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In recent years, mesh subdivision—the process of forging smooth free-
form surfaces from coarse polygonal meshes—has become an indispensable
production instrument. Although subdivision performance is crucial during
simulation, animation and rendering, state-of-the-art approaches still rely on
serial implementations for complex parts of the subdivision process. �ere-
fore, they o�en fail to harness the power of modern parallel devices, like the
graphics processing unit (GPU), for large parts of the algorithm and must
resort to time-consuming serial preprocessing. In this paper, we show that a
complete parallelization of the subdivision process for modern architectures
is possible. Building on sparse matrix linear algebra, we show how to struc-
ture the complete subdivision process into a sequence of algebra operations.
By restructuring and grouping these operations, we adapt the process for
di�erent use cases, such as regular subdivision of dynamic meshes, uniform
subdivision for immutable topology, and feature-adaptive subdivision for
e�cient rendering of animated models. As the same machinery is used for
all use cases, identical subdivision results are achieved in all parts of the
production pipeline. As a second contribution, we show how these linear
algebra formulations can e�ectively be translated into e�cient GPU kernels.
Applying our strategies to

√
3, Loop and Catmull-Clark subdivision shows

signi�cant speedups of our approach compared to state-of-the-art solutions,
while we completely avoid serial preprocessing.
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1 INTRODUCTION
Mesh subdivision is a ubiquitous method to generate free-form sur-
faces from a coarse control mesh, as shown in Figure 1. Subdivision
surfaces have now been a research topic for over four decades. How-
ever, their e�cient evaluation still poses a challenge on modern
parallel architectures. During computation, the control mesh under-
goes a series of averaging, spli�ing and relaxation operations, which
complicates e�cient parallel implementation and data management.

In contrast, serial subdivision implementations traditionally rely
on mesh representations based on linked lists, e.g., winged-edge
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Fig. 1. The control mesh of the ArmorGuy (courtesy of DigitalFish) subdivi-
sion model consists of 9k faces and 10k vertices and features a considerable
number of creases. Using our approach, the refined mesh at level six (35M
faces, 35M vertices) can be computed in 40ms without any preprocessing.

representations (Baumgart 1972). Changes to the topology in such
a data structure requires careful pointer updates to preserve consis-
tency. Computations in the local neighborhood of mesh vertices—
which are essential in subdivision—require pointer chasing. While
those operations are e�cient on the CPU, modern parallel devices,
like the graphics processing unit (GPU), are faced with unbalanced
workloads, synchronization issues, and sca�ered memory accesses—
all of which signi�cantly hurt performance on the GPU.

To bring subdivision to parallel devices, approaches usually ei-
ther split the mesh into patches that can be subdivided indepen-
dently (Bolz and Schröder 2002, 2003; Patney et al. 2009; Shiue et al.
2005) or carry out the bulk of the subdivision process on the CPU
and only perform simple operations on the GPU (Nießner et al.
2012; Pixar 2018). While spli�ing a mesh seems appealing for paral-
lelization at �rst, the approach entails a series of issues. First, the
per-patch workload and operations depend on the local topology,
which leads to execution divergence between the executing enti-
ties. Second, the border between patches needs to be duplicated.
�ird, cracks might be introduced between patch boundaries due
to �oating point problems. And fourth, re-patching and workload
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distribution might be required as the model gets subdivided recur-
sively.

�e alternative—using the CPU to precompute subdivision tables
and only mixing coarse mesh vertices on the GPU—seems an ideal
solution for parallel rendering of animated meshes. However, they
do not solve the challenge of parallelization of the subdivision pro-
cess, but rather build on the fact that serial preprocessing—which
may take three orders of magnitude longer than the evaluation—can
take place as long as the model has immutable topology. However,
if modeling operations are applied to the mesh or new assets are
loaded, preprocessing needs to be applied anew.

Due to the inability of performing the complete subdivision pro-
cess e�ciently in parallel, di�erent approaches are used for various
use cases. When uniform subdivision, e.g., for physics simulation, is
required, patch-based parallelization can be used. During topology-
changing modeling operations, only previews of the full subdivision
are shown to provide high performance. A�er modeling is com-
pleted, subdivision tables are used for animation. Finally, during
rendering, partial subdivision or patch-based approaches are used
to reduce the workload. As di�erent approaches also lead to slightly
di�erent results, the meshes used for simulation, preview, animation,
and rendering may vary at details—a fact bothering many artists.

With Algebra Subdivision, short AlSub, we provide a fully parallel
and modular subdivision approach, ensuring not only consistent
results throughout all application scenarios, but also show signif-
icant performance improvements for all of them. AlSub recasts
mesh subdivision into linear algebra operations and is the �rst fully
GPU-enabled, universally applicable subdivision implementation. We
make the following contributions:

• We show that with few linear algebra operations optimized
for mesh-processing, the entire subdivision process can be
described in a compact, self-contained manner suitable for
execution on massively parallel devices like the GPU.

• We show that our sparse linear algebra formalization is
su�ciently general to describe many existing subdivision
schemes such as

√
3, Loop and Catmull-Clark.

• We show that the proposed approach can be easily extended
to support additions to the standard subdivision algorithms,
such as sharp and semi sharp creases, displacement map-
ping and subdivision of selected regions, e.g., for feature
adaptiveness or path tracing.

• We show that our approach is modular such that topolog-
ical operations can be separated from evaluation, leading
to an e�cient parallel preprocessing for immuitable topol-
ogy followed by single matrix-vector product for position
updates, e.g., for animation.

• We show that the involved linear algebra operations can
be specialized and optimized for the use case of mesh pro-
cessing, leading to highly optimized subdivision kernels.

A�er a brief summary of related work (Section 2), we present the
mathematical background and details of our approach for Catmull-
Clark subdivision (Section 3). �e important steps for Loop and√

3-subdivision are found in the Appendix. We then highlight how
linear algebra operations are translated and optimized for e�cient
mesh processing kernels (Section 4). In Section 5, we show that our

implementation outperforms other publicly available production
and research implementations such as OpenSubdiv (Pixar 2018)
and the feature adaptive version of Nießner et al. (2012), as well as
the patch-based GPU subdivision by Patney et al. (2009) in their
respective domains. We are currently integrating our approach into
the open source modeling and rendering tool Blender (2018).

2 RELATED WORK
Subdivision bears some similarity to early ideas in surface ��ing
in �nite element analysis (Clough and Tocher 1965) and numerical
approximation (Powell and Sabin 1977) and it has been honed for
geometric modeling through the concerted e�ort of several pioneer-
ing researchers, e.g., Chaikin (1974), Doo (1978), Doo and Sabin
(1978), and Catmull and Clark (1978).

Subdivision meshes are commonly used across various �elds rang-
ing from character animation in feature �lm production (DeRose
et al. 1998) to primitive creation for REYES-style rendering (Zhou
et al. 2009), and real-time rendering (Tzeng et al. 2010).

Mesh subdivision is a re�nement procedure which requires data
structures capable of providing and updating connectivity infor-
mation. Commonly used data structures are o�en variants of the
winged-edge mesh representations (Baumgart 1972), like quad-edge
(Guibas and Stol� 1985) or half-edge (Campagna et al. 1998; Lien-
hardt 1994). While they are well suited for use in the serial se�ing,
parallel implementations su�er from sca�ered memory accesses,
which are particularly harmful to performance. Besides, their stor-
age cost is a limiting factor on graphics hardware. Compressed
alternative formats which were designed for GPU-rendering, like
triangle stripes (Deering 1995; Hoppe 1999), do not o�er complete
connectivity information and are thus not suitable for subdivision.
Patch-based GPU subdivision approaches have thus tried to �nd
e�cient patch data structures for subdivision (Patney et al. 2009;
Shiue et al. 2005).

Most recently, a compact sparse matrix mesh representation has
been proposed (Zayer et al. 2017), where mesh processing opera-
tions can be expressed as sparse linear algebra and parallelized using
linear algebra kernels. While the principal applicability of parallel
matrix operations to mesh processing tasks has been reported, more
complex computations have not been a�empted. In the same spirit,
the e�ort undertaken by Mueller-Roemer et al. (2017) for volumetric
subdivision a�empts to use boundary operators for boosting perfor-
mance on the GPU. While these di�erential forms have been used
earlier (Castillo et al. 2005), their storage cost and redundancies
continue to limit their practical scope, especially, as data-sets with
millions of elements are now mainstream.

Given the pressing need for high performance subdivision imple-
mentations, various vectorization approaches have been proposed.
Shiue et al. (2005) divide the mesh into fragments which can be
subdivided independently on the GPU, which reduces inter-thread
communication but introduces redundant data and computations.
Moreover, an initial subdivision step has to be done on the CPU.
Subdivision tables have been introduced to e�ciently reevaluate the
re�ned mesh a�er moving control mesh vertices (Bolz and Schröder
2002). However, the creation of such tables requires a symbolic
subdivision, whose cost is similar to a full subdivision. Similarly,
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the pre-computed eigenstructure of the subdivision matrix can be
used for direct evaluation of Catmull-Clark surfaces (Stam 1998).

To avoid the cost induced by exact subdivision approaches, ap-
proximation schemes have been introduced. Peters (2000) proposed
an algorithm that transforms the quadrilaterals of a mesh into bicu-
bic Nurbs patches. While the resulting surface is tangent continuous
everywhere, the algorithm imposes restricting requirements on the
mesh. �e approach of Loop and Schaefer (2008) approximates the
Catmull-Clark subdivision surface in regular regions using bicu-
bic patches. Irregular faces still require additional computations.
Approximations like the aforementioned are fast to evaluate, but
along the way, desirable subdivision properties get lost and visual
quality deteriorates. While regular faces can be rendered e�ciently
by exploiting the bicubic representation using hardware tessella-
tion, irregular regions require recursive subdivision to reduce visual
errors (Nießner et al. 2012). Schäfer et al. (2015) took the idea one
step further and enabled di�erent subdivision depths for irregular
vertices in a mesh. Brainerd et al. (2016) improved upon these re-
sults by introducing subdivision plans. Beyond classical subdivision,
several extensions have been proposed to allow for meshes with
boundary (Nasri 1987), sharp creases (DeRose et al. 1998), feature
based adaptivity (Nießner et al. 2012), or displacement mapping
(Cook 1984; Nießner and Loop 2013).

Our approach avoids the aforementioned shortcomings and re-
quires neither CPU preprocessing nor expensive mesh data struc-
tures. At the top level, it can be formalized mathematically in the
concise language of linear algebra and hence the ensuing algorithms
are easy to understand and modify without knowledge of the under-
lying numerical kernels. �is level also reveals the modular nature
of our approach through which it can be adapted for various use
cases. At the lower level, our formalization discloses numerical
pa�erns across subdivision steps through which we streamline the
associated kernels and increase performance.

3 SPARSE LINEAR ALGEBRA SUBDIVISION
Given the generality and popularity of the Catmull-Clark subdivi-
sion scheme, we will use it to walk through the algorithmic devel-
opment of our method. In Appendix A and B, we brie�y show how
the same ideas apply to Loop and

√
3 subdivision.

3.1 Classical Formulation
�e Catmull-Clark Subdivision scheme o�ers a generalization of
bicubic patches to the irregular mesh se�ing (Catmull and Clark
1978). It can be applied to polygonal faces of arbitrary order and
always produces quadrilaterals regardless of the input. Figure 2
outlines the four steps of a Catmull-Clark subdivision iteration:

1. Face-point calculation: For an arbitrary polygonal face i of
order ci , the position of face-point fi is set to the barycenter of the
polygon

fi =
1
ci

ci∑
j=1

pj (1)

where pj are the face vertices.

Fig. 2. The Catmull-Clark scheme inserts face-points (le�), edge-points
(center), and creates new faces by connecting face-points, edge-points and
the original central point whose location is updated in a smoothing step
(right).

2. Edge-point calculation: For each edge pkpl , a new edge-point
is introduced as the average of the endpoints pk and pl and the
face-points fr and fs corresponding to the two faces bordering the
edge:

ek,l =
1
4 (pk + pl + fr + fs ) . (2)

3. Vertex update: To produce smooth results, the original vertex
location has to be updated using a linear combination of its old posi-
tion, the edge-mid-points of all incident edges and the surrounding
face-points

S(pi ) =
1
ni

©­«(ni − 3)pi +
1
ni

ni∑
j=1

fj +
2
ni

ni∑
j=1

1
2

(
pi + pj

)ª®¬ , (3)

where ni is the vertex’s valence, fj are the face-points on adjacent
faces and pj the vertices in the 1-ring neighborhood of pi .

4. Topology re�nement: New edges are inserted that connect the
face-point to the face’s edge-points, spli�ing each face of order c
into as many quadrilaterals.

Boundaries: Catmull-Clark subdivision can also be used on meshes
with boundary. Edge-points on boundary edges are placed on the
edges’ mid-points. Boundary vertex positions pi are only in�uenced
by adjacent boundary vertices

S(pi ) =
3
4pi +

1
8 (pi−1 + pi+1). (4)

3.2 Linear Algebra Formulation
To derive our linear algebra formulations we use the sparse mesh
matrixM (Zayer et al. 2017) as mesh representation. Each column
inM corresponds to a face. Row indices of non-zero entries in a
column correspond to the face’s vertices and the values re�ect the
cyclic order of the vertex in the face. �roughout this exposition,
we will extend and make use of the action map notation (Zayer et al.
2017). �e action map notation is used to express alterations of the
classical behavior of sparse matrix-vector multiplication (SpMV)
and sparse matrix-matrix multiplication (SpGEMM), replacing the
core multiplication with alternative operations. In this way, compact
formulations of a sequence of operations are possible. Additionally,
they also hint at e�cient implementations as the matrix algebra
captures data movement, while action maps capture the actual oper-
ations to be carried out. We will revisit these facts when discussing
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an e�cient implementation. We explain the action map notations
where they �rst appear in the following derivation.

Face-point calculation: To compute the barycenters, face orders
can be obtained using an action mapped SpMV

c = MT 1
val→1

; (5)

where 1 is a vector of ones spanning the range of the faces. �e
mapping below the multiplication indicates that the non-zero values
ofMT will be replaced by a 1 during multiplication. �is simply
yields the number of vertices of each face.

�e face-points can then be obtained using the mapped SpMV

f = MT P
vali,∗→ 1

ci

, (6)

where P is the array of all vertex coordinates. In this case, the entries
read from the matrix are used as indices into a one dimensional map.
Every non-zero value vali,∗ inMT (i, ∗) is mapped to the reciprocal
of the order of face i .

For a quadrilateral mesh, the SpMV simpli�es to

f = MT P
val→ 1

4

. (7)

Edge-point calculation: �e computation of edge points requires
assigning unique indices to mesh edges. Such an enumeration can
be obtained from the upper (or lower) triangular part of the ad-
jacency matrix associated with the undirected graph of the mesh.
With standard sparse matrix machinery this matrix can be created,
for instance, by �rst computing the adjacency matrix of the oriented
mesh graph and then summing it with its transpose, to account for
meshes with boundaries. In view of our high performance goals,
this is not a viable approach since it requires additional data cre-
ation (transpose), and more importantly, matrix assembly which is
notoriously challenging on parallel platforms.

With action maps this can be conveniently encoded as

E = MMT

{Qc+Qc−1
c }[λ]

. (8)

For the computation of E, the two circulant matrices Qc and its
power Qc−1

c , where c is the face order, are combined to capture the
counterclockwise and clockwise orientation inside a given face. In
this context, action maps in SpGEMM are small matrices. When-
ever a collision between entries of two matrices occurs during the
SpGEMM, the non-zero values are used as indices into the map. �e
map value is then used as a result of the collision (instead of the
product of the two values). �erefore, entries in the result matrix of
the mapped SpGEMM are a sum of map values.

For quads, Q4 captures the CCW and Q3
4 the CW adjacency.

Q4 =


1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0

 , Q3
4 =


1 2 3 4

1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

 ; (9)

�ese maps do not have to be created explicitly, as their entries can
be computed on demand. �is is particularly useful, when the face

types vary within a mesh:

Qr
c (i, j) =

{
1 i f j = ((i + r − 1) mod c) + 1
0 else

(10)

We extended the original action map notation by functions, λ in
Equation 8, which are called each time a collision between elements
M(i,k) andMT (k, j) happens. It performs the map lookup and,
depending on the map value, computes the result of a collision:

λ(i, j) = Q(i, j) (11)
If the map entry is non-zero, the vertices pi and pj are connected
to each other within a face k . Unique indices for edges can easily
be generated by enumerating the non-zeros in the upper triangular
part of the matrix E.

To complete the computation of edge-points, faces adjacent to a
given edge are required. For this purpose, a secondary matrix F can
be used. �is matrix has the same sparsity pa�ern as the adjacency
matrix of the oriented graph of the mesh but each non-zero entry
i, j stores the index of the face containing the edge pipj . It can be
similarly constructed by matrix multiplication such that whenever
the action map returns a non-zero for a collision between elements
M(i,k) andMT (k, j), the face index k is stored in F (i, j).

F =MMT
{Qc }[γ ]

(12)

with the function

γ (i, j,k) =
{
k i f Qc = 1
0 else

(13)

Hence, for each edge pipj in the mesh, its unique edge index is
known from E and the two adjacent faces are F (i, j) and F (j, i). �e
edge-point position can then be computed.

Vertex update: �e position update in Equation 3 can be conve-
niently rewri�en as

S(pi ) =
(
1 − 2

ni

)
pi︸        ︷︷        ︸

s1

+
1
n2
i

ni∑
j=1

pj︸     ︷︷     ︸
s2

+
1
n2
i

ni∑
j=1

fj︸    ︷︷    ︸
s3

, (14)

such that the update can be split into three summands. Vertex
valencies can be obtained globally as the vector

n = M1
val→1

. (15)

s1 involves only the original position and can be calculated in the
customary ways.

�e second summand, s2, sums the 1-ring neighborhood of the
vertex. �is is done using the matrix F , which has the same sparsity
pa�ern as the vertex-vertex adjacency matrix without diagonal, in
the mapped SpMV

s2 = FP
vali,∗→ 1

n2
i

. (16)

�e last term sums the face-points on faces adjacent to the vertex
and is computed via

s3 = Mf
vali,∗→ 1

n2
i

. (17)
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Fig. 3. The core steps of one iteration of our Catmull-Clark subdivision are
split into a build step, which is concerned with the topological operations,
and an evaluation step, which receives information from the build step and
the base mesh vertices.

Topology re�nement: A new face consists of one (updated) vertex
of the parent, its face-point and two edge-points. To capture a
face in a mesh matrixM, a column representing the polygon has
to be added to the matrix. �e non-zero locations in each new
column correspond to the referenced vertices. �us, for creating
the topology of the subdivided mesh, the computed vertices must
be referenced accordingly andM of the re�ned mesh matrix has to
be assembled.

A columnM(∗, r ) in the control mesh matrix is replaced by cr
columns in the re�ned mesh matrix where cr is the order of the
face. �e indices of the original vertices are already known; the
index of the face-point on fr is |v | + r , where |v | is the number of
mesh vertices. �e indices of the two edge-points can be determined
by fetching the edges’ indices from E and incrementing them by
|v | + | f |, where | f | is the number of mesh faces. Performing these
steps for all new faces yieldsM for the re�ned mesh.

�e combination of all steps mentioned above is outlined in Fig-
ure 3. As can be seen, one iteration can be split into a build and an
eval step. �e build step takes the current mesh matrix and gener-
ates F , E and mesh matrix of the subdivided mesh. In this way, all
topology related operations are carried out by the build step. �e
eval step, receives the matrices F and E as well as the mesh matrix
and vertex positions from the last iteration. It then carries out the
mapped SpMVs to generate the new vertex locations.

Boundaries: In practice, meshes o�en feature boundaries, which
need to be treated using specialized subdivision rules. AlSub handles
boundary meshes in a build and repair fashion. First, the re�ned
vertex data is computed as usual. In a subsequent step, boundary
vertices can be conveniently identi�ed from E as entries which have
a value of 1, and are repaired in parallel according to Equation
4. Edge-points on edges connecting external vertices are set to
the edge-mid points. �eir indices can again be obtained from the
enumeration of the non-zeros in the upper triangular part of E.
Adding boundaries to our approach essentially forms an additional
step a�er the default evaluation, as shown in Figure 4.

3.3 Creases
Sharp and semi-sharp creases have become indispensable in subdi-
vision surface modeling to describe piecewise smooth and tightly
curved surfaces (DeRose et al. 1998), cf. Figure 5. Creases are edges

Fig. 4. Boundary evaluation is captured by our approach as a simple addi-
tional step a�er evaluation, and can be seen as a module appended to the
standard evaluation.

Fig. 5. Our approach naturally supports extensions, such as semi-sharp and
infinitely sharp creases, as shown here on a cube.

that are tagged by a (not necessarily) integer sharpness value and
updated according to a special set of rules during subdivision. As
the general computation of creases is beyond the scope of this paper
we refer the reader to DeRose et al. (1998) for a detailed descrip-
tion, while we only present their treatment as sparse matrix linear
algebra.

To support creases, we use a sparse symmetric crease matrix C
of size |v | × |v |. �e entry C(i, j) = σi j holds the sharpness value
of the crease between vertices i and j. To calculate the position of
crease vertices and edge points, the crease valency k, i.e., number
of creases incident to a crease vertex

k = C1
val→1

(18)

and the vertex sharpness s, i.e., average over all incident crease
sharpnesses

s = C1
vali, j→

vali, j
ki

(19)

need to be determined, which we complete using the same SpMV
with two di�erent maps. With the computed vectors k and s and
the already available adjacency information in E, we correct crease
vertices in parallel using the rules provided by DeRose et al. (1998).
A�er each iteration of subdivision a new crease matrix is created,
that holds the updated sharpness values for the subdivided creases.
�is crease inheritance is performed in two steps: (1) �e sparsity
pa�ern is determined by updating crease values according to a
variation of Chaikin’s edge subdivision algorithm (Chaikin 1974)
that accounts for decreasing sharpness values (DeRose et al. 1998)
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Fig. 6. Creases are modeled as a single sparse crease matrix in our approach,
which is updated each iteration. During evaluation creases simply overwrite
the vertex positions from the previous subdivision step.

σi j = max{ 1
4

(
σi + 3σj

)
− 1, 0} (20)

σjk = max{ 1
4

(
3σj + σk

)
− 1, 0} (21)

where σi , σj and σk are sharpness values of three adjacent parent
creases i , j and k . σi j and σjk are the sharpness values of the two
child creases of j . To allocate the memory for the new crease matrix,
the number of resulting non-zero sharpnesses in each of it’s columns
is counted. (2) �e inherited crease matrix is subsequently �lled
with the remaining non-zero sharpness values. A similar routine
as in the �rst step is used which now �lls in the updated non-zero
crease values and their indices. If all crease sharpnesses decreased
to zero, the subsequent subdivision steps are carried out as for a
smooth mesh.

�e addition of creases to the evaluation process is outlined in
Figure 6. �e core of the subdivision process simply remains the
same; the crease matrix is created additionally in every subdivision
iteration. During evaluation, vertices in�uenced by a crease are
reevaluated and overwrite the output vertices.

3.4 Selective and Feature Adaptive Subdivision
�e machinery of linear algebra cannot only be used to describe
uniform subdivision, but also selective processing, which is inter-
esting for hardware supported rendering (Nießner et al. 2012; Pixar
2018) and spatially coherent path- and ray-tracing. As example,
consider feature adaptive subdivision. In a quadrilateral mesh, faces
with a consistent vertex valence of four can also be represented as
bicubic patches and their limit surface can be evaluated directly.
�us, for e�ciency reasons, one may want to only recursively sub-
divide around vertices with a valence di�erent from four—around
extraordinary vertices.

Using our scheme, extraordinary vertices are easily identi�ed
from Equation 15, i.e., where the valency is , 4. To identify the
regions around the extraordinary vertices, we start with a vector
x0 spanning the number of vertices. x0 is 0 everywhere except for
extraordinary vertices, where it is 1. To determine the surrounding
faces, we propagate this information with the mesh matrixM.

First, the neighboring faces are determined as the non-zeros of
the vector

qi =MT xi (22)

Fig. 7. Selective or feature adaptive subdivision is modeled by the extraction
matrices Xi and X̊i , which are generated by identifying the surrounding of
selected vertices. These matrices are applied toM and the vertex data to
reduce the subsequent operations to the extracted regions.

and their vertices can be revealed as the non-zero entries resulting
from the product

xi+1 =Mqi. (23)

�is also shows that the adjacency matrix can be obtained from the
mapped mesh matrix product and that the power of the adjacency
matrix re�ects the neighborhood order around a vertex.

Using the information from above, we construct the matrix Xi ,
which has columns equal to the number of vertices in the input
mesh and rows equal to the number of vertices that are selected for
subdivision. �e entries of Xi correspond to an identity matrix with
deleted rows due to xi+1. �e extraction of the vertex data is then
performed by the SpMV

P′i = XiPi. (24)

To extract the mesh topology, the matrix X̊i—analogue to Xi—is
created from the information acquired in the propagation step. X̊i
has rows equal to the number of faces in the original mesh and
columns equal to the number of faces in the extracted mesh. X̊i
can again be created from the identity matrix by, in contrast to Xi ,
deleting columns corresponding to faces that should be disregarded
during extraction. �is information is readily available in qi. �e
extracted mesh matrix is then determined via

M ′ = XiMX̊i (25)

Selective subdivision can be seen as a module added before the
major subdivision step, as shown in Figure 7.

3.5 Other e�ects
Note that displacement mapping and hierarchical edits (Forsey and
Bartels 1988) are also straight forward in our approach, as we have
access to the vertex data a�er each iteration and can arbitrarily
modify it. An example displacement and texture mapped subdivision
model can be seen in Figure 8.

3.6 Modes of Operation
As already hinted in the previous sections, AlSub is a modular
system which allows for dynamic adaption to the requirements of
di�erent applications. However, we distinguish two main categories:
dynamic and static topology of the control mesh.
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Fig. 8. AlSub is capable of subdividing a coarse control mesh (top, le�)
instantaneously to a dense and smooth refined mesh (top, right). Dis-
placement (bo�om, le�) and texture (bo�om, right) mapping are possible
naturally without any additional e�ort.

Dynamic topology. Dynamic topology is ubiquitous in 3D mod-
eling and CAD applications during the content creation process.
Faces, vertices and edges are frequently added, modi�ed and re-
moved which poses a great challenge to many existing approaches
that rely on expensive preprocessing, as it has to be repeated on
every topological update. �is fact has led to the use of di�erent sub-
division approaches for model preview and production rendering
causing discrepancies between the two images. Due to the e�ciency
of our complete approach, we can avoid any preprocessing and al-
ternate between what we call build steps and eval steps, computing
one complete subdivision step before the next. As additional data
like Fi and Ei are only required for one step, memory requirements
are relatively low in our approach.

Static topology. Static topology is common, e.g., in production
rendering applications, where only vertex a�ributes, e.g. positions,
change over time but the mesh connectivity is invariant. Subdivision
algorithms make heavy use of adjacency information. �e fact that
this information can be prepared upfront and does not have to be
re-computed every frame, reduces the overall production time. In
AlSub, all computations dealing with mesh connectivity are factored
into a build step, that is executed only once before the mesh is
subdivided many times, i.e., generating all Fi , Ei and Mi+1 (as well
as Xi and Ci in case of selective subdivision and creases). Only
in the evaluation step, we process the right side of all modules, as
visualized in the top row of Figure 9.

Single SpMV evaluation. Given that each iteration of the evalua-
tion is a sequence of mapped SpMVs, it is also possible to capture
the entire sequence in a single sparse matrix Ri : Ri captures the
evaluation of a single subdivision step from level i to level i + 1 .
Each column in Ri corresponds to a vertex at subdivision level i and
each row corresponds to one re�ned vertex at level i + 1. A single
iteration of subdivision of vertex data can then be done using the
SpMV

Pi+1 = RiPi. (26)
Building these re�nement matrices Ri is simple: instead of calcu-
lating the re�ned vertices directly as would usually be done in the
evaluation step, the weights are distributed into the matrix. We do

Fig. 9. If the topology of the mesh is static only the right-hand side of the
modules has to be processed as shown here for adaptive subdivision of a
closed mesh (no boundary handling) with creases, using the iterative eval
(top) or the single SpMV eval (bo�om).

this in a two stage approach, where we �rst determine the number
of non-zero entries in each row and in the second stage rows are
populated with indices and weights.

�e entire evaluation from the �rst level to a speci�c level i can
be wri�en as a sequence of matrix vector products as follows:

Pi = Ri−1Ri−2 . . .R1R0P0 = RP0. (27)

As all matrices involved in Equation 27 are independent of the
actual vertex data and therefore only depend on the mesh topology
and features such as creases, the subdivision matrix R can be com-
puted in the build step. �at means the whole evaluation step, boils
down to a single SpMV, regardless of the subdivision depth as shown
in Figure 9, bo�om row. �is enables optimization techniques for
SpMV kernels to be applied to the evaluation step.

4 OPTIMIZATION OF ALGEBRAIC OPERATIONS
�e higher level formalization discussed in Section 3 can be eas-
ily implemented by minor adjustment to standard sparse matrix
algebra kernels. However, the compact action map notation hints
that further specialized and optimized implementations of these
operations are possible. Using the knowledge about the structure of
the underlying matrices, we exploit the particular computational
pa�erns of these operations and streamline them through e�cient
and highly optimized GPU kernels.

4.1 Reduced Mesh Matrix
We use the Compressed Sparse Column (CSC) matrix format, which
is comprised of three arrays. �e �rst two hold row indices and
values of non-zero entries. �e column pointer contains an index to
the start of each column in the �rst two arrays (Saad 1994). If each
column inM has the same number of non-zero entries, e.g. quad or
triangle mesh, the column pointer can be omi�ed. Reordering the
row index-value pairs ofM according to the values in each column
also renders the value array unnecessary, because the cyclic order
of vertices in a face is then implicitly given by the order of their
appearance in the row indices array. �e memory requirement of
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the reduced mesh matrix is therefore equal to that of a face table of
the mesh.

As Loop and
√

3 work on triangle meshes and Catmull-Clark only
produces quadrilaterals, we apply this optimization to all our kernels,
using general kernels only for the �rst Catmull-Clark subdivision
step. In this way, we cut down data creation, memory consumption
and memory accesses.

4.2 Implicit mapped sparse matrix-matrix multiplication
Mapped multiplications of the form

A =MMT
{Q }[α ]

(28)

are extensively used in our mathematical formalization for cap-
turing various connectivity information. Despite the steady im-
provement of SpGEMM implementations, their cost is still relatively
high. �erefore, it is worthwhile to avoid explicit multiplication if
possible.

A close examination of what happens during multiplications as in
Equation 28 reveals that the result can be directly created fromM.
In the computation ofMMT , each row ri =M(i, ∗) is multiplied
with each column c j =MT (∗, j). Both vectors, ri and c j , encode one
vertex each and have non-zero entries in the locations corresponding
to their adjacent faces. A collision (and with that an invocation of
α ) between two entriesM(i,k) andMT (k, j) happens if both are
non-zero, meaning that vertices i and j share a face k . Clearly,
vertices not part of the same face will never induce a collision and
therefore never produce a non-zero entry in the result. Conversely,
each non-zero entry is produced by two vertices sharing a face.

�e above �ndings allow us to restructure the computation as
follows: We parallelize over the columns ofM, i.e., the indices of
vertices that form a face. All mapped multiplications that produce
a non-zero result happen within the same column ofM. Simply
evaluating α for all pairs of vertices of such a column leads to the
desired result. However, as Q and thus α o�en contain many zero
elements, this approach would still lead to wasted computations.
�us, instead of using Q to lookup the results for pairs, we use it
to guide data loading instead. For a speci�c vertex i , we �nd those
entries in Q that result in non-zero entries, i.e., the vertex o�sets
in the face that result in non-zero results, and directly load those
values and evaluate α . In this way, we only load and invoke α for
those pairs of vertices that actually contribute to the output.

Before the actual multiplication can be carried out as described
above, the number of non-zeros of the result needs to be determined,
to allocate the arrays for the output matrix. To this end, we complete
a symbolic pass, similar to general SpGEMM implementations. In
parallel for each entry of M, we determine the number of local
per-face non-zero α invocations for the vertex by counting the
non-zeros in the map row corresponding to the vertex’s position.
We atomically accumulate the global number of non-zero for each
vertex in an array, which then corresponds to the number of non-
zero entries in the vertex’s column of the result. A simple parallel
scan (cumulative sum) over that array gives the column pointer and
the number of non-zeros of the resulting matrix. It is worth noting
that this step can be skipped if each row of the map has the same
number of non-zero entries zri = zr . �en the number of non-zero

values of the vertex’s column in the result is independent of its
position in the cyclic order of adjacent faces. �us, the invocations
on each vertex can be directly calculated as a multiple of the vertex
order zrn.

4.3 Specialized SpMVs
Certain pa�erns in the mapped SpMVs of the higher level formula-
tions can be transformed to speci�cally tailored and more e�cient
GPU kernels.

Direct mapped SpMV. In the mapped SpMV for CSC matrices,
multiple threads collaborate to calculate a single element of the
result vector. Parallelization is done over the elements of the vector.
A thread reads a single entry of the input vector and multiplies it
with the mapped non-zero elements of the corresponding column.
�ese intermediate products are directly accumulated in the result
vector using an atomic addition operation to avoid race conditions.
We found that this execution pa�ern is more e�cient than an explicit
matrix transpose to avoid atomic operations.

Transpose mapped SpMV. Due to using CSC matrices, the trans-
pose mapped SpMV can be parallelized easily without an explicit
transposition. We use a single thread per output element, which
eliminates the need for atomic operations. Each thread iterates over
the non-zero elements of its column, uses the map to substitute
them and multiplies each mapped value with the corresponding
vector element. �is means that in contrast to the direct mapped
SpMV, each thread reads multiple elements from the input vector.

Specializations. We distinguish between matrix, vector and map-
based optimizations. Depending on the input parameters to the
mapped SpMVs, we apply all matching optimization steps to produce
more e�cient GPU kernels.

If the input matrix is in reduced form, every column has the same
number of non-zeros, which renders the column pointer obsolete.
�is lets us unroll the loop over each column which eliminates costly
conditional jump instructions. Value arrays can also be omi�ed,
because row indices in each column are sorted to re�ect the cyclic
order of the face. In both SpMV versions each thread works on one
column of the matrix. If the row indices are 16 Byte aligned, e.g.,
mesh matrix of a quad mesh, a single vectorized load is used for
four row indices, which increases memory performance.

Many of our operations involve multiplication of the mesh matrix
with a prede�ned input vector, e.g., a vector of ones. In this case
the reads of vector elements is obsolete and can be omi�ed, as
specialized kernels for that speci�c input vector can be generated.
In many cases a vector of positions is used in a mapped SpMV
with the mesh matrix. As every input position consists of multiple
components the number of threads can be increased such that the
multiplication is carried out on a per-component level. Without loss
of generality, consider the case of averaging the vertex positions
for each face, e.g., when calculating face-points in the Catmull-
Clark scheme. Each position consists of four components and each
column inM has four non-zero entries. In this case an SpMV kernel
is launched with 16 threads per face, each responsible for a single
component of one vertex position. Each group of 16 consecutive
threads then calculates the mapped multiplication of a single column.
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As each output component depends on intermediate products of
four vertices, e�cient SIMD level communication primitives (shu�e
instructions on NVIDIA hardware) are used to combine the results.
�e result is then wri�en by a single thread to eliminate the need
for atomics.

Furthermore, we exploit properties of the map to optimize SpMV
kernels. If the map is a constant function, the value of the map can
simply reside in shared or constant memory or even in a register to
eliminate frequent map lookups. In the non-transposed case, maps
that are constant per column can be handled similarly.

Single SpMV evaluation. In the adaptive Catmull-Clark imple-
mentation we use a single SpMV to subdivide vertex-data from the
control mesh to some prede�ned level. As the matrix captures the
combination of multiple mapped SpMVs, there is usually no com-
mon structure to exploit. However, as the resulting matrix R is used
for a single SpMV, we store it in CSR format for a more e�cient
row access. Furthermore, we pad the row indices and value arrays,
such that each row is 16 Byte aligned, to enable vectorized loads
independent of the row length. For the same reason we also pad the
vertex-data vector. For evaluation, we assign eight non-zeros to a
single thread which performs the multiplication with eight padded
entries in the vertex array, i.e., 32 values. �en, we use SIMD level
communication primitives to merge results that correspond to the
same row spread across multiple threads. Finally, we collect data in
on-chip memory �rst, to perform e�cient writes to global memory.
As every thread needs to know which row its entries belong to, we
compute this assignment explicitly beforehand. As the matrix is
static during consecutive evaluations, we compute this information
already in the build step.

4.4 Fusion
Kernel fusion is an important paradigm in parallel computing, to
reduce kernel launch overheads and costly memory transactions.
Whenever two operations in the high-level linear algebra formu-
lation require the same input vectors and the number of threads
required for both computations agree, the two kernels are merged,
such that data does not have to be loaded multiple times. For exam-
ple in the crease module, the crease valency and vertex sharpness
(Equations 18 and 19 respectively) are computed. Both computa-
tions involve the same le� and right operands and only di�er in the
map, so these two mapped SpMVs are merged into a single kernel
that computes both. Similarly, when the output of a kernel is the
input to the subsequent one, data does not have to go through global
memory from the �rst to the second kernel but can directly be used
if the kernels are merged. If data causing the dependency is not
used in any subsequent computation, the store to global memory is
omi�ed. Considering the crease example again, the crease valency
computed in the �rst mapped SpMV is subsequently used as a map
in the computation of the vertex sharpness. As C is symmetric we
can parallelize over its columns j , compute kj and use it immediately
a�erwards to calculate sj .

4.5 Mesh reordering
Fast mesh querying is key to any e�cient, high performance sub-
division implementation. While this may be su�cient in theory,

Fig. 10. Evolution of the mesh matrixM of the original and RCM-reordered
Angel model (first and second columns respectively) throughout two
Catmull-Clark iterations. Color-coded geometric layouts of both order-
ings are shown on top. The evolution of the respective F matrices is shown
in the third and fourth columns.

non-algorithmic factors such as memory access and cache e�ects
are crucial for algorithmic performance in practice. Data layout
in memory directly a�ects access pa�erns and therefore ensuring
the locality of such pa�erns allows us to take advantage of caching
mechanisms. In this way, global reads and writes, which are known
to cause performance deterioration, especially on GPUs, can be
reduced.

In our context, this translates to ensuring that primitives which
are topologically close in the mesh, reside close in memory as well.
�e layout of a mesh in memory is re�ected in the sparsity pa�ern
of the mesh matrix, and locality can be enforced by clustering the
non-zero elements close to the diagonal. Closeness to the diagonal
can be measured in terms of bandwidth (Davis 2006). For bandwidth
reduction, the reverse Cuthill McKee (RCM) algorithm is fairly well
known to produce a comparatively inexpensive, low bandwidth
reordering (Cuthill and McKee 1969; George 1971). �e original
RCM only works on square symmetric matrices. To reorder the
(usually non-square) mesh matrices, we apply the RCM algorithm
to the graph Laplacian of the mesh. �e acquired permutation is
applied to the rows of M and columns are sorted by their �rst
non-zero entry.

As shown in Figure 10, there is no reason to expect mesh creators
to deliver coherently ordered meshes. Hence, a reordering of the
input can be bene�cial. Due to the way we build Mi+1, the mesh
ordering deteriorates somewhat, as shown for the �rst iteration.
While the original vertex indices are copied to the next iteration,
a “diagonal-like” line is added for the facepoints, and edge points
are inserted depending on the connectivity of the original mesh. If
the original mesh followed a diagonal pa�ern, the edge points also
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correspond to a “diagonal-like” line. Interestingly, the following
subdivision iteration only adds two “diagonal-like” lines for face and
edge points. �us, all iterations show a somewhat tightly aligned
sparsity pa�ern. �e same can be observed for E and F , which both
show a similar pa�ern, with F being displayed in Figure 10.

5 RESULTS
We evaluate two variants of AlSub: formulating the algorithms in
the language of sparse matrix algebra (AlSub pure) as described in
Section 3 and a version using the optimized kernels (AlSub opt.)
as described in Section 4. While there is a reasonable number of
literature on parallel subdivision, there are hardly any implemen-
tations available for comparison. �us, we mainly compare to the
current industry standard, OpenSubdiv, which is based on (Nießner
et al. 2012). OpenSubdiv splits subdivision into three steps. First, a
symbolic subdivision is performed to create re�ned topology, which
is then used in a second step to precompute the stencil tables for
vertex evaluation. We summarize these two steps as build. �e sten-
cil tables are then used to perform the evaluation of re�ned vertex
data (eval). While OpenSubdiv executes eval on the GPU, build runs
entirely on the CPU. To provide a comparison to a complete GPU
implementation, we compare against Patney et al. (2009) .

All tests are performed on an Intel Core i7-7700 with 32GB of
RAM and an Nvidia GTX 1080 Ti. �e provided measurements are
the sum of all kernel timings required for the subdivision, averaged
over several runs. �e input models are unaltered and thus have
not been reordered unless speci�cally marked di�erently.

5.1 Catmull-Clark performance
As test models for Catmull-Clark subdivision we use a variety of
di�erently sized meshes which are listed in Table 1 with the tested
subdivision level. As AlSub is a modular approach which can adapt
to di�erent applications, we distinguish two use cases: “modeling”
and “rendering”.

mesh cf cv ni rf rv

Ca
tm

ul
l-C

la
rk

threeblock 18 20 5 18k 18k
pig 381 389 5 390k 390k
monsterfrog 1.3k 1.3k 4 331k 331k
complex 1.4k 1.3k 4 346k 346k
bigguy 1.5k 1.5k 4 371k 371k
ArmorGuy 8.6k 10.0k 6 35.2M 35.3M
hat 4.4k 4.4k 6 18.1M 18.1M
coat 5.6k 5.7k 6 22.8M 22.8M
cupid 29k 29k 2 458k 458k
bike 53.9k 54.3k 4 13.4M 13.5M
car 149.7k 164.9k 4 38.5M 38.7M
dress 2.3k 2.4k 6 9.2M 9.2M
bee 16.9M 8.5M 1 50.8M 50.8M
neptune 4.0M 2.0M 2 48.1M 48.1M

Table 1. Catmull-Clark test meshes: Number of faces cf and vertices cv
of the control meshes, as, well as the applied number of iterations ni and
faces rf and vertices rv in the refined mesh.

Modeling. �is speci�c use case is a representative for the class
of applications in which the mesh topology changes frequently.
Topological changes require re-computation of eventually prepro-
cessed data e.g. subdivision tables. Results are given in Figure 12.
�e comparison between AlSub pure, AlSub opt., and OpenSubdiv
(le�) shows complex meshes. We observe that AlSub opt. is more
than one order of magnitude faster than AlSub pure, highlighting
the gains of our optimizations. AlSub pure is about one order of
magnitude faster than OpenSubdiv when performing preprocessing
and evaluation. �is shows that our complete parallel GPU imple-
mentation is signi�cantly faster than the split CPU and GPU build
and eval approach of OpenSubdiv if a topology-changing modeling
operation is carried out. Note that this is not the default use case of
OpenSubdiv which assumes mostly static topology. Nevertheless,
this delay might still yield unpleasant behavior during topology
changing modeling operations. Note that the memory requirements
for the entire subdivision of AlSub opt. are usually signi�cantly
below OpenSubdiv’s stencil tables. AlSub pure needs signi�cantly
more memory and thus was unable to execute on the very large
meshes Bee and Neptune.

As OpenSubdiv is clearly more focused on e�cient evaluation
than optimizing the whole subdivision pipeline, we also compared to
the GPU-based Catmull-Clark implementation by Patney et al. (Pat-
ney et al. 2009), which we con�gured to perform uniform subdivi-
sion. We could only test small quad-only models, as their implemen-
tation seems to have issues when generating more geometry and
fails on meshes with triangles. Nevertheless, as seen in Figure 12
(right) AlSub opt. is about 2 − 3× faster than the patch-based im-
plementation of Patney et al.. We a�ribute this fact to the highly
streamlined performance of our formulations and optimizations,
which show zero redundant work and result in e�cient memory
movements.

Rendering. In contrast to modeling, topology is considered static
in rendering, which is the intended use case of OpenSubdiv. In this
case, information required during subdivision that only depends
on the topology can be precomputed and stored for later use. �e
evaluation stage uses this information to subdivide the vertex data
in every render frame, e.g., when replaying an animation. Relying
on AlSub’s split into build and eval modules, similar optimizations
are possible in our approach. Figure 13 shows that when spli�ing
our approach into these two phases, AlSub opt. achieves nearly one
order of magnitude performance gain over AlSub pure in both build
and eval. Furthermore, performing the build stage complete on
the GPU, yields signi�cant performance gains over OpenSubdiv’s
build stage, even when building the matrix R for the single SpMV
evaluation (AlSub opt. B&E sSPMV).

Even more important for this use case is that AlSub opt. as well
as AlSub opt. sSpMV also outperform OpenSubdiv in the eval step.
Comparing the customary AlSub opt. evaluation to the single SpMV
module reveals a slight edge of sSPMV. Performance of AlSub opt.
decreases below that of OpenSubdiv for the Armor Guy model
with its high number of creases, for which our approach in its
current form performs additional steps to “�x” the geometry. As
creases are simply incorporated into the subdivision matrix R in
the single SpMV evaluation, it does not su�er from that slowdown.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2016.



AlSub: Fully Parallel and Modular Subdivision • 1:11

Fig. 11. Selection of evaluation meshes: Neptune, ArmorGuy (courtesy of DigitalFish), Girl, Car, Hat, and Eulaema Bee (courtesy of The Smithsonian).
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Fig. 12. Catmull-Clark subdivision: Comparison of the complete subdivision time (topology + vertex positions) of AlSub and OpenSubdiv (le�) and memory
requirements (middle). A separate comparison for simpler meshes with the complete GPU-based approach by Patney et al. (right). This is the time it takes
a�er a topology changing modeling operation until the subdivided mesh is available.

�e good performance of AlSub’s opt. eval is actually surprising,
as it performs multiple mapped SpMVs for every subdivision level,
while OpenSubdiv can perform the complete subdivison using a
single kernel that only looks up the subdivision tables. AlSub’s opt.
single SpMV evaluation leads the performance chart throughout all
test cases. However, it su�ers from the same high memory usage as
OpenSubdiv in the uniform case, as the subdivision matrix, as well
as OpenSubdiv’s stencil tables, might become prohibitively large.
Performance for large models with a low subdivision depth (Bee
and Neptune) is quite similar for all approaches.

Adaptive Subdivision. To show that our approach can be used in a
se�ing where only certain regions of the mesh have to be subdivided,
we compare to the feature adaptive Catmull-Clark implementation
of OpenSubdiv, which is based on the approach proposed by Nießner
et al. (2012). Here, only regions around irregularities have to be
subdivided. For regular mesh regions, patches are built which can
be evaluated using hardware tessellation. For evaluation, we use
the Single SpMV variant of our approach.

Figure 14 compares performance and required peak memory of
our approaches with those of OpenSubdiv. Again, performing the
build step on the GPU shows a clear advantage of AlSub with a 17.7×
build speed-up. �e evaluation step is performed on the GPU in
both approaches—while OpenSubdiv uses its stencil tables to create
the re�ned vertex-data, AlSub performs a single SpMV. While both
approaches are similar in their nature, the simple optimizations ap-
plied to AlSub’s SpMV evaluation re�ect in an average performance
increase of 2.3× compared to OpenSubdiv’s eval. When comparing
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Fig. 13. Catmull-Clark subdivision: Comparison of the individual steps
(build & eval) of AlSub and OpenSubdiv.

to the uniform subdivision from before, it can be observed that our
optimizations work even be�er in this case with smaller R matrices.
We believe this is due to our load balancing strategies in the single
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Fig. 14. Adaptive Catmull-Clark: Comparison of the total time (build + eval) of AlSub opt. single SpMV relative to OpenSubdiv including peak memory
consumption for both approaches.

SpMV which allows to draw more parallelism from the operations,
which increases relative performance for small matrices. AlSub’s
peak GPU memory consumption is approximately 1.6× higher than
OpenSubdiv. We a�ribute this to the fact that AlSub also does it’s
build step on the GPU—during which is reaches it’s peak mem-
ory requirements—while OpenSubdiv only needs memory for the
pre-computed stencil tables and vertex data. �e memory required
during evaluation is similar in both approaches.

Considering the sum of all these results, AlSub seems to be a
suitable drop-in replacement for OpenSubdiv in the modeling and
rendering use case, virtually removing preprocessing costs and
signi�cantly increasing evaluation performance.

Mesh reordering. To highlight the e�ect of mesh reordering, we
compared the performance of di�erent subdivision implementations
on meshes in their original ordering and a�er reordering using the
RCM method. From the results in Figure 15, it seems that our
optimized kernels bene�t most from be�er memory layouts.

Surprisingly, reordering can increase performance of up to 5− 8×
in our optimized version for models which show a bad input data lay-
out like the Beetle model. While the speedups of other approaches
are also signi�cant, the relative speedup of AlSub opt. is on average
slightly higher than for the other approaches. We a�ribute the lower
gains of SpLA to our optimized versions mainly operating on the
input data directly due to kernel fusion while the SpLA version
creates additional data structures, for which the data layout does
not change signi�cantly and always reduces performance compared
to the optimized version. OpenSubdiv gains its speedups mainly in
the eval step, while AlSub improves performance equally among
build and eval, indicating that the memory access pa�ern is more
important on the GPU than the CPU.

Given the signi�cant speedups which can be gained from reorder-
ing, it seems natural to a�empt to �nd a fast reordering which can
be used a�er each iteration to consolidate the memory layout. Our
a�empts in this direction suggest that it is a challenging problem
since any gains get outweighed by the cost of reordering itself.
�erefore, for scenarios such as production rendering where the
topology does not change, it would be worthwhile to have reorder-
ings precomputed for every few subdivision steps and deployed
during batch processing tasks.

mesh cf cv ni rf rv

Lo
op

archer t 3.2k 1.6k 6 13.1M 6.5M
hat t 8.8k 4.4k 6 36.2M 18.1M
goblet 1.0k 520 6 4.1M 2.0M
Hhomer 10.2k 5.1k 6 41.8M 20.9M
phil t 6.1k 3.1k 6 24.9M 12.5M
star 10.4k 5.2k 6 42.5M 21.3M
bee 16.9M 8.5M 1 67.8M 33.9M
neptune 4.0M 2.0M 2 64.1M 32.1M

Table 2. Loop test meshes: Number of faces cf and vertices cv of the control
meshes, as well as the applied number of iterations ni and faces rf and
vertices rv in the refined mesh.

mesh cf cv ni rf rv

√ 3

fox 622 313 6 453.4k 226.7k
girl bust 61.3k 30.7k 6 44.7M 22.4M
goblet 1.0k 520 6 729.0k 364.5k
Hhomer 10.2k 5.1k 6 7.4M 3.7M
star 10.4k 5.2k 6 7.6M 3.8M
bee 16.9M 8.5M 1 50.8M 25.4M
neptune 4.0M 2.0M 2 36.1M 18.0M

Table 3.
√

3-subdivision test meshes: Number of faces cf and vertices cv of
the control meshes as well as the applied number of iterations ni and faces
rf and vertices rv in the refined mesh.

5.2 Loop and
√

3 performance
To show that our approach is also e�cient for other subdivision
schemes, we show implementations for Loop and

√
3 subdivision.

�e test meshes are outlined in Table 2 and Table 3.

Loop performance. For Loop subdivison, we compare our ap-
proach to OpenSubdiv, as we were unable to �nd a more e�cient
comparison method. Timing results are shown in Figure 16a. Per-
formance is similar to Catmull-Clark subdivision. Again, our opti-
mizations increase performance by about one order of magnitude.
Even when AlSub performs the full subdivision without any pre-
processing, the execution times are similar to OpenSubdiv’s eval
step alone, which again is a single kernel mixing vertex weights.
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Fig. 16. Performance comparisons of AlSub’s Loop and
√

3 subdivision implementations to OpenSubdiv’s Loop and OpenMesh’s
√

3.

�e CPU build times of OpenSubdiv are signi�cantly higher. When
spli�ing our approach into build and eval and performing single
SpMV optimizations, similar speedups are achieved as before. To
reduce space, we omit that data here. �e memory requirements of
AlSub opt. are again lower than AlSub pure. Interestingly, OpenSub-
div shows higher memory requirements than AlSub pure in many
cases.
√

3 performance. As OpenSubdiv lacks support for this scheme
and we are not aware of any GPU implementation of

√
3, we compare

AlSub pure, Alsub opt. and OpenMesh in Figure 16c. While it is clear,
that a parallel GPU implementation is capable of outperforming a
serial CPU approach, it shows the bene�ts of a fully parallelized
subdivision pipeline. �roughout all experiments, the optimized
AlSub opt. achieved a performance gain of 10× or more compared
to it’s unoptimized counterpart. Especially when starting with
a smaller input model, AlSub opt. pulls away further, which we
a�ribute mostly due the involved SpGEMM operations which show
a certain overhead independent of the input size. �is overhead also
re�ects in the temporary memory requirements, which prohibit very
large meshes (bee or neptune) to complete with our unoptimized
version. AlSub opt. handles these cases without trouble.

6 CONCLUSION
In this paper, we proposed a full �edged treatment of parallel mesh
subdivision using linear algebra primitives (AlSub). Our approach is
modular and extensible, suitable for di�erent subdivision schemes
and handles additional features, like treatment of mesh boundaries,

creases, and selective subdivision. Unlike traditional approaches,
where bookkeeping stalls performance and impedes vectorization,
our treatment allows for e�cient parallel implementations. While
a direct implementation of this formulation already indicates high
throughput, we show a series of optimizations that increase per-
formance by another order of magnitude throughout all test cases.
�e evaluation shows that our subdivision approach signi�cantly
outperforms other implementations in scenarios where an input
mesh must be subdivided once (2− 3× faster than patch-based GPU
implementations). Spli�ing the subdivision into preprocessing and
evaluation for cases where the topology does not change, makes it a
direct competitor to OpenSubdiv. Performing the preprocessing step
on the GPU shows extreme speedups compared to OpenSubdiv’s
CPU preprocessing. At the same time, our evaluation step is up to
2× faster than OpenSubdiv. While we have shown how to write
and optimize subdivision approaches in a complete sparse-linear
algebra manner, many other types of mesh processing algorithms
are equally suitable to this treatment. We believe a general linear
algebra library for mesh processing would bene�t many domains.
Automatically identifying optimization potentials and applying sim-
ilar steps as we have proposed in this work may open up the high
compute power of modern GPUs for many geometry processing
algorithms.
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A
√

3-SUBDIVISION
�e
√

3-subdivision scheme is specialized for triangle meshes and is
based on a uniform split operator which introduces a new vertex for
every triangle of the input mesh (Kobbelt 2000). It de�nes a natural
stationary subdivision scheme with stencils of minimum size and
maximum symmetry.

�e subdivision process involves two major steps. �e �rst one
inserts a new vertex fi at the center of every triangle i .

Each new vertex is then connected to the vertices of its master
triangle and an edge �ip is then applied to the original edges, see
Figure 17. In the second step, the positions of the old vertices are
updated using the following smoothing rule

S(pi ) = (1 − αi )pi +
αi
ni

ni∑
1
pj (29)

where ni is the valence of vertex pi and αn is obtained by analyz-
ing the eigen-structure of the subdivision matrix:

αi =
4 − 2 cos( 2πni )

9 . (30)

Clearly the topological operations involved in this scheme anticipate
an edge-based mesh representation and all the implementations we
are aware of rely on the half-edge data structure.
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Fig. 17. Original description of the
√

3-subdivision scheme. First a new
vertex is inserted at every face of the given mesh. Second, an edge flip
applied to the original mesh edges yields the final result, which is a 30
degree rotated regular mesh. Applying this scheme twice leads to a 1-to-
9 refinement of the original mesh. Original image from (Kobbelt 2000),
copyright ACM.

In order to adapt this subdivision scheme to our matrix algebra
framework, we reinterpret the whole process in a slightly di�erent
manner. By reasoning only on triangles as detailed in Figure 18, the
topological operations get simpli�ed and the subdivision scheme
can be easily abstracted using sparse matrix algebra. In fact, we need
only a good bookkeeping of triangle-triangle adjacency to obtain
new triangulations and update vertex positions. Please note that
the boundary can be treated by using adequate smoothing (Kobbelt
2000) using similar ideas to the outline given earlier for the Catmull-
Clark scheme, but we omit it here to keep the presentation succinct.

Fig. 18. A�er inserting the new vertices (blue), each triangle contributes
three new triangles to the refined mesh which are obtained by joining its
vertices to their respective right and le� neighboring new vertices.

New vertex points. A new vertex is added to each triangle’s barycen-
ter. �e average of triangle vertices can be calculated using the
mapped SpMV

f = MT P
(1,2,3)→ 1

3

(31)

Required adjacency information. �e
√

3 scheme adds a vertex
to each triangle and connects it to the new vertices on the three
neighboring triangles. To �nd these neighbors e�ciently, we can
again use the oriented graph adjacency matrix to store the index of
the adjacent face to any given edge, as in Equation 12.

Vertex update. �e second term in the smoothing step can also
be performed with action maps

FP
vali→ αi

ni

(32)

Topology re�nement. For a mesh with nv vertices, each vertex of
a given triangle (pk ,pl ,pm ) with index i contributes a new triangle
to the re�ned mesh. For instance, vertex pk contributes the triangle
consisting of pk itself, the face-point fi which can be conveniently

indexed by i + |v | and the barycenter on an adjacent triangle, which
then takes index F (l ,k) + |v |. �e mesh matrix of the re�ned mesh
can be e�ciently created in parallel by appending new columns.

B LOOP SUBDIVISION
�is scheme is another triangle mesh subdivision method which
was introduced by Loop (1987). It re�nes a mesh by inserting new
edge-points as described in Figure 19-le�. For each triangle, these
points can be used to perform a split into four new triangles. �e
original vertex positions are then smoothed using local weighted
averaging as summarized in Figure 19-right. �e weighted average
in the smoothing step is based on convergence consideration and is
de�ned as

S(pi ) = (1 − niβi )pi + βi
ni∑
1
pj , (33)

where

βi =
1
ni
·
(

5
8 −

(
3
8 +

1
4 · cos

(
2π
ni

))2)
. (34)

β

β β

β

β

1-kβ

Fig. 19. For each edge, the Loop scheme inserts a new vertex as a weighted
sum of the vertices of the adjacent triangles (le�). In the smoothing step,
original positions are updated using a β -weighted combination of the their
neighbors (right).

In the following, we brie�y describe the algebraic machinery we
use to capture the topological modi�cations intrinsic to this scheme.

New vertex points. For a given edge, the vertex insertion requires
the edge vertices and the vertices opposite to the edge. We can
gather this information by using the adjacency matrix of the directed
graph of the mesh and for each edge store the index of the remaining
triangle vertex as the non-zero value.

G =MMT
{Q3 }[λ]

(35)

λ(i, j) =
{
k i f Q3 = 1
0 else

(36)

where k is the vertex opposite to edge pipj .
Unique edge indices can be obtained from this matrix by summing

it with its transpose to obtain a matrix E and incrementally assigning
indices to the non-zeros of the upper triangular part of E similarly
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to how it is done in the context of Catmull-Clark subdivision. �e
new vertex locations can then be obtained by looking up the unique
edge indices and for each edge pipj , obtaining the opposite vertices
as G(i, j) and G(j, i) and performing the summation as given in
Figure 19-le�.

Vertex update. �e second term in Equation 33 can be computed
using the mapped SpMV below

GP
vali→βi

, (37)

where the action maps substitutes values in row i by βi .

Topology re�nement. For each triangle (pk ,pl ,pm ) in the control
mesh, three new triangles of the re�ned face are simple arrange-
ments of an original vertex and two new edge-points. �e fourth
triangle is only composed of the three new edge-points. �e origi-
nal vertices’ indices are pk , pl , pm and unique edge indices can be
obtained from the upper triangular part of E, as done in the Catmull-
Clark scheme. With this information, the re�ned mesh matrix can
be constructed e�ciently in parallel.
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