日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth.

MPS-Authors
/persons/resource/persons15147

Griesinger,  C.       
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

3024338.pdf
(出版社版), 1003KB

付随資料 (公開)

3024338_Suppl_1.pdf
(付録資料), 2MB

3024338_Suppl_2.pdf
(付録資料), 350KB

3024338_Suppl_3.pdf
(付録資料), 52KB

3024338_Suppl_4.xlsx
(付録資料), 16KB

引用

van Maldegem, L. M., Sansjofre, P., Weijers, J. W. H., Wolkenstein, K., Strother, P. K., Wörmer, L., Hefter, J., Nettersheim, B. J., Hoshino, Y., Schouten, S., Damsté, J. S. S., Nath, N., Griesinger, C., Kuznetsov, N. B., Elie, M., Elvert, M., Tegelaar, E., Gleixner, G., & Hallmann, C. (2019). Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth. Nature Communications, 10(1):. doi:10.1038/s41467-019-08306-x.


引用: https://hdl.handle.net/21.11116/0000-0002-E8C8-7
要旨
Eukaryotic algae rose to ecological relevance after the Neoproterozoic Snowball Earth glaciations, but the causes for this consequential evolutionary transition remain enigmatic. Cap carbonates were globally deposited directly after these glaciations, but they are usually organic barren or thermally overprinted. Here we show that uniquely-preserved cap dolostones of the Araras Group contain exceptional abundances of a newly identified biomarker: 25,28-bisnorgammacerane. Its secular occurrence, carbon isotope systematics and co-occurrence with other demethylated terpenoids suggest a mechanistic connection to extensive microbial degradation of ciliate-derived biomass in bacterially dominated ecosystems. Declining 25,28-bisnorgammacerane concentrations, and a parallel rise of steranes over hopanes, indicate the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation. Nutrient levels already increased during the Cryogenian and were a prerequisite, but not the ultimate driver for the algal rise. Intense predatory pressure by bacterivorous protists may have irrevocably cleared self-sustaining cyanobacterial ecosystems, thereby creating the ecological opportunity that allowed for the persistent rise of eukaryotic algae to global importance.