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Abstract Radiative forcing from volcanic aerosol impacts surface temperatures; however, the
background climate state also affects the response. A key question thus concerns whether constraining
forcing estimates is more important than constraining initial conditions for accurate simulation and
attribution of posteruption climate anomalies. Here we test whether different realistic volcanic forcing
magnitudes for the 1815 Tambora eruption yield distinguishable ensemble surface temperature responses.
We perform a cluster analysis on a superensemble of climate simulations including three 30‐member
ensembles using the same set of initial conditions but different volcanic forcings based on uncertainty
estimates. Results clarify how forcing uncertainties can overwhelm initial‐condition spread in boreal
summer due to strong direct radiative impact, while the effect of initial conditions predominate in winter,
when dynamics contribute to large ensemble spread. In our setup, current uncertainties affecting
reconstruction‐simulation comparisons prevent conclusions about the magnitude of the Tambora eruption
and its relation to the “year without summer.”

Plain Language Summary Strong volcanic eruptions are a major natural forcing of climate, and
there is increasing awareness of their importance for understanding and prediction of climate. Much of our
current understanding is based on past eruptions for which there is no direct observation and that are
therefore subject to substantial uncertainties regarding the eruption characteristics, the associated volcanic
forcing, and the climatic response. With these premises, our study tackles the question of whether, for a past
or analogously future eruption, it is more important to constrain the uncertainty in the volcanic forcing it
generates rather than the initial climate conditions upon which it occurs, in order to obtain robust
information about the associated climate responses. We use the 1815 eruption of Mount Tambora as a test
case. We demonstrate that the climatic effects of initial condition uncertainties can overwhelm those of
forcing uncertainties especially in winter and at the regional scale. We show how the European “year
without a summer” seen in climate reconstructions is compatible with very different combinations of forcing
magnitude and initial conditions.

1. Introduction

Stratospheric volcanic aerosols are a major natural forcing factor influencing climate variability on
subseasonal‐to‐multicentennial time scales (e.g., Robock, 2000; Timmreck, 2012; Zanchettin, 2017). Yet
our understanding of volcanically forced climate variability remains limited by several gaps of knowledge
regarding the forcing as well as the climate response.

Our understanding of volcanically forced climate variability is largely based on the study of past events:
Reconstructions of volcanic forcing for such events is based on proxy data such as ice core sulfate records
showing close agreement with variations in large‐scale temperature records (e.g., Sigl et al., 2015).
However, there are significant uncertainties associated with the forcing produced by any specific eruption,
which for tropical eruptions are primarily controlled by the amount of sulfur injected into the stratosphere
(Toohey & Sigl, 2017). Further uncertainties in volcanic radiative forcingmay arise due to the impact of aero-
sol size distributions and spatial and temporal evolution due to, for example, influences of stratospheric cir-
culation and chemistry (e.g., LeGrande et al., 2016; Timmreck, 2012). Recent studies have also demonstrated
that the climate response to a specific eruption can critically depend on the climatic conditions at the time of
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the eruption (e.g., Gagné et al., 2017; Moreno‐Chamarro et al., 2015; Zanchettin et al., 2012; Zhong et al.,
2011). These initial conditions are the expression of the interplay between background mean climate state,
which is determined by the cumulative effect of external forcings, and ongoing intrinsic climate variability.
Initial conditions are not merely a source of additive noise for posteruption climate variability but can
actively influence the mechanisms involved in the posteruption climate evolution (Pausata et al., 2016;
Swingedouw et al., 2015, 2017; Zanchettin et al., 2013).

A key, yet unaddressed, scientific question is whether constraining the magnitude of forcing estimates is
more important than constraining initial conditions to accurately simulate the climate response to a specific
volcanic eruption or attribute anomalous weather/climate to volcanic forcing. This question is relevant from
a paleoclimate perspective given the still poorly constrained current ranges of reconstructed and simulated
climate anomalies during preindustrial periods of strong volcanic activity (e.g., PAGES‐Hydro2k‐
Consortium, 2017; Stoffel et al., 2015) and especially the large discrepancies between simulations and recon-
structions over certain regions (e.g., PAGES‐Hydro2k‐Consortium, 2017; Stevenson et al., 2017; Zanchettin
et al., 2015). The same question is also relevant from a climate prediction perspective, when the potential
climatic implications of a future eruption of unknown characteristics and timing are explored (e.g., Boer
et al., 2016; Illing et al., 2018).

This study tackles this question by systematically investigating the relative role of forcing and initial‐
condition uncertainties on the spread of posteruption surface climate anomalies in a large ensemble of
coupled climate simulations of the 1815 Tambora eruption in Indonesia. The Tambora eruption is the stron-
gest volcanic event of the last 500 years, with very clear volcanic sulfate signals observed in polar ice cores
(Marshall et al., 2018; Sigl et al., 2015); its volcanic stratospheric sulfur injection is comparatively well
constrained compared to other eruptions of the past millennium (Toohey & Sigl, 2017), whereas its radiative
forcing remains affected by substantial uncertainty (Raible et al., 2016; Zanchettin et al., 2016); it is regarded
as a test case for high‐impact volcanic eruptions, with the 1816 “year without a summer” over Europe in its
aftermath being iconic of posteruption regional cooling (Raible et al., 2016); it was preceded by a VEI‐6
tropical eruption of unknown location in 1809 (Cole‐Dai et al., 2009; Guevara‐Murua et al., 2014); it is
included in the protocol of the CMIP6‐endorsed “Climate Model Intercomparison on the climatic response
to volcanic forcing” (VolMIP, Zanchettin et al., 2016).

To quantify the relative contribution of forcing uncertainties and initial‐condition spread to posteruption cli-
mate anomalies, we test how three climate simulation ensembles using the same set of initial conditions but
different realistic volcanic forcing are distinguished by a blind cluster analysis. We also use climate recon-
structions as a target to determine how both uncertainties affect simulation‐reconstruction
comparative assessments.

2. Data and Methods
2.1. Volcanic Forcing and Ensemble Simulations

The eVolv2k volcanic forcing reconstruction provides volcanic stratospheric sulfur injection estimates and
uncertainties based on polar ice cores (Toohey & Sigl, 2017). Based on eVolv2k, we use three forcing time
series including the 1809 and Tambora eruptions: a central estimate (hereafter Best), consistent with that
used in VolMIP and PMIP4‐past1000 (Jungclaus et al., 2017); a high‐end estimate, corresponding to the best
estimate plus 2 times the (1σ) sulfur emission uncertainty (hereafter High); a low‐end estimate, correspond-
ing to the best estimate minus 2 times the (1σ) sulfur emission uncertainty (hereafter Low). Based on the sul-
fur injection estimates, the Easy Volcanic Aerosol v1.0 (Toohey et al., 2016) module is used to produce
volcanic aerosol forcing sets, consisting of aerosol extinction, single scattering albedo, and asymmetry factor
as a function of latitude, height, time, and wavelength.

The superensemble is constructed following a two‐step approach that allows to account for the effects of
uncertainties in the magnitude of the 1809 eruption on surface climates at the onset of the Tambora eruption
(e.g., Zanchettin et al., 2013). In the first step, three volcanic‐forcing‐only climate simulation ensembles cov-
ering the period 1800–1814 CE are generated using the Best, High, and Low volcanic forcing estimates for
the 1809 eruption. Each ensemble consists of 10 simulations initialized on 1 January 1800 from different
states sampled at centennial‐scale intervals from a 1,200‐year‐long unperturbed (constant forcing,
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excluding background volcanic aerosols) preindustrial control simulation. Therefore, we obtain 30 restart
files for 1 January 1815 that describe a range of climate conditions accounting for uncertainty in the forcing
of the 1809 eruption as well as the effect of intrinsic climate variability.

In the second step, the 30 restart files are used to initialize ensemble simulations covering the period 1815–
1819 CE using the Best, High, and Low volcanic forcings for the Tambora eruption in April 1815 (some simu-
lations are integrated to 1829). The so obtained three 30‐member ensembles yield a superensemble of
30 * 3 = 90 simulations of the Tambora eruption.

Simulations are conducted with the low‐resolution version of the Max‐Planck‐Institute Earth‐System‐Model
(MPI‐ESM‐LR). MPI‐ESM‐LR couples the atmospheric general circulation model ECHAM6 run in its
T63L47 configuration, which resolves the stratosphere up to 0.01 hPa with 21 model levels above 100 hPa
(Stevens et al., 2013), with the ocean‐sea ice model MPIOM in its GR15 configuration (Jungclaus et al.,
2013). This configuration is the reference version of MPI‐ESM for paleo‐applications and has been widely
tested in the context of the climate of the last millennium (e.g., Jungclaus et al., 2014; Moreno‐Chamarro,
Zanchettin, Lohman, & Jungclaus, 2017; Moreno‐Chamarro, Zanchettin, Lohmann, Luterbacher, &
Jungclaus, 2017; Zanchettin et al., 2015).

2.2. Cluster Analysis

To determine the relative roles of forcing and initial conditions on the simulated climate response to the
Tambora eruption, we compare the three original ensembles (Best, High, and Low) with three clusters of
simulations identified by performing a k‐means cluster analysis (Lloyd, 1982) on the 90‐member superen-
semble output. In practice, the k‐means clustering partitions the 90 simulations into three clusters by mini-
mizing the sum, over all clusters, of the within‐cluster sums of squared Euclidean distances between the
individual surface temperature anomalies and the ensemble‐mean anomaly. So whereas the original ensem-
bles differ by construction only for the different volcanic forcing by the Tambora eruption, the clusters are
generated based on feature similarity and reflect the combined effect of forcing and initial‐condition uncer-
tainties on the spread of simulated post‐Tambora climate anomalies.

If the original ensembles are mostly preserved, that is, most realizations of each ensemble fall into just one
distinct cluster, we infer that the posteruption state is controlled by differences in the applied forcing com-
pared to differences in the initial conditions. Otherwise, we infer that initial conditions significantly contri-
bute to determine the climatic response compared to the forcing uncertainty, and they dominate when there
is an almost equal spread of the original ensembles across the three clusters.

We use scatterplots of response (y axis) versus initial conditions (x axis) to further elucidate the importance
of the initial conditions in determining the response. A sharp horizontal stratification between clusters indi-
cates that the different forcings dominate over the initial‐conditions spread. Considered responses encom-
pass regional, hemispheric, and global average near‐surface air temperature. Unless specified otherwise,
we use global‐mean near‐surface air temperature in January–March 1815 to illustrate the initial conditions.

We also define a simple metric, F, that quantifies the degree of fragmentation of each original ensemble by
the k‐means clustering: Fi= (ni− 1 +Πk = 1..3Ck,i)/h, where ni is the number of clusters containing data from
ensemble i obtained by the k‐means procedure, Ck,i is the number of simulations from ensemble i that fall in
cluster Ck, and h = 1,002 is a normalizing constant. F ranges between 0 (no fragmentation, the original
ensemble is completely preserved) and 1 (maximum fragmentation, with equal repartition of the original
ensemble in the three clusters).

Unless reported otherwise, analysis is performed based on seasonal averages calculated frommonthly mean
anomalies from the associated climatological mean in the control simulation.

The cluster analysis is also performed using the absolute value of the difference between our simulations and
a state‐of‐the‐art reconstruction of summer European‐mean near‐surface air temperature (Luterbacher
et al., 2016). The absolute value highlights the accuracy of the simulations independent of whether they
overestimate rather than underestimate the post‐Tambora cooling. In this case, initial condition is chosen
as the last preeruption summer available in the reconstruction: This is summer 1814 since there is a cooling
signal in summer 1815. A bivariate extension of cluster analysis is performed, where distances are calculated
between points in the two‐dimensional space of initial conditions and posteruption anomalies.
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3. Results

Figure 1 provides a classic representation of the volcanic forcing (panel a), the associated top‐of‐atmosphere
global radiative flux anomaly (b), and global‐mean near‐surface air temperature evolution (c) simulated by
the three ensembles. The mean evolutions and spreads overlap before 1815, as each of the Best, High, and
Low ensembles contains all 30 parent simulations and therefore spans all three different forcing estimates
of the 1809 eruption (see section 2.1). Ensemble‐mean global radiative flux anomalies are within the range
of internal variability at the onset of the Tambora eruption, whereas the global surface climate spans colder
conditions than those determined by internal variability alone, indicating persistence of cooling initiated by
the 1809 eruption. Distributional differences between ensembles (marked at the bottom of panels b and c)
are significant in both variables at the peak of the Tambora forcing, despite ensemble ranges overlapping
especially for temperature. More in detail, the Low forcing produces peak radiative flux anomalies that
are about one‐third weaker than the High forcing, whereas the Best forcing produces radiative flux anoma-
lies that are only about 10–13% weaker than the High forcing. This asymmetry is similarly apparent in the
global surface responses and does not emerge as clearly in the imposed aerosol optical properties.

Figure 2 illustrates scatterplots of climate response versus initial conditions for boreal summer (June‐July‐
August) and winter (January‐February‐March) near‐surface air temperatures spatially averaged over the
whole globe (GST), the Northern Hemisphere (NHT), and two example continental‐scale regions: Europe
(EuT, 10°W:40°E; 35:70°N) and North America (NAT, 190:300°E; 25:70°N). At the global and hemispheric
scales, summer responses are clearly stratified, with colder anomalies for the High ensemble and smaller
negative anomalies for the Low ensemble; there is anyway at least some overlap between all ensembles.
All simulations are outside the range of internal variability, in both GST and NHT (Figures 2a and 2c). In
winter, stratification of original ensemble responses is less clear; hence, ensembles more strongly overlap
particularly for NHT; a few realizations lie within the range of internal variability (Figures 2b and 2d). In
all cases, the clusters differ from the original ensembles. For summer, this especially occurs because of the
overlaps between the Best and High ensembles, as almost all simulations in the Low ensemble fall instead
into the same cluster, whereas the High ensemble is almost split in two. In winter, simulations in the original
ensembles are always distributed across all three clusters.

At the continental scale, we again observe that posteruption anomalies are larger and more clearly outside
the range of internal variability in summer than in winter (Figures 2e–2h). In fact, winter responses exceed
the range of internal variability only in a minority or even just a few of realizations, belonging to all the ori-
ginal ensembles. In winter, the coldest posteruption NAT anomalies are observed in the Low and Best
ensembles, whereas some of the simulations with warmest posteruption anomalies belong to the High
ensemble. A seasonal asymmetry is clear in the results of the clustering of both regions: In summer, original
forcing‐based ensembles remain rather preserved; in winter, they typically spread almost equally among all
three clusters.

Overall, the imposed volcanic forcing largely determines the summer temperature response at global to con-
tinental scales. Nonetheless, initial conditions influence the response in winter already at the global scale,
causing substantial overlapping of the ensemble distributions and thereby producing, occasionally, indistin-
guishable responses. Similar conclusions can be drawn at the hemispheric and continental scales, where
EuT and NAT show a tendency toward a stronger spread of original ensembles into clusters by means of
initial conditions compared to GST and NHT, and posteruption winter anomalies more closely superpose
on the range of internal variability.

The importance of initial conditions increases at the grid point level. Figure 3 illustrates the fragmentation of
original ensembles across the different clusters by the k‐means algorithm applied on each summer and win-
ter grid‐point near‐surface air temperature anomaly. The predominance of greenish and yellowish over blue-
ish tones indicates overall substantial fragmentation of the original ensembles. This is particularly evident
for the Best ensemble in both summer and winter, whereas the High and especially the Low ensembles pre-
sent extensive regions of both ocean and land characterized by small fragmentation (i.e., blueish tones). Such
regions differ in both ensembles and seasons and generally trace back to geographical features and features
linked to the general circulation. They highlight how the specific forcing leads to distinguishable feedbacks.
Weak fragmentation is observed, for instance, over the Arctic region in the Low ensemble in summer, likely
reflecting a weaker sea‐ice buildup in this ensemble, and over the West Pacific warm pool region and more
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generally over monsoon regions, in both High and Low ensembles (Figures 3d and 3f). The Amazon region is
bluish in all ensembles and both seasons, suggesting a strong dependency of the vegetation response on the
magnitude of the applied forcing. Conversely, the extensive yellowish tone over Europe in winter suggests
that forcing uncertainties are negligible for understanding posteruption anomalies in this area. Therefore,
if a dynamical response mechanism exists, its activation and strength are strongly determined by initial

Figure 1. (a) Global‐average monthly stratospheric aerosol optical depth at wavelength 550 nm produced by Easy
Volcanic Aerosol v1.0; (b, c) ensemble mean (lines) and 5th–95th percentile intervals (shading) of global‐mean top‐of‐
atmosphere net radiative flux (positive means downward) and near‐surface air temperature anomalies. Monthly anoma-
lies are deviations from the respective climatology over the period 1800–1808. The three ensembles overlap by construc-
tion before 1815. Turquoise dashed lines are the 5th–95th percentile intervals for signal occurrence in the control run.
Bottom rectangles indicate periods when an ensemble (color code as for the time series plots) is significantly different
(p= 0.05) from both the other two ensembles according to theMann‐WhitneyU test. SAOD= stratospheric aerosol optical
depth; TOA = top‐of‐atmosphere; SW= shortwave radiation; OLR= outgoing longwave radiation.
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conditions and its prediction can be hampered by internal variability (see also the large ensemble spreads in
Figure 2f).

From a paleoclimate perspective, a key issue to address is how the simulated responses compare with recon-
structions. We therefore repeat the 1816 summer EuT analysis feeding the cluster algorithm with the abso-
lute difference between simulated and reconstructed values. Considering only posteruption anomalies, there
is substantial scatter of the Best and High ensembles across the three clusters, whereas most realizations in
the Low ensemble fall in the cluster surrounding the reconstructed estimate (Figure 4a). Nonetheless, this
“best matching” cluster contains realizations from all original ensembles, as does the “worst matching”

Figure 2. Scatterplot of surface temperature response (y axis) versus initial conditions (x axis) for (a, b) GST, (c, d) NHT,
(e, f) EuT, and (g, h) NAT, for the summer 1816 (left column) and winter 1815/1816 (right column) responses. Small filled
circles are the original ensembles (color code as in Figure 1); large empty circles are the clusters. The top three text lines in
each panel report how the members of each of the original ensembles are redistributed across the clusters. The clouds of
small gray dots show the range of variations that can be associated to internal variability through sampling along the
control simulation (light: single simulation; dark: 30‐member ensemble mean). GST = near‐surface air temperatures
spatially averaged over the whole globe; NHT = near‐surface air temperatures spatially averaged over the Northern
Hemisphere; EuT = near‐surface air temperatures spatially averaged over Europe; NAT = near‐surface air temperatures
spatially averaged over North America.
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cluster although it is mostly populated by simulations from the High ensemble. Including also the
simulation‐reconstruction absolute difference in the preeruption conditions in the analysis (Figure 4b),
the clustering algorithm fragments the Low ensemble into two clusters, yielding less Low simulations to
fall into the best matching cluster. The latter now includes more simulations from the High ensemble,
which produces a stronger 1816 summer cooling than the reconstruction but compares better with the
reconstructed preeruption conditions. Most realizations from the High ensemble remain nonetheless part
of the worst matching cluster. The scatterplot clarifies that all ensembles contain realizations that lie
within the uncertainty range of the reconstruction, although most members of the High ensemble

Figure 3. Fragmentation of grid point NH winter 1815/1816 (a–c) and summer 1816 (d–f) near‐surface air temperature anomalies from the preeruption (1810–
1814) climatology in the (a, d) High, (b, e) Best, and (c, f) Low ensembles.

Figure 4. Scatterplot of climate response versus initial conditions for the 1816 EuT. Initial conditions are based on sum-
mer 1814 EuT anomalies. Clustering is performed on the difference between the simulated anomalies and the EuT
reconstruction by Luterbacher et al. (2016), indicated by the gray square with associated uncertainty range (bars).
(a) Cluster analysis on summer 1816 EuT anomalies alone (univariate); (b) cluster analysis on both summer 1816 EuT and
summer 1814 EuT anomalies (bivariate). Representation as in Figure 2. Note that the data are the same in both panels,
which differ only for the results of the clustering. EuT = near‐surface air temperatures spatially averaged over Europe.
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typically overestimate the reconstructed response. Most realizations lie outside the range of natural variabil-
ity, yet their large scattering indicates a substantial impact of initial conditions.

Overall, the Low ensemble yields the most compatible results with reconstructed features of the European
year without a summer, possibly reflecting the overestimation of posteruption surface cooling often observed
in climate models (Marotzke & Forster, 2015); however, its substantial superposition with realizations of the
Best ensemble in the surrounding of the reconstructed value within its range of uncertainty prevents con-
cluding that the forcing difference matters. Further, the High ensemble overall compares poorly with the
reconstruction, suggesting an overestimation of the forcing; yet it contains realizations that under favorable
initial conditions are consistent with the reconstructed estimate and indistinguished from realizations from
the Best and even Low ensemble.

4. Summarizing Discussion

Our results demonstrate that uncertainties in initial conditions can prevail or even dominate the impact of
(realistic) choices on the eruption's magnitude on the surface temperature response to such a large eruption.
Especially for winter, the interensemble overlap of posteruption temperature anomalies hinders conclusive
assessments about the forcing magnitude and response pathways compatible with a certain volcanic signa-
ture on certain regional surface climates. Otherwise stated, different realistic combinations of volcanic for-
cing and initial conditions lead to indistinguishable temperature responses. This implies that improved
constraints on the Tambora forcing would not allow for better understanding of the temperature response
to this eruption within current modeling frameworks, unless this is accompanied by substantial progress
in the constraint of initial conditions. Accounting for volcanic forcing uncertainty seems nonetheless neces-
sary, as the use of just a current best estimate can bias the interpretation of reconstructed responses. This was
exemplified for the European year without a summer as the cluster yielding the best correspondence
between reconstructed and simulated features mainly contains realizations from an ensemble using the
low‐end estimate of volcanic forcing. In this sense, the classical truth‐centered approach for ensemble ana-
lysis, where the ensemble mean and spread are regarded as forced response and uncertainty due to internal
climate variability, respectively, may bring to misleading conclusions in reconstruction‐simulations compar-
isons. On the other hand, certain continental and subcontinental regions appear to be particularly sensitive
to the magnitude of volcanic forcing especially in boreal summer (e.g., North America in MPI‐ESM‐LR),
which may provide guidance on identifying locations where climate proxies are most sensitive to the direct
radiative impacts of volcanic eruptions.

The general validity of these conclusions stands beyond the single climatemodel used here, as different mod-
els currently used in paleoclimate applications share similar ranges of internal variability and climate sensi-
tivity (e.g., PAGES2k‐PMIP3 group, 2015). Generalization of our conclusions must consider that the forcing
uncertainty used here accounts only for uncertainty in the volcanic stratospheric sulfur injection, not uncer-
tainties related to the translation of sulfur injection into aerosol and radiative properties as performed here
by the Easy Volcanic Aerosol v1.0 module. Such uncertainties result from, for example, the poorly con-
strained aerosol size distribution for eruptions larger than those recently observed (Toohey et al., 2016)
and variations in the spatiotemporal evolution of the forcing due to differences in atmospheric circulation
and sulfur injection height. Furthermore, the estimate of uncertainty in volcanic stratospheric sulfur injec-
tion for Tambora is smaller than most eruptions of the past 2,500 years (Toohey & Sigl, 2017): Robust quan-
titative analysis for specific eruptions thus requires an ad hoc design. Our results are based on the strongest
volcanic event of the past 500 years; hence, they provide an overall strong signal‐to‐noise ratio in the volca-
nic surface imprint. Yet simulated posteruption winter anomalies of North American and European tem-
perature only occasionally exceed the range of internal variability, encompassing positive and negative
values. For eruptions smaller than Tambora, hence more frequent but with lower signal‐to‐noise ratio
(e.g., Pinatubo‐like), the continental winter responses generated by different forcing magnitudes would be
even more mixed by the initial conditions. In a future prediction perspective, beyond the near‐term predic-
tion horizon where the prediction system is initialized through the assimilation of observed data, our results
thus demonstrate that accurate sampling of initial conditions can predominate over specific choices made
regarding the volcanic forcing in terms of surface temperature spread in some regions and particularly for
the Northern Hemisphere winter season.
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Finally, the summer‐winter asymmetry in the ensemble spread of posteruption anomalies reflects the most
prominent contribution of internal dynamics to the winter response. Its realism thus depends on the quality
of the simulated intrinsic climate variability. This stresses the need to improve understanding of internal cli-
mate variability and how its ongoing phase can modulate the strength of the feedbacks initiated by the vol-
canic forcing, as a crucial aspect to identify and understand mechanisms determining the climatic response
to volcanic eruptions.
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