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SUMMARY
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution
and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and
methylome analysis of early-onset prostate cancers (diagnosis %55 years). Characterization across 292
prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven
mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative anal-
ysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent
duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue micro-
array tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup
information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient
samples.
INTRODUCTION

One of the biggest unmet clinical needs in prostate cancer (PC) is

to stratify clinically indolent from aggressive types, particularly in
Significance

We used a set of tumors diagnosed early in life and thus harbor
cer which led us to identify an APOBEC-driven clock-like muta
tate cancer. We identified somatic alterations of ESRP1, a mol
operation setting where biomarkers are desperately needed. By
tumors diagnosed with early-onset, we identified four robust s
groups. We combined our cohort of early-onset patients and id
predict the temporal and clinical outcome order of somatic alt
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patients diagnosed at young age. Molecular markers have

shown promise in risk stratification, but the utility is complicated

by the heterogeneous natural history. Primary localized PC de-

velops over decades (Pound et al., 1999), with a typical late
ing the earliest molecular lesions detectable in prostate can-
tional process driving the earliest somatic mutations in pros-
ecular driver of the disease with a particular value in the pre-
integrating DNAmethylation andRNA expression data from

ubgroups that readily stratify patients into high- and low-risk
entified risk-stratification groups to develop a framework to
erations.

nc.
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age-of-onset (median 66 years of age, seer.cancer.gov). Prior

studies have revealed a remarkable inter- and intra-tumor

heterogeneity in PC (Boutros et al., 2015; TCGA, 2015) associ-

ated with poor outcome in primary localized PC (Espiritu et al.,

2018). Prior focus on elderly, late-onset patients has hindered

the identification of the earliest genomic alterations, which

could aid in identifying the evolutionary paths and clinical

outcome of PC. One of the earliest molecular alterations in

PC are ETS fusions involving the fusion of androgen receptor

(AR) responsive promoters and members of the ETS transcrip-

tion factor (TF) family genes, most notably the TMPRSS2-

ERG fusion (Tomlins et al., 2005) present in 50% of all PC and

exhibiting an elevated occurrence in early-onset PC (EOPC)

(Tomlins et al., 2005; Weischenfeldt et al., 2013). PC has rela-

tively few somatic point mutations but has frequent genomic

structural variants (SVs), several of which are associated with

clinical outcome, including disruption or loss of PTEN, TP53,

NKX3-1, and MAP3K7 (Kluth et al., 2013; Taylor et al., 2010;

TCGA, 2015).

Identifying the molecular evolution and clinical trajectories

of PC requires analysis of the earliest somatic mutation events.

A particular relevant subset of PC are early detected cancers

associated with EOPC (Pritchard et al., 2016; Weischenfeldt

and Korbel, 2017; Weischenfeldt et al., 2013), here defined as
patients with an age-at-diagnosis at 55 and below, who are

likely to develop a severe disease course and eventually require

radical treatment. Studies in EOPC, furthermore, offer insights

into early mutational processes and evolutionary trajectories

of PC.

RESULTS

Patterns of Somatic Genomic Aberrations in EOPC
We applied uniform and comprehensive genomics-based

profiling of 292 PC cases (including 203 EOPCs) (Table S1; Fig-

ures 1 and S1A). Profiling included whole genome sequencing

(WGS) of tumors and matched peripheral blood from 184

EOPC patients and 85 late-onset (LOPC) patients, methylomes

(450k methylome arrays) in 203 EOPC tumors and 45 LOPC

tumors and mRNA sequencing (mRNA-seq) of 96 EOPC sam-

ples. Established somatic and germline variant calling pipelines

were used to identify single-nucleotide variants (SNVs), short in-

sertions and deletions (InDels), and SVs. Genome-wide analysis

of somatic SNVs revealed an expected lower average number of

SNVs per Mb in EOPC (median = 0.47, interquartile range = 0.49)

compared with LOPC (median = 0.53) (Fraser et al., 2017). TP53

was themost frequently affected gene by nonsynonymous SNVs

in the EOPC cohort (6%).
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Figure 1. Somatic Alteration Landscape and Age-at-Diagnosis

(A) Genome-wide SV breakpoint recurrence pattern across 292 PC samples, color-coded separately for each chromosome.

(B) An Oncoprint summarizing themutational landscape of RGA regions in PC, color-coded by themutational event-type and separate into EOPC and LOPC. The

barplot at the left quantifies the recurrence of each RGA in the PC cohort. The patient age and GS are shown at the bottom.

(C) Fraction of EOPC and LOPC tumors from localized PC associated with either clonal or polyclonal paths. p = 0.18, chi-square test.

(D) Correlation between breakpoints and Hi-C chromatin loops (combined across eight cell lines) and PC-specific H3K27ac peaks in 1 Mbp bins, separated into

localized EOPC and LOPC.

(E) ‘‘Chromatin-state’’ model of age-associated breakpoint patterns in PC.

See also Figure S1 and Table S1.
SVs often involve recurrent fusion gene formation or loss of tu-

mor-suppressor genes in PC (Fraser et al., 2017; Taylor et al.,

2010; TCGA, 2015). We confirmed previous findings, namely

an increased number of SNVs and SVs with age (p < 0.001) (Fig-

ures S1B and S1C). We identified recurrent genomic altered loci

(RGA), as breakpoint peak regions at minimum 5% recurrence

(Figures 1A and 1B). Our analysis revealed 70% of the EOPC tu-
998 Cancer Cell 34, 996–1011, December 10, 2018
mor genomes carrying an SV associated with formation of an

ETS fusion gene (Figure S1D). The second- and third-most

frequently altered loci in EOPC were at chromosome 8p

(centered at NKX3-1, 37%) and 3p14 (centered at FOXP1,

30%). We identified PTEN as the gene with the highest rate of

biallelic inactivation (12 samples) across the cohort, followed

by TP53 (8 samples). Despite being more often affected by
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Figure 2. Recurrent Alterations Target KLF5 and ESRP1

(A and B) SV recurrence plot at 13q22 (A) and 8q22 (B) with vertical red and blue lines represents genomic gain and loss, respectively (n tumor samples = 292). The

smallest overlapping SV is shown in case of multiple SVs per tumor sample.

(C) Number of somatic SVs from our total cohort of tumors according to presence (SV+) or absence (SV�) of SVs affecting the KLF5 locus. MWU-based

p value.

(D) KLF5 gene expression of different methylation and somatic SV states with the x axis representing KLF5 promoter-proximal methylation status and somatic SV

states.

(E) Correlation between KLF5 and SPOP expression, with each dot representing a tumor, color-labeled with GS.

(F) Boxplot of ESRP1 mRNA expression separated by tumors with an SV gain of ESRP1 (SV+) and without (SV�). MWU-based p value.

(G) ESRP1 protein expression stained in 11,954 tissue microarray samples and scored as ‘‘negative’’ (dark blue), ‘‘weak’’ (light blue), ‘‘moderate’’ (yellow), or

‘‘strong’’ (red).

(legend continued on next page)
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SVs, neither NKX3-1 nor FOXP1 underwent recurrent biallelic

inactivation, corroborating earlier suggestions of haploinsuffi-

cient tumor-suppressive roles of these genes (Locke et al.,

2012; Myers et al., 2017).

To identify RGAs associated with age-of-onset, we performed

a parallel analysis of LOPC genomes, which revealed similar

affected loci but with a more uniform pattern, distinct from that

of EOPC (Figures S1D and S1E). LOPC displayed an overall

higher proportion of RGAs affected by genomic losses

compared with a higher rate of balanced breaks in EOPC

(p < 1 3 10�7 and p < 1 3 10�4, Fisher’s exact test). Moreover,

EOPC exhibited a more monoclonal architecture compared

with LOPC (66% and 53%, respectively, Figures 1C and S1F),

suggesting that EOPC tend to be primarily associated with a

clonal origin, potentially due to the shorter life-span compared

with LOPC.

The epigenetic landscape is often altered during cancer pro-

gression and impacts on where DNA double-strand breaks

occur (Aryee et al., 2013; Urbanucci et al., 2017). We previously

showed that breakpoints in EOPC genomes occur more often

in the vicinity of AR-binding sites (Weischenfeldt et al., 2013).

This raises the possibility that age-associated altered chro-

matin states impact on breakpoint occurrence. We therefore

examined genomic breakpoints from EOPC tumors in relation

to specific chromatin regions (Taberlay et al., 2014). This re-

vealed a significant enrichment of breakpoints in EOPC near

open chromatin, active enhancers, TF binding, and actively

transcribed regions (Figures S1G and S1H). Active enhancers

are associated with long-range promoter-enhancer DNA-DNA

chromatin loops, which can increase the likelihood of SV for-

mation between normally distant loci (Chen et al., 2018). We

integrated publicly available Hi-C data, which revealed sig-

nificant correlation between breakpoints and both the number

of chromatin loops and H3K27ac peaks (p < 0.0001 both,

Spearman’s rho = 0.23 and 0.18, respectively) in EOPC, but

to a lesser extent in LOPC (p < 0.0001 both, Spearman’s

rho = 0.11 and 0.06 for Hi-C and H3K27ac, respectively, Fig-

ure 1D), suggesting that the chromatin state and long-range

interactions partake in shaping the SV landscape in EOPC

(Figure 1E).

DNA Rearrangement Recurrence Analysis Identifies a
Putative Oncogene Associated with High Cell
Proliferation and Poor Outcome
We identified two RGAs in EOPC located at 13q22 (27%) and

8q22 (17%) (Figures 2A and 2B). The minimal overlap peak re-

gion at 13q22 centered on KLF5, encoding a transcriptional acti-

vator involved in repressing cell proliferation (Xing et al., 2014).

Loss of 13q22 was associated with decreased KLF5mRNA level

as well as a global increase in SV and SNV burden (Figures 2C

and S2A). We additionally identified a subset of tumors that dis-

played a marked reduction in KLF5 expression and a differen-

tially methylated CpG site (q = 0.002, t test) proximal to the

KLF5 promoter in a CpG island shore that was inversely corre-
(H) Barplot showing Ki67 labeling index separated byGS and ESRP1 staining. Num

significant (a = 0.05, ANOVA-test). The colors of bars correspond to those in (G)

(I) Kaplan-Meier plot, showing prostate-specific antigen (PSA) recurrence-free su

Boxplots showmedian (line), upper, and lower quartiles (boxes), and lines extendin
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lated with KLF5 mRNA level (Spearman’s rho = �0.523,

q = 0.0038, CpG no. 18 in Figures 2D and S2B). A recent study

in mouse embryonic stem cells identified a set of KLF5 targets,

including the ubiquitin ligase gene Spop, which was significantly

downregulated in response to KLF5 knockdown (Parisi et al.,

2010). Chromatin immunoprecipitation sequencing data showed

binding of KLF5 at the SPOP promoter (Yan et al., 2013) and we

identified a positive correlation between KLF5 and SPOPmRNA

levels in our PC cohort (Figures 2E and S2C) as well as in The

Cancer Genome Atlas (TCGA) cohort (p < 13 10�4, Spearman’s

rho = 0.19), but no association with the SPOP mutation status

(Fisher’s exact test).

A region at 8q22 displayed recurrent genomic duplications

centered on ESRP1 (Figure 2B), with the minimal overlapping

region residing 33 Mbp away from MYC. ESRP1 encodes an

RNA-binding protein involved in epithelial-to-mesenchymal tran-

sition (EMT) and RNA splicing (Jeong et al., 2017). Tumors

harboring duplications intersecting ESRP1 displayed signifi-

cantly increasedESRP1mRNAexpression (>1.5-fold, Figure 2F).

While several duplications overlapped both ESRP1 and MYC,

only ESRP1 displayed a significant increase in mRNA level

across the affected samples (Figures 2F and S2D). ESRP1 dupli-

cations were significantly associated with elevated Gleason

score (GS) (p < 1 3 10�11, chi-square test), in fact, more than

any other RGA in the cohort. We therefore pursued immunohis-

tochemistry-based validation in 11,954 tumor specimens on

tissue microarrays (Figure 2G), which confirmed a significant

correlation between increased GS and pT and ESRP1 staining

(Figure S2E). High ESRP1 protein level particularly showed asso-

ciation with high GS (>4+4), tumor stage (pT3b-pT4), number of

lymph node metastases and preoperative prostate-specific

antigen levels. Increased ESRP1 protein levels correlated with

higher proliferation rate irrespective of GS, as measured by

Ki67 index labeling (Figure 2H). In addition, ESRP1 protein inten-

sity was associated with adverse outcome, with strong ESRP1

staining correlating with significantly shorter time to biochemical

recurrence (BCR) (Figures 2I and S2F).

A multivariate analysis revealed ESRP1 to be an independent

prognostic marker in four established clinico-pathological pa-

rameters and that high ESRP1 expression was associated with

shorter BCR irrespective of ERG status (Table S2; Figures S2G

and S2H). ESRP1 was particularly discriminative in the biopsy

setting, where GS is often underestimated and additional prog-

nostic markers are needed. In summary, we identified recurrent

genomic duplications of ESRP1 associated with increased

ESRP1 protein expression, higher levels of cell proliferation,

and elevated GS and tumor stage, and demonstrated that

ESRP1 expression is an independent prognostic biomarker

in PC.

Enzymatic Activity Is Associated with the Earliest
Detectable Mutational Processes in Prostate Genomes
Mutational signatures can be employed to describe intrinsic and

exogenous-mediated mutational processes acting on tumor
ber of tumors for each category is labeled below each bar. ***p < 0.001; NS, not

.

rvival for patients stratified by ESRP1 staining intensity.

g to 1.53 interquartile range (IQR) (whiskers). See also Figure S2 and Table S2.



cells (Alexandrov et al., 2013, 2015; Nik-Zainal et al., 2016) (Fig-

ure 3A). We observed six mutational signatures: two clock-

like signatures (1 and 5), two related to DNA repair defects

(3 and 6), and two related to APOBEC cytidine deaminase-attrib-

utable mutagenesis (2 and 13). Mutational processes were asso-

ciated to GS, in particular the APOBEC signatures (2 and 13) and

the homologous recombination repair-associated signature 3

(Figure 3B). The clock-like mutational signatures 1 and 5 were

the predominant signatures across all tumors and both showed

significant association with patient age (Figure 3C).

Curiously, we also observed clear signs of a clock-like accu-

mulation of APOBEC-associated signature 2 and 13 mutations

in PC (Figure 3C), and could further corroborate this finding using

a knowledge-based approach that estimates APOBEC muta-

genesis in cancer genomes (p = 5.2 3 10�3, Spearman’s rho =

0.17). APOBEC proteins are cytidine deaminases that can act

to restrict retroelements during the single-stranded DNA replica-

tion cycle, but can also induce mutations in cancer genomes

(Roberts et al., 2012, 2013). These lesions were previously sug-

gested to be driven by APOBEC3A (A3A) and/or APOBEC3B

(A3B) (Swanton et al., 2015). APOBEC-associated mutations oc-

casionally arise as clusters of C strand- (or G strand)-coordi-

nated mutational events (C/G clusters)––also termed kataegis

events––a mutational phenomenon resulting in localized hyper-

mutation (Nik-Zainal et al., 2012; Roberts et al., 2012). Indeed,

we observed a strong enrichment of APOBEC mutagenesis at

C/G clusters in PC (Figure 3D).

We also identified a significant association between patient

age and C/G clusters attributable to APOBEC enzymes (Fig-

ure S3A), which was primarily attributable to A3B-like mutagen-

esis at C/G clusters (Figure 3E). To further substantiate the

relevance of A3B-like mutagenesis in PC, we genotyped a

known �30 kb germline APOBEC3B deletion, which results in

complete removal of its protein-coding sequence (Middlebrooks

et al., 2016). We observed in germline APOBEC3B deletion car-

riers; (1) significantly fewer APOBEC-associated signature 2 and

13mutation, (2) reduced expression levels of A3B in PC, and (3) a

significant shift from A3B-like to A3A-like mutagenesis (Fig-

ure S3B). These findings thus suggest that A3B-likemutagenesis

is active at a basal level in prostate cells, and that this endoge-

nous mutagenic process is responsible for the clock-like accu-

mulation of somatic mutations––including the occurrence of

localized hypermutation events––in PC. APOBEC-associated

mutations have previously been observed to frequently co-

localize with SV breakpoints in cancer (Chan and Gordenin,

2015; Roberts et al., 2012). We found a strong enrichment of

C/G clusters to co-localize with SV breakpoints compared with

both non-coordinated mutation clusters and scattered muta-

tions (Figure 3F), with an increase in co-localization frequency

between 1 and 10 kb. Several of these APOBEC-associated

SV breakpoints resulted in alteration of driver genes in PC,

including formation of TMPRSS2-ERG fusion and PTEN,

FOXP1, and BRCA2 disruption (Table S2). Our findings demon-

strate an age-associated mutational process that involves an

endogenous mutagenic enzyme, and suggest that mutations

attributable to APOBEC enzymes are likely to contribute to the

earliest mutations seen in PC patients.

Germlinemutations also are likely to contribute to early lesions

in PC patients, for example by modulating somatic mutational
processes. Germline protein-truncating variants (PTVs) in DNA

damage response (DDR) genes including BRCA1, BRCA2,

PALB2, ATM, and CHEK2 have previously been associated

with poor outcome and increased frequency of PC metastasis

(Na et al., 2017; Pritchard et al., 2016). We detected significant

associations between germline PTVs in these DDR genes and

somatic SVs and SNVs, as well as APOBEC-like signature 2

and the ‘‘BRCAness’’ mutational signature 3 (Figure 4). In sum-

mary, we identify three age-associated mutational processes

in PC, namely, CpG mutagenesis, signature 5 with unknown

etiology, and A3B-associated mutagenesis. Tumor genomes

harboring pathogenic germline mutations in genes involved in

homologous recombination repair exhibited increased genomic

instability.

PEPCI, a Methylation-Based Risk Score
Normal human prostate tissue is composed of basal, luminal,

and stromal cells, whereas PC loses basal cells and gains tu-

mor-specific luminal (T-luminal) cells as well as infiltrating im-

mune cells (Bhasin et al., 2015). Given that DNA methylation

profiles are cell type (ct) specific, we sought to account for differ-

ences in ct composition in methylation analyses by using avail-

able reference methylomes (Teschendorff and Zheng, 2017).

To this end, we acquired additional resected samples from

benign prostate hyperplasia cases and PC, and performed fluo-

rescence-activated cell sorting to identify the main cts present in

PC (STAR Methods) (Figures 5A and S4A–S4C), which enabled

us to identify the ct identity of every methylation site in the PC

genome.

We found a recurrent shift from basal and luminal cells to

T-luminal cells and infiltrating immune cells in high GS tumors

(Figures 5B, S4C, and S4D). Given this relevance of T-luminal

and immune cell content in identifying high-grade tumors, we

combined this information as a Purity-Adjusted Epigenetic

Prostate Cancer Index (PEPCI) of tumor aggressiveness (Figures

5A and 5B). We found that high PEPCI was strongly associated

with high pT (p < 1 3 10�7, Kruskal-Wallis), high GS (p < 1 3

10�17, Wilcoxon) (Figure 5C) and elevated risk of BCR (log rank

p < 0.0001). Moreover, PEPCI was able to stratify intermedi-

ate-risk (GS7, especially GS4+3) cases (Figures 5D, S4E, and

S4F; Table S3), whichwe validated in the TCGA cohort of primar-

ily LOPC samples (TCGA, 2015) (Figures S4E andS4F; Table S3).

Finally, our PEPCI score was also able to independently predict

GS and BCR (area under the curve = 0.831 and 0.702, respec-

tively) (Figure S4G). We examined whether particular RGAs

were associated with PEPCI-based risk groups (Figure 5E),

which revealed a striking association between PEPCI-high and

gain of ESRP1 (odds ratio = 15.7, false discovery rate-corrected

p < 1 3 10�5, Fisher’s exact test, Table S3).

Integrative Analysis Identifies Molecular Subgroups
Associated with Disease Progression
We sought to identify pathways and processes that underwent

transcriptional deregulation in EOPC. Using the graph theory-

based CLICK algorithm (Sharan et al., 2003) on 96 patients

with available mRNA-seq data, we identified seven distinct

CLICK clusters (abbreviated CC1-7) of co-expressed genes,

splitting the patients into CC-high and CC-low expression

groups per CC (Figures 6A and S5A; Table S4). We next
Cancer Cell 34, 996–1011, December 10, 2018 1001
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Figure 3. Age-Related Mutational Signatures in Prostate Cancer

(A) Barplot of the absolute (top) and relative (bottom) proportion of exposure of six mutational signatures (1, 5, 3, 6, 2, and 13, colored bars) per individual tumor of

patients with localized PC, sorted by age-at-diagnosis (x axis, range from 32 to 75 years).

(B) Association between mutation signature burden (y axis) and GS. POLR p values. Boxplots show median (line), upper, and lower quartiles (boxes), and lines

extending to 1.5 3 IQR (whiskers).

(C) Correlation between the mutation signature burden and age-at-diagnosis.

(D) Fold-enrichment of APOBEC signature in scattered mutations (light gray), C/G clusters (orange), or non-coordinated clusters (dark gray).

(E) Age-association between A3A (‘‘ytCa’’ signature, left) or A3B (‘‘rtCa’’ signature, right) in C/G clusters of mutations as a function of age (binomial logistic

regression). Generalized linear model logit p values.

(F) Fraction of mutations close to SV breakpoint for C/G cluster mutations (orange, n = 1,694), non-coordinated cluster mutations (dark gray, n = 8,408), and non-

clustered mutations (light gray, 100 bootstraps of 456,406 SNVs, 95% confidence interval shown). The x axis displays log10 distance between SNV and

breakpoint.

See also Figure S3.
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Figure 4. Predisposing Germline Mutations

Associate with Specific Somatic Alteration

Landscapes

Association between individuals carrying germline

PTV in the indicated cancer predisposition gene

and total number of somatic SVs, total number of

somatic SNVs, exposure to mutational signature

2 and mutational signature 3. The x axis repre-

sents patients, sorted in ascending order of the

phenotype. MWU-based p values.
integrated CC expression profiles, ct content, and PEPCI infor-

mation to further refine the PEPCI-based risk stratification (Fig-

ures 6A–6C, see the STAR Methods). This led us to identify a

prominent PC subgroup 1 of mainly PEPCI-high tumors (19 sam-

ples) with high content of T-luminal cells and expression of CC7

(Figures 6B and 6C). CC7 is associated with reactive stroma,

which is indicated by an enriched myofibroblast signature and

the reactive stroma marker ASPN in CC7 (Barron and Rowley,

2012; Rochette et al., 2017). Subgroup 1 was also associated

with prominent loss of CC2 and CC4 gene expression represent-

ing normal basal and luminal prostate epithelium (Strand and

Goldstein, 2015). CC2 loss andCC7 gain were strongly and inde-

pendently linked to GS (Figure S5B) and BCR (Figure 6D). Multi-

variable statistics showed that CC2 adds significant information

on top of GS in predicting BCR in both our cohort and in the

TCGA cohort (p = 0.003 and p = 0.01, respectively; Table S4).

In addition, CC2-low and CC7-high tumors were associated

with specific RGAs, in particular PTEN loss (p < 0.0001, both)

and ESRP1 gain (p < 0.0001 and p < 0.0005, respectively, Pear-

son’s chi-square test).

A small group of PEPCI-high tumors, termed PC subgroup 2,

was associated with high CC1 (immune), CC5 (stroma), and

CC7 (reactive stroma) expression and very high immune cell

content, but low T-luminal cell content (Figures 6B and 6C).

Consistent with the CC2-low and/or CC7-high expression pro-

files, subgroups 1 and 2 were strongly associated with high GS

(Figure 6E) and shorter time to BCR (Figure 6F).

PC subgroup 3 was associated with high CC5 (stroma) and

represented an intermediate-risk group. The last subgroup,

termed PC subgroup 4, was PEPCI-low and associated with a

high fraction of normal-like luminal cells, CC2 and CC4 (basal/

epithelial) expression and a known gene signature associated

with less-aggressive PC (Jhun et al., 2017) (Figure 6F). We

observed an enrichment for a TMPRSS2-ERG-related gene
Cancer C
signature in CC3 (Figure 6A) and a signifi-

cant enrichment for ETS fusions in CC3-

high tumors (p < 13 10�13, Mann-Whitney

U test; Figure S5A). CC3 did not associate

strongly with any of the four subgroups.

We validated the CCs and clinical rele-

vance of the subgroups in the TCGA

cohort of 462 PC samples with available

RNA-seq data (Figure S6A–S6E). The sub-

groups showed an improved prediction of

BCR compared with GS alone in GS7

cases of the TCGA cohort (p = 0.015;

Table S4). Importantly, most PEPCI-high
GS7 cases in the TCGA cohort belonged to subgroup 3 (Figures

S6F–S6H), supporting our hypothesis of an intermediate-risk

group. Comparing subgroups between the two age-of-onset

groups identified a higher occurrence of subgroup 4 in EOPC

(associated with better prognosis) (p = 0.008, adjusted for GS,

Table S4), suggesting age-associated differences in the sub-

groups. In summary, our integrated analysis of CC signatures

and PEPCI score stratified the patients into four prognostic rele-

vant subgroups with distinct differences in the expression of bio-

logical pathways.

Tracing the Temporal Order and Clinical Trajectories
of PC
Defining the temporal order of somatic events during tumorigen-

esis can give fundamental insights into the mutational process,

clinical trajectories, and ultimately guide therapeutic decision

making. Prior work has utilized various methods including linear

models, tree-based models, clustering, or Bayesian approaches

to delineate the most likely sequences of somatic events (Lecca

et al., 2015; Ramazzotti et al., 2015). A particular relevant ques-

tion that was not previously addressed is to identify both the

most likely next molecular event at any given point and the asso-

ciated clinical outcome, conditioned on the occurrence of all pre-

ceding mutations in that tumor. Our EOPC cohort provides an

attractive sample set to address this, due to enrichment of the

earliest somatic events and higher clonality (Figure S7A). To

identify the temporal order of events in our cohort, we developed

PRESCIENT (prediction of sequential changes in the evolution of

nascent tumors), a conditional probability-based network model

to predict the temporal sequence of somatic events in PC and

associated clinical outcome. PRESCIENT uses the probability

of observing two events as the exclusive events in the tumor

(formulated as exclusion score [E]), with high E as a proxy for

early, clonal events. ERG had the single highest E value
ell 34, 996–1011, December 10, 2018 1003



Figure 5. PEPCI, a Methylation-Based Risk Group Score

(A) A schematic representation of methylation-based estimation of ct composition of each bulk tumor sample.

(B) Stacked barplots of ct composition, tumor stage, GS and PEPCI per PC.

(C) Association between PEPCI and GS (left) and pT (right). Boxplots show median (line), upper and lower quartiles (boxes), and lines extending to 1.5 3 IQR

(whiskers).

(D) Kaplan-Meier curves of localized EOPC patients stratified according to PEPCI-high and PEPCI-low, for all cases (left) and for GS7 only (right). Log-rank test.

(E) Chord-diagram showing proportions of tumors with a specific RGA and the associated PEPCI-high- and low-risk group, colored by each RGA.

See also Figure S4 and Table S3.
(EERG,ERG, diagonal on Figure 7A), followed by ERG together with

FOXP1 (EERG, FOXP1), with both RGAs having a high level of con-

nections to other RGAs (Figure S7B), suggesting that ERG is

frequently occurring as the initial event, followed by FOXP1. A

pathway-level analysis showed paths including an initiating

ETS fusion event followed by events involved in AR-signaling

or cell cycle and subsequent pathway-level events (Figure 7B).

For every node in the network, PRESCIENT uses molecular

markers to predict the associated probability of event-free sur-

vival (PEFS) (Figures 7A, S7B, and S7C). We verified the ability

of PRESCIENT to infer the order of mutational events by per-

forming random subsampling and by cross-validation through

WGS and reconstruction of the molecular evolution from 40 PC

patients developing local metastases. Cross-validation showed

robust sensitivity and specificity for PRESCIENT (Figure S7D),
1004 Cancer Cell 34, 996–1011, December 10, 2018
providing support that with a given patient’s tumor being molec-

ularly profiled, our probabilistic model is able to predict a

patient’s next mutational event more accurately than fre-

quency-based estimates.

We next sought to test our ability to predict aggressiveness of

clones from a tumor phylogeny by performing multi-regional

WGS of seven EOPC genomes (Figure 7C), followed by clonal

reconstruction. For every tumor clone in the tree, we applied

our conditional probability model to predict the PEFS (color-

scale in Figure 7B). For tumors with divergence in aggressive-

ness of subclones, i.e., for branches with differences in PEFS,

the branch with the shorter PEFS was also the more dominant

clone, that is, the tumor clone with the highest relative contribu-

tion to the tumor mass from the sampled areas (see, e.g.,

PCA036 in Figure 7C and PCA037 in Figure S7E). This suggested



A B

C

D E F

Figure 6. Integrative Expression and Methylation Analysis

(A) Summary of the most prominent characteristics of CCs. Sources of gene sets are indicated in the brackets: GMX, Genomatix-curated gene sets; GO-MF and

GO-BF, molecular and biological functions in gene ontology terms, respectively; CP, Genomatix canonical pathways. False discovery rate-corrected p < 0.05.

(B) Heatmap of the four PC subgroups and their average ct compositions and CC mean pattern values.

(C) Hierarchical clustering heatmap of ct content, CCs, three external gene signatures and indicated PC subgroups across 96 EOPC samples and eight normal

prostate controls. CCs and external gene signatures are represented as mean pattern values. Clustering was based on PEPCI-related features and CC

(legend continued on next page)
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that genomic profiling of several areas of a tumor can be used to

identify the more dominant, aggressive clone and pointed to-

ward the utility of applying a probabilistic modeling in order to

predict aggressiveness.

PCA041 displayed a particular aggressive molecular evolu-

tion involving an early, clonal ESRP1 gain. Both branches main-

tained an aggressive phenotype, with one branch acquiring

KLF5, BRCA1, and RB1 loss and another branch acquiring

two parallel biallelic inactivation events of PTEN and TP53

(Figure 7C).

We tested the ability to predict the disease course based on

a single biopsy using PRESCIENT. As a first approximation, we

used single-sampled areas from PCA035 to predict both PEFS

and the next molecular alteration (Figure 7D). We note that the

phylogenetic trees were based on a Bayesian mixture model

that uses information from all individual sequenced areas of

one tumor and a single sample could therefore in most cases

not uniquely be assigned to one branch. We found that the

PEFS predicted from a single area of the tumor tended to

initiate differently but eventually converged, as exemplified

for tumor area T5 (Figure 7D), suggesting that the initiating

RGAs in T5 were sufficient to predict the clinical trajectory of

the tumor.

Finally, we assessed the potential to identify targeted thera-

pies (Tamborero et al., 2018) based on germline and somatic

genomic data. More than 40% of the EOPC patients could be

matched with at least one targeted therapy in either pre-clinical

test or clinical trial for PC. The targeted agents included phos-

phatidylinositol 3-kinase, mammalian target of rapamycin, and

poly (ADP-ribose) polymerase (PARP) inhibitors (Figure S7F),

with the majority of BRCA2-mutated patients showing high

levels of somatic BRCAness mutation signature 3 and a high

mutational burden (see also Figures 3 and 4), suggesting that

these patients could benefit from PARP inhibitors.

In summary, taking advantage of our EOPC cohort, we devel-

oped a statistical framework that uses molecular markers to pre-

dict the most likely next somatic alteration and associated

change in event-free survival.

DISCUSSION

Deciphering the molecular evolution and clinical trajectories of

PC require a comprehensive and integrative analysis of the early

molecular alterations and mutational mechanisms. A previous

survey identified age-associated mutations as the most com-

mon mutational process in cancer followed by APOBEC muta-

genesis (Alexandrov et al., 2013; Roberts and Gordenin, 2014).

Our analysis revealed that APOBEC-associated mutations and

kataegis clusters show a clock-like behavior in PC. This muta-

tional process, in PC, is primarily attributable to APOBEC3B ac-

tivity, likely due to a residual albeit constant enzymatic activity.
information (excluding CC6 due to low information content). Patient numbers 1 a

varying PEPCI score, no. 4 and no. 5 high stromal content.

(D) Kaplan-Meier curves between subgroups in CC2 and CC7 and event-free su

(E) Stacked barplot of fraction of GS in the four PC subgroups.

(F) Kaplan-Meier curves of the four PC subgroups using ICGC EOPC samples w

cases (right, n = 62). Log-rank test.

See also Table S4 and Figures S5 and S6.
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Our data suggest that APOBEC-attributable mutations occur

throughout the development of PC as well as in the normal pros-

tate tissue prior to transformation. Thus, APOBEC mutagenesis

and the resulting kataegis events, some of which occur in

conjunction with SV formation, are likely to contribute to the

earliest mutations seen in PC.

Whereas mutational signatures bear trace of the age and

exposure of the tissue, somatic SVs frequently cause tumor-pro-

moting gene dysregulation. We identified recurrent breakpoint

hotspots including a potentially clinical relevant biomarker at

8q22, associated with genomic duplication of ESRP1. ESRP1

has been demonstrated to take part in RAF fusion formation in

PC (Palanisamy et al., 2010), although we did not find evidence

for ESRP1 fusion events in our cohort. ESRP1 has also been

implicated in EMT transition (Ishii et al., 2014) and overexpres-

sion has been demonstrated to cause anchorage-independent

growth and metastases in colorectal cancer (Fagoonee et al.,

2017). ESRP1 was previously shown to be strongly co-ex-

pressed with E-cadherin, and increased expression of ESRP1

may therefore lead to accelerated proliferation of an epithelial

cell state.

PC is a highly heterogeneous disease, but there is a limited

understanding of the ct composition and how this impacts dis-

ease progression. Recent genomic surveys have characterized

seven subtypes based on somatic alterations (TCGA, 2015),

primarily involving ETS family genes, but the ct composition

and associated clinical relevance remained unexplored. Anal-

ysis of basal and luminal ct composition has shown biological

and clinical relevance in another hormone-associated adeno-

carcinoma––breast cancer (Sotiriou et al., 2003). We pursued

a complementary approach by integrating methylation array

and RNA-seq data, which led us to identify four molecular sub-

groups based on ct composition and gene expression patterns

in EOPC tumors that showed association with clinical outcome

independent of GS. The subgroups were able to stratify inter-

mediate-risk GS7 PC cases, suggesting that the subgroup in-

formation can serve as an independent molecular risk score.

Tumors that differ in ct composition would likely respond differ-

entially to therapies, and further work will be needed to inves-

tigate whether the different subgroups predict response to

therapy.

There is an urgent need for biomarkers that can stratify

patients who need definitive treatment from those who can

follow active surveillance or watchful waiting. Single biomarkers

are unlikely to be useful in a heterogeneous and complex dis-

ease such as PC, and multiple biomarkers will thus be required

to guide clinical decision making. We utilized our comprehen-

sive molecular catalog of the earliest alterations in PC to

develop PRESCIENT. PRESCIENT establishes a knowledge-

based framework for future genomics-informed patient stratifi-

cation and drug targeting. The current implementation is limited
nd 3: PEPCI score just below the Inflection point, no. 2 multi-area sample with

rvival (log rank test).

ith available methylation and RNA-seq data (left, n = 83) and a subset of GS7



(legend on next page)

Cancer Cell 34, 996–1011, December 10, 2018 1007



in the sample cohort size, which we expect to improve in both

sensitivity and specificity with inclusion of more samples. This

will involve highly aggressive tumors, including LOPC and meta-

static cancers, to increase the ability to predict event-free sur-

vival and therapy response, as well as enable the prediction of

secondary alterations associated with metastasis.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Tumor samples were collected form 251 PC patients. Data was supplemented with bam files from 41 published tumor and normal

WGS samples (Fraser et al., 2017). Informed consent and an ethical vote (institutional reviewing board) were obtained according to

the current International Cancer Genome Consortium (ICGC) guidelines (see http://www.icgc.org). Manufacturing of TMAs and their

analysis for research purposes as well as patient data analysis has been approved by local laws (HmbKHG, x12,1) and by the local

ethics committee (Ethics commission Hamburg, WF-049/09 and PV3652). All work has been carried out in compliance with the Hel-

sinki Declaration. Radical prostatectomy specimens were available from 17,747 patients, undergoing surgery between 1992 and

2014 at the Department of Urology and the Martini Clinics at the University Medical Center Hamburg-Eppendorf. Follow-up data

were available for a total of 14,464 patients with a median follow-up of 48 months (range: 1 to 275 months).

Tissue-Microarray Processing
Archived formalin fixed tissues were used for the TMA analysis, as previously described (Kononen et al., 1998), which involved taking

a 0.6 mm core from a representative tissue block from each patient. The tissues were distributed among 39 TMA blocks, each con-

taining 144 to 522 tumor samples. For internal controls, each TMA block also contained various control tissues, including normal

prostate tissue.

The usage of archived diagnostic left-over tissues for manufacturing of tissue microarrays and their analysis for research

purposes as well as patient data analysis has been approved by local laws (HmbKHG, x12,1) and by the local ethics committee

(Ethics commission Hamburg, WF-049/09). Informed consent was exempt based on the „Hamburgisches Krankenhausgesetz‘‘

HmbKHG 312,1.
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METHOD DETAILS

Biospecimens and Quality Control
Sample Inclusion Criteria

Biospecimens were collected from patients diagnosed with PC. Specialized pathologists dissected each prostate immediately after

surgery. Dissection followed a predefined scheme to represent the position of each block relative to the entire prostate. This proced-

ure resulted in 60 – 150 pieces of tissues depending on the size of the prostate. An image was taken from each dissected prostate

specimen for later reference. After dissection, each tissue block was placed on a separately labeled cork plate covered with a special

compound for cryopreservation (OCT) before the tissue was frozen to -20�C. Cryo-sections were taken from each block and pres-

ence as well as content of tumor was determined by the pathologist. The tumor cell content is given as the percentage of cancer cells

relative to the entire tissue block. If necessary, IHC tumor validation (e.g. AMACR, 34BE12) was performed of the frozen tissue or after

secondary paraffin embedding of selected frozen blocks. Uni- and multifocal cancers were distinguished according to the criteria of

Wise et al. (Wise et al., 2002). Tumor areas were defined as part of a single focus if they were within 3 mm of each other in any section

or within 4mm on adjacent sections.

Except for two patients (PCA125 and PCA176) who received pre-operation hormone therapy with LH-RH analogon, the patients

did not receive any neo-adjuvant radiotherapy, androgen deprivation therapy, or chemotherapy prior to the surgical removal of tumor

tissue. Tumor samples and one normal prostate control were frozen at -20�C and subsequently stored at -80�C. Eight additional
normal prostate samples were obtained from a previous project (Börno et al., 2012). DNA and RNAwere extracted as described pre-

viously (Weischenfeldt et al., 2013).

ESRP1 Immunohistochemistry and FISH

TMA sections were freshly cut and used for an IHC staining performed on one day and in one experiment. The slides were deparaffi-

nized with xylene and a descending alcohol series. Antigens were retrieved by heating for 5 minutes in an autoclave at 121�C in Tris-

EDTA-Citrate buffer, pH 7.8. To prevent non-specific binding, a hydrogen peroxide blocking solution was applied for 10minutes. The

primary antibody specific for ESRP1 (rabbit polyclonal antibody, Sigma Aldrich Germany, cat#HPA023720; dilution 1:450) was incu-

bated at 37�C for 60minutes. The antibody (HPA023720) has been validated by the Human Protein Atlas project, which shows i) over-

lapping staining patterns with other anti-ESRP1 antibodies, ii) a band of appropriate size in western blots, iii) specific binding to

ESRP1 on a protein array. The FISH probe mix consisted of a spectrum-orange labeled ESPR1 (8q22.1) probe (made from bacterial

artificial chromosomes (BACs) RP11-267M23 and BAC RP11-22C11), and a spectrum-green labeled, commercial centromere 8

probe (#6J37-08; Abbott, Wiesbaden, Germany). To visualize the bound antibody, the EnVision Kit (Dako, Glostrup, Denmark)

was used according to the manufacturer’s directions. ESRP1 staining was found in the nucleus and cytoplasm of positive cells. In

ESRP1 positive cancers, staining was usually seen in all tumor cells (100%). Hence, the staining intensity in prostate epithelial cells

was estimated in four categories for each cancer, i.e. negative (not detectable), weak, moderate and strong staining.

Pathology Review

All prostate specimens were analyzed according to a standard procedure, including a complete embedding of the entire prostate for

histological analysis (Erbersdobler et al., 1997). Histopathological data were retrieved from the patient’s records, including tumor

stage, GS, nodal stage and stage of the resection margin. PSA values were measured following surgery and PSA recurrence was

defined as a postoperative PSA of 0.2 ng/ml and increasing in subsequent measurements.

Nucleic Acid Sequencing and Analysis
Whole Genome Sequencing

DNA library preparation andWGSwas performed on Illumina sequencers as described earlier (Weischenfeldt et al., 2013) with a me-

dian insert size of 310 bp (sd 57 bp) and a median WGS coverage of 61-fold for tumor and 38-fold for germline control samples.

Read Alignment
WGS data was aligned to the human genome Build GRCh37 using BWA-MEM (Li, 2013) according to Pan Cancer Analysis of Whole

Genomes (PCAWG) protocol (https://doi.org/10.1101/161638).

Median Purity
Tumor purity was calculated as the median of three purity measures, a methylation-based score defined by methylation of selected

sites in the promoter of the GSTP1 (Brocks et al., 2014), a score based on allele-specific copy number profiles (Favero et al., 2015),

and a score based on the absolute quantification of somatic DNA alterations (Carter et al., 2012).

Single-Nucleotide Variant and SV Calling
Somatic SNVs were identified by the PCAWG implementation of the DKFZ SNV pipeline (https://doi.org/10.1101/161638). Subse-

quently, SNVs overlapping with tandem repeats and strand bias were marked as low-confidence and removed from the consecutive

analysis.

Somatic SV discovery was pursued across all samples (matched tumor/normal genome) using the DELLY2 (Rausch et al., 2012)

PCAWG analysis workflow (https://github.com/ICGC-TCGA-PanCancer/pcawg_delly_workflow). We used a high-stringency SV set

by additionally filtering somatic SVs detected inR 1%of a set of 1105 germline samples from healthy individuals belonging to phase I
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of the 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015), and by removing somatic SVs present in any of the

PCAWG germline samples. For inference of high-stringency SVs we further required at least four supporting read pairs with a min-

imummapping quality of 20 and restricted valid somatic SV sizes from 300 bp to 500 Mb. Somatic copy number alterations (SCNAs)

were identified using sequenza (Favero et al., 2015), which was applied to tumor and normal bam files. SCNAs near low mappability

regions and with logR below 0.2 were removed. Purity parameter was selected to match the median purity (see Median Purity sec-

tion), and ploidy parameter was selected to fit a diploid state.

We employed freebayes (v1.1.0) in single sample- and paired-sample callingmode for discovery of SNVs,multi nucleotide variants,

and InDels < 50 bp (used parameters: –min-repeat-entropy 1, –report-genotype-likelihood-max, –alternate-fraction 0.2, and –no-par-

tial-observations), as previously described (https://doi.org/10.1101/208330). Raw variant predictions were further filtered for quality

(QUAL > 20, QUAL/AO > 2), strand bias artifacts (SAF > 1, SAR > 1), read position artifacts (RPR > 1, RPL > 1), and normalized for

consistent representation across patients with vt (v0.5). Germline variants were annotated with the Ensembl Variant Effect Predictor

(VEP) (r81). High impact (i.e. damaging) germline mutations were defined as frameshift, stop gain, start lost, canonical splice site,

exon/gene deletions, known (ClinVar; accessed 2017-02-16) damaging non-canonical splice site variants, and somatic mosaic mu-

tations (the latter of which are defined as mutations present in a subset of normal cells). Putative damaging germline mutations were

removed if the estimated minor allele frequency (MAF) in at least one continental population was above 1%, which we judged based

on 53,105 sequenced individuals that were assigned to known (control) populations and without cancer diagnosis from the ExAC

resource (http://exac.broadinstitute.org), the 1000 Genomes Project (http://www.internationalgenome.org), and the NHLBI GO

Exome Sequencing Project. Putative gain-of-function (GoF) missense variants in TP53 were further evaluated based on information

in the IARC TP53 database (http://p53.iarc.fr/) and annotated as pathogenic if TP53 mutations were classified as ‘‘non-functional’’

based on experimental transcriptional activity assays. Finally, all germline mutations were excluded from the analysis if annotated

as benign in ClinVar. We estimated the primary population ancestry (European, African, East Asian, South Asian, and Native

American) for all patients using a supervised decomposition approach (https://doi.org/10.1101/208330) and ancestry-informative

markers.

Copy Number Analysis

Copynumber andSVprofiles for eachpatientwerebinnedwith a500kbslidingbin size. Eachbin containingaboolean information if an

aberrationoccurredwithin thebin in thegivenpatient.RGAswerecomputedbyoverlapping thebinneddataof eachpatient computing

a cohort frequency of aberrations for each bin, and selecting the peak-frequency bins within regions with frequency higher than 5%.

Subclonal Copy-Number Analysis
Subclonal copy number were identified by computing the cancer cell fractions based on the B-allele frequency CCFbi

and the depth

ratioCCFri for each segment. To computeCCFbi
andCCFri wepostprocessed theDNA copy number segments following the sample-

wide analysis with sequenza. A sample-wide analysis provides the copy number state estimate for each segment based on the total

clonal contribution and the global cellularity (r) and ploidy (j) values.

We assume that subclones share the same ploidy but differ in cellularity.

Using the B-allele frequency and depth ratio models previously described (Favero et al., 2015), we used a grid search approach for

each segment i to find the optimal value of the local-cellularities rbi
and rri given respectively, the observed values of B-allele fre-

quency and depth ratio for the segment and the copy number and ploidy estimates from the sample-wide analysis.

The CCFbi
and CCFri are calculated by dividing the estimated cellularity derived by the depth-ratio model rri and the B-allele fre-

quency model rbi
with the sample-wide cellularity r.

CCFbi =
rbi
r

and CCFri =
rri
r

We then applied a bivariate Dirichlet process to generate 2D clusters CCFbi
versus CCFri . Clusters with both CCFbi

and CCFri

values between 0.1 and 0.9 were identified as subclonal clusters.

Samples in which the sum of the subclonal segments represent more than 0.1% of the genome are classified as polyclonal, other-

wise are classified as monoclonal.

DNA Methylation Sample Preparation and Data Analysis

Normal and tumor basal, luminal and stromal cell fractions were generated from fluorescence-activated cell sorted (FACS) cell frac-

tions of seven BPH samples (age range 68-90) and seven PC cases (age range 55-79, GS: 3+3 (n = 3), 7 (n = 1), 4+5 (n = 1), 5+4 (n = 2))

obtained from UT Southwestern Medical Center and prepared according to (Henry et al., 2017). DNA was extracted using Qiagen

AllPrep DNA/RNA/Protein Mini Kit. For the ICGC EOPC and LOPC cohorts, genomic DNAwas extracted from bulk fresh frozen tumor

specimen. DNAwas submitted to HumanMethylation450 analyses at theGenomics and Proteomics Core Facility of theGermanCan-

cer Research Center (Heidelberg). Data quality control, preprocessing and beta-mixture inter-quantile (BMIQ) normalization was

done using RnBeads (Assenov et al., 2014) Further data processing included removal of 27598 cross-reactive probes (Chen

et al., 2013b) and 39752 sites overlapping with SNPs (dbSNP Build 150, Feb. 2017). Array-based methylation beta values were inde-

pendently validated using Agena MassArray EpiTyper technology (BLUEPRINT consortium, 2016). For reference-based ct estima-

tion, we used the Houseman algorithm (Houseman et al., 2012) with quality-controlled sorted basal, stromal, normal luminal and

T-luminal cell fractions as reference cts. The fraction of infiltrating immune cells for every sample was estimated using the Leukocytes

unmethylation for purity (LUMP) algorithm (Aran et al., 2015). We selected the 500 most discriminatory CpG sites between the
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different cts to compute the ct composition of our EOPC samples (Figure S4B). PEPCI was calculated as the combined fraction of

T-luminal cells and immune cells for every sample (Figure 5A). The computation of PEPCI was implemented in a dedicated R package

(Key Resources Table).

The PEPCI R package provides quantitative information on four cts (basal, stromal, normal luminal and T-luminal cells) and infil-

trating immune cells, inferred frommethylation data. The PEPCI score represents the combined percentage of T-luminal and immune

cells as a measure of tumor aggressiveness.

Ct-specific referencemethylomes are used to estimate ct composition in bulk tumor samples, employing the Houseman algorithm,

which is a common tool to deconvolute the composition of blood samples. The algorithm selects a specified number of CpG sites

withmost variablemethylation between provided reference cts. This process is predefined in the PEPCI R package, which processes

Illumina 450k or EPIC array data and interrogates 500 preselected CpG sites. The location of these sites relative to ChromHMMstates

of prostate epithelial cells indicates significant enrichment of T-luminal cell hypermethylation in promoter CpG islands, and stromal-

specific hypermethylation in enhancer regions (Figure S4C, heatmap legend on the right).

Methylation based principal component analysis was done using RnBeads (Assenov et al., 2014). Enrichment of CpG sites at chro-

matin states was performed with EpiAnnotator (Pageaud et al., 2018), using ChromHMM states for prostate epithelial cells (Taberlay

et al., 2014). Trees representing sample similarities were constructed frommethylation-based Euclidean pairwise distances using the

algorithm for phylogenetic tree reconstruction of Desper and Cascuel (Desper and Gascuel, 2002). Logistic regression models based

onmethylation data and their evaluations using receiver operating characteristic (ROC) curves were performed using the R program-

ming language.

Heterogeneity estimates of heterogeneity and multifocal cases were calculated by averaging all pairwise dissimilarities between

methylation-based ct fractions of the corresponding multi-area samples using cosine dissimilarity.

For the TCGA PRAD cohort, HumanMethylation450 raw signal intensities of probes for each participant’s tumor sample (n = 498)

were downloaded as idat files from the TCGA data portal (https://tcga-data.nci.nih.gov) and processed as described for the ICGC

cohort.

Tri-Nucleotide Mutational Signature

To identify mutational signatures, we applied YAPSA (Yet Another Package for Signature Analysis) (Huebschmann et al., 2016), a

linear combination decomposition of the mutational catalog with predefined signatures from the COSMIC database (http://

cancer.sanger.ac.uk/cosmic/signatures, downloaded June 2016) computed by non-negative least squares (NNLS). To increase

specificity, the NNLS algorithmwas applied twice; after the first execution, only those signatures whose exposures, i.e. contributions

in the linear combination, were higher than a certain cut-off were kept, and theNNLSwas run againwith the reduced set of signatures.

As the detectability of different signatures may vary, signature-specific cut-offs were determined in a random operator characteristic

analysis using publicly available data on mutational catalogs of 7,042 cancers (507 samples with WGS; 6,535 samples with

whole exome sequencing) (Alexandrov et al., 2013) and mutational signatures from COSMIC. This yielded the following signature-

specific cutoffs: AC1: 0; AC2: 0.01045942; AC3: 0.08194056; AC4: 0.01753969; AC5: 0; AC6: 0.001548535; AC7: 0.04013304;

AC8: 0.242755; AC9: 0.1151714; AC10: 0.01008376; AC11: 0.09924884; AC12: 0.2106201; AC13: 0.007876626; AC14:

0.1443059; AC15: 0.03796027; AC16: 0.3674349; AC17: 0.002647962; AC18: 0.3325386; AC19: 0.1167454; AC20: 0.1235028;

AC21: 0.1640255; AC22: 0.03102216; AC23: 0.03338659; AC24: 0.03240176; AC25: 0.01611908; AC26: 0.09335221; AC27:

0.009320062; AC28: 0.05616434; AC29: 0.05936213; AC30: 0.05915355. We removed mutation signature present in fewer than

10% of the samples.

Knowledge-Based Analysis of APOBEC-Associated Mutational Processes

Enrichment and mutation load associated with APOBECmutagenesis were calculated based on prior mechanistic knowledge about

mutation motifs associated with certain mutagenic factors and pathways (Chan et al., 2015; Roberts and Gordenin, 2014). Calcula-

tions were done for genome-wide mutation calls and for mutation calls only in C/G clusters identified as described in (Chan et al.,

2015; Roberts et al., 2012). Briefly, the enrichment with a tri- or tetra-nucleotide motif pXq / pZq were calculated, where X is the

mutated nucleotide, Z is the nucleotide after base substitution, p is the -1 nucleotide (or -1 and -2 nucleotides), and q is the +1 nucle-

otide (within the context of the given mutation type/ trinucleotide). For each motif, we also included the reverse complement

sequence that would represent the mutagenic process occurring on the opposite DNA strand. To statistically evaluate whether a

certain mutation type is enriched in a sample as compared to mutations generated by random mutagenesis, a one-sided Fisher’s

exact test was performed. To account for multiple testing, p values obtained were corrected using the Benjamini-Hochberg method.

The MAF of the germline APOBEC3B deletion in our PC cohort was 7.0%, in line with the expected frequency in individuals with a

European germline genetic background.

RNA-seq Sample Preparation and Data Analysis

RNA extraction and sequencing for the samples ICGC_PCA1-12 was performed as described in a previously publication (Weischen-

feldt et al., 2013). DNase digested total RNA from additional 109 EOPC samples and 9 control samples was analyzed using RNA6000

nano assays (Agilent 2100 Bioanalyzer) and Qubit 2.0 Fluorometer. Only samples with an RNA Integrity Number (RIN) > 7.0 were

included in this study. We used 1-4 micrograms of total RNA from each sample to prepare Truseq stranded sequencing libraries

(Illumina). In brief, poly-A enrichment, fragmentation, first and second strand synthesis, A-tailing, and adapter ligation were per-

formed following the manufacturer’s instructions. Libraries were PCR-amplified for 7-20 cycles and qualitatively validated on an Agi-

lent 2100 Bioanalyzer of product size and concentration and on Qubit. Libraries were sequenced 50 bp paired-end on a HiSeq 2000

flowcell according to Illumina’s protocol.
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RNA readswere aligned to hg1000 using BWA (v. 0.5.9-r16 for reads up to 51 bases and v. 0.7.7-r441 for readswith 100 bases) and

SAMtools. Uniquely mapped reads were annotated using Ensembl v62. Gene expression levels were quantified in reads per kilobase

of exon per million mapped reads (RPKM) and corrected for RNA composition effects applying TMM implemented in the R package

edgeR (Mortazavi et al., 2008; Robinson and Oshlack, 2010). Multi-area samples of the same patient were merged in to an artificial

sample by taking the sumof read counts per gene before RPKMcalculation resulting in a cohort of 96 RNA-seq samples. Hierarchical

clustering on the most variable genes revealed batch effects across the RNA-seq cohort. Using hierarchical clustering and sample

preparation information, a set of 42 tumor RNA-seq samples without batch effects was manually selected and used to identify co-

expression clusters applying the algorithm CLICK, part of the software tool EXPANDER (v7.11) (Sharan et al., 2003). CLICK was run

with default parameters on log2 transformed and z-score normalized RPKM values of the 1231 most variable genes. Genes were ex-

pressed inminimum3 samplesR 0.5 RPKM. 14CCswere identified showing an overall separation of -0.039 and overall homogeneity

of 0.632. Seven out of 14 CCs showed a homogeneity valueR 0.6 and were selected for further analyses (named CC1-CC7). An 8th

CC also showed a high homogeneity value, but consisted mainly of one protocadherin gene cluster and was discarded. We calcu-

lated a mean pattern value for each CC in each of the EOPC samples. A mean pattern value for one sample is defined by taking the

trimmed mean across log2 and z-score transformed RPKM values of genes in a particular CC. Based on the mean pattern values

obtained for each CC, tumor samples were divided into two subgroups (called CC-high and CC-low) using partitioning around me-

doids (pam).We compared the subgroups in anCC using edgeR and selected differentially expressed genes following the expression

pattern in a CCwith jlog2(FC)jR log2(2), FDR% 0.01 and difference of median expression > 1, resulting in overall 417, 282, 189, 176,

117, 96, 86 and 21 genes in CC1-CC7, respectively (Table S4). After the establishment of the CCs, the remaining 54 EOPC RNA-seq

samples were reintegrated. Mean pattern and CC subgroups were recalculated as described above taking the whole RNA-seq

cohort of 96 samples (Table S4). CCs were functionally annotated applying gene set overrepresentation analysis of the GePS

Genomatix software (v3.80116). For additional annotation and comparison of the CCs to the literature, we integrated external signa-

tures that are associated with high risk PC (BROMO10), Gleason score, stroma or reactive stroma into the mean pattern matrix (Jhun

et al., 2017; Planche et al., 2011; Stuart et al., 2004; Urbanucci et al., 2017).

RPKM values for the TCGA cohort (495 samples) were calculated as described above. Batches with the ID 312 and 320 were

excluded due to batch effects resulting in a cohort of 462 samples. To classify TCGA samples into CC subgroups, RPKM values

were log transformed and z-score normalized, and mean pattern values for each sample and CC were calculated. Based on the

mean pattern values, samples were assigned to the CC subgroup with nearest medoid. Here, the medoids originate from the calcu-

lations on the ICGC EOPC cohort.

In TCGA, subgroup 1 (97 samples) and subgroup 3 (143 samples) could be derived from the hierarchical clustering using the same

features as in our ICGC EOPC cohort. To annotate subgroup 2 in the TCGA data, we applied criteria defined from our ICGC EOPC

cohort. As described above, the samples belonging to the ‘‘Immune’’ subgroup showed a high immune cell content and high expres-

sion of CC5 and CC7. Here, the lowest immune cell content in subgroup 2 ranked at the 94th percentile considering a normal distri-

bution, and the mean and standard deviation of the estimated immune cell content across the 96 EOPC samples with RNA-seq. In

total nine TCGA samples were assigned to subgroup 2 based on high PEPCI score, CC5-high and CC7-high, and a high immune cell

content defined by the 94th percentile of immune cell content values.

Before the comparison of subtype fractions in ICGC EOPC, TCGA EOPC (100 cases) and TCGA LOPC (360 cases), GS compo-

sition differences were adjusted to the ICGC EOPC cohort (fractions of GS in ICGC: GS6 = 0.135, GS7 = 0.72, GS8 = 0.01,

GS > 8 = 0.135). The GS-corrected subtype fractions in the TCGA EOPC and TCGA LOPC cohorts were calculated using 1,000 boot-

strap samples. A single resampling was performed by extracting TCGA EOPC/LOPC cases according to the GS, and by drawing a

bootstrap sample of these cases for each GS (GS6, GS7, GS8, GS >8) independently. Here, the samples size of a GS bootstrap in

TCGA related to the GS fraction in ICGC EOPC (e.g. for GS6 and TCGA LOPC the sample size is equal to 360*0.135). From the GS-

corrected bootstrap samples the fraction of subgroupswas calculated. The p value of the differences in subgroup fractionwas based

on a permutation test.

Based on gene expression, the heterogeneity of multi-area samples belonging to the same patient was estimated by taking the

average of the pairwise dissimilarity values between multi-area samples. To calculate the pairwise dissimilarity values we took the

mean of the cosine dissimilarity betweenmulti-area samples in the different CCs. Here, the cosine dissimilarity wasmeasured across

the gene expression values of a particular CC.

Breakpoint-Association with Chromatin Data

Chromatin-related data from PC tissue and cell lines were downloaded from different studies to generate chromatin states

(ChromHMM). ChromHMM from normal prostate epithelial cells PrEC and PC3 cells were downloaded from GSE57498. Similar

9 ChromHMM states were produced for LNCaP and VCaP cells using ChromHMM software (Ernst and Kellis, 2012). To learn

ChromHMM states in LNCaP cells we computed H3K27me3, H3K27Ac, H3K4me1, and H3K4me3 profiles (Barfeld et al., 2017),

CTCF binding profile (ENCODE), and Phospho S5 RNA Pol II binding profile (Massie et al., 2011). For VCaP cells we computed

H3K27me3, H3K4me1, H3K27me3 (Yu et al., 2010), RNA pol II profiles (Asangani et al., 2014), and CTCF and H3K27Ac

profiles (ENCODE). The resulting 9 chromatin states for PrEC, PC3, LNCaP, and VCaP cells were reduced to 7 by combining

‘‘enhancer+CTCF’’ and ‘‘promoter+CTCF’’ states together with ‘‘enhancer’’ and ‘‘promoter’’, respectively. The derived 7

ChromHMMstateswere then used to annotate DNAmethylation data. For enrichment analysis of DNA breakswe excluded the states

‘‘transcribed’’ and ‘‘bound by CTCF’’. SV breakpoints were also tested for overlap with LNCaP GRO-seq (Wang et al., 2011; Chae et

al., 2015), FAIRE-seq peaks from LNCaP and VCaP (Urbanucci et al., 2017), general super-enhancers (Hnisz et al., 2013), ETV1 ChIP
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peaks from LNCaP cells (Chen et al., 2013a), ERG ChIP peaks from VCaP cells (Yu et al., 2010), BRD4 ChIP peaks from VCaP cells

(Asangani et al., 2014) and PC-specificsuper-enhancers (Kron et al., 2017).

SV breakpoints from EOPC and LOPC samples were assessed by performing intersection between chromatin states and SV

breakpoints using bedtools v2.25.0 (Quinlan and Hall, 2010), adding 5 kbp to both sides of the peaks. To compute an expected over-

lap frequency, breakpoints were randomly shuffled 100 times on the genome (excluding telomere and centromere regions, down-

loaded from UCSC, hg19) and keeping the SV size and chromosome fixed before performing overlap.

Association of SVs with DNA-DNA interaction and open chromatin marks was measured in a correlation-based analysis between

breakpoint density and marks of physically interacting and open chromatin. We divided the genome in 1 Mb sliding windows using a

100 kb step and overlapped each bin with the SV breakpoints, retaining maximum 1 overlap per patient per bin, the number of chro-

matin loops and PC-specific H3K27ac peaks. Spearman’s Rho was estimated by correlating the EOPC and LOPC breakpoints with

the number of Hi-C loops and H3K27ac peaks, respectively.

For Hi-C, we combined the loop annotations from 8 human cell-lines (GM12878, Hela, HMEC, HUVEC, IMR90, K562, KBM7,

NHEK), obtained from GSE63525 (Durand et al., 2016; Rao et al., 2014), and removed duplicate chromatin loops. H3K27ac PC-spe-

cific peaks were obtained from (Kron et al., 2017).

Exclusion Score Estimate

Here we define Exclusion score (E) as a metric to evaluate the preference of an aberration to occur as a sole event, or in tandem with

many aberrations.

For every patient x, we construct an aberration index Ax that contains a list of all the IiðxÞ deleted genes/regions for that patient, e.g.

Ax = fBRCA1; ERG; ELK4g. The exclusion score is defined as the fraction of the observed aberration, in this case 1, and the total

number of aberrations for that patient:

EiðxÞ= 1

jAxj; i˛Ax

The exclusion score for a given aberration i, is defined as the mean exclusion score across all patients:

Ei =
1

N

XN

n= 1

EiðnÞ

The exclusion score is confined between 0 and 1 and the interpretation is such that, the higher the exclusion score of an aberration,

the more frequently it tends to occur as a single event or in combination with very few events and vice versa.

Pairwise Exclusion Score

In a similar manner we can compute the exclusion score for a pair of aberrations i and jwhich is the "preference" of that pair to occur

with few or many over events,

Ei;jðxÞ= 2

jAxj; i; j˛Ax

and compute the mean pairwise exclusion score respectively,

Ei;j =
1

N

XN

n= 1

Ei;jðnÞ

Survival Analysis

We employed Random Survival Forests (RSF) to predict the PEFS, using the time (in months) from diagnosis to BCR as the response

variable. The model was implemented in R using the randomForestSRC package (Ishwaran et al., 2008), with n.tree = 5,000. Missing

data were imputed each time a tree node performed a split on samples with missing values. Split statistics were aggregated over all

trees to determine the median split value for each variable (PEPCI 69.1). We chose a random forest approach to binarize the PEPCI-

score since it is able to treat continuous right-censored survival data and identify the optimal split that separates the samples into high

and low risk groups.

For BCR analyses incorporating GS, samples were grouped into the categories GS6, GS3+4, GS4+3 and GS8-10 for ICGC, and

GS6, GS3+4, GS4+3 andGS8, GS9-10 for TCGA. In ICGC, only one case showedGS8 and therefore included into theGS9-10 group.

Time to BCR was right-censored at 100 months for TCGA PRAD. Prediction of BCR was analyzed using Kaplan-Meier curves and

log-rank test, and cox proportional hazards regression model (CPHM). Fitted CPH models were compared using log-likelihood ratio

test. Here, we tested a full model incorporating GS, and the introduced PEPCI groups, CC2/CC7 groups or subgroups against a

model incorporating GS only. All analyses were done using R (R-3.3.3) and the R packages survminer (v0.3.1) and survival

(v2.41-3) (Therneau and Grambsch, 2000). CPHM and LRT related results were provided in Table S4.

We assessed the predictive advantage of ESRP1 gain over MYC gain by comparing the variable importance (VIMP) values of the

two features in a RSF model, using PSA, pT, GS, Age, CC2, and PEPCI, to predict BCR. We trained 1,000 models to get the VIMP

distribution of ESRP1 andMYC. A one-sided Wilcoxon test shows that VIMP associated with ESRP1 gain is significantly higher than

MYC gain (p value < 2.2e-16)
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PRESCIENT Tumor Evolution Model

PRESCIENT (https://bitbucket.org/weischenfeldt/prescient) usesconditional probability topredict theorderofmolecular events, given

a known or observed co-occurrence matrix. It differs from similar algorithms previously published including CAPRI (Ramazzotti et al.,

2015) andTO-DAG (Lecca et al., 2015) by the ability of predicting the next event in a progressivemanner rather thancompute an overall

general consensus evolution tree, and use the estimate of event free survival to predict patient outcome based on genomic evolution.

Additionally it includes a novel metric, Exclusivity Score, which measure the tendency of an aberration to occurs with other events.

PRESCIENT is based on the following assumptions i) molecular events that are often observed in the same tumor aremore likely to

be phylogenetically closely related ii) molecular event(s) that are often observed as the exclusive events, are more likely to occur early

in the tumor evolution. As molecular events, we used the RGAs and used the presence or absence in each patient to generate a co-

occurrence matrix. PRESCIENT constructs an expected frequency distribution FðfÞ to identify the most probably initiating RGA

event. The RGA co-occurrence matrix is bootstrap sampled 10,000 times, and at each iteration, a new exclusion score matrix

and RGA co-occurrence frequency matrix is computed. The co-occurrence and exclusion score matrices were used to compute

the PðfÞi and PðeÞi for each RGA respectively, and the probability Pi = PðfÞiPðeÞi of an RGA i to occur. The first event in the branch

corresponds to the event with the highest probability Pi. This RGA is then removed from the RGA co-occurrence matrix, and the re-

sulting subset is used to recompute a new PðfÞi and PðeÞi for each remaining RGA. The same approach is applied to assign the

following RGA in the branch until no events are left in the resulting RGA co-occurrence matrix. Each permutation yields a putative

evolution trajectory formed by an ordered series of events.

PRESCIENT associates a probability score for each node in the trajectory. Using these precomputed trajectories, PRESCIENT can

take as input a set of RGAs detected in a patient, to predict the most probable next RGAs in the trajectories of the patient and the

associated patient disease progression.

Clonal Reconstruction

Clonal reconstruction was done for multi-region tumors. To identify the clonal evolution from tumor samples with multiple sequenced

tumor regions, we applied the R package Canopy (Jiang et al., 2016), using default parameters. As input for the reconstruction, we

used nsSNVs, tumor/normal depth ratio and allele frequency information from sequenza (https://bitbucket.org/sequenza_tools/

sequenza_canopy). Reconstructed evolution trees were curated following the guidelines in the R package documentation.

PRESCIENT Method Validation

From a cohort of 40 patients with 30x WGS primary PC and local lymph node metastasis, we estimated the phylogenetic trees for

each patient as described in the heterogeneity cases (with Canopy).

The PRESCIENT method was compared to a naive-frequency approach, in which each RGA have the probability of occurrence

given by its frequency in the cohort.

We tested the ability to predict the next RGA in the phylogeny, which served as a true positive set. To compute a true positive pre-

diction, PRESCIENT prediction and the frequency-based predictionwere compared to the observedRGA for every node in the tree. A

false-positive set was calculated using both methods, by extracting the most abundant RGA in the cohort, which was not present in

the patient.

To further assess the robustness of the method, we compared the main evolution trajectory predicted by PRESCIENT with the

estimated probability of the same trajectory calculated by random subsampling (10% of the dataset, 10,000 times). We found overall

highly similar probabilities, with random-subsampling based probability of the first node within 1.5 standard deviations from

PRESCIENT prediction and 1.55 for the second node.

Drug-Variant Targets

Drug-variants were downloaded from https://www.cancergenomeinterpreter.org (April 15, 2018) (Tamborero et al., 2018). Germline

SNP, somatic SNV, SCNA and SV variant types were matched with Biomarker types (e.g. a Biomarker fusion type was matched with

SV-mediated fusions and Biomarker deletion matched with SCNA deletion in our dataset). All predicted damaging germline PTVs

were considered irrespective of the Biomarker amino acid change. Only Biomarkers associated with a Responsive effect and in

pre-clinical or clinical trial or currently in clinical guidelines for PC were considered. BRCAness was scored as tumor genomes

with at least 40% contribution of mutation signature 3 and minimum 1,000 somatic SNVs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis methods are described in the STAR Methods detail subsections.

DATA AND SOFTWARE AVAILABILITY

The accession number for WGS, RNA-seq expression and array-based methylation reported in this study is EGA:

EGAS00001002923. Somatic variant calls are available through Mendeley Data https://doi.org/10.17632/6gtrrxrn2c.1. Oncological

outcome data were collected via the Progether PROM’s (patient reported outcome measurement) interface (www.progether.com/

proms) and the martini-clinic database.

Softwares used for each analysis are described and referenced in Methods Details subsection and listed in Key Resource Table.
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