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Cognitive performance in healthy 
older adults relates to spontaneous 
switching between states of 
functional connectivity during rest
Joana Cabral  1,2, Diego Vidaurre3, Paulo Marques4,5,6, Ricardo Magalhães  4,5,6, Pedro Silva 
Moreira4,5,6, José Miguel Soares4,5,6, Gustavo Deco7,8,9,10, Nuno Sousa4,5,6 &  
Morten L. Kringelbach  1,2,11

Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different 
states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. 
Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how 
the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. 
We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the 
best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent 
neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern 
captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns – or states – are 
detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We 
find that poorer cognitive performance is associated with weaker FC temporal similarity together 
with altered switching between FC states. These results provide new evidence linking the switching 
dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of 
resting-state activity for effective cognitive processing.

Cognition involves the ability of recruiting specific functional networks, during which segregated brain areas 
form temporary coalitions to integrate and process information1, 2. Even at rest, when no task is performed, 
the brain displays the spontaneous waxing and waning of meaningful functional networks on a slow time scale 
(<0.1 Hz)3–5. This so-called resting-state activity has been proposed to reflect the spontaneous activation and 
deactivation of different network configurations supported by the structural Connectome6–9, resulting in a con-
stant reconfiguration of functional connectivity (FC) patterns over time. Importantly, this cannot be captured by 
traditional static FC analysis, where BOLD signal correlation is computed over the entire recording session10, 11.

Adding the temporal dimension to standard FC analysis paves new ways to characterize the switching behav-
ior of resting-state activity6, 9, 12–15. However, the best methodology to assess it is still under debate. The most 
commonly used strategy has been to calculate successive FC(t) matrices using a sliding-window. Recurrent FC 
configurations are then captured by applying unsupervised clustering to all the FC(t)s obtained over time6, 12. 
However, the sliding-window approach has limitations associated to the window size, which affects the temporal 
resolution and statistical validation13, 15–19. Recently, new methods have been proposed to calculate the FC(t) at a 
quasi-instantaneous level, namely Phase Coherence Connectivity16, 20–22 or Multiplication of Temporal Derivatives17, 
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which allow for a higher temporal resolution with the caveat of being more susceptible to high-frequency noise 
fluctuations17. To overcome this issue, we hereby propose to focus solely on the dominant FC pattern captured by 
the leading eigenvector of BOLD phase coherence matrices.

Focusing on the leading eigenvector of time-resolved FC matrices, we analyze the resting-state brain activity 
of healthy older adults free of cognitive impairment previously categorized as being among the best or among the 
worst performers in an extensive battery of neuropsychological tests18, 19. Indeed, different features of resting-state 
FC have been linked to cognitive fitness or intellectual performance23–25. In particular, in the context of healthy 
older adults, weaker correlations and decreased specificity of functional networks have been associated with 
decreased cognitive performance26–32. Nevertheless, all these studies refer to static aspects of resting-state FC and 
the relationship with spontaneous switching between brain states remains mostly unexplored.

Methods
Participants. Participants were selected from a cohort study where a sample of n = 1051 subjects aged 50+ 
years (representative of the Portuguese elder population in terms of gender and education) was previously charac-
terized with an extensive battery of neuropsychological tests18, 19, 33. This neuropsychological assessment was car-
ried out by certified psychologists and included the following tests: Digit-span Forward (DF) and Backward (DB) 
test, Stroop Words (SW), Stroop Colors (SC), Stroop Words/Colors (SWC), Controlled Oral Word Association 
Test (COWAT-FAS; admissible words), Selective Reminding Test (SRT), Digit Symbol Substitution Test (DSST), 
Mini-Mental State examination (MMSE), and Geriatric Depression Scale (GDS, long-version)19. Using Principal 
Component Analysis (PCA) applied to all neuropsychological data, two main dimensions of cognitive perfor-
mance were identified, one being related to memory (MEM) and the other to general executive functioning 
(GENEXEC), while MMSE and GDS scores did not form any grouping with other neuropsychological variables18. 
Based on the scores in these dimensions and on the MMSE and GDS scores, cluster analysis revealed four clusters, 
sorted according to cognitive performance as C1 > C2 > C3 > C4, with C1 and C4 corresponding to the best and 
worst cognitive profiles18. Of note, GDS total score was a key variable for the separation between very good (C1) 
and good (C2), as well as poor (C3) and very poor (C4) performers (see ref. 18 for full details).

Two groups of participants were formed by randomly selecting n = 60 subjects from each of the abovemen-
tioned C1 and C4 profiles resulting in two groups with opposite cognitive profiles: 60 subjects with overall good 
cognitive performance and 60 subjects with overall poor cognitive performance. Differences between groups with 
respect to socio-demographic and cognitive measures are summarized in Table S1 in Supplemental Material. 
This subsample was then recruited to participate in the MRI scanning session for this study. Primary exclusion 
criteria included inability to understand the informed consent, participant’s voluntary withdrawal from the study, 
incapacity and/or inability to attend the MRI session, dementia and/or diagnosed neuropsychiatric and/or neu-
rodegenerative disorder (medical records). From the subsample of 120 subjects, nine refused to undergo MRI 
screening, four had previously undiagnosed brain lesions/pathologies, and nine subjects were excluded due to 
excessive motion. A total of 98 subjects comprised the final sample, 55 good cognitive performers and 43 poor 
cognitive performers. This study was performed in accordance with the Declaration of Helsinki (59th amend-
ment) and approved by national and local ethics review boards (Comissão Nacional de Protecção de Dados, 
Hospital de Braga, Centro Hospitalar do Alto Ave and Unidade Local de Saúde do Alto Minho). All volunteers 
signed informed consent and all medical and research professionals who had access to participants’ identity 
signed a Statement of Responsibility and Confidentiality.

Functional MRI data. Prior to the acquisition, participants were instructed to remain still with eyes closed, 
not to fall asleep and not to think of anything in particular. The fMRI acquisition was performed using a clinical 
approved 1.5T Siemens Magnetom Avanto (Siemens Medical Solutions, Erlangen, Germany) MRI scanner with 
a 12-channel receive-only head coil at Hospital de Braga (Portugal). A BOLD sensitive echo-planar imaging 
(EPI) sequence was used with the following parameterization: 30 axial slices, TR/TE = 2000/30 ms, FA = 90°, slice 
thickness = 3.5 mm, slice gap = 0.48 mm, voxel size = 3.5 × 3.5 mm2, FoV = 1344 mm and 180 volumes.

Resting-state fMRI data preprocessing was performed with FMRIB Software Library (FSL v5.07;  
http://fsl.fmrib.ox.ac.uk/fsl/) tools34–36. The preprocessing steps included: 1) removal of the first five volumes of 
the acquisition in order to allow for signal stabilization; 2) slice timing correction; 3) motion correction with rigid 
body alignment of every volume to the mean image of the acquisition using MCFLIRT37; 4) skull stripping with 
the Brain Extraction Tool38 (BET); 5) non-linear normalization through the consecutive rigid-body registration 
of the functional acquisition to the structural acquisition using FLIRT, non-linear registration from structural 
native space to MNI standard space and resampling to 2 mm isotropic voxel size using FNIRT39; 6) linear regres-
sion of motion parameters, mean CSF and WM signals; 7) band-pass temporal filtering (0.01–0.08 Hz) of the 
residuals of the regression.

Mean BOLD time-series were then estimated on 90 brain areas of the Anatomical Automatic Labeling (AAL) 
atlas40 by averaging the BOLD signal over all voxels belonging to each brain area.

Structural MRI data. A T1-weighted magnetization prepared rapid gradient echo (MPRAGE) acquisition 
was also performed with the following parameterization: 176 sagittal slices, TR/TE = 2730/3.48 ms, FA = 7°, slice 
thickness = 1 mm, slice gap = 0 mm, voxel size = 1 × 1 mm2, FoV = 256 mm. This acquisition was used as auxil-
iary for the spatial normalization of the functional scans. Structural scans underwent skull stripping using BET 
and non-linear registration from structural native space to MNI standard space followed by resampling to 2 mm 
isotropic voxel size.

Diffusion MRI data. The Diffusion-Weighted Imaging (DWI) scan was performed in the same imaging 
session as the rs-fMRI scan and the structural scan. A spin-echo echo-planar imaging (SE-EPI) sequence with the 
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following parameters was used: 61 axial slices, TR/TE = 8800/99 ms, slice thickness = 2 mm with no gap, voxel 
size = 2 × 2 mm2, FoV = 240 × 240 mm, 30 non-collinear gradient directions with b = 1000 s/mm2, one b = 0 s/
mm2 acquisition and 2 repetitions. The DWI acquisitions were corrected for motion and eddy-current induced 
distortions using FSL’s tool eddy_correct and the B-matrix was rotated accordingly using the fdt_rotate_bvecs tool 
from the same distribution41. Additionally, skull striping was performed with BET in order to remove non-brain 
structures38.

Structural Connectomes. Individual structural networks were built from DWI using probabilistic trac-
tography combining BEDPOSTX and PROBTRACKX with the Fdt toolbox in FSL (www.fmrib.ox.ac.uk/fsl)42, 43,  
following the methods described in Cabral, et al.44. The AAL atlas was used for brain parcellation into N = 90 
non-cerebellar brain areas40.

The individual Structural Connectomes (SC) are NxN matrices where each entry SC(n, p) = SC(p, n) is 
weighted in proportion to the number of fiber tracts sampled in area n that reach area p, with n, p = 1, …, N. No 
threshold was applied. The individual SC were averaged across subjects resulting in a single SC representative of 
the whole population.

Static Functional Connectivity. The FC between two brain regions is measured as the Pearson (zero-lag) 
correlation between their BOLD signals over the recording time. The FC between N = 90 brain areas is repre-
sented by a NxN FC matrix. Since this matrix collapses the temporal dimension into a single average, we refer to 
it as Static FC (see Fig. 1A).

Dynamic Functional Connectivity. We use BOLD Phase Coherence Connectivity16, 20–22, to obtain a 
time-resolved dynamic FC matrix, or dFC, with size NxNxT, where N = 90 is the number of brain areas and 
T = 175 is the total number of recording frames. To compute the phase coherence, we first estimate the phase of 
the BOLD signals in all areas n, θ(n, t), using the Hilbert transform (see Fig. 1B and Supplementary Figure S1). 

Figure 1. Time-resolved dFC and its Leading Eigenvector V1. (A) Resting-state BOLD signals from one subject 
at N = 90 brain areas. The traditional (static) FC matrix represents the correlation of BOLD signals over the 
whole recording time. (B) The dFC is obtained using BOLD Phase Coherence Connectivity20, such that each 
entry dFC(n, p, t) corresponds to the phase coherence between the BOLD signals in areas n and p at time t. At 
each time t, the dFC(t) is a symmetric NxN matrix. (C) The leading eigenvector, V1(t), captures the dominant 
connectivity pattern of dFC(t) at time t. We illustrate this pattern in two ways: (Left) We use V1(t) to scale the 
size of spheres placed at the center of gravity of each brain area, coloring alike elements with the same sign. 
(Right) We plot the eigenvector’s outer product V1V1

T (see Methods - FC Leading Eigenvector).
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Given the phases of the BOLD signals, the phase coherence between brain areas n and p at time t, dFC(n, p, t), is 
obtained using Equation (1):

θ θ= −dFC n p t n t p t( , , ) cos( ( , ) ( , )) (1)

where cos() is the cosine function. Because cos(0) = 1, if two areas n and p have temporarily aligned BOLD signals 
(i.e. they have similar phases), then dFC(n, p, t) will be close to 1. Instead, in periods where the BOLD signals 
are orthogonal (for instance, one increasing at 45° and the other decreasing at 45°) dFC(n, p, t) will be close to 0. 
Since the phase coherence is undirected, the NxN dFC(t) matrix is symmetric across the diagonal and hence all 
meaningful values can be captured from the upper (or lower) triangular parts of the matrix.

FC Leading Eigenvector. To compare the dFC patterns over time, the most common approach is to com-
pare the NxN dFC(t) matrices obtained at each time point. Since matrices are symmetric, comparison is typi-
cally performed between the upper triangular elements of the matrices6, 14, 15, 22. Here, we propose an alternative 
method where we consider only the leading eigenvector V1(t) of each dFC(t) (see Fig. 1C for an illustration). The 
leading eigenvector V1(t) (of dimension Nx1) captures the dominant connectivity pattern of dFC(t) at time t, 
which can be reconstructed using the (NxN) outer product V1V1

T. Compared to considering all (upper triangu-
lar) elements of dFC matrices, this approach strongly reduces the dimensionality from N(N−1)/2 to N while still 
explaining most of its variance (see Supplemental Figure S2).

The eigenvectors of connectivity matrices are widely used to find community structures in networks45, 46, 
where network partition is performed by separating all eigenvector elements with positive sign from the elements 
with negative sign. Although community detection is beyond the scope of this work, it serves to illustrate the con-
nectivity pattern captured by the leading eigenvector. For instance, in Fig. 1B each brain area n is assigned to one 
of two communities (blue or red) according to the corresponding sign in V1(n) (note that V and −V represent the 
same eigenvector, so only the relative sign between regions is relevant). Moreover, the magnitude of eigenvector 
elements indicates the ‘strength’ with which brain areas belong to the communities in which they are placed45.

Functional Connectivity Dynamics. To study the evolution of the dFC over time, we compute a 
time-versus-time matrix representing the functional connectivity dynamics (FCD), where each entry, FCD(tx, 
ty), corresponds to a measure of resemblance between the dFC at times tx and ty. As shown in Fig. 2, comparison 
between dFC(tx) and dFC(ty) is performed using either Pearson correlation or cosine similarity, and applied either 
to the N(N−1)/2 upper triangular elements of dFC(t) or just to the N elements of its leading eigenvector V1(t). The 
measure of cosine similarity between the eigenvectors is given by Equation (2):

=
⋅

( ) ( )
( )

FCD t t
V t V t

V t V t
,

( )

( ) (2)
x y

x y

x y

1 1

1 1

The cosine similarity corresponds to the inner product between two vectors divided by their norms, which 
results in a bounded inner product with values between −1 and 1.

FC states. A discrete number of FC patterns is detected by applying clustering analysis on all the leading 
eigenvectors V1(t) across time points and subjects (i.e. 175 × 98 = 17150 leading eigenvectors). We use k-means 
clustering with k (number of clusters) from 2 to 20, repeating each 20 times. As a result, we obtain k cluster cen-
troids, each being a Nx1 vector representing a recurrent FC pattern (see Fig. 3A). For each k, the clustering solu-
tion is evaluated using the Dunn’s score47. For comparison, we run the same analysis using the Hidden Markov 
model (HMM)48 instead of k-means clustering. Unlike k-means, the HMM accounts for the time-dependencies 
of the data.

Between group comparisons. We use a permutation-based paired t-test to identify significant differences 
between groups. This non-parametric two-sample hypothesis test uses permutations of group labels to estimate 
the null distribution instead of relying on the test-type standard distributions. The null distribution is computed 
independently for each population. For each of 5000 permutations a t-test is applied to compare populations.

Data and code availability statement. All data is available on request. The codes are publicly available 
at github.com/juanitacabral/LEiDA.

Results
FCD analysis. To better evaluate the temporal dependencies of the dFC, we start by comparing different 
approaches to obtain the FCD matrices (see Fig. 2A). Irrespective of the method, the FCD matrices reveal a char-
acteristic checkered pattern indicative of spontaneous switching between different recurrent FC configurations. 
Large red squares in the diagonal of the FCD matrix represent stable FC configurations that tend to re-appear in 
non-contiguous time segments (i.e. in the same line/column but further from the diagonal) with sharp switches 
indicating a change of pattern.

When comparing only the leading eigenvectors of the dFC over time (left column in Fig. 2A), we find FC 
patterns to switch quite abruptly. Crucially, focusing on the leading eigenvectors allows us to detect the precise 
epochs when the variance of the dFC matrix becomes dominated by a different FC pattern, even when the dFC 
variation is smoother. Indeed, as shown in Fig. 2, similar FCD temporal profiles with smoother switches are 
found when looking at the whole upper triangular part of the dFC matrix (right column in Fig. 2A). Because it 
is less susceptible to noise, our approach also improves the sensitivity to pattern recurrences. For instance, in the 
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example in Fig. 2A, the leading eigenvectors at t = 24 seconds and t = 344 seconds reach a similarity of 0.85 (more 
than 300 seconds later), whereas the whole dFC(t) matrices are less similar (0.65).

To investigate the differences between participants with the best and worst cognitive scores we compare 
the probability densities of all FCD values across groups (Fig. 2B). In order to do this, for each method, we 
evaluate how much the distribution of FCD values differs between good and poor performers using a 2-sample 
Kolmogorov-Smirnov (KS) test (see Fig. 2B). All methods reveal that good performers have significantly higher 
FCD values at rest (rejecting the null-hypothesis with p < 10−15), indicating that better cognitive performance 
in healthy older adults is associated to an overall stronger temporal similarity in the dFC, i.e. less temporal var-
iability. Compared to Pearson correlation, the cosine similarity results in a better distinction between good and 
poor performers (KS distance using Cosine Similarity = 0.100 (leading eigenvector) and 0.105 (upper triangle); 
KS-distance using Pearson Correlation = 0.028 (leading eigenvector) and 0.044 (upper triangle)).

Figure 2. FCD methods and analysis. (A) In order to capture the time-dependencies of the dFC, each entry 
FCD(tx, t y) contains a measure of resemblance between the dFC at times tx and ty. This resemblance, is assessed 
by comparing different components of the dFC(t) (leading eigenvector, left column; upper triangular elements, 
right column) using either the cosine similarity (top line) or the Pearson correlation (bottom line) between 
components. (B) Probability densities of FCD values of all good and poor performers (Npoor = 43, Ngood = 55) 
obtained using the cosine similarity of leading eigenvalues. Although all methods reveal the same temporal 
structure, the cosine similarity results in a better distinction between groups (i.e. larger Kolmogorov-Smirnov 
(KS) distance) and the leading eigenvectors capture better long-term recurrences of the same FC pattern.
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To understand whether stronger temporal similarity in the dFC of adults with the highest cognitive scores is 
due to more stable FC configurations, more frequent recurrences or even to higher prevalence of some FC pat-
terns over the others, in the following we perform a deeper investigation into the switching behaviour between 
FC states.

FC states. We identify five representative FC patterns –or FC states - in the resting-state activity of all 98 
subjects (Fig. 3). More specifically, a k-means clustering algorithm was applied to the whole set of dFC lead-
ing eigenvectors and k = 5 returned as the best number of FC patterns representing the data (see Methods and 
Supplemental Figure S3). Each of the five cluster centroids (or states) is a vector VC, where VCVC

T represents a 
NxN connectivity pattern and VC(n) weighs the contribution of each brain area n to that pattern (see Fig. 3A,B 
and Figure S4 in Supplemental Material). FC states are ranked 1 to 5 according to their probability of occurrence, 
PC. We then compute the weighted sum of these VcVc

T matrices according to Pc, and find that it strongly correlates 
(ρ = 0.839) with the Static FC matrix averaged over all subjects (Fig. 3D), meaning that the Static FC matrix can 
be fairly represented as a linear combination of only 5 (eigen)vectors. In addition, we use the cluster time-courses 
to calculate the average dFC matrices over the time points represented by each cluster, providing more realistic 
FC patterns (Fig. 3C). Notably, the weighted sum of dFC matrices almost perfectly matches the static BOLD FC 
matrix averaged over all subjects (ρ = 0.997), demonstrating that Phase Coherence Connectivity efficiently captures 
the coupling between BOLD signals (Fig. 3D).

The most prevalent FC pattern (VC1), which occurs more than 40% of the time, corresponds to a state of global 
BOLD coherence (all VC1 elements have the same sign, so the outer product, VC1VC1

T, is non-negative). In other 
words, during the epochs t when the dFC is mainly shaped by this pattern, the BOLD signals of all brain areas 
exhibit a strong coherence.

In the remaining FC patterns, VC has elements with different signs, indicating that FC can be partitioned into 
two communities (illustrated in red and blue), with positive FC values within the community elements and neg-
ative FC values between communities (see Methods – FC Leading Eigenvector). In more detail, during FC states 
#2–5, the BOLD phases of some subsets of brain areas misalign from the rest of the network and temporarily 
align together, dividing the brain into two separated functional networks. Notably, we find that these functional 
networks are symmetric across the midline and represent different brain subsystems (see Fig. 3A). In FC pattern 
#2, we find a community consisting only of subcortical areas including the Hippocampus, the Amygdala, the 
Insula, the Pallidum and the Putamen. In FC pattern #3, the Anterior Cingulate, the Medial Frontal, the Angular 
Gyri and the left Posterior Cingulate form a functional network independent from the rest of the brain. Note that 
this includes typical seeds from the Default Mode Network49, 50. FC pattern #4 is characterized by two functional 

Figure 3. FC states and comparison with Static FC. Five recurrent FC patterns, or states, were obtained from 
clustering the leading eigenvectors of the dFCs of all participants. (A) Each of the five FC patterns is represented 
by a vector VC, where VC(n) weighs the contribution of each brain area n to that pattern (displayed in cortical 
space). Elements with the same sign in VC are colored alike to illustrate the network partition captured by VC 
(see Methods - FC Leading Eigenvector). States are ranked according to their probability of occurrence (PC, in 
%). (B) VCVC

T illustrates the NxN connectivity pattern corresponding to each state. (C) dFC averaged over the 
time points of each state. (D) The static FC averaged over all subjects (top) correlates strongly (r = 0.839) with 
the weighted sum of the five connectivity patterns captured by VCVC

T (middle). The correlation increases up to 
r = 0.997 when considering the weighted sum of the dFC averaged over the time points of each state (bottom).
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networks, one comprising occipital areas together with the Posterior Cingulate and the Precuneus and the other 
comprising all the remaining areas. Finally, FC pattern #5 represents a decoupling of temporal and parietal areas 
from frontal and occipital cortices.

To compare the temporal behavior of FC states with the FCD matrices obtained before, we show in Fig. 4A 
an example of a FCD matrix (time-versus-time), displaying below the state time-courses over the same recording 
session. The state time-courses are obtained from the clustering algorithm and identify, for each epoch t, the 
cluster centroid (VC) that best approximates the leading eigenvector of the dFC at time t. One can easily observe 
that FC state transitions correspond nicely to switches in the FCD matrix (some of these correspondences are 
highlighted by arrows). In particular, with the use of the state time-courses, each red square in the FCD matrix 
can be associated to a specific FC pattern reoccurring over time (i.e. in the same line/column, as highlighted by 
asterisks for FC state 1). Moreover, the state time courses allow us to characterize the switching profile of FC states 
by computing measures such as the mean lifetime (i.e. number of consecutive epochs during which a given FC 
pattern dominates in variance), the switching frequency (i.e. number of transitions per second), the probability of 
occurrence of a given state and even the switching profiles (i.e. probabilities of switching from a given FC state to 
another), all of which cannot be assessed from the FCD matrix alone.

To investigate how the different FC patterns relate with the underlying anatomical network, we compared the 
mean FCC of each state with the average SC of all subjects (Fig. 4B). Notably, although all the states share features 
of the structural network to some extent (similarity >0.37 for all states), the most prevalent FC patterns during 
rest are the ones that most differ from the SC matrix.

Between-group differences in FC patterns. To investigate the relationship with cognitive performance, 
we compare the FC switching profiles between good and poor performers. In general, the resting-state FC in 
good performers is more stable in the sense that FC states last longer (mean ± standard error = 16.9 ± 0.73 sec-
onds, p < 0.05) whereas FC states last shorter in poor performers (14.4 ± 0.59 seconds) (Fig. 5, left column). 
The associated switching frequency (1/Lifetime) falls in the range of the meaningful resting-state frequencies 
observed in BOLD fMRI data (<0.1 Hz)51, with good performers switching more slowly (mean switching fre-
quency = 0.059 Hz) than poor performers (0.069 Hz).

Figure 4. Correspondence of FC state time-courses with the FCD matrix and relationship with SC. (A) The 
time-versus-time FCD matrix (top) from one representative subject is compared with the corresponding FC 
state time-courses given by the k-means clustering algorithm (bottom). Note that each red square in the FCD 
matrix can be associated to the activation of a specific FC state (e.g. dashed arrows). Recurrent activations of FC 
state #1 (red time-course) are highlighted with (*) in the FCD matrix. (B) The structural connectivity matrix 
(SC) averaged over all subjects is compared with the mean FCC matrices of each state by calculating the cosine 
similarity between values in the upper triangular parts of the matrices.
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To test the dependency of the results on the clustering algorithm, we run the same analyses substituting the 
k-means method by an HMM, which is explicitly designed to work on time series. Although the HMM states have 
slightly longer visits, all the conclusions remain valid (Fig. 5, right column).

Focusing on the specific FC patterns (Fig. 6A,B), we find that good performers spend significantly more 
time in FC pattern #1 (47 ± 2.5% versus 36 ± 2.8% in poor performers, p < 0.005), with each occurrence last-
ing on average 31.7 ± 2.25 seconds, whereas poor performers only hold this state for around 22.97 ± 1.2 seconds 
(p < 0.05). Conversely, FC patterns #4 and #5 occur with more probability in poor performers (p < 0.05), with 
state #5 lasting longer in poor performers (p < 0.05).

Exploring the probability of switching from a given FC state to another, we find a number of differences 
between groups that pass a permutation-based paired t-test with p < 0.05 (Fig. 6C). First of all, being in state #1 
the most probable transition is to state #2 in both groups. Once in state #2, the most probable switch is back to 
state #1 again, forming a closed loop between these two FC states. Switches from state #1 to state #3 are found 
to be more likely in good performers. Although the probability of occurrence of state #3 is similar in the two 
groups (Fig. 6A), once in state #3 the brain switches back to state #1 more frequently in good performers, forming 
another closed loop that appears less evident in poor performers. Looking at state #4, we find an increased switch-
ing probability from states #2 and #5 to state #4 in poor performers, which may explain why this state occurs more 
frequently in poor performers. However, once in state #4, the transition profile is very similar in the two groups. 

Figure 5. FC states last longer in participants with the best cognitive scores. (Top) Mean lifetime of FC states 
in seconds (s), counted as the mean time between transitions. The error bars indicate the standard error across 
subjects within each group of poor and good cognitive performers (* indicates p < 0.05). (Bottom) Probability 
density of FC state lifetimes. The same analyses were run using either the k-means clustering algorithm (left) or 
an HMM (right), with the same conclusions.
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Finally, being in state #5, good performers transit most frequently to states #1 and #3 whereas poor performers 
switch predominantly to states #3 and #4.

Figure 6. Switching between FC states relates with cognitive performance. (A) Fractional occupancy measured 
as the probability of occurrence of each state. The error-bars indicate the standard error. (B) Mean lifetime of 
each state. (C) Switching matrix indicating the probability of, being in a given FC state (lines), transitioning 
to any of the other states (columns). Significantly different transitions (p < 0.05) are illustrated in the plot 
below, with green arrows representing the transitions that occur with higher probability in good performers 
and in black the ones that occur with higher probability in poor performers. Each state is represented by the 
corresponding vector VC, displayed on cortical space (elements with the same sign in Vc are colored alike). The 
corresponding FC pattern is illustrated on the side (VcVc

T, see Methods). In A-B-C, values were estimated for 
each subject and then a permutation-based paired t-test was applied to test for the between-group significance. 
(*) and (**) indicate >95% and >99.5% confidence, respectively.
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Discussion
In the present work, we find that the switching behavior of resting-state FC in healthy older adults relates to their 
performance in neuropsychological tests. These results are in line with the idea that brain activity during rest 
relates to higher order processes deeply involved in cognition and intellectual performance23, 52–54. In particular, 
we find increased temporal similarity in the resting-state FC of participants with the best cognitive scores. By 
investigating the switching profiles between FC states, we find that this is mainly due to the higher prevalence of a 
specific FC pattern over the others, which lasts shorter and occurs with less probability in participants with poor 
cognitive scores.

Our results show that the Leading Eigenvector Dynamics Analysis (LEiDA) introduced herein serves as a pow-
erful tool to characterize the temporal evolution of the dFC with reduced dimensionality, which becomes useful 
in the analysis of multi-dimensional dFC data. Importantly, by focusing solely on its dominant connectivity pat-
tern instead of the whole upper triangular part, LEiDA is more robust to high-frequency noise, overcoming a lim-
itation affecting all quasi-instantaneous measures of FC17. Indeed, it allows detecting the precise epochs when the 
variance of the dFC becomes dominated by a different pattern, even if the dFC evolves more smoothly. Moreover, 
beyond significantly reducing the dimensionality of the data and allowing for improved temporal resolution, 
LEiDA offers the advantage that recurrences of the same pattern are more clearly detected, hence improving the 
signal-to-noise ratio in the FCD analysis.

Here, we find an optimal number of five dominant FC configurations where brain activity temporarily set-
tles during rest. These results reinforce the idea that FC at rest is a multi-stable process14 where the connectivity 
patterns, rather than varying in a continuous sense, pass through multiple relatively stable FC states where the 
same pattern dominates in variance for more than 10 seconds. Note however that the number and shape of each 
FC pattern detected with LEiDA depends, among other factors, on the spatial and temporal scale over which it is 
defined55. Although the dFC matrices are calculated instantaneously, the BOLD signal is intrinsically slow (here 
in the narrow band 0.01–0.08 Hz) and we consider a coarse parcellation with only 90 non-cerebellar brain areas. 
Hence, the number of transiently recruited states reported herein refers to this specific context and population 
group.

The most prevalent FC state identified in this study is a state of global coherence of BOLD phases (FC state #1). 
This dominant mode of global BOLD co-variance is likely related to what is commonly described as the ‘global 
signal’ in resting-state fMRI studies, whose neurophysiological origin and role remains unclear13, 56–59. Here, we 
find a clear relationship between the prevalence of FC state #1 and cognitive performance, pointing to a potential 
role of global BOLD coherence in cognitive processing. The lower occurrence of this state in poor performers 
results in an overall weaker static BOLD FC, in line with previous findings where lower intelligence/poorer cog-
nitive functioning was related to an overall decrease in BOLD functional connectivity in the elderly28.

In terms of FC-SC similarity, we find a nearly inverse relationship where the most prevalent FC patterns at rest 
are the least similar to the underlying SC. Notably, FC pattern #1 (more likely in good performers) is the most dif-
ferent from the SC, whereas patterns #4 and #5 (more likely in poor performers) are the most structurally shaped. 
Interestingly, these results suggest that cognitive functioning is related to a dissociation of FC from SC. Indeed, 
SC–FC similarity has been reported to decrease with conscious awareness in monkeys60 and, more recently, was 
found to increase from wakefulness to deep sleep in humans61.

Regarding the remaining FC states, it is tempting to compare them with pre-established resting-state networks 
(RSNs). However, RSNs are different from the FC states defined here, which refer to areas displaying correlated 
fluctuations over the whole recording time. That is, RSNs are temporal patterns that replicate across space while 
FC states are spatial patterns that replicate across time.

In the current approach, we consider only the leading eigenvector of the dFC and deliberately neglect the pat-
terns captured by the remaining eigenvectors. This is justified by the fact that the leading eigenvector always rep-
resents more than 50% of the variance (i.e. its leading eigenvalue accounts for more than half of the total sum of 
eigenvalues). Yet, extending this method to consider a larger spectrum of eigenvectors deserves further attention.

It is worth noting that the clustering algorithm is just one among several different choices. A possible alterna-
tive to k-means is the Hidden Markov model (HMM), which allows for the specification of a tailored generative 
model and explicitly models the state transitions48. In this work, we have run the same analyses substituting the 
k-means method by an HMM, where each state is characterized by a Gaussian distribution with a state-specific 
mean and a global covariance matrix for all states. The conclusions presented above are reinforced by the fact 
that, except for having slightly longer state lifetimes, the results from the HMM are similar to what we obtained 
using k-means.

For a mechanistic interpretation of the results, it is useful to approach the problem from the perspective 
of dynamical systems’ theory62–64. Indeed, measures like the mean lifetime (or dwell time), the probability of 
occurrence (or fractional occupancy) and the switching paths (or trajectories) provide clues of the energy map 
of FC states where brain activity can temporally settle (or FC attractor landscape)64. The detection of a number 
of re-occurring FC states is indicative of the number of attractors present in this landscape6, 64. Moreover, the 
fact that the system occasionally switches between states is indicative of being in a regime of multi-stability (i.e. 
the system never settles in a single, static FC state)6. Here, we find that lower cognitive performance is marked 
by decreased stability of FC state #1 together with increased stability of states #4 and #5, allowing the system to 
switch more often. Conversely, good performers show a higher probability of being in -or returning back to- FC 
state #1, which could be interpreted as a deeper and larger attraction basin associated to that state. Computational 
models of whole-brain network dynamics have shown that resting-state activity is optimally simulated when the 
system operates in a critical range of parameters where the system is continuously driven away from equilibrium 
and explores a repertoire of states6, 8, 62, 64, 65. In the context of dynamic FC, Hansen and colleagues6 enhanced the 
nonlinearities of the Dynamic Mean Field model64 to extend the repertoire of FC states in this critical regime and 
replicate the resting-state FC switching dynamics of healthy adults. For being in a critical regime, small changes in 
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the system’s properties, such as alterations in local/global connectivity, excitation/inhibition, propagation speed, 
signal-to-noise ratio, etc., can directly affect the whole system’s dynamics6, 7, 64, 66–70.

Based on these previous theoretical and computational insights, we hypothesize that the differences in FC 
switching profiles found herein may be related to small changes in brain functioning gained throughout life due to 
factors such as education, socioeconomic status or engagement in cognitive demanding activities, or even factors 
with possibly a more acute effect such as mood. Indeed, clinical, physical, mood and lifestyle variables are known 
to influence age-related cognitive performance on various levels18, 19. Evaluations on the whole cohort of n = 1051 
participants (from which the subsample of n = 98 participants considered here was extracted), found that edu-
cation, age and depressed mood were the most significant variables in directly explaining the obtained cognitive 
score18, 19. In this study’s subsample, older adults categorized as good performers had more years of scholar edu-
cation (7 ± 4 versus 4 ± 2 years, p < 10−4) and were less depressed (GDS = −0.371 ± 0.873 versus 0.471 ± 1.09, 
p < 10−5) than the group with poor cognitive performance (see Table S1 in the Supplementary Material). These 
findings go in line with current theories of cognitive reserve suggesting that education, occupation and social 
or mentally stimulating activities offer a protective effect against dementia71, 72. Previous analysis on the same 
dataset have shown that cognitive reserve is associated with a greater global efficiency of the functional connec-
tome, which is subserved by enhanced connectivity between several brain regions73. Here, we show that cognitive 
performance of healthy older adults also significantly relates to their FC switching profiles during rest. On these 
grounds, FC switching measures may serve as novel indicators of cognitive reserve, allowing for earlier detection 
and better characterization of age-related cognitive changes from neuroimaging data.
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