ANOVA: H: F4,156 = 25.03, p < 0.001, ε = 0.34; I: F3,117 = 59.60, p<0.001, ε = 0.90). Error bars indicate

SEM. Horizontal bars: significant differences (p < 0.05) of subsequent Bonferroni’s test for multiple comparisons. In A–I the size of the

models was N = 6.

https://doi.org/10.1371/journal.pcbi.1005543.g007
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(see Methods). We constructed pairwise-MEMs for each dataset and each cortical state sepa-

rately and analyzed the obtained models. Here, we present analyses of the joint activity of

N = 6 electrodes for both cat and monkey datasets—but, as shown below, we found consistent

results for models of larger size for the cat datasets, for which larger ensembles were recorded

(see Table 2).

We first evaluated the importance of correlations by comparing the performance of the

pairwise-MEMs to the performance of independent-MEMs for which only the activation rates

(<σi>) are preserved (i.e., only h is optimized). Specifically, we compared the prediction and

the empirical estimation of the probabilities of spiking patterns in each cortical state. We

found that taking into account the pairwise correlations improves the agreement with the data

by 1–2 orders of magnitude (Fig 7B). Second, we investigated how specific the different MEM

parameters are to the different cortical states by measuring the ability of the model to predict

the cortical state from neural ensemble activity. We used a jackknife cross-validation proce-

dure, consisting of first estimating the MEM parameters on a subset of the available data for

each cortical state and then using the learned MEM parameters to classify the remaining data

(Methods). We found that, on average, pairwise-MEMs predicted the cortical state of the cat

data with 75.8–98.7% and 74.8–99.7% accuracy for N = 6 and N = 12, respectively, and of the

monkey data with 73.1–83.4% accuracy for N = 6 (Fig 7C). However, when using indepen-

dent-MEMs the performance hardly exceeded chance level. These results confirm that the

MEM parameters, specifically the interaction couplings Jij, tightly relate to the cortical state.

Next, we further studied the learned MEMs to obtained relevant features of the collective

dynamics in each cortical state. One important quantity is the heat capacity, C, that relates to

how the distribution of energies changes as a function of a parameter T, analogous to the tem-

perature in statistical physics and equivalent to scaling all model parameters as O! O/T (see

Methods). Specifically, C is given by C(O,T) = var[E]/T2. The “temperature” T controls the

level of disorder and its effect can be understood by examining the energy levels {E} that are

accessible to the system. At low temperatures the system is predominantly silent, it accesses

few and separated excited states, it is relatively ordered (its entropy S is low), and, since inter-

actions dominate, the system scarcely fluctuates, leading to weak correlations (Fig 7D and 7E).

At high temperatures the system has a high probability of occupying the excited states, which

are barely separated, making it easy to fluctuate among them, thus increasing the disorder and

decreasing the correlations (fluctuations dominate over interactions, effectively decorrelating

the system). As for low temperatures, high temperatures lead to a low C. However, for a partic-

ular temperature, Tmax, a large range of energies is accessible to the system, leading to a maxi-

mal C, and, moreover, the balance of fluctuations and interactions leads to a maximal mean

correlation. This is the expected behavior close to a critical point where both order and

Table 2. Total number of active electrode sites (n), number of observed binary patterns (L), and bin size (b) for each cortical state and each

dataset.

Cortical State: Cat Monkey

Dataset 1

(n = 27)

Dataset 2

(n = 25)

Dataset 3

(n = 22)

Dataset 4

(n = 12)

Dataset 1

(n = 6)

Dataset 2

(n = 9)

Dataset 3

(n = 10)

Dataset 4

(n = 10)

L b L b L b L b L B L b L b L b

Desyn I 38,379 50 70,248 50 77,395 50 77,395 50 34,700 10 51,499 10 36,996 10 54,199 10

Desyn II 21,259 50 25,080 50 25,080 50 10,440 50 - - - - - - - - - - - - - - - -

SynFast 6,860 50 14,360 50 14,360 50 5,020 50 6,191 20 1,300 20 4,350 20 650 20

SynSlow I 7,640 50 2,880 50 2,880 50 4,280 50 3,850 20 2,200 20 2,150 20 1,750 20

SynSlow II 3,860 50 7,380 50 7,380 50 22,860 50 2,600 20 750 20 5,000 20 500 20

https://doi.org/10.1371/journal.pcbi.1005543.t002
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disorder coexist [59]. In conclusion, a maximal heat capacity close to the operating point (i.e.,

Tmax = 1, corresponding to the model of the real data) suggests that the system is likely to be

close to a critical state.

We calculated the heat capacity C as a function of T for each cortical state (Fig 7F–7I). We

found that the peak of C is located at different temperatures for different cortical states: in all 4

cat datasets and in all 4 monkey datasets the temperature Tmax at which C is maximal is signifi-

cantly cortical-state-dependent (p< 0.01, one-way rm-ANOVA, Fig 7F and 7G) and is the

highest for the most desynchronized cortical state and the lowest (approaching Tmax� 1) for

the most synchronized cortical state (Fig 7H and 7I).

We further studied the collective dynamics for different ensemble sizes N. For increasing N
the heat capacity of the data grows and the peak temperature decreases for all cortical states,

except for the most desynchronized state for which Tmax increases (Fig 8A and 8B). Notably,

the heat capacity of the data significantly grows even when it is normalized by N, as expected

close to a critical point [59], for all but the desynchronized states (Fig 8B). Lastly, as a conse-

quence of the relation between entropy and C (see Methods), the entropy of the spiking pat-

terns significantly depends on the cortical state (p< 0.05, rm-ANOVA) and it is higher in

synchronized states (Fig 8C). The mean entropy differences between SynSlow II and Desyn I is

ΔS = 0.428 bits (average over all cat and monkey datasets, for N = 6); this is a substantial

change, since this implies that the pattern repertoire is reduced 2NΔS� 6–fold from the syn-

chronized to desynchronized states. Altogether these results show that synchronized cortical

states are closer to a maximum possible range of surprise (energies) and further suggest that

synchronized cortical states are close to criticality.

Fig 8. Heat capacity and entropy as a function of ensemble size. (A) Peak temperature (Tmax) averaged across

anesthetized cat datasets for each cortical state and for ensembles of different sizes N. This analysis was restricted

to cat datasets, for which more electrodes and longer recordings were available (datasets #1–4 for N� 12 and

datasets #1–3 for N > 12). Inset: heat capacity functions for Desyn I (gray scale) and SynSlow II (red scale) for an

example cat dataset. (B) Magnitude of the heat capacity, C (top), and specific heat capacity, C/N (bottom),

evaluated at T = 1 for different ensemble sizes N. For all tested N, the heat capacity was significantly cortical-state-

dependent (p < 0.05, rm-ANOVA). (C) Entropy (top) and specific entropy (bottom) as a function of N. For all tested

N, the entropy was significantly cortical-state-dependent (p < 0.05, rm-ANOVA). In both (B) and (C) lines indicate

least-squares linear fit, for which the slopes are showed in the brackets and the asterisks indicate slopes significantly

different from zero (*: p < 0.05, **: p < 0.01), and error bars indicate SEM.

https://doi.org/10.1371/journal.pcbi.1005543.g008
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Spiking model and sub-sampling analysis

In the following, we evaluated the impact of using a small sample of recorded neurons on our

analyses. Sub-sampling has been shown to underestimate neuronal correlations [60] and can

lead to a breakdown of power law relationships [21,28,34]. In contrast, absence of power laws

may also be due to genuine deviations from critical dynamics as we show above. To test how

sub-sampling affects the discrimination between cortical states and their critical properties, we

modeled a realistic spiking neuron network (see Methods) which is capable of generating pop-

ulation dynamics that closely resemble those seen in physiological recordings [35,53,61,62].

Depending on the overall drive, the network can exhibit irregular bouts of synchronized bursts

(synchronous irregular state [61], SI, low input) or largely desynchronized activity (asynchro-

nous irregular state [61], AI, high input), akin to the physiological states shown in this study

(Fig 9A and 9B). In accordance with the predictions from criticality and similar to the pre-

sented in vivo data, synchronized activity in the fully sampled network displays power laws in

cluster size distributions with an exponent close to -1.5, power laws in lifetime distributions

with exponents approaching -2 and CV values of inter-spike interval distributions >>1 (Fig

9C, 9E and 9G). In contrast, desynchronized states in the full model created clearly curved dis-

tributions with loglikelihood ratios being much more negative than in synchronized states (Fig

9D and 9F). In addition, CV values of the inter-spike interval distribution were close to 1, as

expected from a Poisson process. Finally, we investigated whether the simulated neuronal ava-

lanches produced self-similar dynamics (shape collapse) as predicted by criticality theory

(S3G–S3J Fig). We found that, in the synchronized state, the spiking network produces ava-

lanches whith a temporal evolution that could be rescaled, while desynchronized model activ-

ity patterns did not collapse suggesting a departure from critical dynamics.

Next, we sub-sampled the model by randomly removing neurons (50 times) such that the

cut off in power laws seen in the cluster size distributions resembled those seen in the cat (cut-

off: ~60 spikes; population rate: 450 Hz) and monkey recording (cutoff: ~20 spikes; population

rate: 150 Hz). In both cases, LLRs of cluster size and lifetime distributions as well as CV values

of inter-spike interval distributions remained distinguishable from desynchronized activity

sub-sampled with the same degree. With more severe sub-sampling (population rate: 50

spikes) cluster size and lifetime distributions could not be delineated by loglikelihood ratios

anymore. Only CV values of interspike interval distributions remained sensitive enough to

separate synchronized and desynchronized states at this level of sub-sampling. In conclusion,

these results demonstrate that if synchronization levels of the population dynamics remain suf-

ficiently strong, cluster size and lifetime distributions remain sensitive to differences in

dynamical states despite heavy sub-sampling.

Sub-sampling could be also an issue when analyzing the spiking activity with the MEM. We

thus studied the behavior of the heat capacity and entropy functions obtained for different

ensemble sizes N for the spiking model activity in the subcritical and critical regimes. As in

our previous analyses on the empirical data, we constructed MEMs of size N = 6–20 by ran-

domly selecting N model neurons. The bin sizes were chosen to obtain the same averaged

emission probability as in the empirical data (equal to 0.048). We next used the learned models

to calculate the heat capacity curves given by estimating the variance of the energies (E) from

Monte Carlo simulations (5.105 steps) for different temperature parameters T. As shown in Fig

9I, the heat capacity behaved as expected for the two different network regimes, even for small

neuronal ensembles of N = 6. The peak temperature Tmax was significantly different between

the two dynamical regimes (p< 0.001, t-test), it was the lowest for the critical regime and

approached 1 for increasing N. Furthermore, the normalized heat capacity (C/N) significantly

increased with N for the critical regime (slope = 0.005, p< 0.001) but remained constant in
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Fig 9. Sub-sampling analysis of a spiking neuronal model. (A-B) Model spike rasters of synchronized and desynchronized

states. (C) Cluster size distributions of synchronized and desynchronized model activity. (D) Loglikelihood ratios of fitted power law

and lognormal distributions fitted to the cluster size distributions for different levels of sub-sampling. (E) Lifetime distributions for

synchronized and desynchronized model dynamics. (F) Same as in (D) for lifetime distributions. (G-H) Inter-spike interval

distributions of population spike trains (ISIpop) and corresponding coefficients of variation for three different degrees of sub-
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the subcritical regime (slope = 0.002, p> 0.05). Finally, the resulting entropy was higher in the

critical regime than in the subcritical regime (p< 0.01, t-test). Note also that the values of the

heat capacity and the entropy were very similar to the ones obtained using the empirical data.

We conclude that MEMs constructed using a limited number of neurons effectively discrimi-

nate between the different network regimes.

Lastly, we also investigated whether the statistical differences in our data are due to artifi-

cially dividing critical dynamics into different states. To this end we divided the simulated crit-

ical model dynamics into different synchronization regimes based on the Fano factor of the

population spike train (see Supplementary Material), which shows differences across states in

the experimental spiking data (S4A–S4C Fig). In contrast to the recordings, collapse and

power laws, albeit with smaller cutoff sizes, were preserved during periods of reduced levels of

population synchronization and firing rate in the model SI state (S4D–S4F Fig). These results

are expected since the self-similarity in the model creates dynamics with statistics that are

immune to changes of observation scale, in this case limiting analysis to less synchronized

activity. They also indicate that the differences in power law statistics in the recordings reflect

genuine state changes and are not due to artificial separation of a critical dynamical regime

into different states.

Discussion

We have shown that neuronal dynamics in the primary visual cortex during anesthesia and in

the awake state transiently unfold in a critical state. In our study, the cortex underwent contin-

uous state transitions with varying levels of LFP power in slow frequency bands and overall

spike synchronization. Furthermore, the degree of synchronization was linked to the degree of

criticality as measured by power laws and heat capacities calculated using collective spiking

activity. Notably, the extent of critical dynamics could be predicted from the amount of fluctu-

ations in local field potentials and the vigilance state of the animal, associating states of pro-

longed eye closure and putative drowsiness with higher levels of criticality.

These findings are in contrast to previously reported invariant presence [21] or absence of

critical features in spiking activity [31,32,51]. In the latter studies, invariant deviations from

power law were found across several species, brain areas and stages of the sleep wake cycle

after averaging criticality measures across entire datasets. However, after having separated sta-

tistics for various cortical states, we have shown that the cortex is indeed capable of transiently

generating dynamics that come close to criticality. Moreover, our analyses using the MEM

confirm that cortical states have consistently different second-order statistics and demonstrate

that cortical states are truly different physical states in the sense of statistical physics. Our

results are in line with a previous study which reported fluctuations of criticality measures in

spiking activity recorded in the barrel cortex of rats under urethane anesthesia [44]. We

extended this finding to the primary visual cortex of anesthetized cat and awake monkey and

showed in the latter condition that the vigilance state as measured by prolonged periods of eye

closure can predict a switch to dynamics closer to criticality. It has been known for a long time

that EEG synchronization in the visual cortex is stronger when eyes are closed as compared to

when they are open [63]. Here, we link the “closed eye” state not only with higher synchroniza-

tion in LFP and spiking activity, but also with dynamical changes towards a critical state.

sampling. (I) Heat capacity as a function of the temperature parameter (T), for each dynamical regime of the spiking network (blue:

critical, red: subcritical). Twenty random choices of groups of N model neurons were used; error bars indicate SEM. The insets

show: the peak temperature (Tmax) as a function of N, the amplitude of the heat capacity normalized by N, and the entropy per

neuron in both dynamical regimes. Lines indicate least-squares linear fits.

https://doi.org/10.1371/journal.pcbi.1005543.g009
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Moreover, we found that the level of synchronization during isoflurane anesthesia in the cat

can vary at very slow time scales which is in accordance with a recent report in opioid anesthe-

tized monkeys [64].

Another recent study, however, reported conflicting results obtained with calcium imaging

in the frontal cortex of head-fixed awake and isoflurane anesthetized rats [22]. Firing rates and

correlations remained stable within each vigilance state, while power laws were only found

during waking. In contrast, we found largely subcritical distributions during the awake state

during the eyes open condition, which were replaced by more critical distributions during the

closed eye condition. In addition, correlations during anesthesia were not stationary in our

study despite having used the same anesthetic agent, similar to other studies [38,44,64]. These

discrepancies may originate in different levels of anesthesia (0.8% isoflurane concentration in

this study, 1–2% in [22] potentially influencing the appearance of state fluctuations, temporal

resolution of spike recordings (fast electrophysiological recordings vs. slow calcium imaging)

or recording site (primary visual cortex vs. frontal cortex). Further research needs to be under-

taken to clarify these different results.

Our findings of a tight link between state changes are difficult to reconcile with the sub-

sampling hypothesis of criticality which attributes subcritical distributions in spiking activity

to the inevitable sub-sampling of neuronal discharges in empirical data and has been used to

explain absence of criticality [20,21,28,34]. This susceptibility to sub-sampling has rendered

spiking activity a less likely candidate for finding robust features of criticality [11], even though

spiking activity is the backbone of neuronal avalanches in the brain. In contrast, theoretical

studies have demonstrated that neural networks can display different collective behaviors,

such as asynchronous irregular dynamics, in which excitatory avalanches are precluded by fast

inhibition and strong external drive, or synchronized bursting activity, which can be accompa-

nied by statistics expected from a critical state [32,53,62,65]. As predicted from these models,

previous experimental work has indeed found similar dynamical transitions of spiking activity

[37–41,66]. The spiking neuronal network model used in the current study was also able to

reproduce different states with statistics similar to our in vivo results, showing synchronized

states with signs of criticality and subcritical desynchronized states as a function of external

drive. Importantly, differences between distinct states in the model were detectable in critical-

ity statistics even with strong sub-sampling that mimicked the cutoff of power laws seen in the

monkey and cat recordings, providing support that the sampling in our experiment was suffi-

cient to observe deviations from criticality in our data. Moreover, the MEM model revealed

robust differences in criticality between states requiring only a small sample of neurons (~10).

In conclusion, we provide evidence that criticality statistics vary despite invariant spatial sam-

pling of neuronal discharges and can show near critical features, when the cortex is engaged in

synchronized population dynamics.

The existence of different cortical states and corresponding levels of criticality raise the

question of their functional significance. Traditionally, the larger number of possible neuronal

patterns provided by the complex dynamics in a critical state has been suggested to optimize a

number of cortical functions for which some evidence has been found experimentally [9,67].

However, recent experimental data suggest that active processing may actively desynchro-

nize spiking activity in the cortex [35,39–41,43,68] through neuromodulatory or glutamatergic

signals [35,69], in a way similar to the desynchronized and subcritical dynamics described in

this study. This desynchronization reduces response variability and enables a reliable represen-

tation of stimuli, in contrast to synchronized states [70–72]. In addition, desynchronized activ-

ity may be necessary to establish precise and unambiguous communication between areas

[73], possibly embedded within gamma oscillations [74,75] that are more prevalent during

cortical desynchronization [76,77]. Consistent with this line of reasoning, task related focused
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attention was found to trigger subcritical dynamics in EEG recordings of large cortical net-

works of humans [50]. The same study, however, found near critical dynamics during resting

state arguing in favor of criticality when cognitive demands require exploration of different

network states. Similarly, we observed that collective dynamics during synchronized states

approach the maximal range of surprise (heat capacity), indicating that the cortical system

might be spontaneously exploring its dynamical repertoire (i.e., the system visits a set of con-

figurations, or patterns, more diverse in terms of associated energies; Fig 7). Another hypothe-

sis considers desynchronized states as quasi-critical, maintaining optimization of

computational functions in the absence of strict criticality [78]. Finally, our results are consis-

tent with recent studies showing that hierarchical connectivity of neural networks can enlarge

the region where critical-like behavior is observed, the so-called Griffith phase [79–81]. In this

phase, rare occurrence of local order can be observed even though the system is globally in the

disordered phase, thus making it a candidate mechanism for the observed transitions between

cortical states. Further studies are required to clarify the precise cognitive role of critical

dynamics in the brain.

In conclusion, we have shown that the cortex can transiently approach criticality during

anesthesia and awake states in the primary visual cortex. These fluctuations of criticality can be

predicted from more global variables such as the LFP and also reflect different vigilance states.

Our results suggest that the cortex evolved mechanisms to synchronize and desynchronize its

activity according to computational needs, thereby continuously switching between critical

and more subcritical dynamics.

Materials and methods

Preparation

Recordings were obtained from four anesthetized (isoflurane) and paralzyed cats (three

females, one male), and one awake monkey (male). The isolfurane concentration was kept at a

constant value of ~0.8%. Experimental protocols on behaving monkeys have been approved by

the Marseille Ethical Committee in Neuroscience (approval #A10/01/13, official national regis-

tration #71-French Ministry of Research). The animals used in the experiments were bred in

the Central CNRS Animal Care (French Agriculture Ministry Authorization: B91-272-105)

under required veterinary and National Ethical Committee supervision.

Recording

We inserted 32 channel silicon-based micro-electrode arrays (four shanks with eight electrode

contacts each, distance between electrode contacts: 400 μm, electrode contact impedance: 0.3–

0.5 MO at 1000 Hz, shank length: 3mm, Neuronexus Technologies, Ann Arbor, USA) into

area 17 of four cats (one array per cat) and chronically implanted a Utah array (Blackrock

Microsystems, Salt Lake City, UT, USA) into the primary visual cortex (near-foveal retinotopic

region) of an adult macaque monkey (macaca mulatta—10kg). The Utah array was composed

of 96, 1 mm long, electrodes arranged in a 10 x10 matrix with an inter-electrode distance of

400 microns. In both preparations, continuous spontaneous multiunit activity (sampling fre-

quency: 30 kHz,) and local field potentials (LFP, sampling frequency: 1 kHz) were recorded

with a Cerebus acquisition system (Blackrock Microsystems, Salt Lake City, UT, USA). For

each cat we acquired one dataset lasting between 3900 and 6000 seconds, while four datasets of

600 seconds each were obtained in the monkey on four different days. The monkey was sitting

in the complete dark, head fixated. For subsequent analysis the LFP was filtered between 1 and

100 Hz. Spikes were detected by manually setting a one-sided threshold that would result in a

signal to noise ratio larger than ~2. Action potential waveforms were sorted and separated

Neuronal activity is transiently poised close to criticality

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005543 May 24, 2017 19 / 29

https://doi.org/10.1371/journal.pcbi.1005543


from remaining noise using the T-EM clustering algorithm and manual cluster cutting (Off-

line Sorter, Plexon Inc, Dallas, USA). In the cat, simultaneous recordings of spiking activity

were extracted from an average of 21.5±6.7 channel sites and in the monkey 8.75±1.9 channels

sites. Note that no attention was paid to extract single units, as during later analysis spikes

from each electrode were pooled together into one population spike train. The mean firing

rate per site ranged between 0.61 Hz and 1.44 Hz (1.01±0.38) in the cat and between 4.95 Hz

to 7.32 Hz (6.31±1.08) in the monkey recordings. The rates for the entire recordings were

20.64±7.9 Hz for the cat data and 54.24±10.57 Hz for the monkey. The cat recordings were

performed in uniform scotopic illumination level, while any source of light was eliminated

during the monkey recordings. During three recording sessions in the monkey we obtained

eye tracking data using the Eyelink 1000 system (SR research, sampling frequency 1000Hz).

Separation of cortical states

Cortical states and degrees of synchronization of neuronal activity can switch at a time scale of

seconds [35]. In order to capture this fast dynamics a moving temporal window of one second

was chosen to analyze different synchronization levels in cortical activity. We based the separa-

tion of cortical states on differences in the frequency composition of the LFP between the one

second segments. To this end we computed power spectra for each channel of a given segment

with the multitaper method (see http://chronux.org) and averaged across all channels to obtain

one spectrum per segment. Next, we split the power spectrum into 1 Hz frequency bins

between 1 and 100 Hz and fed these 100 values as variables into a principal component analysis

(PCA). As a result, we reduced the power spectrum of each segment to its first three principal

components and each segment was represented by its position in a three dimensional PCA

state space. In order to find segments with similar power spectra, we applied a k-means cluster-

ing algorithm with a different number of clusters (2–10 clusters) after normalization of each

principal component to a value of 1. To determine the optimal number of clusters we validated

the clustering results with the Dunn index [82] according to the following formula:

DI ¼ min
1�i�n

min
1�j�n;i6¼j

dði; jÞ
max
1<k<n

d0ðkÞ

8
<

:

9
=

;

8
<

:

9
=

;
;

with distance d(i, j) between the centers of clusters i and j and distance d'(k) between the center

and elements of cluster k. This equation evaluates the compactness of clusters by calculating

the ratio between the minimal distance between clusters to the maximal distance within clus-

ters. The Dunn index was computed for each dataset and then averaged separately across all

cat datasets and all monkey datasets. The Dunn index reaches a maximum at the optimal clus-

ter number and we identified five clusters for each cat dataset and four clusters for each mon-

key dataset (Fig 1C and 1D). The clusters of each recording were consistently color coded

according to their position in the state space, such that the clusters were comparable across

datasets and species. The different clusters were associated with different cortical states. All the

segments of a cluster were concatenated and used as separate datasets in subsequent analysis.

Correlation analysis

To investigate the correlation characteristics of the recorded neuronal population, we collated

together the spiking activity of all channels into one population spike train. Correlations were

assessed by computing the auto-correlation histograms (ACH). An ACH was calculated for

each 1 second segment and subsequently averaged across all segments of a cortical state. We

also subtracted a shift predictor that was calculated from the average of 100 randomly shuffled
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surrogates with the same firing rate to normalize the baseline for each segment. All ACHs

were normalized to a center peak of one and quantified based on the peak amplitude (i.e. after

removal of the peak at zero time lag) and the integral between the ACH curve and the baseline

for time lags between -250 and 250ms. In order to allow a comparison between different data-

sets and species, these measures were normalized such that the cortical state with the maxi-

mum value for each dataset was set arbitrarily to one.

We also estimated the correlation between spiking activity and the LFP by constructing

spike triggered averages (STA) for each cortical state of a given dataset. The STAs of all clusters

and datasets showed a negative deflection. LFP was z-scored and STAs were quantified by cal-

culating the amplitude of the deflection peak and the integral of the negative deflection with

respect to the zero crossings. Like for the ACH, these two measures were normalized to the

cortical state with the maximum value which was set to one.

Neuronal avalanche analysis

The spiking data were binned with bin-size Δt and event clusters were defined as groups of

consecutive bins each containing a number of spikes above a predefined threshold. This

threshold was varied between 1–5 spikes in the cat and 1–3 spikes in the monkey. In both cases

the upper bound was given by the threshold that yielded enough avalanches to fit distributions

(see below). The first and last avalanches of an analyzed time window were discarded, if they

were not preceded or followed by a bin with a number of spikes below the threshold, respec-

tively. The cluster size was equal to the number of events within a cluster. In accordance with

previous studies [13,21], Δt was chosen as the average inter-spike interval of the population

spike trains (also denoted as ISIpop, Table 1) which reflects a compromise between spurious

concatenation of small clusters (large Δt) and separation of larger clusters (small Δt). The life-

time of an avalanche was defined as the number of bins spanning an avalanche. Distributions

of cluster sizes and lifetimes were plotted in log-log coordinates and further analyzed.

In order to statistically characterize the distribution of cluster sizes s, we first fitted a

power law distribution P(s, α) ~ Csα, with power law exponent α. Since on visual inspection

size distributions in desynchronized states clearly deviated from a power law, we also

fitted lognormal distributions with the following probability density function:

Nðs;m;sÞ ¼ 1

ss
p

2p
exp � ðln s� mÞ2

2s2

� �
; σ> 0, μ � 0 with scale parameter σ and location parameter

μ. Depending on σ, this distribution can assume heavy tails close to a power law or lighter

tails. We then compared the fits to both distribution by calculating the loglikelihood ratio

and a corresponding p-value determining the significance of model fit differences [22,52].

In our study, positive LLR values indicated superior power law fits, while negative values

favored lognormal distributions. All fits were performed using the Python toolbox for analy-

sis of heavy-tailed distributions [83]. Parameters were calculated for the entire distribution.

The same fitting procedures were applied to lifetime distributions.

Maximum entropy models (MEMs). We further studied the patterns of the ensemble

spiking activity from N recording sites during the different cortical states in the framework of

statistical mechanics. The ensemble activity was binarized in non-overlapping time bins of 50

ms for anaesthetized cat data, and 10 or 20 ms for awake monkey data (different time bins

were chosen to compensate for the different averaged activation rates between datasets and

cortical states; see Table 2 and Fig 7A). In a time bin Δt, a single electrode site i either did

(σi = +1) or did not (σi = −1) generate one or more spikes, thus, the state of the neural ensem-

ble is described by a binary pattern~s ¼ ½s1; s2; . . . ; sN �. We used a Maximum entropy model

(MEM) to estimate the distribution Pð~sÞ of each of the 2N possible patterns, i.e., we estimated

Pð~sÞ by maximizing its entropy under the constraint that some empirical statistics are
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preserved. A pairwise-MEM provides a solution under the constraint that the activation rates

(<σi>) and the pairwise correlations (<σiσj>) are preserved. It is known that the maximum

entropy distribution P that is consistent with these expectation values is given by [59,84]:

Pð~sÞ ¼
e� Eð ~sÞ

Z
;

where the normalization factor Z ¼ S2N

s¼1
exp ½Eð~ssÞ� is the partition function and Eð~ssÞ is the

energy of the pattern s, with s 2 {1,. . .,2N}, and E is given by:

Eð~sÞ ¼ �
XN

i¼1

hisi �
1

2

XN

i¼1

XN

j¼1

Jijsisj;

where, hi represents the intrinsic tendency of site i towards activation (σi = +1) or silence

(σi = −1) and Jij represents the effective interaction between sites i and j. Note that the energy

represents the patterns’ minus log probabilities, log P, or surprise, plus the constant log Z. The

estimation of the model parameters h and J was achieved through a gradient descent algorithm

(see below). Once we know the parameters O = {h; J} the expected probability of any pattern is

known, by first calculating the energy associated to the pattern and then computing P. For

each recording session, we constructed models for each cortical state separately by, first, ran-

domly selecting N signals, second, concatenating the subset of all binarized patterns belonging

to the same cortical state, and, then, running the parameter learning procedure for each subset

of patterns (Table 2 summarizes the characteristics of the data). We did this for a total of

Q = 10 random choices of ensembles of N signals.

Estimation of MEM parameters. The MEM parameters hi and Jij were iteratively adjusted

to minimize the absolute difference between the empirical activation rates (<σi>) and correla-

tions (<σiσj>) and those (<σi>model, <σiσj>model) predicted by the model through Monte

Carlo simulations. Specifically, each iteration is given by: hnew
i ¼ hold

i � aðhsiimodel � hsiiÞ, and

Jnewij ¼ Joldij � aðhsisjimodel � hsisjiÞ, where α is the learning rate (α = 0.1). In our study, we

stopped the re-estimations once the differences between the empirical and model values are

less than a tolerance threshold (0.005) or if this tolerance was not reached within a maximum

number of iterations (100).

MEM goodness-of-fit. The goodness-of-fit of the MEMs was evaluated using the Jensen–

Shannon divergence (DJS) between the probability distribution of the empirical and model

binary patterns [85]. DJS is a symmetric version of the Kullback-Leibler divergence (DKL) and

is given as:

DJSðPempjPmodelÞ ¼
1

2
DKLðPempjðPmodel þ PempÞ=2Þ þ

1

2
DKLðPmodeljðPmodel þ PempÞ=2Þ:

MEM decoding. We classified the cortical state from the spiking ensemble activity using a

jackknife cross-validation approach. We used a total of Q = 10 random choices of ensembles of

N signals. For each cortical state, 70% of the data was used to learn the parameters of a MEM

(train-sets). The remaining data (test-sets) was associated to a cortical state by choosing the

model with maximal goodness-of-fit (1/DJS) between the probability distribution of the test

data and the learned model. The percentage of correct classifications was computed across all

neuronal ensembles. The entire procedure was repeated 30 times with randomly selected

train-sets to get confidence intervals of the classification performance. To assess statistical sig-

nificance of the classification performance we calculated the probability of getting k correct

classifications (hits) by chance, which is given by: PrðkÞ ¼ Ck
np

kð1 � pÞn� k, where p is the
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probability of getting a hit by chance (p = 1/Ns, where Ns is the number of cortical states) and n
is the number of tests (n = QNs). Significant decoding is reached when the decoding perfor-

mance exceeds the 95% percentile of Pr(k).

Parameter re-scaling, heat capacity, and criticality. In the framework of statistical

mechanics, one can characterize the physical state of the ensemble activity through the heat

capacity. The heat capacity C is given by C = var[E]/T2 and it is calculated by introducing a

“temperature” parameter T that acts as a scaling factor for all model parameters as O! O/T.

In our study, we estimated the variance of the energies (E) from a large number of Monte

Carlo simulations (5.105 steps) for different T. A useful relation is the one linking the entropy

and the heat capacity: the entropy S is the integral of the function C(T)/T from T = 0 to T = 1

[59]. As shown above (Fig 7D and 7E), a maximum of the heat capacity close to T = 1 suggests

that the system is likely to be close to a critical state. Hence, C can be used as an additional

diagnosis tool to assess criticality.

Neuronal network model. To test the effect of sub-sampling on the assessment of critical-

ity, we modeled a network of 2500 integrate and fire neurons (70% excitatory, 30% inhibitory)

which were arranged on a two-dimensional grid (50x50). Every neuron was assigned a spatial

position (x,y) and connected to neighboring with connection probability (p) which decayed

with distance according to Gaussian distribution: p ¼ exp � ðxi � xjÞ
2þðyi� yjÞ

2

2tw
2

� �
, with spatial decay

constant τw = 100 micrometers and a distance to the nearest neighbor of 25 microns [53,86].

The membrane potential vm of each neuron evolves according to the following equation:

dvm

dt
¼

vrest � vm

tm
þ

gexcðvexc � vmÞ þ ginhðvinh � vmÞ

C
;

where vrest is the resting membrane potential with vexc and vinh representing the excitatory and

inhibitory reversal potentials. The parameters gexc and ginh reflect the excitatory and inhibitory

conductances, respectively and decay according to
dgexc
dt ¼ � gexc

1

texc
and

dginh
dt ¼ � ginh

1

tinh
with time

constants τexc and τinh (see Table 3 for detailed values of neuronal parameters used in the simu-

lation). The values of excitation and inhibition were chosen such that synchronized network

activity emerged with power law statistics. A spike was emitted when the membrane potential

reached a fixed threshold vth of –50 mV and was reset to the resting membrane potential (-60

mV). Each neuronal discharge was followed by an absolute refractory period of 1ms. After a

delay of 1ms, a spike triggered excitatory or inhibitory postsynaptic potentials in the receiving

neurons, which decayed according to an exponential function.

Table 3. Neuronal parameters used for the spiking neuronal network model.

Neuronal parameter Value Description

C 200 pF Membrane capacitance

τm 20 ms Membrane time constant

vrest -60 mV Resting membrane potential

vth -50 mV Firing threshold

τexc 5 ms Time constant excitatory synapses

τinh 10ms Time constant inhibitory synapses

gexc 0.7 nS Excitatory peak conductance

ginh 50 nS Inhibitory peak conductance

vexc 0 mV Reversal potential of excitatory synapses

vinh -70 mV Reversal potential of inhibitory synapses

https://doi.org/10.1371/journal.pcbi.1005543.t003
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Each neuron received a constant external excitatory Poisson input Iext, adding the value
gexcðvexc� vmÞ

C to the membrane potential for each Poisson spike. The rate of Iext controls the state of

the network: for low input (Iext = 6,000 Hz) the network displayed patterned synchronized

activity, for high input (Iext = 9,000 Hz) the network was desynchronized. For each value of the

external input, we performed two long simulations of 10 minutes. Thereafter, neurons were

randomly removed from each simulation to test the consequences of sub-sampling for various

network dynamic statistics. Each simulation was sub-sampled such that the population firing

rate was reduced to 450Hz, 150Hz and 50Hz. For each condition we sub-sampled the network

50 times and subsequently average statistics were calculated. Standard deviations between the

individual sub-sampling trials were exceedingly small, such that they were not plotted in Fig

6D, 6F and 6H. All simulations were performed using the Brian2 simulation environment

[87].

Statistical analysis. Statistical differences between different cortical states were assessed

using one-way repeated measures (rm) ANOVA followed by multiple comparisons using Bon-

ferroni tests. The threshold for statistical significance was set to p-values<0.05. Where the

ANOVA’s sphericity assumption was not met (using the Mauchly test), p-values and degrees

of freedom were corrected using the Huynh-Feldt estimates of sphericity (ε). The confidence

intervals for the slope of least-squares linear fit was calculated as: tn� 2ðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
S2=Sxx

p
, where n is

the number of data points, S2 is the unbiased estimator of the variance of the estimation errors,

Sxx is the sum of squared deviations of observed predictors from their mean, tn–2(i) is the i-th
percentile for the Student t distribution with (n– 2) degrees of freedom (we used 95% and

99%).

Supporting information

S1 Fig. Loglikelihood ratios for power law and lognormal fits to size distributions of differ-

ent cortical states across all cat and monkey data and for different thresholds of spike clus-

ter definition. Negative values indicate a better lognormal fit. State differences were assessed

using a one-way rm-ANOVA test (threshold 1: cat: F4,12 = 4.03, p = 0.1, ε = 0.38; monkey: F3,9

= 24.57, p = 0.002, ε = 0.61; threshold 2: cat: F4,12 = 5.6, p = 0.03, ε = 0.6; monkey: F3,9 = 25.31,

p = 0.0005, ε = 0.78; threshold 3: cat: F4,12 = 9.48, p = 0.005, ε = 1; monkey: F3,9 = 20.89,

p = 0.001, ε = 0.73; threshold 4: cat: F4,12 = 3.68, p = 0.029, ε = 1; threshold 5: cat: F4,12 = 1.9,

p = 0.12, ε = 1).

(TIF)

S2 Fig. Loglikelihood ratios for power law and lognormal fits to liftime distributions of dif-

ferent cortical states across all cat and monkey data and for different thresholds of spike

cluster definition. Negative values indicate a better lognormal fit. State differences were

assessed using a one-way rm-ANOVA test (threshold 1: cat: F4,12 = 7.45, p = 0.02, ε = 0.6;

monkey: F3,9 = 25.6, p = 0.002, ε = 0.58; threshold 2: cat: F4,12 = 5.21, p = 0.05, ε = 0.46; mon-

key: F3,9 = 27.02, p = 0.0006, ε = 0.74; threshold 3: cat: F4,12 = 12.2, p = 0.00003, ε = 1; monkey:

F3,9 = 22.34, p = 0.002, ε = 0.63; threshold 4: cat: F4,12 = 2.03, p = 0.2, ε = 0.58; threshold 5: cat:

F4,12 = 1.26, p = 0.34, ε = 0.98).

(TIF)

S3 Fig. Avalanche shape collapse. (A–B) Averaged temporal profile of avalanche of lifetime

Δt, i.e., <S(t,Δt)>, in the Desyn I cortical state (A) and the SynSlow cortical state (B) for an

example cat dataset. (C–D) Scaled avalanche profiles as a function of the scaled time t/Δt, in

the Desyn I cortical state (C) and the SynSlow cortical state (D). Red line: averaged scaled ava-

lanche profile; σνz: best scaling parameter. (E) Collapse index (CI) for each cortical state,
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averaged over all cat datasets (F4,12 = 1.53, p = 0.254; ε = 1). Error bars indicate SEM. (F) CI

calculated by grouping the avalanches of the desynchronized cortical states (Desyn I/II) and,

separately, those of the synchronized states (SynSlow I/II) (p = 0.027, paired t-test). Error bars

indicate SEM. (G–H) Averaged temporal profile of avalanche of lifetime Δt of avalanches dis-

play by the spiking model in the desynchronized states (G) and in the synchronized state (H).

(I–J) Scaled avalanche profiles for the spiking model in the desynchronized state (I) and the

synchronized state (J).

(TIF)

S4 Fig. Separation of different states within the synchronized state of the model. (A-B)

Mean Fano factor (FF) for different states in cat and monkey recordings (bin-size = 100ms).

Error bars indicate SEM. (C) Distribution of FFs computed for each one second segment of

the modeled synchronized state (bin-size = 50ms). (D) Mean firing rate of model neurons for

different parts of the FF distribution. (E) Cluster size distributions of different levels of syn-

chronization in the SI state defined by the FF distribution.

(TIF)

S1 Dataset. Spiking data from four cat and four monkey datasets. The data include the

spike timings, electrode index and state information. Details can be found in the README

file.

(ZIP)

S1 Text. Shape collapse and state analysis of the synchronized model state.

(DOCX)
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