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Abstract 

Therapeutic vaccination against tumor diseases remains a major challenge in immune 

therapy. The effective activation of dendritic cells by a combination of distinctly acting 

adjuvants and antigens is essential for success. While conventional vaccine formulations 

lack the efficiency to trigger sufficient T cell responses in a therapeutic tumor treatment, 

nanovaccines may offer unique properties to tackle that challenge.  

In this doctoral thesis, we report the use of polymeric nanocapsules as a versatile platform 

for the development of new dendritic cell-directed nanovaccines. Those nanocarriers are 

characterized by a high biocompatibility and modifiability, low cytotoxicity as well as by a 

large loading capacity for active substances. The resulting nanovaccine comprises a shell 

consisting of protein antigen and allows an efficient loading with superadditively acting 

combinations of adjuvants, even when their corresponding receptors are located 

intracellularly. Furthermore, the capsule surface can be modified with stealth components 

to increase blood circulation time, allows the functional encapsulation of small interfering 

RNA and can also be equipped with specific antibodies to substantially increase dendritic 

cell targeting.  

Initially, we identified the combination of resiquimod and muramyl dipeptide to exert a 

superadditive stimulatory potential on dendritic cells. This adjuvant combination maintains 

its superadditive character and stimulates murine dendritic cells more effective when 

encapsulated in dextran nanoparticles than when applied directly. At the same time, 

nanocapsules, consisting of the model antigen ovalbumin, were evaluated as a suitable 

antigen source for the induction of antigen-specific T cell responses. Subsequently, the 

aforementioned adjuvant combination was encapsulated in these ovalbumin-based 

nanocapsules to generate a nanocarrier comprising antigen and superadditive adjuvant 

combination. Its immunostimulatory potential for dendritic cell stimulation was extensively 

tested by i) measuring the expression of co-stimulatory markers, ii) the secretion of pro-

inflammatory cytokines, iii) the upregulation of immunologically relevant genes on RNA 

level by transcriptome sequencing, and iv) the capability of accordingly pre-treated 

dendritic cells to mediate antigen-specific T cell responses. The created nanocapsule, 
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including antigen and adjuvants, triggered strong dendritic cell stimulation and potent 

antigen-specific T cell proliferation. Moreover, numerous relevant genes were massively 

upregulated upon treatment. 

The second step was to equip the protein-based nanocapsule with stealth components to 

increase its blood circulation time and to reduce unspecific cell interaction. Thereby, a 

special focus was set on the influence of the molecular weight of the used components as 

well as on the shielding density and the mass density of the modification. It turned out that 

such a modification can significantly reduce cellular interaction but is highly dependent on 

molecular weight, shielding and mass density of the used stealth component as well as on 

the protein environment.  

To establish small interfering RNA and targeting moieties in our portfolio of available 

modifications for polymeric nanocapsules, we switched to a similar, antigen-independent 

polymeric nanocapsule made of hydroxyethyl starch. Regarding small interfering RNA, we 

showed that the synthesized nanocapsules were capable of transporting them into dendritic 

cells and to release them resulting in a functional activity. In terms of targeting, a surface 

modification with targeting antibodies significantly increased the nanocapsule binding by 

dendritic cells.  

Since the introduced protein-based type of nanocapsule provides the option to replace 

ovalbumin, for instance, by a tumor-related antigen, it also allows a further optimization for 

personalized tumor treatment by employing a patient’s tumor-specific antigen. In 

combination with the demonstrated advantages and available modifications, polymeric 

nanocapsules as presented here constitute a promising platform for the design and 

generation of new, innovative nanovaccines for tumor treatment.  
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Zusammenfassung 

Die therapeutische Impfung gegen Tumorerkrankungen stellt bis heute eine große 

Herausforderung der Immuntherapie dar. Die Aktivierung von dendritischen Zellen durch 

die kombinierte Gabe von gezielt wirkenden Adjuvantien und Antigenen ist dabei 

essentiell. Konventionelle Vakzine sind im Falle einer therapeutischen Tumorbehandlung 

häufig nicht effizient genug um eine ausreichend starke T-Zellantworten zu induzieren. 

Demgegenüber weisen Nanovakzine spezielle Eigenschaften auf, die eine therapeutische 

Vakzinverwendung ermöglichen bzw. erleichtern könnten.  

In der vorliegenden Doktorarbeit wird die Verwendung von polymeren Nanokapseln als 

vielseitige Plattform für die Entwicklung neuartiger Nanovakzine beschrieben. Diese 

Kapseln zeichnen sich vor allem durch eine hohe Biokompatibilität und Modifizierbarkeit, 

eine geringe Zytotoxizität, sowie durch eine große Ladungskapazität für biologisch aktive 

Substanzen aus. Das resultierende Nanovakzin weist eine Hülle aus Proteinantigen auf und 

erlaubt die effiziente Beladung mit superadditiv wirkenden Adjuvanzkombinationen, selbst 

wenn sich deren Rezeptoren intrazellulär befinden. Zudem kann die Kapseloberfläche mit 

‚Stealth‘-Molekülen modifiziert werden, wodurch die Blutzirkulationszeit erhöht wird. 

Ebenso ermöglicht dieses System die funktionale Verkapselung von small interfering RNA 

zur Immunmodulation und die Anbindung von Antikörpern zur verstärken Adressierung 

von dendritischen Zellen.  

Zu Beginn wurde die Kombination der Adjuvantien Resiquimod und Muramyl-Dipeptid als 

superadditiv für die Stimulation von dendritischen Zellen identifiziert. Es zeigte sich, dass 

die stimulierenden Eigenschaften dieser Kombination durch Partikulierung in Dextran-

basierte Nanopartikel im Vergleich zur solublen Applikation noch gesteigert werden 

konnten. Gleichzeitig wurde die Verwendung von Nanokapseln, die aus dem Modellantigen 

Ovalbumin bestanden, als geeignete Antigenquelle zur Einleitung antigenspezifischer T-

Zell-Antworten etabliert. Um ein vollständiges Nanovakzin zu generieren, dass sowohl 

Antigen als auch eine superadditive Adjuvanzkombination beinhaltet, wurde die zuvor 

genannte Adjuvanzkombination in diese Antigenkapseln integriert. Das resultierende 

immunstimulatorische Potential dieser Kapseln wurde anhand i) der Expression 
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kostimulatorischer Marker, ii) der Sekretion proinflammatorischer Zytokine, iii) der 

Aufregulation immunologisch relevanter Gene auf RNA-Ebene durch Transkriptom-

Sequenzierung und iv) der Fähigkeit entsprechend vorbehandelter dendritischer Zellen zur 

Induktion antigenspezifischer T-Zell-Antworten untersucht. Die generierte Nanokapsel, 

welche sowohl Antigen als auch Adjuvantien enthielt, induzierte eine potente Stimulation 

dendritischer Zellen und eine starke Proliferation antigenspezifischer T-Zellen. Zudem 

wurden unter Gabe der Nanokapseln zahlreiche relevante Gene stark aufreguliert.  

In einem zweiten Schritt wurden diese proteinbasierten Nanokapseln mit ‚Stealth‘-

Komponenten ausgestattet um ihre Blutzirkulationsdauert zu erhöhen und um die 

unspezifische Interaktion mit Zellen zu reduzieren. Dabei wurde ein spezieller Fokus auf 

den Einfluss des Molekulargewichts der verwendeten Komponenten sowie auf die 

Beschichtungs- und Massendichte der Modifikation gesetzt. Es zeigte sich, dass solche eine 

Modifikation die Interaktion der Nanokapseln mit Zellen signifikant reduzieren kann, der 

resultierende Effekt allerdings stark von den genannten Einflüssen sowie dem 

vorherrschenden Proteinmilieu abhängt.  

Um die Verkapselung von small interfering RNA und die Kopplung von Antikörpern für 

polymere Nanokapseln zu etablieren, wurden Nanokapseln aus Hydroxyethylstärke 

verwendet. Bezüglich small interfering RNA, konnte gezeigt werden, dass die 

synthetisierten Nanokapseln geeignet waren diese in dendritische Zellen zu transportieren 

und dort freizusetzen. Die resultierende funktionale Aktivität konnte gemessen werden. In 

Bezug auf die Adressierung von dendritischen Zellen, konnte eine Oberflächenmodifikation 

mit spezifischen Antikörpern die Nanokapselbindung durch dendritische Zellen signifikant 

erhöhen.  

Da das präsentierte proteinbasierte Nanokapselsystem die Option bietet, das Ovalbumin 

durch beispielsweise ein tumorassoziiertes Antigen zu ersetzen, kann es durch die 

Verwendung von patientenspezifischen Tumorantigenen weiter in Richtung personalisierte 

Tumortherapie optimiert werden. Zusammen mit den hier aufgezeigten Vorteilen und 

möglichen Modifikationen, stellen polymere Nanokapseln eine vielversprechende Plattform 

für die Synthese von neuartigen, innovativen Nanovakzinen für die therapeutische 

Tumorbehandlung dar.  
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1. Introduction 

Every single day the human body is exposed to numerous threats such as pathogenic 

bacteria or viruses. However, we stay remarkably healthy. Millions of years of evolution 

have driven the development of today’s human immune system, a highly complex interplay 

between specialized organs, cells and molecules, to handle these daily challenges of 

survival. But nonetheless, despite its high level of efficiency, the human immune system is 

not able to eliminate every single biohazard. Numerous pathogens, such as poliovirus or the 

bacterium Clostridium tetani, can cause severe or even life-threatening diseases. A 

common and powerful method to provide a long-lasting immunity against such pathogens 

is vaccination. The application of a vaccine trains the immune system how the actual 

pathogen looks like to be prepared for a potential invasion.  

A typical vaccine consists of the two basic components antigen and adjuvant. The antigen 

is a pathogen-related protein or peptide, responsible for mediating pathogen recognition. 

The adjuvant triggers an antigen-independent immune stimulation, which is required for an 

effective vaccination effect. After injection, the combination of both components evokes 

the induction of an antigen-specific immune reaction and thereby the differentiation of B 

and T cells into long-living memory cells. This mechanism represents the generation of an 

immunological memory for the used antigens. Upon renewed contact with the same 

pathogen, the immune system can immediately eliminate the invader. Dendritic cells (DCs) 

are the key mediators of that underlying immunization process. Thanks to comprehensive 

vaccination programs, several dreadful diseases, such as rabies or smallpox, were massively 

reduced or even eradicated. However, the applicability of common vaccine formulations is 

limited.  

In 2014, the World Health Organization (WHO) published the latest World Cancer Report. 

Accordingly, approximately 14 million people are diagnosed with cancer each year. This 

number is expected to increase to 24 million by 2035 [1]. A particularly dangerous and 

rather common representative is the malignant melanoma. Of the numerous variations of 

skin cancer, it is by far the deadliest and most aggressive form. Compared to other tumors, 

melanomas show a high tendency to metastasize. Thereby, secondary tumors can frequently 
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be found in the lung, the liver, the lymph nodes or the brain. The treatment of malignant 

melanoma is highly dependent on the cancer stage, but usually comprises surgical removal 

or chemo- and radiation therapy. Also immunotherapy has gained increasing importance. 

The use of checkpoint inhibitors as well as BRAF and MEK inhibitors has revolutionized 

melanoma treatment [2]. But still the cancer is often diagnosed too late. A sufficient 

treatment or even a complete cure cannot be guaranteed.  

Therapeutic vaccination constitutes a promising approach for melanoma treatment. The 

induction of a tumor-directed immune response could potentially eliminate the primary 

tumor as well as the metastases. Moreover, the rapid development in commercial protein 

production and genome sequencing allows the use of tailor-made tumor-related antigens for 

personalized therapy. Nonetheless, common vaccine formulations turned out to be too weak 

to provide sufficient therapeutic efficacy against already existing melanomas [3]. An 

interesting and highly up-to-date idea to enhance vaccination efficiency for melanoma 

treatment is to improve or even re-invent the basic principle of vaccination by means of 

polymer chemistry providing a source of new, innovative nano-scaled vaccines 

(nanovaccine). For that reason, our main objective was to develop an optimized DC-

directed nanovaccine for melanoma treatment.  
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1.1 Dendritic cells 

DCs are members of the innate immune system. This immune cell population was first 

described by Paul Langerhans in 1868 [4] and its function discovered by Steinman et al. in 

1973 [5]. DCs are present in all organs and tissues (e.g. skin, lung, intestines) as well as in 

lymphoid tissue and the blood [6]. As part of the first defense line of the body against 

invading pathogens, they constitutively sample their environment for pathogens and 

abnormal cells by endocytosis of soluble and particulate matter. Moreover, they are 

essentially involved in the development and maintenance of peripheral tolerance under 

homeostatic conditions. Internalized proteins are degraded into peptides and loaded onto 

major histocompatibility complex (MHC) molecules of type I (MHC-I) and II (MHC-II). 

Upon maturation and migration to lymphoid tissues, MHC-peptide complexes are presented 

by DCs to T cells to trigger antigen-specific T cell activation and proliferation [7]. 

Therefore, DCs belong to the group of professional antigen-presenting cells (APCs), also 

including macrophages and B cells. Due to their enormous potential to trigger such antigen-

specific adaptive immune responses, DCs are the key players in vaccination approaches.  

Since DCs are relatively short-lived cells, their precursors are continuously produced in the 

bone marrow [8]. Like other leukocytes, DCs develop from bone marrow-derived 

hematopoietic stem cells (HSC). Thereby, DCs can originate from ether a common myeloid 

(CMP) or a common lymphoid (CLP) progenitor [6]. Monocyte and DC lineages share a 

common progenitor, hereafter referred to as monocyte and dendritic cell progenitor 

(MoDP), which develops from CMP [9]. These two cell types diverge upon MoDP 

differentiation into either monocytes (MO) or committed DC progenitors (CDP) in the bone 

marrow. CDP give rise to pre-DCs, which migrate to lymphoid and non-lymphoid tissues. 

There, they differentiate into immature DCs and form two important DC subpopulations, 

namely lymphoid-resident and migratory DCs [10], regulated by growth factor Flt3L [11, 

12] (Figure 1). These DCs of myeloid origin are often described as conventional DCs 

(cDCs). It has also been shown that monocytes can differentiate into DCs (moDCs) during 

inflammation [13], independent of Flt3L [14]. CLP as well as CDP can develop into 

interferon-producing cells (IPCs) and further into plasmacytoid DCs (pDCs) [15, 16]. In 

contrast to cDCs, pDCs leave the bone marrow only after complete development. Then, 

they circulate in blood and periphery [17].  
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Lymphoid-resident DCs include all DC populations which are consistently present in 

lymphoid tissue, particularly in spleen and lymph nodes. The murine spleen features two 

major resident DC subsets [18, 19]. One is constituted by CD8α
+
 CD11b

-
 cDCs (referred to 

as CD8α
+
 cDCs), which are primarily localized in the marginal zone of the spleen [20]. 

They are predominantly responsible for cross-presentation of antigens [21], IL-12 

production and are able to induce IFN-γ-producing CD4
+
 T helper cells (Th) of type 1 

(Th1) and CD8
+
 cytotoxic T cells (Tc) of type 1 (Tc1) [22]. These T cell populations are 

key players in the induction of cellular adaptive immune responses against infected and 

malignant cells [23]. The other subset is characterized by a lack of CD8α but the presence 

of CD4, CD11b [24], referred to as CD8α
-
 cDCs. This subset can be found in the red pulp 

and bridging channels of the spleen. It is particularly important for antigen presentation via 

MHC-II, the induction of T helper cell type 2 (Th2) responses [25] and, therefore, for 

humoral adaptive immune responses. Upon activation both DC subsets migrate into the T 

cell area. pDCs can be found in the spleen as well [18]. 

Murine migratory DCs, i.e. DCs which are endowed with the capacity to migrate to 

secondary lymphoid organs upon maturation, are represented by Langerhans cells (LCs), 

interstitial DCs (intDCs) and TNF and inducible nitric oxide synthase (iNOS) producing 

DCs (Tip-DCs). These cells originate either from bone marrow-derived pre-DCs or as 

moDCs from MOs during inflammation (Figure 1) [26-28]. LCs, a DC subset characterized 

by its expression of Langerin (CD207) [29], are present in the epidermis of the skin [30]. 

IntDCs are a diverse migratory DC population, which is particularly present in the dermis 

[31], the lamina propria of mucous membranes [32] and other connective tissues [26]. The 

surface marker composition of intDCs is very complex and highly dependent on the cells’ 

specific function and localization [33]. Prominent representatives are CD103
+
 CD11b

-
 

cDCs, which share their origin and function with the lymphoid-resident CD8
+
 cDCs [34, 

35]. Tip-DCs, a relatively new DC subset introduced by Serbina et al. [36], can be 

described as inflammatory DCs with high levels of co-stimulatory molecules and 

TNF/iNOS upon infections [37]. Tip-DCs are exclusively moDCs [38]. All three migratory 

DC subsets have in common that they are primarily specialized in pathogen sensing at 

immature state. But while LCs and intDCs migrate to lymphoid tissue and trigger antigen-

specific T cell responses after antigen contact and maturation [39, 40], Tip-DCs react with 
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an enhanced production of antimicrobial TNF and iNOS in the spleen but are not essential 

for T cell priming [36].  

 

 

Figure 1 DC development 

DCs development starts with bone marrow-derived HSCs. These differentiate into either CMP or CLP. CMP 

develops to MoDP. MoDP differentiate either into Mono or CDP. CDP leave the bone marrow as pre-DCs 

and migrate to lymphoid and non-lymphoid tissue. Subsequently, they differentiate into migratory LCs and 

intDCs as well as lymphoid-resident CD8α
+
 and CD8 α

-
 cDCs. Upon inflammation, Mono can also 

differentiate into intDCs and LCs. In addition, Tip-DCs can rise in this way. IPC develop from CLP and CDP 

as well. After differentiation into pDCs, they leave the bone marrow and circulate in the periphery (adapted 

from [41]). 

 

A unique DC subset that has either myeloid or lymphoid origin is that of pDCs (Figure 1). 

These relatively rare circulating DCs are able to secrete high amounts of type 1 IFNs in 

case of virus recognition [42], underlining their innate importance. Moreover, they are 

endowed with the feature to present antigens to CD4
+
 and CD8

+
 T cells [43, 44], albeit less 
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effective than cDCs [45]. Indeed, pDCs have been described as essential factors of antiviral 

immune responses, but have also been identified to be associated with the pathogenesis of 

several autoimmune diseases [46] as well as with the induction of tolerance [47]. Common 

markers for pDC identification in mice are CD11c, B220, Siglec-H, BST2 and Ly6C [48]. 

Since DCs are very rare in tissues, appropriate protocols to produce DCs in vitro are 

required to obtain sufficient amounts. In this study, bone marrow-derived DCs (BMDCs) 

were generated for experiments with nanovaccines. They constitute a widely used and well-

characterized DC test system for immunological approaches [49]. To generate BMDCs, 

murine bone marrow cells are treated with granulocyte-macrophage colony-stimulating 

factor (GM-CSF) for approximately one week. BMDCs express CD11c and MHC-II, 

undergo maturation upon recognition of microbial stimuli and provide the ability to present 

exogenous antigens to T cells [50]. Usually they are described as DCs with inflammatory 

phenotype, most comparable to pDCs or moDCs [51]. Nonetheless, BMDCs are not 

without controversy. It has recently been proposed that BMDC cultures comprise a 

heterogeneous population of DCs and macrophages [52]. Furthermore, BMDCs generated 

by Flt3L treatment instead of GM-CSF have been described as phenotypic equivalent to a 

mixture of murine splenic CD8α
+
 and CD8α

-
 cDCs as well as pDCs, providing a better 

coverage of the relevant DC subsets in vivo [53]. However, BMDC generation with GM-

CSF has repeatedly proven to be a suitable and reliable test system for DC studies with 

nanoparticles [54-57]. As a first step towards a better comparability with the actual in vivo 

situation, we included experiments with murine splenic DCs. 

Furthermore, the murine DC cell line DC2.4, which is based on oncogene-driven 

immortalization, was used in this study [58]. Since BMDCs are relatively short-lived 

compared to cell lines and have to be generated de novo for each experiment, they are not 

suitable for long-term culture. To be able to study immune modulation based on RNA 

interference, we transduced DC2.4 with a target gene and used that subline for knockdown 

experiments. DC2.4 has been described as cell line with DC morphology and a high 

expression of DC-specific markers as well as MHC and co-stimulatory molecules. 

Moreover, the cell line has been reported to be able to present antigens via MHC-I and -II.  
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DCs as a linker between innate and adaptive immunity orchestrate and modulate immune 

responses. As professional APCs, they are very potent in stimulating T cell activation and 

proliferation by antigen presentation via MHC. But particularly the effective stimulation of 

T cells, which is essential for vaccination approaches, requires sufficient DC maturation. 

1.1.1 Dendritic cell maturation 

Immature DCs are specialized in the sensing of pathogens and danger signals. Therefore, 

they are equipped with a huge repertoire of pattern recognition receptors (PRRs) to be able 

to recognize a large number of potential hazards. These receptors are localized either on the 

cell surface, within endosomes or in the cytosol to allow a detection of pathogens in 

different cellular compartments. PRR stimulation is an essential step of DC maturation and 

usually required for the effective induction of adaptive T cell responses.  

Toll-like receptors (TLRs) are the best known and most studied group of PRRs, since they 

can detect a variety of different PAMPs (pathogen-associated molecular patterns) [59] and 

DAMPs (damage-associated molecular patterns) [60], such as proteins, lipoproteins and 

nucleic acids [61, 62]. In human, 10 distinct TLRs are known (TLR1-10), each with its 

specific set of ligands [63]. In mouse, 13 TLRs have been identified (TLR1-13) to this day 

[64-66]. TLR1, 2, 4, 5, 6 and 10 are localized on the cell surface, whereas TLR3, 7, 8, 9, 

11, 12 and 13 can be found on endosomes. Except TLR3, whose signaling is exclusively 

dependent on Toll/IL-1 receptor (TIR)-domain-containing adapter-inducing interferon-β 

(TRIF), all TLRs use myeloid differentiation primary response 88 (MYD88) as adapter 

molecule [67]. Only TLR4 activation triggers both TRIF and MYD88 signaling [68]. The 

exact mechanism of MYD88 signaling depends on the associated TLR. In principle, it is 

based on the cytoplasmic association of a TIR domain with MYD88. Upon stimulation, 

MYD88 recruits and activates the IL-1 receptor-associated kinase 4 (IRAK-4) [69]. After 

that, IRAK-1 and IRAK-2 can be activated by phosphorylation and bind the ubiquitin 

protein ligase TNF receptor-associated factor 6 (TRAF6) [70]. TRAF6 can ubiquitinate the 

IκB kinase (IKK), which leads to the recruitment of TGF-β-activated kinase 1 (TAK1) and 

subsequently to a TAK1-mediated IKK activation by phosphorylation [71]. IKK inactivates 

the NF-κB inhibitor IκB, triggering NF-κB translocation into the nucleus and the 

transcription of NF-κB-dependent genes. Furthermore, TAK1 mediates the activation of c-
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Jun N-terminal kinases (JNKs), which induce the MAPK/ERK (mitogen-activated protein 

kinases/extracellular signal-regulated kinases) signaling pathway resulting in the expression 

of genes that depend on activator protein 1 (AP-1). In combination, NF-κB and AP-1 

mediate DC maturation by increased cytokine secretion and upregulation of adhesion and 

co-stimulatory molecules [72]. Initially, TRIF is recruited to the intracellular domain of 

TLRs. There, it interacts with the TANK binding kinase 1 (TBK1) and IKK to mediate the 

activation of the transcription factor interferon regulatory factor 3 (IRF3) by 

phosphorylation, finally resulting in DC maturation [73, 74]. Additionally, it has been 

shown that TLR3-associated TRIF can recruit TRAF6 and TAK1, leading to TAK1 

activation and subsequent activation of NF-κB and AP-1 [75] (Figure 2). 

Another group of PRRs which has been discussed as promising inducers of DC maturation 

in the context of immunotherapeutic approaches is constituted by the nucleotide-binding 

oligomerization domain-like receptors, or NOD-like receptors (NLRs). Like TLRs, NLRs 

are sensors for PAMPs and DAMPs, and thus regulate innate immune responses [76]. But 

in contrast to TLRs, they are specialized in sensing cytosolic pathogens, particularly 

intracellular RNA viruses and bacteria [77, 78]. All NLRs have three domains in common – 

a NACHT domain, a C-terminal leucine-rich repeat, which is responsible for ligand 

recognition, and a variable N-terminal domain. Based on the N-terminal domain, NLRs can 

be divided into four subgroups. The best described subgroup is NLRC, which is 

characterized by a caspase recruitment domain (CARD). This group also encompasses 

NOD1 and NOD2, which recognize specific bacteria-derived peptidoglycans [79]. Upon 

activation, the NACHT domain triggers self-oligomerization, which serves as docking point 

for signaling molecules [80]. The CARD of NOD1 and NOD2 binds the CARD of the 

receptor-interacting serine/threonine-protein kinase 2 (RIP2), which evokes RIP2 activation 

[81]. The activated RIP2 recruits TAK1, which subsequently activates IKK and JNKs [71]. 

Similar to MYD88 signaling, this triggers the transcription of NF-κB- and AP-1-depending 

genes [82] and results in DC maturation (Figure 2).  
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Figure 2 TLR and NLR signaling 

A simplified illustration of the signaling cascades upon activation of NOD1/2 and TLRs in general was 

created based on literature. MYD88 and TRIF signaling were imaged separately. Arrows that point at boxes 

in the nucleus indicate the induction of the corresponding transcription factors.  

 

Besides TLRs and NLRs, C-type lectins are a well-described subgroup of PRRs, which are 

almost exclusively localized on the outer cell membrane. Prominent representatives are 

CD205 (DEC-205), CD206, also termed mannose receptor (MR), and CD209, which is also 

named dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-
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SIGN). Moreover, the C-type lectin domain family 7 member A (CLEC7A or Dectin-1) 

and family 9 member A (CLEC9A) are frequently mentioned C-type lectins. Although C-

type lectins are endowed with the capacity for immune stimulation by ligand recognition 

[83], they seem to be more relevant for antigen capturing and presentation. Several C-type 

lectins are associated with specific DC subpopulations and are expressed in dependence of 

the cell’s activation state. For instance, DEC-205 is primarily present on CD8α
+
 lymphoid-

resident cDCs [26], where it positively correlates with CD8α expression [84]. Upon DC 

maturation, it is massively upregulated [85]. Due to these reasons, C-type lectins are 

popular for the targeting of distinct DC subpopulations.  

Sufficient adjuvants in form of PRR ligands are needed to stimulate DCs in order to trigger 

DC maturation and T cell activation. In this study, one TLR ligand for a cell surface TLR 

and three specific for different endosomal TLRs were used in comparative assays for DC 

stimulation. Lipopolysaccharide (LPS), a large molecule that can be found in the outer 

membrane of gram-negative bacteria, is recognized by the extracellular TLR4 and is 

commonly seen as a gold standard for DC stimulation. Therefore, it was repeatedly used as 

positive control in our study. CpG ODN 1826 (CpG), a synthetic oligonucleotide 

containing unmethylated CpG motifs, is specific for the endosomal TLR9. Unmethylated 

CpG motifs are present at a higher frequency in bacterial than in mammalian DNA [86]. 

Since it has been shown in numerous studies that CpG provides a strong 

immunostimulatory potential [87-89], it was chosen as a promising candidate. 

Polyinosinic:polycytidylic acid (Poly I:C) is a ligand of the endosomally localized TLR3. It 

is a synthetic analog of double-stranded RNA, a pattern that is highly associated with viral 

infections [90]. Due to TRIF signaling upon TLR3 activation, Poly I:C was particularly 

interesting as an alternative for MYD88-triggering TLR ligands. In addition, resiquimod 

(R848), a ligand for TLR7 and TLR8, was chosen. R848 is an imidazoquinoline derivative 

that comprises high antiviral and antitumor activity [91, 92]. The structurally similar 

component imiquimod has already been approved as topical treatment for basal cell 

carcinoma [93]. Furthermore, a clinical trial with R848 in combination with the tumor-

related antigens glycoprotein 100 (gp100) [94] and melanoma-associated antigen 3 

(MAGE-A3) [95] in melanoma patients showed promising results and is currently in phase 
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II [96]. Since TLR8 has been determined to be non-functional in mouse [97, 98], TLR7 is 

most likely responsible for the bioactivity of R848. 

Regarding NLRs, different NOD1 and NOD2 ligands were tested for their DC maturation 

capacity. γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is the minimal bioactive motif 

for NOD1 [99], while muramyl dipeptide (MDP) constitutes the minimal motif for NOD2 

[100]. Similar to the aforementioned TLR ligands, different NOD1 and NOD2 ligands have 

also been reported to trigger DC maturation [101]. Since mutations in the NOD2 gene have 

been connected with several chronic diseases, such as Crohn’s disease [102], an increased 

research focus was set on that NLR representative [103]. Furthermore, particularly NOD2 

ligands have repeatedly been described to modulate TLR-mediated DC maturation [104]. 

Therefore, MDP as a minimal active motif of NOD2 stimulation was of particular interest. 

Interestingly, MDP was recognized in 1974 as minimal component responsible for the 

adjuvanticity of complete Freund’s adjuvant [105]. 

In the present study, differently localized PRRs were addressed with adjuvants (Figure 3a). 

For the stimulation experiments with adjuvant-loaded nanocarriers, we used R848 and 

MDP alone or in combination as adjuvants to trigger DC maturation (Figure 3b).  

The reason for using different PRR ligands in combination is an immunological 

phenomenon called stimulatory synergy or superadditive stimulation. It has been reported 

in numerous studies that the combined application of specific PRR ligands that bind distinct 

receptors which in turn trigger diverse signaling adaptor molecules significantly enhances 

their stimulatory capacity [106, 107]. According to Underhill, this is due to an extensive 

collaboration and cross-talk between all innate immune receptors, including TLRs and 

NLRs. A single PRR might not be sufficient to mediate of a protective immune response 

[108]. 

Figure 2 demonstrates the partially broad overlap of the three depicted signaling pathways 

triggered by different PRRs and ligands. Therefore, it is conceivable that a simultaneous 

stimulation of at least two pathways enhances the stimulatory outcome. In the end, an 

effective DC stimulation triggers an increased expression of the co-stimulatory molecules 

B7-1 (CD80), B7-2 (CD86) and others as well as the secretion of pro-inflammatory 

cytokines, such as IL-12. Furthermore, the DC is enabled to leave its current location and to 
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migrate to the next draining lymphoid organ. These are signature features of a matured DC 

and they are highly required for the induction of subsequent T cell responses.  

 

 

Figure 3 Project-relevant PRRs and adjuvants 

(a) Illustrated is the cellular localization of the project-relevant PRRs, namely TLR3, 4, 7 and 9 as well as 

NOD1 and NOD2. (b) Structural formulas of the adjuvants MDP and R848 were imaged according to IUPAC 

nomenclature.  

 

In their function as professional APC, DCs are endowed with ability to capture antigens 

from the environment, to process them and to present the resulting peptides on MHC 

molecules [109]. This functionality is the second important parameter of an effective DC 
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maturation and is required for the induction of antigen-specific adaptive immune responses. 

In general, antigen uptake is performed by phagocytosis, macropinocytosis or receptor-

mediated endocytosis. Vaccines usually contain antigens that are highly specific for the 

corresponding pathogen. After antigen recognition, internalization and processing by the 

DC, the resulting peptides are loaded onto MHC molecules. Due to their exogenous origin, 

derived peptides are usually loaded onto MHC-II, a molecule that is almost exclusively 

present on APCs [110]. Non-loaded MHC-II molecules consist of α- and β-chains, 

stabilized by the so-called invariant chain (Ii) [111]. Triggered by acidic pH, the invariant 

chain is digested. Thereafter, the peptide-binding groove of MHC-II is blocked by a class 

II-associated invariant chain peptide (CLIP) [112]. Subsequently, CLIP is exchanged with 

an appropriate peptide from the endocytic pathway, followed by a transport of the loaded 

MHC-II to the cell surface.  

In contrast to MHC-II, MHC-I is expressed on almost all body cells. It is responsible for 

the presentation of endogenous peptides, derived from the degradation of intracellular 

proteins. This is particularly important for the recognition of intracellular viruses or 

abnormal/mutated cells [113]. Assembled in the endoplasmic reticulum (ER), MHC-I 

consists of a heavy chain and a chain called β2-microglobulin (β2m). In its non-loaded 

state, it forms a complex with tapasin (TS), calreticulin (CRT), TAP (transporter associated 

with antigen processing) and ERp57 (ER-resident protein 57). Triggered by TS [114], TAP 

mediates the translocation of appropriate peptides from the cytosol into the ER [115]. After 

peptide loading, MHC-I is also transported to the cell surface via the Golgi apparatus.  

Especially in tumor-directed vaccination approaches it is essential that the according 

antigen is presented via MHC-I and -II. Only in this case, a potent antigen-specific T cell 

response, comprising Tc1 and Th1 T cells, can be triggered. To enable the presentation of 

an exogenous antigen via MHC-I, distinct DC populations, for instance lymphoid-resident 

CD8α
+
 cDCs, are endowed with the ability to cross-present (Figure 4). By this, DCs are 

able to present exogenous antigen peptides simultaneously via MHC-I and -II [116]. Also 

BMDCs [117] and DC2.4 [58] have been described to provide this specific feature termed 

cross-presentation. 
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Antigen uptake, processing and presentation combined with the upregulation of co-

stimulatory molecules like CD80 and CD86 as well as the production of pro-inflammatory 

cytokines triggered by danger signals reflects DC maturation. In case of LCs, intDCs and 

pDCs, maturation also mediates their migration to the next secondary lymphoid organ, 

whereas matured lymphoid-resident DCs migrate to the T cell area within the lymphoid 

tissue [118]. After arrival, they interact with T cells and stimulate those that recognize the 

presented MHC-peptide complex. 

 

 

Figure 4 Cross-presentation 

The schematic illustration of cross-presentation in APCs demonstrates the intracellular trafficking of 

exogenous antigens after internalization. Besides the common MHC-II loading process, DCs with the ability 

to cross-present provide an additional mechanism that allows the controlled endosomal release of foreign 

proteins. Upon proteasomal degradation, the protein-derived peptides (white circles) are transported into the 

ER by TAP and loaded onto MHC-I. As a result, exogenous antigens are presented simultaneously by MHC-I 

and -II (adapted from [119, 120]).   
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1.1.2 Induction of adaptive immune responses 

An effective interaction between DCs and T cells in lymphoid tissue, and subsequent 

induction of adaptive immune responses, is based on three (or sometimes described as two 

[121]) required signals [122]. The first one is the recognition of MHC-peptide complexes 

on DCs by an antigen-specific T cell receptor (TCR). Each TCR contains a unique, highly 

variable region, which allows the TCR to recognize a specific antigenic MHC-peptide 

complex among numerous other irrelevant complexes with an enormous specificity and 

sensitivity [123]. Each TCR is associated with either CD4 or CD8α receptors. CD4 

recognizes MHC-II and thus enables the interaction between the TCR and MHC-II. In 

contrast, CD8α specifically binds MHC-I, mediating the interaction between the TCR and 

MHC-I [124]. Upon activation, naïve CD4
+
 T cells differentiate towards one of the several 

known Th lineages (Th1, Th2, Th type 17 (Th17) and induced regulatory T cells (iTreg)), 

whereas CD8α
+
 T cells usually become Tc1. Tc type 2 (Tc2) and type 17 (Tc17) are rarely 

described subsets with partially unknown and controversially discussed functions [125]. In 

that context, antigen-specific peptide recognition comprises the first required signal. The 

second one is the co-stimulation by DC-derived CD80 and CD86. These molecules bind 

CD28 on T cells. Since CD80 and CD86 are highly expressed on activated DCs, sufficient 

T cell stimulation is exclusively mediated by those APCs. DC/T cell interaction with an 

insufficient or without co-stimulation leads to anergy [126] or even apoptosis of the T cell 

[127]. The polarization of the T cells into their final subtypes is determined by the third 

signal, namely polarizing mediators like cytokines. Importantly, this signal also contributes 

essentially to the T cell activation. For instance, the presence of IL-12 during T cell 

activation triggers the polarization of naïve CD4
+
 T cells into Th1 [128]. IL-1β and TNF-α 

have also been described as Th1-promoting cytokines [129, 130]. In contrast, if IL-4 is 

present, those T cells preferentially polarize into Th2 [131]. Additionally, some APC 

surface molecules are known to influence T cell polarization. ICAM-1 (intracellular 

adhesion molecule 1) has been described to promote Th1 differentiation via interaction with 

LFA-1 (lymphocyte function-associated antigen 1) [132], whereas OX40L mediates Th2 

differentiation by OX40 engagement [133]. Only if all three signals reach the naïve T cell 

in a sufficient intensity, it becomes fully activated, undergoes clonal expansion and 

acquires its effector function [134].  
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Consequently, the T cell subset composition (or T cell response) upon DC-mediated 

activation is highly dependent on i) the presented MHC context, ii) the pattern of co-

stimulatory receptors and iii) the prevailing cytokine milieu. Activated T cells can be 

characterized by their cytokine secretion profile, which is also connected to their effector 

function. Th1 mediate cellular immune responses against intracellular bacteria and viruses, 

involving the recruitment and activation of phagocytes and antigen-specific Tc1. This is 

particularly essential for the recognition and killing of tumor cells. Th1 produce 

predominantly IFN-γ, IL-2 and TNF-α. Th2 induce humoral immune responses against 

extracellular pathogens, which includes the activation of B cells and thus the production of 

antigen-specific antibodies. Since many tumors are insusceptible to antibodies due to low 

immunogenicity [135], a Th2-dominated T cell response is usually not preferred in tumor 

approaches. A typical Th2 response is characterized by increased levels of IL-4, IL-5 and 

IL-13. In contrast to Th, Tc1, also referred to as cytotoxic T lymphocytes, are able to 

recognize infected or malignant cells via MHC-I and to directly kill those cells. This T cell 

subset is particularly interesting for tumor vaccination approaches since tumor-specific Tc1 

cells can potentially fight the corresponding tumor directly. However, this strategy strongly 

depends on the tumor accessibility and the tumor microenvironment. Similar to Th1, a 

differentiation of CD8α
+
 T cells into Tc1 can be detected by increased levels of IFN-γ.  

Due to their specific effector function, a Tc1/Th1-dominated T cell response has been 

described to be highly beneficial for tumor treatment [136]. Antigen-specific Tc1 can 

directly fight the tumor cells, while Th1 attract phagocytes and enhance the Tc1 response. 

In contrast, a Th2-biased response has turned out to be less efficient in most tumor diseases 

[137]. For example, Aspord et al. have reported that Th2 heavily infiltrate breast and 

pancreatic cancer tissue, where they accelerate the tumor growth by IL-13 production 

[138]. Moreover, it has been shown that B cell-derived tumor-binding IgG can promote 

tumor progression by inducing regulatory macrophages and mast cell-derived release of 

proangiogenic factors [139, 140].  
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1.2 Nanovaccines for tumor treatment 

In 1980, smallpox was declared as eradicated by the WHO. It was the first disease to have 

been fought globally. This was achieved through collaborations between numerous 

countries which included systematic vaccination and outbreak recording [141]. This 

breakthrough was preceded by a long suffering history (earliest clinical evidence from 1500 

B.C. [142]) with 300-500 million deaths only in the 20th century [143]. The smallpox case 

exemplifies the exceptional potential of vaccines to treat and control diseases that were 

considered as untreatable. Since its first use, vaccination has had an enormous impact on 

public health. 

First generation vaccines, as used for smallpox vaccination, basically consisted of live-

attenuated or whole-pathogen preparations [144, 145], which needed no additional 

stimulation in form of an adjuvant. While several of these formulations are still in use 

today, the treatment of some groups of diseases requires much higher vaccination 

specificity and efficiency. Neoplastic diseases or intracellular infections can be controlled 

only insufficiently or not at all with such formulations. Furthermore, the risk of reversion to 

virulence or incomplete virus/bacteria inactivation is omnipresent [144]. Hence, modern 

vaccines (second generation) have changed fundamentally. Recombination technologies 

allow the production of purified, highly specific antigens, and systematic combination of 

multiple antigens potentially enables the treatment of even complex diseases. Despite better 

safety profiles and higher specificity, purified antigens are frequently less immunogenic 

and lack PAMPs due to removal of pathogenic contaminations [146]. Therefore, adjuvants 

are needed to induce a sufficient immune response. Besides the traditional stimulants, 

aluminum salts (alum) [147] and Freud’s adjuvant [148], which have been intensively used 

for more 90 years [149], numerous synthetic and biological molecules were identified as 

new immunostimulants. These substances act as PAMPs and are recognized by PRRs to 

induce innate immune responses. Over time, it turned out that the type of vaccine adjuvant 

essentially influences the character of an elicited immune response [150]. However, since 

almost all adjuvants feature harmful side effects, it was attempted to keep the required 

amounts as low as possible. 
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A vaccine is usually administered prophylactically. It yields a DC-directed adaptive 

immune response indented to subsequently lead to eradication of the relevant pathogen in 

case of an infection. Ideally, it triggers the generation of antigen-specific memory B and T 

cells and thus mediates a life-long protection. In case of tumor diseases, it is a totally 

different situation. With the exception of the HPV (human papillomavirus) vaccine [151], 

which protects against the trigger of cervical cancer, prophylactic vaccination against 

tumors is insufficient due to their tremendous complexity and variability combined with a 

quiet low immunogenicity. Regarding antigens, it is virtually impossible to find one that is, 

for instance, present on melanomas in general. Furthermore, therapeutic vaccination is not 

less complex. While it is possible nowadays to identify and synthesize individual antigens 

specific for an existing tumor, therapeutic vaccines have to induce very strong antigen-

specific T cell responses that are potent enough to compete with an already established 

tumor disease [152]. This is rarely successful. An effective antitumor response also requires 

a specific immune cell composition (see 1.1.2) and therefore a suitable adjuvant. Moreover, 

several tumor forms are immunologically isolated. In addition, many tumors create an 

immunosuppressive microenvironment, which further impedes an effective intervention 

[153]. Another fundamental problem is that many vaccine formulations suffer from poor 

immunogenicity [154].  

T cell therapy with chimeric antigen receptors (CARs) [155] as well as the use of several 

checkpoint inhibitors to break T cell suppression [156] have been shown to enhance 

antitumor responses, thereby underlining the importance of T cells for tumor rejection. 

However, the majority of patients do not develop a sufficient tumor-specific Tc1 response. 

Therefore, new ideas are urgently needed to enable tumor treatment by vaccination.  

Nanovaccines, i.e. nanoparticle (NP)-based vaccine formulations, represent a new strategy 

for therapeutic tumor treatment and offer the opportunity to deal with some of these 

problems. Similar to a common vaccine, nanovaccines include all components that are 

required for an effective antigen-specific immune stimulation. But in contrast, the vaccine 

components are usually bound or encapsulated to/in a nanocarrier in adjustable 

concentrations and close proximity to each other and are thereby co-delivered to the same 

target cells. Frequently, these nanocarriers provide a shielding of the active substances 

against extracellular degradation or clearance processes. Therefore, nanovaccines enable a 
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protected transport and in addition also allow the use of components that are usually not 

suitable for vaccines due to insufficient pharmacokinetics or solubility. Under optimal 

conditions, the encapsulated antigen/adjuvant combination is delivered to the DC. In this 

way, high local concentrations of those substances are achieved [157], which may provide 

increased activation and antigen presentation, potentially resulting in enhanced antigen-

specific T cell responses. Furthermore, the nanocarrier surface can be modified in 

numerous ways to increase blood circulation time and selectivity for APCs as well as to 

reduce unspecific uptake or protein adsorption.  

An important parameter of nanovaccine design is the carrier material [158]. Thereby, three 

major classes of nanocarriers can be defined according to their material, namely inorganic, 

liposomes, and polymeric [159]. Immunostimulatory complexes, virus-like particles and 

self-assembled proteins are three additional but less frequently used classes of nanocarriers 

[160]. NPs consisting of inorganic materials such as gold, carbon or silver, are widely used 

for biomedical applications [161] and have also been investigated intensively for 

nanovaccine approaches [160]. For example, it has been reported that gold NPs associated 

with the tumor antigen extra domain B can induce an antigen-specific T cell response 

against the murine breast cancer cell line 4T1 in vivo, whereas the application of soluble 

antigen failed [162]. Most inorganic types of NPs provide a high modifiability and are 

readily internalized by APCs but are controversially discussed regarding solubility, 

biocompatibility and long-term toxicity [163-165]. Liposomes, another promising platform 

for nanovaccines, are spherical carriers with at least one phospholipid bilayer. Common 

exemplary lipids for liposome synthesis are DOTAP (N-(2,3-dioleoyloxy-1-

propyl)trimethylammonium methyl sulfate), DOPE (1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine) and PC (phosphatidylcholine) [166]. Besides excellent 

biocompatible properties, liposomes provide high modifiability due to the option to alter 

the phospholipid composition [167, 168]. Indeed, it has been shown that antigens 

conjugated to [169] as well as encapsulated in [170] liposomes are able to induce CD8
+
 T 

cell responses. Furthermore, several liposomal formulations have already been approved as 

delivery system by the Food and Drug Administration (FDA) [171]. However, although 

liposomes are usable for the encapsulation of diverse substances due to their amphiphilic 

character, many liposomal formulations suffer from a low stability and insufficient loading 
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capacities [172, 173]. Polymeric NPs are also a widely used and extensively studied class 

of nanocarriers. They are either prepared by dispersion of preformed polymers or by 

polymerization of monomers [174]. Various methods are available for their synthesis, such 

as solvent evaporation, dialysis, micro- or miniemulsion. Likewise, numerous base 

materials can be used for polymeric NPs. Typical representatives are PLA (poly lactic acid) 

[175], PLGA (poly lactic-co-glycolic acid) [176] and PS (polystyrene) [177]. Dependent on 

the synthesis process and the used base material, polymeric NPs can provide a high 

biocompatibility and loading capacity combined with an enormous modifiability.  

The physicochemical properties of the synthesized NP do also determine their suitability to 

serve as nanovaccine. Regarding surface charge, cationic NPs have been described to be 

more toxic for phagocytic cells than anionic ones in vitro. This is most likely due to direct 

NP penetration into the negatively charged membrane causing physical damage as well as 

to NP-induced production of reactive oxygen species (ROS) resulting in increased 

oxidative stress [178-181]. In contrast, isolated APCs internalize anionic NPs much easier 

than cationic [182, 183]. However, the impact of surface charge cannot be predicted 

sufficiently in vivo since adsorbing proteins in blood or tissue can alter the NP’s surface 

properties. Nonetheless, a negative surface charge is usually preferred for nanovaccines. 

For successful nanovaccine design the NP size is a further important parameter. It should 

be optimized to enter the secondary lymphoid organs as efficient as possible. NPs smaller 

than 3-5 nm do not reach the lymph nodes due to a rapid renal clearance [184]. If NPs are 

bigger than that but smaller than 200 nm, they have been described to drain the lymph 

nodes in a DC-independent manner [185]. NPs with a size of more than 200 nm are usually 

internalized by APCs at the NP injection site and are transported to the lymph nodes [186]. 

Finally, the size of a nanovaccine has to be adjusted to the preferred mechanism to reach 

lymphoid tissue. However, the NPs should bear a size sufficient to prevent fast clearance by 

the kidney but not too big to be taken up.  

To induce a sufficient adaptive immune response against a tumor disease, the NP-delivered 

antigen has to be presented via MHC-II and due to cross-presentation also via MHC-I. 

Therefore, it is necessary that the antigen that is delivered to the DC reaches the cytosol and 

is degraded by the proteasome (see Figure 4). Several strategies have been established to 

trigger an endosomal release of antigen. For example, NPs with a high buffering capacity 
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may be designed to mediate endosomal rupture by the proton sponge effect. By the influx 

of ions and water into the endosome the osmotic pressure is increased, potentially resulting 

in compartment rupture [187]. The use of such a NP combined with an antigen can induce 

increased levels of antigen-specific CD8
+
 T cells [188].  

As outlined in 1.1.1, a sufficient DC maturation, associated with upregulation of co-

stimulatory molecules and secretion of pro-inflammatory cytokines, is also an essential 

parameter for the success of a nanovaccine to trigger anti-tumor responses. One option is to 

use a nanocarrier system that stimulates the DCs based on its intrinsic immunostimulatory 

activity. In this regard, iron oxide NPs have been reported to stimulate CD86 expression 

and the secretion of IL-1β, IL-6, TNF-α and IL-12 in DCs [189]. Furthermore, it has 

recently been shown by Afroz et al. that antigen-loaded zinc oxide NPs can mediate the 

expansion of antigen-specific CD4
+
 and CD8

+
 T cells in the absence of any adjuvant [190]. 

However, the more common option is to co-deliver adjuvants. The adjuvant is either 

chemically conjugated on or encapsulated in the NP, based on synthesis, structure and 

chemical properties. In the context of therapeutic melanoma treatment, adjuvants that 

trigger Tc1/Th1-directed T cell responses are preferred for nanovaccine generation. Since it 

is well-known that the commonly used adjuvant alum, which can be found in vaccines 

against diphtheria-tetanus-pertussis, HPV or hepatitis, triggers a strong Th2 response [147], 

it is not suitable for nanovaccines intended to treat melanoma. NPs enable the encapsulation 

of adjuvants, which can result in an enhanced delivery and a stronger stimulatory capacity. 

In this context, the potential of R848 in nanovaccines to provoke potent T cell responses 

has been reported in several studies [191-193]. Due to its relatively weak stimulatory 

potential alone, MDP was rarely used for nanovaccines [194, 195] but has shown 

superadditive potential particularly in combination with other adjuvants [196]. In the end, 

the chosen adjuvant has to be compatible with the nanovaccine synthesis. 

A special feature of most NPs is their high modifiability. Surface modifications can 

essentially alter NP’s properties with regard to their cellular binding characteristics. Typical 

surface modifications are the coupling of polyethylene glycol (PEG) to minimize unwanted 

unspecific cell binding, and targeting moieties to facilitate recognition by target cells as 

outlined below.  
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Nanoparticular formulations for in vivo applications often suffer from low blood circulation 

time associated with massive protein adsorption and unspecific interaction with cells, 

mainly of the mononuclear phagocyte system (MPS) [197], resulting in a fast and usually 

unwanted clearance [198]. A surface modification of NPs with PEG, also called 

PEGylation, reduces unspecific NP interactions with proteins and cells [199], which is also 

described as ‘stealth effect’. Consequently, PEGylation prolongs the NP circulation time 

and thus enhances the specificity of a potential targeting moiety. Furthermore, PEGylation 

can increase the nanocarriers’ stability [200] and decreases liver accumulation [201]. 

Moreover, PEG is low priced, versatile and FDA approved for diverse applications [202]. 

In the pharmaceutical industry, it represents the gold standard for stealth polymers to tackle 

the mentioned problems, and has been used for decades [203]. In theory, a NP modification 

with PEG chains counteracts hydrophobic and electrophilic interactions between NPs and 

plasma proteins or cells [201, 204], and increases the NP solubility in buffer and serum due 

to the hydrophilic ethylene glycol repeats [205, 206]. Besides the use of PEGylated NPs as 

delivery system for cytostatics for direct tumor therapy [207, 208], such NPs have also been 

applied as nanovaccines [209, 210]. The actual stealth properties of a NP are determined by 

numerous factors, such as the molecular weight (MW) of the used PEG and the PEGylation 

density. 

Substances that actively bind target structures on cells are called targeting moieties. The 

cell targeting is mediated by either receptor ligands or antibodies. Such a modification can 

be used in nanovaccine approaches to specifically address DCs and thus to support 

nanovaccine efficiency. A stronger DC association can result in a stronger uptake and 

thereupon in a more efficient antigen delivery and DC stimulation. Regarding receptor 

ligand targeting, it has, for instance, been shown by Carrillo-Conde et al. that a NP surface 

functionalization with mannose significantly increases the DC uptake by targeting MR and 

DC-SIGN [211]. Another study has reported that a NP surface modification with CpG 

facilitates DC targeting [212]. Besides its function as immunostimulant, CpG was revealed 

to be recognized by DEC-205 [213]. The coupling of DC-directed antibodies to NP’s 

surface can also substantially increase DC targeting. Saluja et al. were able to show that DC 

targeting with DEC-205-specific antibodies on PLGA NPs leads to enhanced cross-

presentation of co-delivered melanoma-associated antigens [214]. Moreover, is has also 
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been reported for CD40, DC-SIGN and CD11c that a targeting via NP-coupled antibodies 

triggers the induction of efficient CD8
+
 T cell responses [215, 216]. In general, surface 

modifications of nanovaccines with DC-directed targeting moieties, such as receptor 

ligands or antibodies, are able to enhance the vaccination efficacy via an improved delivery 

to DCs. Furthermore, the increase in cell specificity also reduces the unspecific uptake by 

unwanted cell types. For these reasons, this kind of modification has qualified as promising 

strategy for optimized nanovaccines [217]. 

A further promising but rather rarely used immunomodulatory modification of 

nanovaccines is the encapsulation of small interfering RNA (siRNA). These small RNA 

molecules bind complementary sequences on the target cell’s mRNA and thus inhibit the 

expression of the corresponding sequence or gene. In case of nanovaccines, the effective 

delivery of siRNA into DCs could be exploited to inhibit immunosuppressive mechanisms. 

As a result, accordingly treated DCs would show enhanced immunostimulatory properties. 

It has been demonstrated for polypeptide micelles that the combined delivery of Poly I:C, 

tumor antigen and STAT3 siRNA could overcome the activation-resistant state of tumor-

associated DCs, resulting in a stronger antitumor response [218].  

For the application of nanocarriers in vaccination approaches, they have to fulfil certain 

criteria. It is essential that the carrier material is biocompatible and degradable without any 

toxic byproducts. Many polymers that were tested for these approaches are biocompatible 

but lack the latter requirement [219, 220]. Components, such as the well-known protein 

ovalbumin (OVA), the FDA approved starch derivative hydroxyethyl starch (HES) as well 

as the polysaccharide dextran (Dex) offer crucial benefits compared with the most 

completely synthetic materials since almost all body cells have the capacity to process and 

degrade them. This advantage qualifies OVA, HES and Dex to be promising base materials 

for degradable polymeric NPs [221-225] or possibly even nanovaccines.  

Polymeric nanocapsules (NCs), which are usually hollow carriers with a liquid core, 

constitute a special form of NPs. They enable the protection of the payload from external 

influences. Furthermore, certain stimuli, such as pH, redox potential or temperature, can be 

used to trigger the payload release [226-230]. A common method to synthesize 

nanocapsules is the polymerization at droplet’s interface in miniemulsion [231].   



INTRODUCTION 

24 

 

1.3 Thesis objectives 

The main objective of this study was to develop a DC-directed nanocapsule-based platform 

for the optimized design of nanovaccines that may allow therapeutic treatment of the 

malignant melanoma. To achieve this, the project was separated into four sections, each of 

them dealing with a specific challenge.  

The first section was focused on the integration of the two main components of a vaccine, 

namely antigen and adjuvant, in one functional nanocapsule. Therefore, we initially 

planned to search for an appropriate stimulatory adjuvant combination. We decided to scan 

for TLR/NLR ligand combinations that exclusively target intracellular PRRs and may 

provide synergistic stimulatory properties on BMDCs, since those adjuvants are 

particularly interesting for the delivery by nanocapsules. Promising candidate combinations 

should then be encapsulated in Dex-based NPs to check whether the encapsulation 

preserves the stimulatory synergy. The encapsulation should also increase delivery and 

enhance the combination’s stimulatory capacity. To focus on antigenicity, we wanted to 

analyze the suitability of already described OVA-based polymeric NCs to serve as an 

antigen source for DC-mediated OVA-specific T cell stimulation. To fuse both vaccine 

requirements, we thereafter planned to transfer the identified adjuvant combination into the 

OVA-based NCs to finally obtain our dual-function nanocapsule. The suitability of this 

nanocapsule to trigger BMDC-mediated OVA-specific T cell responses in vitro should then 

be assessed sufficiently. In addition, it was planned to examine the stimulatory effect of the 

nanovaccine on BMDCs by transcriptome analysis. As a first important step towards an in 

vivo application, the nanocapsules should be tested on primary spleen cells to identify 

preferred target cells. At last, we wanted to evaluate an alternative synthesis method for 

adjuvant-loaded protein-based nanocapsules providing better biocompatibility. 

An optimization of the nanovaccine’s stealth properties was the objective of the second 

project section. We planned to modify the surface of the OVA-based NCs with PEG to 

substantially reduce unspecific interactions with proteins and cells and to increase their 

blood circulation time. After successful modification, the impact of the PEG size, the 

PEGylation density and the PEG mass density on the interaction between BMDCs and 

OVA-based NCs should be assessed by detailed binding assays. To mimic the in vivo 
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situation, the assays were performed under different serum conditions. In the end, it should 

be possible to give a recommendation how to reach the maximum stealth effect with PEG 

on protein-based NCs.   

The additional encapsulation of siRNA into nanocapsules constitutes a promising option to 

further modulate the triggered immune reaction. Consequently, the third project section 

dealt with the objective to evaluate siRNA as a nanocapsule payload to modulate gene 

expression. Therefore, the suitability of siRNA-loaded PEGylated HES-based NCs as an 

antigen-independent polymeric nanocapsule system to knockdown gene expression in 

transduced DC2.4 should be assessed in detail exemplified by the expression of firefly 

luciferase. A sufficient gene knockdown would indicate a successful cargo release and also 

an endosomal release. 

In the last section, we planned to add a targeting moiety in form of a DC-SIGN-directed 

antibody to the surface of the HES-based NC to actively address DCs and to potentially 

increase NC uptake and cargo release. For this, it was intended to study the interaction 

between DC2.4 and such modified NC to see whether a DC-SIGN targeting strategy 

improves the NC’s properties, for example regarding siRNA-mediated gene knockdown. 

Since OVA- and HES-based NCs feature a comparable modifiability, the results of the last 

two sections should easily be transferred to the adjuvant-loaded protein-based nanocapsules 

from the first two sections. In this way, we would be able to create a versatile platform for 

the development of new nanovaccines for the treatment of cancer, including the malignant 

melanoma.  
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2. Material 

2.1 Laboratory equipment 

Equipment Model Manufacturer 

Biological safety cabinet LaminAir HB 2448 Heraeus, Hanau, Germany 

Biological safety cabinet Herasafe HS18 Heraeus, Hanau, Germany 

Cell counting chamber Neubauer Improved LO - Laboroptik, Lancing, UK 

Cell harvester Mach 3 Tomtec, Hamden, USA 

Centrifuge Sigma 3 K-30 Sigma, Osterode am Harz, Germany 

Centrifuge Multifuge 1 L-R Heraeus, Hanau, Germany 

Centrifuge Megafuge 40R Heraeus, Hanau, Germany 

Centrifuge Multifuge X3R Heraeus, Hanau, Germany 

Centrifuge Sigma 1-14 Sigma, Osterode am Harz, Germany 

Centrifuge 5417 C Eppendorf, Hamburg, Germany 

CO2 Incubator CB 210 Binder, Tuttlingen, Germany 

Electrophoresis power supply EPS 3500 XL Pharmacia Biotech, Uppsala, Sweden 

Electrophoresis unit VARIA Roth, Karlsruhe, Germany 

Flow cytometer BD FACS Canto II BD Biosciences, Heidelberg, Germany 

Flow cytometer Attune NxT Thermo Fisher Scientific, Waltham, USA 

Gel documentation system Fusion SL Vilber Lourmat, Marne-la-Vallée, France 

Laser scanning microscope  LSM 710 Carl Zeiss, Oberkochen, Germany 

Liquid scintillation counter 1205 Betaplate LKB Wallac, Turcu, Finland 

Microplate reader Infinite M200 Pro Tecan, Männedorf, Switzerland 

Microplate reader Centro LB 960 
Berthold Technologies, Bad Wildbad, 

Germany 

Microplate reader MRX TC Revelation Dynex, Cantilly, USA 

Microscope NanoSight LM10 
Malvern Instruments, Herrenberg, 

Germany 

Microscope CH2 Olympus, Tokyo, Japan 

Microscope, inverse FE.2915 Euromex, Arnhem, Netherlands 

Microscope, inverse CK2 Olympus, Tokyo, Japan 

Microwave Micromat 15 AEG, Nürnberg, Germany 

Motoric pipette filler Pipetus standard Hirschmann, Eberstadt, Germany 

NMR spectrometer Avance 300 Bruker, Billerica, USA 

Real-Time PCR System CFX96 Bio-Rad, Hercules, USA 

Scanning electron 

microscope 
1530 Gemini LEO Carl Zeiss, Oberkochen, Germany 

Submicron particle sizer Nicomp 380 Nicomp, Port Ritchey, USA 

Thermomixer / heat block 5436 Eppendorf, Hamburg, Germany 

Transmission electron 

microscope 
JEM-1400Flash Jeol, Freising, Germany 

Ultrasonic bath Sonorex RK 102 Bandelin, Berlin, Germany 
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Ultrasonic bath Sonorex RK 52 H Bandelin, Berlin, Germany 

Ultrasonic homogenisator Sonopuls HD 2070 Bandelin, Berlin, Germany  

Ultrasonic homogenisator 
Sonifier W-450-

Digital 
Branson Ultrasonics, Danbury, USA 

UV-Vis spectrophotometer Lambda 16 Perkin Elmer, Waltham, USA 

UV-Vis spectrophotometer NanoDrop 2000 Thermo Fisher Scientific, Waltham, USA 

UV-Vis spectrophotometer NanoDrop 8000 Thermo Fisher Scientific, Waltham, USA 

Vortex mixer 444-1372 VWR, Radnor, USA 

Water bath 1083 GFL, Burgwedel, Germany 

Zetasizer 
Zetasizer Nano 

Range 

Malvern Instruments, Herrenberg, 

Germany 

Table 1 Laboratory equipment 
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2.2 Reagents 

Reagent Manufacturer 

[Methyl-
3
H] thymidine Perkin Elmer, Waltham, USA 

1,6-hexanediol dipropiolate (HDDP) Sigma-Aldrich, Deisenhofen, Germany 

2,2'-(ethylenebis(oxy))bisacetic acid Merck Millipore, Darmstadt, Germany 

2,2'-(ethylenedioxy)bis(ethylamine) Sigma-Aldrich, Deisenhofen, Germany 

2,4-toluene diisocyanate (TDI) Sigma-Aldrich, Deisenhofen, Germany 

2-azido-1-ethylamine Sigma-Aldrich, Deisenhofen, Germany 

4-(2-phenyl-2H-tetrazol-5-yl)benzoic 

acid (TET) [232, 233] 

Max Planck Institute for Polymer Research, Mainz, 

Germany 

4’,6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich, Deisenhofen, Germany 

7-Aminoactinomycin D (7AAD) BD Biosciences, Heidelberg, Germany 

Acetic acid (99 %) Sigma-Aldrich, Deisenhofen, Germany 

Acetone VWR, Radnor, USA 

Acetone Sigma-Aldrich, Deisenhofen, Germany 

Agarose Roth, Karlsruhe, Germany 

Alexa Fluor 647 (AF647) Annexin V Biolegend, San Diego, USA 

AllStars Negative Control siRNA 

(AF647-labeled) 
Qiagen, Hilden, Germany 

Ammonium chloride (NH4Cl) Sigma-Aldrich, Deisenhofen, Germany 

Aqua Ampuwa, sterile (H2Ost) Fresenius Kabi, Bad Homburg vor der Höhe, Germany 

Boric acid Sigma-Aldrich, Deisenhofen, Germany 

CellMask Orange Thermo Fisher Scientific, Waltham, USA 

Cy5-labeled oligonucleotide with the 

sequence Cy5-CCA CTC CTT TCC 

AGA AAA CT-3’ (Cy5-Oligo) 

IBA, Göttingen, Germany 

Cyclohexane (HPLC grade) VWR, Radnor, USA 

Dextran, 9-11 kilodaltons (kDa) Sigma-Aldrich, Deisenhofen, Germany 

Dibenzocyclooctyne-PEG4-N-

hydroxysuccinimidyl ester (DBCO-

PEG4-NHS) 

Jena Bioscience, Jena, Germany 

Dichloromethane (DCM) Sigma-Aldrich, Deisenhofen, Germany 

Diethyl ether Sigma-Aldrich, Deisenhofen, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Deisenhofen, Germany 

Dimethylformamide (DMF) Sigma-Aldrich, Deisenhofen, Germany 

Dinorbornene (DN) 
Max Planck Institute for Polymer Research, Mainz, 

Germany 

D-mannosamine Sigma-Aldrich, Deisenhofen, Germany 

DMSO Thermo Fisher Scientific, Waltham, USA 

DQ OVA (OVA-DQ) Molecular Probes, Eugene, USA 

Ethanol (≥ 99.8 %) Sigma-Aldrich, Deisenhofen, Germany 

Ethylenediaminetetraacetic acid 

disodium salt dehydrate (EDTA-Na2) 
Sigma-Aldrich, Deisenhofen, Germany 

Fluorescamine Sigma-Aldrich, Deisenhofen, Germany 

HES (200 kg/mol, degree of Fresenius Kabi, Bad Homburg vor der Höhe, Germany 
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substitution: 0.5) 

Human serum albumin (HSA) Sigma-Aldrich, Deisenhofen, Germany 

Isocyanate PEG2000 (2000 g/mol) Nanocs, New York, USA 

Isocyanate PEG3400 (3400 g/mol) Nanocs, New York, USA 

Isocyanate PEG5000 (5000 g/mol) Nanocs, New York, USA 

Isocyanate PEG5000-isocyanate Nanocs, New York, USA 

L-glutamine Sigma-Aldrich, Deisenhofen, Germany 

Lipofectamine Thermo Fisher Scientific, Waltham, USA 

Luciferase GL2 Duplex siRNA GE Healthcare Life Sciences, Freiburg, Germany 

NHS-PEG4-azide Sigma-Aldrich, Deisenhofen, Germany 

O-(2-aminoethyl)-O'-(2-

azidoethyl)pentaethylene glycol 

(Azido-PEG-amine) 

Sigma-Aldrich, Deisenhofen, Germany 

OVA (grade VI)  Sigma-Aldrich, Deisenhofen, Germany 

Paraformaldehyde (PFA) Sigma-Aldrich, Deisenhofen, Germany 

Penicillin Sigma-Aldrich, Deisenhofen, Germany 

pGreenFire1-mCMV (EF1α-puro) 

Lentivector 
System Biosciences, Palo Alto, USA 

Poly((ethylene-co-butylene)-b-

(ethylene oxide) (P((E/B)-b-EO)) [234] 

Max Planck Institute for Polymer Research, Mainz, 

Germany 

Polyvinyl alcohol (PVA) Sigma-Aldrich, Deisenhofen, Germany 

Potassium bicarbonate (KHCO3) Sigma-Aldrich, Deisenhofen, Germany 

Potassium chloride (KCl) Sigma-Aldrich, Deisenhofen, Germany 

SDS Sigma-Aldrich, Deisenhofen, Germany 

Sodium chloride (NaCl) Sigma-Aldrich, Deisenhofen, Germany 

Sodium dodecyl sulfate (SDS) Alfa Aesar, Heysham, UK 

Streptomycin Sigma-Aldrich, Deisenhofen, Germany 

Terralin Liquid Schülke & Mayr, Norderstedt, Germany 

Toluene Sigma-Aldrich, Deisenhofen, Germany 

Triethylamine (TEA) Sigma-Aldrich, Deisenhofen, Germany 

Triphosgene Sigma-Aldrich, Deisenhofen, Germany 

Tris Roth, Karlsruhe, Germany 

Trypan blue Sigma-Aldrich, Deisenhofen, Germany 

Trypsin Thermo Fisher Scientific, Waltham, USA 

β-Mercaptoethanol Roth, Karlsruhe, Germany 

Table 2 Reagents and substances 
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NOD1 ligands:  

iE-DAP Invivogen, Toulouse, France 

Lauroyl group-modified iE-DAP  

(C12-iE-DAP) 
Invivogen, Toulouse, France 

L-Alanine-modified iE-DAP (Tri-DAP) Invivogen, Toulouse, France 

NOD2 ligands:  

MDP Invivogen, Toulouse, France 

Fluorescein (FITC)-labeled MDP  

(MDP-FITC) 
Invivogen, Toulouse, France 

Stearoyl group-modified MDP  

(L18-MDP) 
Invivogen, Toulouse, France 

Murabutide Invivogen, Toulouse, France 

TLR ligands:  

R848 Invivogen, Toulouse, France 

CpG Invivogen, Toulouse, France 

Poly I:C (high molecular weight) Invivogen, Toulouse, France 

LPS Invivogen, Toulouse, France 

Table 3 PRR ligands 
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2.3 Buffers, solutions, media 

Name Manufacturer / Formulation 

Eagle’s Minimum Essential Medium 

(EMEM) 
Sigma Aldrich, Deisenhofen, Germany 

Fetal calf serum (FCS) Sigma Aldrich, Deisenhofen, Germany 

Hank’s Balanced Salt Solution (HBSS) Thermo Fisher Scientific, Waltham, USA 

Iscove’s Modified Dulbecco’s Medium 

(IMDM) 
Sigma Aldrich, Deisenhofen, Germany 

Phosphate-buffered Saline (PBS) Sigma Aldrich, Deisenhofen, Germany 

GM-CSF 

Derived from X63.Ag8-653 myeloma cells stably 

transfected with murine GM-CSF expression 

construct [235] 

Murine serum (mS) 
Department of Dermatology, University Medical 

Center, Mainz, Germany  

Human serum (hS) 
Blood Transfusion Center, University Medical 

Center, Mainz, Germany 

Human plasma (hP) 
Blood Transfusion Center, University Medical 

Center, Mainz, Germany 

2.4G2 blocking solution PBS + CD16/CD32 antibodies (1:50) 

50x TAE (pH 8.5) 

2 M Tris 

1 M Acetic acid 

0.05 M EDTA-Na2 

BMDC culture medium 

IMDM + 5 % FCS  

+ 50 µM β-mercaptoethanol  

+ 2 mM L-glutamine  

+ 100 U/ml penicillin  

+ 100 µg/ml streptomycin 

+ 5 % GM-CSF 

Cell line medium 

IMDM + 5 % FCS  

+ 50 µM β-mercaptoethanol 

+ 100 U/ml penicillin  

+ 100 µg/ml streptomycin 

Cytometric bead array (CBA) buffer PBS + 1 % FCS 

Fixation buffer PBS + 0.7 % PFA 

Flow cytometry buffer  PBS + 2 % FCS 

Lysis buffer (pH 7.4) 

155 mM NH4Cl 

10 nM KHCO3 

100 µM EDTA-Na2 

Passive Lysis Buffer 5X Promega, Madison, USA 

PBS-EDTA PBS + 2 mM EDTA-Na2 

PEG-it Virus Precipitation Solution System Biosciences, Palo Alto, USA 

Staining Buffer Promega, Madison, USA 

T cell isolation buffer 

EMEM + 2 % FCS 

+ 100 U/ml penicillin  

+ 100 µg/ml streptomycin 



MATERIAL 

32 

 

Test medium / spleen cell medium 

IMDM + 5 % FCS 

+ 50 µM β-mercaptoethanol  

+ 2 mM L-Glutamine  

+ 100 U/ml penicillin  

+ 100 µg/ml streptomycin 

Washing buffer 
IMDM + 5 % FCS  

+ 50 µM β-mercaptoethanol 

Table 4 Buffers, solutions, media 
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2.4 Consumables 

Consumable Manufacturer 

µ-Slide 8 well chambered coverslips Ibidi, Planegg, Germany 

1 ml tips Starlab, Hamburg, Germany 

10/20 µl tips Starlab, Hamburg, Germany 

12 well suspension culture plates Greiner Bio-One, Frickenhausen, Germany 

200 µl tips Starlab, Hamburg, Germany 

24 well suspension culture plates Greiner Bio-One, Frickenhausen, Germany 

24 well tissue culture plates Greiner Bio-One, Frickenhausen, Germany 

48 well tissue culture plates Greiner Bio-One, Frickenhausen, Germany 

6 well suspension culture plates Greiner Bio-One, Frickenhausen, Germany 

6 well tissue culture plates Greiner Bio-One, Frickenhausen, Germany 

96 well tissue culture plates Greiner Bio-One, Frickenhausen, Germany 

Aluminum foil Roth, Karlsruhe, Germany 

Cell culture flasks 175 cm
2
 Greiner Bio-One, Frickenhausen, Germany 

Cell culture flasks 25 cm
2
 Greiner Bio-One, Frickenhausen, Germany 

Cell culture flasks 75 cm
2
 Greiner Bio-One, Frickenhausen, Germany 

Cell strainer 40 µm Greiner Bio-One, Frickenhausen, Germany 

Cell strainer 70 µm Greiner Bio-One, Frickenhausen, Germany 

Centrifugal filter (100 kDa) Merck Millipore, Darmstadt, Germany 

Centrifuge tubes 15 ml Greiner Bio-One, Frickenhausen, Germany 

Centrifuge tubes 50 ml Greiner Bio-One, Frickenhausen, Germany 

Disposable syringes 1 ml Braun, Melsungen, Germany 

Disposable syringes 20 ml BD Biosciences, Heidelberg, Germany 

Glass fiber filters Perkin Elmer, Waltham, USA 

Microcentrifuge tubes 0.5 ml Roth, Karlsruhe, Germany 

Microcentrifuge tubes 1.5 ml Eppendorf, Hamburg, Germany 

Microcentrifuge tubes 2 ml Eppendorf, Hamburg, Germany 

Needles 20G x 1 1/2", 0.9 x 40 BD Biosciences, Heidelberg, Germany 

Needles 25G x 5/8", 0.5 x 16 Braun, Melsungen, Germany 

Nylon wool Kisker Biotech, Steinfurt, Germany 

Petri dishes Ø 94 mm Greiner Bio-One, Frickenhausen, Germany 

Polystyrene tubes 5 ml, round-bottom Corning Inc., Corning, USA 

Serological pipette 10 ml Greiner Bio-One, Frickenhausen, Germany 

Serological pipette 25 ml Greiner Bio-One, Frickenhausen, Germany 

Serological pipette 5 ml Greiner Bio-One, Frickenhausen, Germany 

Serological pipette 50 ml Greiner Bio-One, Frickenhausen, Germany 

Syringe filter, 0.22 µm Merck Millipore, Darmstadt, Germany 

Table 5 Consumables 
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2.5 Antibodies 

Epitope Reactivity Label Clone 
Conc. 

[mg/ml] 

Per sample 

[µl] 
Manufacturer 

CD11c 

hamster - anti-

mouse 

Allophyco- 

cyanin (APCf) 
N418 0.2 0.125 

eBioscience, San 

Diego, USA 

hamster - anti-

mouse 
FITC N418 0.5  

eBioscience, San 

Diego, USA 

hamster - anti-

mouse 

Phycoerythrin 

(PE)/cyanine 7  

(PE-Cy7) 

N418 0.2 0.2 
eBioscience, San 

Diego, USA 

CD16/ 

CD32 
rat -  

anti-mouse 
- 2.4G2 0.268 0.5 

Department of 

Dermatology, 

University 

Medical Center, 

Mainz, Germany 

CD19 

rat -  

anti-mouse 
PE 1D3 0.2 0.2 

BD Biosciences, 

Heidelberg, 

Germany 

rat -  

anti-mouse 

APCf /cyanine 7 

(APCf-Cy7) 
1D3 0.2 0.2 

BD Biosciences, 

Heidelberg, 

Germany 

CD209  
rat -  

anti-mouse 
- LWC06 0.5 (see 3.1.3.2) 

eBioscience, San 

Diego, USA 

CD3e 

hamster - anti-

mouse 
PE-Cy7 

145-

2C11 
0.25 0.2 

eBioscience, San 

Diego, USA 

hamster - anti-

mouse 

PE/cyanine 5 

(PE-Cy5) 

145-

2C11 
0.25 0.2 

eBioscience, San 

Diego, USA 

CD68 
rat -  

anti-mouse 
PE FA-11 0.5 0.2 

Biolegend, San 

Diego, USA 

CD80 

hamster - anti-

mouse 
FITC 16-10A1 0.25 0.5 

eBioscience, San 

Diego, USA 

hamster - anti-

mouse 
PE 16-10A1 0.3 0.2 

BD Biosciences, 

Heidelberg, 

Germany 

CD86 

rat -  

anti-mouse 
FITC GL-1 0.5 0.5 

eBioscience, San 

Diego, USA 

rat -  

anti-mouse 
PE GL-1 0.25 0.2 

eBioscience, San 

Diego, USA 

rat -  

anti-mouse 
PE-Cy7 GL-1 0.2 0.2 

eBioscience, San 

Diego, USA 

MHC 

class II  

I-A/I-E 

rat -  

anti-mouse 
eFluor450 

M5/ 

114.15.2 
0.5 0.2 

eBioscience, San 

Diego, USA 

Table 6 Antibodies 
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2.6 Nanoparticles 

Name Modifications Manufacturer 

Dex-blank - AG Wich 

Dex-MDP MDP AG Wich 

Dex-R848 R848 AG Wich 

Dex-MDP/R848 MDP + R848 AG Wich 

Encapsulation measurements:   

Dex-MDP-FITC MDP-FITC AG Wich 

Dex-MDP-FITC/R848 MDP-FITC + R848 AG Wich 

Table 7 Dextran-based NPs used for experiments 

 

Name Modifications Cross-linker Manufacturer 

OVA-NC Cy5-Oligo TDI AK Landfester 

OVA-DQ-NC Cy5-Oligo, OVA-DQ TDI AK Landfester 

OVA-MDP-NC Cy5-Oligo, MDP TDI AK Landfester 

OVA-R848-NC Cy5-Oligo, R848 TDI AK Landfester 

OVA-MDP/R848-NC Cy5-Oligo, MDP + R848 TDI AK Landfester 

Encapsulation measurements:    

OVA-MDP-Alexa 488-NC 
Cy5-Oligo,  

MDP-Alexa 488 
TDI AK Landfester 

OVA-MDP-Alexa 488/R848-NC 
Cy5-Oligo,  

MDP-Alexa 488 + R848 
TDI AK Landfester 

Alternative cross-linking:    

OT-DN-R848-NC 
Cy5-Oligo, R848,  

OVA-based 
TET / DN AK Landfester 

HT-DN-R848-NC 
Cy5-Oligo, R848,  

HSA-based 
TET / DN AK Landfester 

Table 8 Protein-based NCs used for stimulation experiments 

 

Name Modifications Manufacturer 

OVA-PEG2000 (2.47) Cy5-Oligo, 2.47 PEG / cm
2
 AK Landfester 

OVA-PEG2000 (0.54) Cy5-Oligo, 0.54 PEG / cm
2
 AK Landfester 

OVA-PEG2000 (0.18) Cy5-Oligo, 0.18 PEG / cm
2
 AK Landfester 

OVA-PEG3400 (0.83) Cy5-Oligo, 0.83 PEG / cm
2
 AK Landfester 

OVA-PEG3400 (0.22) Cy5-Oligo, 0.22 PEG / cm
2
 AK Landfester 

OVA-PEG5000 (0.19) Cy5-Oligo, 0.19 PEG / cm
2
 AK Landfester 

Table 9 PEGylated and antibody-modified OVA-NCs used for experiments 
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Name Modifications Manufacturer 

HES-NC Cy5-Oligo AK Landfester 

HES-siRNA-NC Cy5-Oligo, luciferase-siRNA AK Landfester 

HES-control-NC control-siRNA (AF647) AK Landfester 

HES-PEG-NC Cy5-Oligo, PEG AK Landfester 

HES-PEG-siRNA-NC Cy5-Oligo, PEG, luciferase-siRNA AK Landfester 

HES-PEG-control-NC PEG, control-siRNA (AF647) AK Landfester 

Targeting experiments:   

HES-PEG-siRNA-DC-SIGN-NC 
Cy5-Oligo, PEG, luciferase-siRNA, 

αDC-SIGN antibody 
AK Landfester 

HES-PEG-control-DC-SIGN-NC 
PEG, control-siRNA (AF647),  

αDC-SIGN antibody 
AK Landfester 

Table 10 HES-NC used for experiments 
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2.7 Kits 

Kit Application Manufacturer 

Alexa Fluor 488 5-SDP ester 

Labeling kit 

Fluorescent 

labeling 
Thermo Fisher Scientific, Waltham, USA 

CBA Flex Set (IL-1β, IL-5, IL-6, 

IL-10, IL-12p70, IFN-γ, TNF-α) 

Cytokine 

measurement  
BD Biosciences, Heidelberg, Germany 

iScript cDNA Synthesis Kit cDNA synthesis Bio-Rad, Hercules, USA 

Luciferase Assay System 

Firefly 

luciferase 

measurement 

Promega, Madison, USA 

Pierce LAL (Limulus amebocyte 

lysate) Chromogenic Endotoxin 

Quantitation Kit 

Endotoxin 

measurement 
Thermo Fisher Scientific, Waltham, USA 

RNeasy Mini Kit RNA isolation Qiagen, Hilden, Germany 

Table 11 Commercial kits 

 

2.8 Software 

Software Application Manufacturer 

Attune NxT software 

2.6 

Cytometric measurement / 

analysis 

Thermo Fisher Scientific, Waltham, 

USA 

BD FACSDiva 8.0 Cytometric measurement BD Biosciences, Heidelberg, Germany 

CFX Manager Real-time PCR analysis Bio-Rad, Hercules, USA 

Database for 

Annotation, 

Visualization and 

Integrated Discovery 

(DAVID) 6.8 

Bioinformatic resources and 

functional annotation tool 

Leidos Biomedical Research, Reston, 

USA 

FlowJo 7.6.5 Cytometric analysis FlowJo, Ashland, USA 

Geneious R8.0 
Next-generation sequencing 

analysis 
Biomatters, Auckland, New Zealand 

ImageJ 1.5 Image analysis NIH, Bethesda, USA 

MestReNova 9.0.1 NMR spectroscopy 
Mestrelab, Santiago de Compostela, 

Spain 

MikroWin 2000 Microplate reader analysis 
Labsis, Neunkirchen-Seelscheid, 

Germany 

NTA software 3.0  
Nanoparticle tracking 

analysis 

Malvern Instruments, Herrenberg, 

Germany 

Prism 5.01 Statistical analysis GraphPad Software, La Jolla, USA 

ZEN 2009 Image analysis Carl Zeiss, Oberkochen, Germany 

Table 12 Software  
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3. Methods 

3.1 Nanoparticles synthesis / characterization 

3.1.1 Dextran nanoparticles (Dex-NPs) 

Spermine-functionalized and acetalated Dex (Sp-Ac-Dex, based on dextran 9-11 kDa) was 

synthesized as described by Fréchet et al. [236]. Sp-Ac-Dex particles were prepared using a 

double emulsion method, using a probe sonicator. For this, 10 mg Sp-Ac-Dex was 

dissolved in 800 µl DCM and 100 µl PBS or 70 µg R848/MDP in 100 µl PBS was added 

for the first sonication step of 10 s. In this way, four different dextran-based NPs were 

generated, empty, MDP-loaded, R848-loaded and MDP/R848-loaded ones. Then 4 ml PVA 

solution (3 wt% in PBS, 13-27 kDa, 87-89 % partially hydrolyzed) was added and the 

secondary water-in-oil-in-water emulsion was performed by sonication for 20 s. The 

resulting double emulsion was stirred overnight to remove all DCM by evaporation. Dex-

NPs were purified by ultracentrifugation (45,000 x g, 20 min, 20 °C) and washed with 

H2Ost (pH 8). Before lyophilization, 100 µl of PVA solution (0.3 wt% in H2Ost, pH 8) was 

added as cryoprotectant. The particle yield based on the initial Sp-Ac-Dex material was at 

45 %. 

The size of the Dex-NPs was determined by nanoparticle tracking analysis (NTA) with a 

NanoSight LM 10 microscope equipped with a green laser (λ = 532 nm) and a sCMOS 

camera. All Dex-NP samples were measured after sonification for 20 s at concentrations of 

approximately 2 µg per ml in PBS (purified through a 0.22 µm filter). Dex-NP movements 

were recorded as videos of 30 s at 25 °C. The size calculation was performed with NTA 

software. 

To quantify the encapsulated adjuvants, two additional particles were synthesized, 

including fluorescent MDP-FITC instead of MDP (Dex-MDP-FITC and Dex-MDP-

FITC/R848). All particles (10 mg per ml) were initially dissolved in 0.3 M acetate buffer 

(pH 5) and incubated for 24 h. The MDP content was analyzed by using MDP-FITC (λex = 

495 nm, λem = 525 nm). R848 was measured by means of its own fluorescent properties (λex 

= 260 nm, λem = 360 nm). The quantification was performed by fluorescent spectroscopy. 
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The concentration of encapsulated MDP-FITC and R848 was calculated with a calibration 

curve in the range of 0.0625 to 10 µg/ml. By these results, it was also possible to conclude 

the actual concentration of encapsulated non-labeled MDP in the other Dex-NP. In the 

experimental part of this work, Dex-MDP-FITC and Dex-MDP-FITC/R848 were 

exclusively used to analyze the binding/uptake of Dex-NPs by BMDCs. For DC stimulation 

assays, Dex-NPs containing non-fluorescent MDP were used to prevent problems due to 

potential functional differences between MDP and MDP-FITC. 

Before use in cell culture, the Dex-NPs were dissolved in endotoxin-free water and adjusted 

to 1 mg/ml. The synthesis and chemical characterization of the Dex-NPs were performed 

by … (Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, 

Germany, group of …). 

3.1.2 Ovalbumin nanocapsules (OVA-NCs) 

OVA-NCs were synthesized by an inverse miniemulsion process as previously described 

[237]. Briefly, 50 mg ovalbumin was dissolved together with 7.14 mg NaCl in 500 µl 

H2Ost. 13 nmol Cy5-Oligo were added to the aqueous phase. Next, 35.8 mg of the 

surfactant P((E/B)-b-EO) were dissolved in 7.5 g of cyclohexane and added to the aqueous 

phase under stirring (500 rpm). The pre-emulsion was homogenized by ultrasonication. 

Separately, 10.7 mg P((E/B)-b-EO) were dissolved in 5 g of cyclohexane and 2 mg of the 

cross-linker TDI was added to the solution. This mixture was added dropwise to the 

obtained miniemulsion and the reaction was allowed to proceed for 24 h at 25 °C. 

Afterwards, excess of surfactant was removed from the obtained nanocapsules by repetitive 

centrifugation (3743 x g, 30 min, RT) and replacement of the supernatant with fresh 

cyclohexane. For the nanocapsule transfer to water, 600 µl of the dispersion from 

cyclohexane were added dropwise to 5 ml of a 0.1 wt% aqueous SDS solution placed in an 

ultrasound bath during transfer. The sample was stirred with an open cap overnight to 

evaporate cyclohexane. Subsequently, excess of SDS was removed via four centrifugation 

steps replacing the supernatant with H2Ost. For loading of the nanocapsules with MDP and 

R848 respectively, 70 µl R848 (10 mg/ml in DMSO) and 250 µl MDP (10 mg/ml in H2Ost) 

were used and the amount of water was reduced accordingly to maintain 500 µl of total 
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volume. In this way, four different OVA-NCs were generated, empty, MDP-loaded, R848-

loaded and MDP/R848-loaded ones. 

The sonication was performed for 3 min at 70 % amplitude with a pulse regime of 20 s 

sonication and 10 s pauses in between. Visual characterization of the OVA-NCs via 

transmission electron microscopy (TEM) was performed with an accelerating voltage of 

120 kV and via scanning electron microscopy (SEM) with 170 V. 20 µl of diluted NC 

dispersion was dropped either onto a 300 mesh carbon-coated copper grid (for TEM) or 

onto a silica wafer (for SEM) allowing drying under ambient conditions. Dynamic light 

scattering (DLS) was used to determine the average size and size distribution of the NCs. 

The measurements were performed at 25 °C using a submicron particle sizer at an angle of 

90 °. Zeta potential of the capsules was measured in 10
-3

 M KCl solution at pH 6.8 and 25 

°C with a Zetasizer. 

To determine adjuvant (MDP and R848) encapsulation, we modified MDP with an Alexa 

Fluor 488 5-SDP ester (MDP-Alexa 488), following the manufacturer’s instructions, prior 

to capsule synthesis. For encapsulation measurement, two additional OVA-NCs were 

synthesized, including fluorescent MDP-Alexa 488 instead of MDP (OVA-MDP-Alexa 

488-NCs and OVA-MDP-Alexa 488/R848-NCs). After synthesis, the supernatants of all 

nanocapsule dispersions were separated from the capsules by using a centrifugal filter with 

molecular weight cut-off of 100 kDa (3743 x g, 30 min, RT). The residue pellets of OVA-

NCs were redispersed into 2 mg/ml of trypsin in PBS buffer and incubated for 24 h. The 

content of MDP-Alexa 488 was measured by using a microplate reader (λex = 498 nm, λex = 

519 nm) and calculated with a calibration curve in the range of 0.34 to 2.26 µg/ml. The 

concentration of R848 was analyzed by measuring its characteristic absorbance at λ = 325 

nm by using UV-Vis spectroscopy and calculated with a calibration curve in the range of 

0.01 to 1 mg/ml. MDP-Alexa 488 was exclusively used for encapsulation measurements. 

For stimulation assays with OVA-NCs, unmodified MDP was encapsulated. 

OVA-DQ containing OVA-NCs, which were used to detect the nanocapsule degradation, 

were synthesized by adding 300 µl of a DQ ovalbumin solution in PBS (1 mg/ml) to the 

aqueous phase during the synthesis process as described above. OVA-DQ describes OVA 

molecules which are heavily labeled with BODIPY FL fluorochrome, leading to a strong 
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quenching effect. Upon degradation of the OVA-DQ to peptides, the quenching effect is 

relieved. The fluorescence of the single, dye-labeled peptides can be measured (λex = 505 

nm, λex = 515 nm).  

3.1.2.1 Alternative cross-linking of OVA-NCs 

To optimize the properties of protein nanocapsules (such as cargo release, biocompatibility) 

and to avoid highly reactive isocyanates (e.g. TDI), we additionally tested a different cross-

linking chemistry (bioorthogonal tetrazole-ene cycloaddition instead of TDI). For that 

purpose, a new batch of protein nanocapsules based on OVA and HSA respectively, was 

synthesized [238], in which the relatively unspecific cross-linker TDI was replaced by a 

combination of TET (conjugated to OVA (OT) and HSA (HT)) and DN (as cross-linker). 

This synthesis method is one of the fastest bioorthogonal reactions, is performed under 

ambient conditions and does not require any metal catalysts. Furthermore, it is triggered by 

UV light. To assess the suitability of these capsules as drug delivery system, the adjuvant 

R848 was encapsulated into OVA-based as well as in HSA-based nanocapsules. 

3.1.2.2 PEGylation of OVA-NCs 

To equip OVA-NCs with isocyanate PEG, the synthesis process was slightly modified. 

Instead of 2 mg TDI, 11.4 mg TDI was used for the cross-linking. After removing 

excessive surfactant by repetitive centrifugation (3,743 x g, 30 min, RT) and redispersion in 

cyclohexane, 2.5 ml cyclohexane was added into 2.5 ml of OVA-NC dispersion at 25 °C. 

800 µl of acetone solution of isocyanate PEG (PEG2000, PEG3400 and PEG5000) at various 

concentrations was added dropwise into the capsule dispersion. The reaction was allowed 

to proceed for 4 h, and centrifuged for 30 min (3,743 x g, RT) afterwards to remove non-

coupled PEG. The precipitate was redispersed in 600 µl of cyclohexane. The final transfer 

into aqueous medium was performed similar to that of the non-PEGylated OVA-NCs. 

1
H-NMR spectroscopy was used to determine the number of PEG chains coupled to OVA-

NCs. A glass capillary tube containing 5 % of DCM in deuterated DCM was used as a 

constant internal reference for all samples. The PEGylated OVA-NC dispersion was freeze-

dried, re-dissolved in H2Ost, and set for NMR measurement inside a second glass vial with 

the internal reference. Integration of the resonance corresponding to PEG units (at 3.5 ppm) 

was compared with the resonance of DCM (at 5.5 ppm) to quantify the amount of PEG 
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chains in the dispersion. The number of capsules in the dispersion could be calculated 

through the solid content, the average diameter of the capsules, and the polymer to water 

ratio in the capsule, by assuming that the density of the shell was 1 g/cm
3
. 

1
H-NMR spectra 

were measured at 300 MHz with deuterated water as solvent and processed with the 

MestReNova software.  

The synthesis and chemical characterization of all protein-based NCs were performed by … 

(Max Planck Institute for Polymer Research, Mainz, Germany, group of …). 

3.1.3 Hydroxyethyl starch nanocapsules (HES-NCs) 

The first step to generate PEGylated HES-NCs was to synthesize 1,2-bis(2-

isocyanatoethoxy)ethane (hereafter referred to as diisocyanate). To do so, 4.5 g of 2,2'-

(ethylenedioxy)bis(ethylamine) was dissolved together with 5.2 g of TEA in 8 ml of DCM, 

and added dropwise into a solution of 3 g of triphosgene in 30 ml of DCM, while the latter 

was cooled to 4 °C. After finishing the addition, the system was kept at 4 °C for 20 min, 

then at RT for 1 h, followed by refluxing at 50 °C for 2 h. The solvent was then removed in 

vacuum, and the product extracted by diethyl ether. The product was checked by NMR and 

used without further purification in the next step.  

1,500 mg of 2-azido-1-ethylamine was dissolved in 2 ml of diethyl ether, and added at a 

speed of 2 ml/h by a syringe pump into the diisocyanate solution to synthesize 1-(2-

azidoethyl)-3-(2-(2-(2-isocyanatoethoxy)ethoxy)ethyl)urea. This specific product can be 

used to functionalize HES with an azide group at RT without any catalyst. After the 

addition, the solvent was removed at reduced pressure. The product was checked by 

infrared spectroscopy (IR), redissolved in DMF without further purifications and 

subsequently added dropwise into a solution of 500 mg of HES (with a theoretical degree 

of substitution of 3) in 6 ml DMF. The reaction was allowed to proceed for 48 h, and the 

product was purified by dialysis against H2Ost in a dialyzing tube with a molecular weight 

cut-off of 14 kDa, while the solution was freeze dried to obtain 520 mg of product (azide-

HES) afterwards.  

To synthesize siRNA-loaded HES-NCs, 50 mg of azide-HES, 20 nmol of siRNA 

(Luciferase GL2 Duplex siRNA or AF647-labeled AllStars Negative Control siRNA) and 
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10 nmol of Cy5-Oligo were dissolved in 460 µl H2Ost as the aqueous phase, while 70 µg of 

P((E/B)-b-EO) was dissolved in a mixture of 5 g cyclohexane and 2 g toluene (oil phase). 

The water phase was shaken gently at 40 °C for 3 h to ensure the complete solvation of 

azide-HES. Afterwards, it was mixed with the oil phase, stirred magnetically at 200 rpm for 

30 min, followed by ultrasonication at 70 % amplitude for 3 min with a pulse of 20 s on 

and 10 s off at 0 °C. 80 mg of HDDP was dissolved together with 20 mg P((E/B)-b-EO) in 

800 µl of toluene and added into the system after sonication. The whole system was 

magnetically stirred at 500 rpm for 5 days, while the temperature was kept at 50 °C.  

The encapsulation efficiency of HES-NCs was measured based on the release of the model 

drug D-mannosamine. A fluorogenic reaction between that substance and fluorescamine 

was used to quantify the drug release. Both empty and D-mannosamine-loaded HES-NCs 

were prepared and transferred into water. A standard working function of fluorescamine 

and D-mannosamine was established, while the same concentration of empty capsules was 

added in all the stock solutions of D-mannosamine. The water dispersion of D-

mannosamine-loaded capsules was tested under the same conditions, to measure free D-

mannosamine that was released from the HES-NCs.  

3.1.3.1 PEGylation of HES-NCs 

For a typical coupling reaction, 2 ml of the HES-NC dispersion was centrifuged at 4,000 

rpm for 30 min to remove the excess of surfactant. The upper phase was discarded, while 

the precipitate was redispersed in 2.5 g of cyclohexane by pipetting up and down. Either 16 

mg of isocyanate PEG5000 or isocyanate-PEG5000-isocyanate was dissolved in 0.63 g (800 

µl) of acetone and added dropwise into the capsule dispersion, which was magnetically 

stirred at 500 rpm. The reaction was allowed to proceed for 5 h, and centrifuged at 4,000 

rpm afterwards to remove non-coupled PEG. The precipitate was redispersed in 400 µl of 

cyclohexane and used for further steps. 

3.1.3.2 Antibody-modification of HES-NCs 

A 0.1 wt% SDS solution was prepared and filtered (0.2 µm pore size). 5 ml of this SDS 

solution was gently shaken in a sonication bath, while nanocapsules (from 2 ml of the 

prepared dispersion) were redispersed in 400 µl of cyclohexane and added slowly. Then the 

whole dispersion was magnetically stirred with 1,000 rpm at RT overnight in an open vial 
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to allow evaporation of the cyclohexane. The obtained dispersion was ultrafiltrated by a 

centrifugal filter with a molecular weight cut-off of 100 kDa in order to remove the excess 

of SDS. 

To obtain azide-functionalized antibodies, 0.4 mg of anti-DC-SIGN antibodies were 

dissolved in 400 µl of PBS buffer, and the pH was adjusted to 7.60 ± 0.05. A stock solution 

of 1.16 x 10
-3

 mg of NHS-PEG4-azide in DMSO was added, which was 3.7 mol equivalent 

to the antibody. The reaction was allowed to proceed for 1 h, while the excess of NHS-

PEG4-azide was removed by dialyzing.  

500 µl of 0.8 M boric acid solution was added to 5 ml of the HES-NC dispersion with a 

solid content of 0.1 wt%. The pH of the solution was adjusted to 8.3 and different amounts 

of DBCO-PEG4-NHS (prepared as a stock solution of 1 mg in 1ml DMSO) were added. 

The reaction was allowed to proceed for 4 h, uncoupled DBCO was removed by 

ultrafiltration. Coupled DBCO was quantified by a fluorogenic reaction with anthracene 

azide. Azide-functionalized anti-DC-SIGN antibodies were added with a 1:1 molar ratio to 

the coupled DBCO. The general two-step procedure to modify HES-NCs with antibodies is 

summarized in Figure 5. 

 

Figure 5 Antibody-modification of HES-NCs 

Surface modification of HES-NCs with antibodies is based on two major steps. The first one is the initial 

functionalization of the antibody with an azide group by NHS-PEG4-azide. The second step includes the 

coupling of the azide-functionalized antibody to the DBCO-functionalized HES-NC (adapted from [239]).  
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The synthesis and chemical characterization of all HES-NC formulations were performed 

by … (Max Planck Institute for Polymer Research, Mainz, Germany, group of ...). 

3.2 Mice 

Wildtype C57BL/6 and transgenic OT-I and OT-II (both C57BL/6 background) mice were 

bred and maintained in the Translational Animal Research Center of the University Medical 

Center Mainz under pathogen-free conditions on a standard diet. The recommendations of 

the Guide for the Care and Use of Laboratory Animals by the National Institutes of Health 

were followed. CD8
+
 OT-I T cells recognize OVA257-264 peptides in the context of H-2K

b
, 

and CD4
+
 OT-II T cells are specific for OVA323-339 peptide in the context of H-2 I-A

b
 and I-

A
d
 [240]. 

3.3 Primary immune cells 

All primary immune cells were obtained from mice. They were grown and treated in 

specific cell culture media and maintained at 37 °C and 10 % CO2. In all experiments the 

cells were handled under sterile conditions. 

3.3.1 Generation of bone marrow-derived dendritic cells 

BMDCs were differentiated from bone marrow progenitors of 8- to 10-week old C57BL/6 

mice as described by Bros et al. [241]. Initially, the mice were sacrificed by cervical 

dislocation and cleaned with ethanol. Both femur and tibia bones as well as the os ilium 

were removed by carefully peeling off the fur from the knee joint up to the back and 

dissecting the legs. BM cells were obtained by flushing the isolated bones with washing 

buffer. Potential bone fragments were removed with a cell strainer. Following 

centrifugation (300 x g, 10 min, 4 °C), the cell pellet was resuspended in 1 ml lysis buffer 

(pH 7.4) to eliminate erythrocyte contamination via osmotic shock. After stopping the lysis 

by adding 49 ml washing buffer, the cells were centrifuged again as described before. The 

cells were then counted with a Neubauer chamber and the cell concentration adjusted to 2 x 

10
6
 BM cell per ml. To analyze stimulation assays (see 3.5.1) and nanoparticle interaction 

assays (see 3.5.2) via flow cytometry, the BM cells were seeded in 12 well suspension 

culture plates with BMDC culture medium (2 x 10
5
 cells / 1.25 ml) and cultured at 37 °C 

and 10 % CO2. At day 3, 500 µl of the same medium was added into each well. On day 6, 1 
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ml of the old medium was replaced with 1 ml fresh medium per well. On day 7, the BMDC 

differentiation was complete and the cells were treated directly in the well. For the other 

DC assays, the BM cells were seeded on petri dishes (2 x 10
6
 cells / 10 ml). On day 3 and 

6, additional 5 ml of BMDC culture medium was added into these dishes. Aliquots of non-

adherent and loosely adherent BMDCs were harvested on day 7 of culture, centrifuged (300 

x g, 10 min, RT), counted and reseeded in wells of 6 well (for transcriptome analysis, see 

3.10), 24 well (for T cell proliferation assays, see 3.5.3 and 3.9) as well as 48 well (for 

cytometric bead arrays, see 3.5.1 and 3.7, and confocal microscopy analysis, see 3.5.2 and 

3.8) tissue culture plates in BMDC culture medium. 

3.3.2 Isolation of spleen cells 

Spleen cells were isolated from spleens of C57BL/6 mice. To do this, the animal was first 

sacrificed by cervical dislocation and cleaned with ethanol to sterilize the area of interest, 

namely the left lower back. After making an incision of 1-2 cm through the skin and the 

peritoneal wall, the spleen was grasped with a curved forceps and gently pulled out. 

Redundant connective tissue was removed and spleen cells were isolated by carefully 

grinding the spleen through a cell strainer into spleen cell medium. Next, the cells were 

centrifuged (300 x g, 10 min, 4 °C) and remaining erythrocytes were lysed by adding 1ml 

of lysis buffer (pH 7.4) to the cell pellet for 1 min. After stopping the lysis with 49 ml of 

spleen cell medium, the splenocyte suspension was centrifuged again and counted. For 

treatment (see 3.5.5), the freshly isolated spleen cells were then seeded on 24 well 

suspension culture plates in a volume of 1 ml spleen cell medium per well (1 x 10
6
 

cells/ml).  

3.3.3 Isolation of OT-I/OT-II T cells 

To isolate T cells from transgenic OT-I and OT-II mice, splenocytes of the corresponding 

animals were obtained as described in the previous section and transferred to 1 ml T cell 

isolation buffer. The resulting suspension was passed over nylon wool columns to enrich T 

cells and to get rid of unwanted immune cells. To do so, each column was placed in a 50 ml 

centrifuge tube and equilibrated with 20 ml T cell isolation buffer for 45 min at 37 °C in the 

water bath. Afterwards, the buffer was removed and the column was washed twice with 10 

ml of fresh pre-warmed buffer. The spleen cell suspension was dripped centrally onto the 
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column, followed by adding additional 500 µl of buffer. Afterwards, the tube including the 

column was closed, transferred to the water bath and incubated for 45 min at 37 °C again. 

The T cells were eluted with 20 ml of T cell isolation buffer, centrifuged (300 x g, 10 min, 

4 °C) and counted in 2 ml test medium. Finally, the T cells were ready for co-culture 

experiments (see 3.5.3). 

3.4 Cell lines 

Human HEK293T [242] and murine DC2.4 [58, 243] were grown in cell line medium. 

Cells were maintained at 37 °C and 10 % CO2, and were handled under sterile conditions. 

3.4.1 Generation of DC2.4-mCMV by lentiviral transduction 

HEK293T cells were co-transfected with a lentiviral vector encoding destabilized luciferase 

and the green fluorescent protein (GFP) 2 from the copepod Pontellina plumata (copGFP) 

under control of a minimal CMV (mCMV) promoter and a puromycin resistance gene 

driven by the EF1 promoter (pGreenFire1-mCMV+EF1α-puro), and helper plasmids 

(pCMV-dR8.91, pMD2.G) to generate replication-deficient HIV1-based VSV-G 

pseudotyped lentiviral particles as described [244]. Supernatants harvested 2 and 3 days 

later were pooled, and lentiviral particles were concentrated 100-fold as recommended by 

the manufacturer. DC2.4 cells (5 x 10
5
 cells in 1 ml) were seeded into 6-well tissue culture 

plates, and were transduced with 50 µl of lentiviral particle solution. After 2 days, 

puromycin (2 µg/ml) was added to select puromycin-resistant DC2.4 (DC2.4-mCMV). The 

generated cell line was grown under continuous puromycin selection and aliquots of 

DC2.4-mCMV were stored in liquid nitrogen. The components and the protocol for the 

lentiviral transduction were kindly provided by … (Department of Dermatology, University 

Medical Center, Mainz). 

Prior to experiments with this cell line, required amounts of aliquots were thawed and 

transferred to 10 ml cell line medium each supplemented with 2 µg/ml puromycin (in 25 

cm
2
 cell culture flask). After a few days, the culture medium, containing floating (dead) 

cells, was discarded. Attached cells were detached by adding 5 ml of PBS-EDTA for 3 min. 

The resulting suspension was centrifuged (300 x g, 10 min, RT). Afterwards, the pellet was 

resuspended in 15 ml fresh cell line medium and the cell suspension was transferred into a 
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75 cm
2
 cell culture flask (+ 2 µg/ml puromycin). At a confluency of approximately 80 %, 

medium was discarded and the cells were detached by adding 5 ml PBS-EDTA again for 3 

min. After centrifugation, the pellet was dissolved in 5 ml of fresh cell line medium. 100 µl 

of this suspension was added to a new 75 cm
2
 flask with 14.5 ml cell line medium (+ 2 

µg/ml puromycin). The mentioned process of detaching and reseeding was repeated each 

time the confluency reaches 80 % again. After approximately the third passage the cells can 

be used for experiments. Between each n of an experiment were at least three passages.  

3.5 In vitro cell culture 

3.5.1 Dendritic cell stimulation assays 

The stimulatory effect of different adjuvants and adjuvant combinations was determined via 

flow cytometry (expression of co-stimulatory molecules) as well as cytometric bead array 

(secretion of cytokines). For the former, BMDCs on day 7 of differentiation were treated 

with specific adjuvants and adjuvant-loaded nanocarriers (in 12 well suspension culture 

plates, see 3.3.1) as indicated in the figure legends for 24 h. All non-encapsulated 

substances were dissolved (supplied lyophilized) in endotoxin-free water and applied to the 

cells under sterile conditions. After incubation, cells were harvested and transferred into 

polystyrene tubes for cytometric analysis (see 3.6).  

To measure adjuvant-triggered cytokine secretion, day 7 BMDCs were seeded in 48 well 

tissue culture plates (1 x 10
6
 cells in 1 ml BMDC culture medium per well, see 3.3.1) and 

treated with different amounts of adjuvants, adjuvant combinations and adjuvant-loaded 

nanocarriers (indicated in the figure legends) for 24 h. Afterwards, supernatants were 

collected and secreted cytokines measured via cytometric bead array (see 3.7). 

3.5.2 Nanoparticle interaction assays 

The interaction of BMDCs with nanoparticular formulations was assessed by applying 

defined amounts of NPs to the cells and, after incubation, subsequent analysis of NP 

binding, uptake and degradation based on NP’s fluorescent label. For cytometric analysis 

(see 3.6), cells were treated in 1 ml BMDC culture medium in 12 well suspension culture 

plates (see 3.3.1) and collected in polystyrene tubes after expiration of the incubation times 
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as indicated in the figure legends. Similar to the BMDC assays, the interaction of DC2.4-

mCMV (see 3.4.1) with variously modified HES-NC was analyzed by incubating the cell 

line with those nanocapsules. To measure the interaction via flow cytometry, 3 x 10
5
 cells 

per sample were treated with certain amounts of HES-NC for 24 h. After that, cells were 

collected in polystyrene tubes for cytometric analysis.  

Cellular interaction with NPs was also analyzed via confocal microscopy (see 3.8). 

Therefore, BMDCs (3 x 10
5
 cells in 400 µl BMDC culture medium) as well as DC2.4-

mCMV (3 x 10
5
 cells in 400 µl cell line medium) were treated with NPs in 48 well tissue 

culture plates (see 3.3.1) as indicated. Afterwards, the samples were stained, transferred to 

chambered coverslips and imaged. 

To assess the influence of endocytosis on NP uptake, the interaction assays for flow 

cytometry and confocal microscopy were partly performed at 4 °C. Energy-dependent 

engulfing processes, such as clathrin- or caveolae-dependent endocytosis, can be slowed 

down by reducing the temperature [245]. At 4 °C these processes are almost completely 

inhibited. A reduced fluorescence signal at 4 °C indicates a reduced cellular uptake of NPs. 

Required quantities of NPs were calculated on the basis of known stock concentrations. 

Before use, NP formulations were checked for turbidity and suspended sediment. 

Suspicious samples were rejected. Additionally, all NP formulations were tested for 

potential endotoxin contaminations by LAL assay (see 3.11). In accordance with 

recommendations of the FDA, an endotoxin concentration of 0.5 EU/ml was used as 

permitted maximum [246]. 

3.5.3 Dendritic cell co-culture with T cells 

To measure the capacity of BMDCs, treated with protein nanocapsules, to trigger 

proliferation of antigen-specific T cells, 10
6
 cells were incubated with the different OVA-

NCs or soluble OVA as control in 24 well tissue culture plates for 12 h. Afterwards, some 

samples were stimulated with LPS (100 ng/ml) or Dex-NPs as indicated. After 6 h of 

additional incubation, all BMDC samples were harvested and thoroughly washed. Splenic 

OT-I and OT-II T cells (see 3.3.3) were co-cultured with serially diluted BMDCs (starting 

with 10
4
) in triplicates in a volume of 0.2 ml of test medium on 96 well tissue culture plates 
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for four days. Co-culture supernatants were collected for T cell cytokine measurement (see 

3.7). T cell proliferation was assessed as genomic incorporation of [Methyl-
3
H] thymidine 

(see 3.9). 

3.5.4 Luciferase knockdown assay 

To determine the efficiency of HES-NC to transport functional siRNA into DC2.4-mCMV, 

luciferase-specific siRNA (Luciferase GL2 Duplex, not labeled) and non-coding siRNA 

(AllStars Negative Control, AF647-labeled) respectively, were encapsulated into HES-NC 

(see 3.1.3). DC2.4-mCMV cells were seeded onto 24 well tissue culture plates (1 x 10
5
 

cells in 1 ml per well) 24 h prior to HES-NC treatment. The medium was replaced with 500 

µl fresh medium per well. Afterwards, the siRNA-loaded HES-NC (300 µg/ml) were added 

to the cells in triplicates. As positive control, cells were transfected with luciferase-specific 

siRNA (5 pmol per well) via lipofectamine, according the manufacturer’s instructions. 

After incubation for 24 h, the cells were lysed with Passive Lysis Buffer and luciferase 

activity was measured with a Centro LB 960 Microplate Reader and the MikroWin 2000 

software. 

3.5.5 Nanoparticle binding with spleen cells 

The interaction of splenocytes with NPs was assessed by seeding freshly isolated spleen 

cells (see 3.3.2) on 24 well suspension culture plates in a volume of 1 ml spleen cell 

medium. Spleen cells were treated with adjuvant-loaded OVA-NCs as indicated in the 

figure legends. Cellular binding by DCs, macrophages, B and T cells was assessed by 

measuring the resulting frequencies of NC-positive cells in flow cytometry. Additionally, 

DCs and macrophages were tested for their activation status. To prepare the samples for the 

subsequent cytometric analysis (see 3.6), they were collected in polystyrene tubes. 

3.6 Flow cytometry 

Flow cytometry describes a laser-based biophysical method to identify cell populations and 

to analyze them distinctly. This high-throughput machinery enables the quantification of 

thousands of cells and particles in real time on the basis of their size, granularity and 

biomarker expression. For this purpose, the flow cytometer is equipped with a flow cell and 
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a complex composition of lasers, optical modules, mirrors, bandpass filters and detectors. 

This setup is complemented by a computer system for raw data acquisition (Figure 6).  

 

 

Figure 6 Schematic illustration of a flow cytometer  

Cells in the laminar fluid stream are exposed to distinct laser wavelengths. As a result, cell-associated 

fluorochromes are excited and emit fluorescence. By a complex arrangement of mirrors and filters, the 

different emissions are guided to their corresponding detectors. Resulting signals are processed and flow 

cytometric raw data is acquired for further analysis. 

 

The scattering and emission of optical signals is used to differentiate cells. If a sample is 

inserted into the flow cytometer, the containing cells are guided by a laminar fluid stream 

through a capillary and pass specific optical modules one by one. There, the cells are 

exposed to lasers of defined wave lengths. The beam of one laser (488 nm) is scattered by 

the size and granularity of the cell and the resulting scattered light is detected. Thereby, the 

forward scatter (FSC) results from the cell size (measurable as area FSC-A, height FSC-H, 

and width FSC-W), the side scatter (SSC) is based on the cell granularity (measurable as 

area SSC-A, height SSC-H and width SSC-W). These two parameters enable a first 
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differentiation of cell populations by their size and granularity. Moreover, distinct cell 

subpopulations can be identified by staining characteristic biomarkers with fluorochrome-

labeled antibodies or ligands prior to cytometric analysis. Cellular interaction with NPs can 

be analyzed by using fluorescent-labeled nanocarriers and measuring the proportion of cells 

positive for the corresponding fluorescence. Exited by defined laser wavelengths, the 

fluorochromes emit fluorescence that is sensed by detectors. In this way, cells can be 

classified into biomarker/NP positive and negative. By the use of selected laser, filter and 

detector combinations, it is possible to analyze various biomarkers in parallel. However, it 

is essential to ensure that the absorption and emission spectra of the fluorochromes do not 

overlap. Otherwise, a compensation of the corresponding fluorochromes is necessary. 

In this thesis, the flow cytometry was used as an essential tool to investigate the interaction 

of immune cells with different nanoparticular system and to examine if the used 

nanocarriers fulfil their intended immunological effect. Moreover, the capacities of various 

adjuvants and adjuvant combinations to induce an increased expression of the co-

stimulatory molecules CD80 and CD86 was assessed, among others, by this method. 

3.6.1 Cell surface staining 

For flow cytometric analysis, cellular surface biomarkers were stained by initially 

centrifuging (300 x g, 10 min, 4 °C) the samples in polystyrene tubes and discarding the 

supernatants. Cell pellets were resolved in 1ml pre-cooled staining buffer per sample and 

centrifuged again (300 x g, 10 min, 4 °C). Afterwards, the pellets were resuspended and 25 

µl of 2.4G2 solution (0.268 mg/ml, 1:100 in staining buffer) was added to each sample and 

incubated for 15 min at RT to block Fc receptor-mediated staining. The final staining step 

was performed by applying 50 µl of a prepared master mix (labeled antibodies in staining 

buffer, diluted according to 2.5) to each sample. The samples were incubated for 30 min at 

4 °C and the staining was stopped by adding 1 ml of staining buffer per sample. Remaining 

antibodies were removed by washing the samples once with 1 ml staining buffer each as 

described above. Finally, each sample was resuspended in 500 µl fixation buffer.  

The samples were measured with the two flow cytometers FACS Canto II (equipped with 

the FACSDiva software) and the Attune NxT (equipped with the Attune NxT software). All 

measurements of a project section were done with the same device. Cell characterization 
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and subpopulation definition were performed by the use of gating strategies, systematical 

procedures to visually partition the initial population by the means of size, granularity, 

biomarker expression and nanocarrier signals step by step. For each specific question, an 

individual gating strategy was prepared. Each strategy served as template for all following 

experiments with the corresponding NP. For spectral compensation, unstained controls and 

single-stained samples were prepared in parallel. Cell doublets, so cell agglomerates that 

can potentially give false positive results, were excluded when indicated.  

In this way, it was possible to i) identify specific cell populations (Table 13), ii) analyze 

BMDC activation levels (by CD80 and CD86 expression) and iii) measure NP 

binding/uptake/degradation by different immune cell types (with NP-specific fluorescence 

signals) very precisely. Flow cytometric data was finally processed with the FlowJo 

software. The gating strategies used in this thesis were attached in the Supplementary Data 

(see 8.1).  

 

Cell population Identification markers 

DCs / BMDCs CD11c
+
, MHC-II

+
 

Macrophages CD68
+
, MHC-II

+
 

B cells CD19
+
, MHC-II

+
 

T cells CD3
+
, MHC-II

-
 

Table 13 Identification of cell populations in flow cytometry 

 

3.6.2 Viability measurement 

Cellular viability is an additional parameter that can be measured by flow cytometry. For 

that purpose, ether fluorescent-labeled molecules that bind apoptosis/necrosis markers or 

fluorescent substances that intercalate into DNA are usually used to detect dying or dead 

cells. Viability of NP-treated immune cells (1 x 10
6
 cells/ml) was assessed by incubating 

the cells with at least the highest NP concentrations used in the experiments (OVA-NCs: 

150 µg/ml; Dex-NPs: 100 µg/ml; HES-NCs: 300 µg/ml) for 24 h (see 3.5.2). Untreated 

cells as well as cells treated with soluble adjuvants were analyzed for comparison. As 



METHODS 

54 

 

positive control, cells were supplemented with 10 vol-% DMSO. Subsequently, samples 

were harvested and transferred to polystyrene tubes. 1 ml of HBSS was added to each 

sample, followed by centrifugation (300 x g, 10 min, 4 °C). The supernatants were 

discarded. Afterwards, the cells were treated with Alexa Fluor 647-labeled Annexin V (0.3 

µl in 50 µl HBSS per sample) to stain surface-exposed phosphatidylserine of apoptotic 

cells, and 7AAD (2.5 µl in 50 µl HBSS per sample) to identify necrotic/late apoptotic cells. 

Similar to trypan blue, 7AAD is able to intercalate into chromosomal DNA of dying cells. 

The samples were mixed and incubated for 15 min at RT. After adding 300 µl HBSS to 

each sample, they were stored on ice till measurement. The ratios of apoptotic as well as 

necrotic/late apoptotic cells were determined via flow cytometry by plotting the signals of 

Annexin V against the signals of 7AAD. Cells negative for both Annexin V and 7AAD 

were defined as living. By additionally measuring the frequencies of early apoptotic 

(Annexin V
+
 7AAD

-
), necrotic (Annexin V

-
 7AAD

+
) and double-positive late 

apoptotic/necrotic (Annexin V
+
 7AAD

+
) cells, the cytotoxicity of a nanoparticular 

formulation for a distinct cell type was finally evaluated (Figure 7). 

 

 

Figure 7 Viability measurement via 7AAD/Annexin V double staining 

Representative dot plots show cell samples with high (left) and low (right) viability after undergoing viability 

staining with 7AAD and Annexin V. The displayed percentages in the four sections indicate to what 

proportion the cells are viable (Annexin V
-
 7AAD

-
), early apoptotic (Annexin V

+
 7AAD

-
), necrotic (Annexin 

V
-
 7AAD

+
) or late apoptotic/necrotic (Annexin V

+
 7AAD

+
). 
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3.7 Cytokine measurement via cytometric bead array 

In addition to the expression of cell surface markers, the secretion of pro- and anti-

inflammatory cytokines is also an important parameter to characterize an immunological 

reaction. Distinct cytokine patterns enable conclusions to be drawn on the type of immune 

response. For instance, certain cytokines are markers for defined T cell subsets. An 

increased secretion of one of these cytokines can indicate the presence of a specific T cell 

subset, associated with its unique features. Furthermore, cytokine concentrations can be 

used to assess the strength and efficiency of an immune response and also to detect immune 

suppression.  

The basic principle of CBA is to catch free cytokines with beads (capture-beads) which 

were modified with cytokine-specific antibodies and a precisely defined amount of two 

different fluorochromes (APCf/APCf-Cy7). As a result, each cytokine-specific bead has its 

own fluorescent fingerprint to be distinguishable from the others. After adding fluorescent-

labeled detection antibodies (PE, detection-antibodies), which are all labeled to the same 

extent and specific for other epitopes of the cytokines, the bead-bound cytokines are ready 

for quantification via flow cytometer.  

Cytokine levels in BMDC culture medium and BMDC/T cell co-culture supernatants were 

measured by cytometric bead array (Table 14), following the manufacturer’s instructions. 

After treatment, samples were centrifuged (300 x g, 10 min, 4 °C) and supernatants were 

collected and frozen till bead analysis. Samples for testing were then thawed. In parallel, 

master mixes for capture-beads and detection-antibodies as well as a cytokine standard 

dilution series (from 0 to 10,000 pg/ml) were prepared. To capture the cytokines, 10 µl of 

each sample was mixed with 10 µl of capture-beads master mix (0.2 µl of each required 

bead filled up with CBA buffer to 10 µl in total). After 1 h incubation in the dark at RT, 10 

µl of detection-antibodies master mix (0.2 µl of each required antibody filled up with CBA 

buffer to 10 µl in total) was added to each sample. The samples were incubated again for 1 

h under the same conditions and washed once with 1 ml CBA buffer. Afterwards, the 

samples were resuspended in 100 µl CBA buffer and had to be measured within an hour. 
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Source Quantified cytokines 

BMDCs IL-1β, IL-6, IL-10, IL-12, TNF-α 

BMDC/T cell co-culture IFN-γ, IL-5, IL-10 

Table 14 Cytokines quantified via cytometric bead array 

 

3.8 Confocal laser scanning microscopy 

For visual clarification of biological and medical questions, various microscopic methods 

are available. In contrast to the commonly used conventional light microscopy, 

fluorescence microscopy enables the detection of single molecules or low-molecular 

structures, such as proteins or specific chromosomal regions, on the basis of fluorescence 

emissions. Therefore, targets of interest are tagged with fluorescence-labeled target-specific 

antibodies or substances. Alternatively, the sequence of a fluorescent protein (e.g. GFP) can 

be integrated into a specific locus in the DNA (under the control of a present promoter) to 

detect the protein distribution all over the cell. After excitation of the fluorescent 

components with distinct laser wavelengths, the resulting emissions can be detected and 

visualized with a combination of detection and processing units. Similar to flow cytometry, 

it is possible to detect a number of fluorescent sources simultaneously as long as their 

emission spectra do not overlap. However, resolution and contrast of the common 

fluorescence microscopy is technically limited. It is not possible to determine the exact 

spatial position of a signal. Especially when you investigate the interaction of immune cells 

with nanoparticular formulations, it is essential to know if and to what extent NPs are 

bound and taken up by cells. Flow cytometry enables to differentiate between fluorescence 

positive and negative cells, but it lacks distinctive features of extra- and intracellular 

signals. Intracellular localization of NPs allows a prediction of the particles’ intracellular 

fate.  

A precise three-dimensional analysis of distribution and localization of fluorescence signals 

(such as labeled NPs) can be achieved by confocal laser scanning microscopy (CLSM), an 

advanced fluorescence-based imaging technique for increased resolution and contrast. By 

the use of a spatial pinhole, it is possible to detect light derived exclusively from the focus 

plane, while emitted light from planes above and below (out-of-focus background) is 
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effectively excluded. Thus, the resolution and the contrast of the focus plane are increased. 

To reconstruct the three-dimensional fluorescence distribution in a sample and, thereby, 

analyze the spatial localization of a specific fluorescence source, a series of multiple images 

(optical sections) of different planes of a sample are capture this way (Figure 6). 

 

 

Figure 8 Light path in a confocal laser scanning microscope 

Laser light, which is initially focused by lens and pinhole, is directed through the objective to the sample 

planes by galvanometric mirrors. Emission from the focus plane is guided through objective, emission filters 

and adjustable pinhole and reaches emission detectors. Resulting data is transmitted to the data processor for 

visualization. 

 

Due to these properties, the CLSM is a suitable method to study the interaction of immune 

cells with nanomaterials. Otherwise, it is difficult to evaluate if a NP is actually taken up. 

Accordingly, it perfectly complements the spectrum of methods to assess the interaction in 

its entirety.  
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In this study, CLSM was used to analyze the cellular uptake and fate of specific NPs in 

DCs. Therefore, NPs used for CLSM were all labeled with an appropriate fluorochrome. 

Apart from the evaluation of NP uptake and localization, CLSM was also used to detect 

intracellular degradation of OVA-NCs in BMDCs by visualizing the fluorescence emission 

resulting from the cleavage of OVA-DQ (see 3.1.2). Furthermore, the intracellular 

localization of dye-labeled siRNA released from HES-NC was performed with 

DC2.4mCMV. All samples were imaged with a LSM 710 in cooperation with … (I. 

Medical Clinic, University Medical Center, Mainz, Germany). Images were processed and 

analyzed with ImageJ and ZEN software. 

3.8.1 Membrane / cell core staining 

To visualize plasma membrane and cell core, the 48 well plates containing the samples 

were centrifuged (300 x g, 8 min, RT). The supernatants were discarded and cells were 

redispersed with 200 µl PBS per well. After two additional centrifugation (300 x g, 8 min, 

RT) and redispersion (200 µl PBS per well) steps, 2 µl of a DAPI solution (1:100 dilution 

of a 10 mg/ml stock) was added to each sample to stain cell cores. Samples were incubated 

in the dark at RT for 45 min. Then the washing procedure (mentioned above) was repeated 

two times. Before imaging, each sample was mixed with 1 µl CellMask Orange (1:50 

dilution of stock) to stain the plasma membrane and transferred to chambered coverslips. 

DAPI (λex = 358 nm, λem = 461 nm) and CellMask Orange (λex = 554 nm, λem = 567 nm) 

were detected and visualized on the basis of their fluorescent properties. In this way, it was 

possible to image plasma membranes and cell cores and thus to reconstruct the three-

dimensional cell proportions.  

3.8.2 Nanoparticle detection 

The interaction analysis of cells with NPs via fluorescence microscopy requires NP 

localization in relation to cellular compartments. To be able to detect NPs in CLSM, they 

have to be modified with a fluorochrome. In this study, either Cy5-Oligo (directly 

encapsulated, λex = 649 nm, λem = 670 nm) or AF647 (covalently bound to encapsulated 

siRNA) were used to visualize the NPs. In combination with membrane and cell core 

staining (see 3.8.1), the NP distribution over the cell can be determined very precisely. 

Additionally, it enables a differentiation between membrane bound and internalized NPs. 
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3.9 T cell proliferation assay 

T cell proliferation in BMDC co-culture with OT-I/OT-II T cells (see 3.5.3) was measured 

by genomic incorporation of [Methyl-
3
H] thymidine (0.25 µCi/well), added for the last 16 h 

of culture. Cells were harvested and transferred to glass fiber filters. The retained 

radioactivity of the methyl tritium was assessed quantified with a liquid scintillation 

counter.  

3.10 Transcriptome analysis 

To analyze the transcriptome, so the totality of all RNA molecules, of BMDCs treated with 

MDP/R848-loaded OVA-NCs, the next-generation sequencing (NGS) method RNA-Seq 

(also called “whole transcriptome shotgun sequencing”) was performed. With this method 

one is able to visualize the RNA composition and quantity of a single cell or a cell 

population at a defined time point [247]. In general, RNA-Seq is divided into three steps: i) 

Fragmentation and purification of the isolated RNA, ii) converting RNA into 

complementary DNA (cDNA) and adding sequencing adapters (cDNA library) and finally 

iii) sequencing of the prepared library. In the subsequent bioinformatic data analysis, the 

sequencing results are aligned to reference genomes to identify and quantify abundant 

RNAs. The NGS experiments in this thesis were performed and analyzed together with … 

(Max Planck Institute for Polymer Research, Mainz, Germany, group of …). 

3.10.1 RNA isolation 

For RNA isolation, BMDCs (2 x 10
6
 cells in 1 ml per well) were seeded into 6-well 

suspension culture plates in BMDC culture medium. 24 h later, cells were treated with 

MDP/R848-loaded OVA-NCs as well as empty OVA-NCs (both 75 µg/ml, see 3.1.2) in 

biological triplicates for 1, 2 and 4 hours. Untreated BMDCs were used as negative control. 

The three time points of each sample were pooled afterwards. The total RNA of the 

samples was extracted with the RNeasy Mini Kit, following the manufacturer’s 

instructions. The RNA quality was controlled by agarose gel electrophoresis, RNA quantity 

photometrically with a NanoDrop 8000. Then, the total RNA was transferred to StarSEQ 

(Mainz, Germany) to do additional quality and quantity tests and, subsequently, to perform 

the RNA-Seq. 
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3.10.2 RNA sequencing 

RNA-Seq was performed by StarSEQ. For that reason, the transferred samples were 

checked regarding RNA quality and quantity. Afterwards, mRNA was isolated from the 

total RNA, among other things, to get rid of ribosomal RNA. After cDNA library 

preparation, the samples were sequenced by an Illumina NextSeq 500 (Illumina, San Diego, 

USA). In total, 25 million paired-end reads (150 nucleotides (nt) per read) were created per 

sample (3.75 giga base pairs (Gbp) per sample). Data were obtained in the .fastq format. 

3.10.3 Quantification of NGS data 

The received RNA-Seq data were quantified by using the Geneious software. Initially, the 

.fastq files were imported. Low quality nucleotides were trimmed off (cutoff = 10 base 

pairs) and paired-end reads were assembled. The murine reference genome (mus musculus, 

C57BL/6) was obtained by the National Center for Biotechnology Information (NCBI) in 

the .fasta format (GCF_000001635.26_GRCm38.p6_genomic.fna) and annotations were 

added in .gff format (GCF_000001635.26_GRCm38.p6_genomic.gff). The pre-processed 

data sets were aligned against the reference sequence including all 21 chromosomes and 

also mitochondrial DNA. The same alignment settings were used for all samples (Table 

15). 

Setting Mode 

Sensitivity Custom 

Fine tuning Iterate 2 times 

Trim sequences Do not trim 

Map multiple best matches Randomly 

Allow gaps Yes 

Maximum gaps per read 3 % 

Maximum gap size 5,000 

Minimum overlap No 

Word length 24 

Index word length 14 

Ignore words repeated more than 8 times 

Maximum mismatches per read 10 % 

Maximum ambiguity 4 

Accurately map reads with errors to repeat regions No 
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Use paired read distances to improve assembly Yes 

Search more thoroughly for poor matching reads No 

Only map paired reads which match nearby No 

Table 15 Settings for RNA-Seq quantification with the Geneious software.  

 

With the help of the Geneious software, sequence overlaps were quantified and the final 

transcripts per kilobase million (TPM) values for all detectable genes were calculated and 

exported to Excel. The subsequent pathway analysis was based on these values. The 

quantification of the NGS raw data and the corresponding setting evaluation were 

performed by …. 

3.10.4 Pathway analysis 

Pathway analysis enables the identification of cellular signaling pathways which are 

associated with a list of genes. To generate lists of upregulated genes, the TPM mean 

values of the biological duplicates were calculated initially. By dividing the TPM mean 

values of each gene of one sample (numerator) by the TPM mean values of another sample 

(denominator), the mean enrichment scores for each gene were determined. A positive 

mean enrichment score indicates a gene, that is stronger expressed in the numerator sample 

than in the denominator sample. Consequently, dividing the TPM mean values of a sample 

of interest by the ones of a control sample provides a mean enrichment score for every gene 

in this sample comparison. For instance, an enrichment score of 5 means a five times higher 

expression of the specific gene. 

For every sample combination, a gene list, comprising genes that showed a mean 

enrichment score of at least 2, was generated. These lists were uploaded to online software 

DAVID Bioinformatics Resources 6.8 into the Functional Annotation Tool with the 

identifier “OFFICIAL_GENE_SYMBOL”. By means of the KEGG pathway database, the 

gene lists were aligned to prominent signaling pathways. Finally, the software generates a 

chart showing all relevant signaling pathways and the number of associated genes. 
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3.10.5 Real-time polymerase chain reaction 

To be able to check the RNA-Seq results with a different method, the RNA samples were 

also analyzed by quantitative real-time polymerase chain reaction (qPCR). Therefore, 

qPCR primers for several genes (upregulated, downregulated and balanced) were designed 

for the amplification of ~200 bp DNA fragments. The RNA samples were initially 

transcribed into cDNA by a cDNA Synthesis Kit according to the manufacturer’s 

instructions. Subsequently, the primers were mixed with SYBR Green and cDNA templates 

(Table 16) and transferred to the real-time system CFX96 for cyclic amplification and 

measurement of SYBR Green dye. The qPCR procedure followed a defined protocol (Table 

17). SYBR Green fluorescence was recorded after each round of amplification and 

afterwards for the determination of a melt curve, supported by the CFX manager software. 

Substance Amount 

iQ SYBR Green Supermix 10 µl 

F-Primer 1 µl 

R-Primer 1 µl 

cDNA template 3-100 ng 

Nuclease-free water To 20 µl 

Table 16 Composition of the qPCR mixture 

 

Finally, gene expression was calculated by using the ΔΔCt method [248]. GAPDH was 

used as a reference gene. The melt curve was analyzed carefully for successful 

amplification of target DNA fragments. 

Step Temperature / °C Length Count 

1 Equilibrium 50 2 min 1 x 

2 Initial Denaturation 95 10 min 1 x 

3 

Denaturation 95 15 sec 

40 x Annealing Variable (52-62) 30 sec 

Elongation 72 30 sec 

4 Final Elongation 72 10 min 1 x 

5 Equilibrium 50 5 sec 1 x 

6 
Melt curve 

determination 
50-95 - 1 x 

7 Storage 4 ∞ ∞ 

Table 17 qPCR protocol 
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3.11 Endotoxin quantification 

Before use, all NP formulations were checked for endotoxin contaminations. Therefore, 

aliquots of the corresponding formulations were prepared, matching the final working 

concentrations of the cellular assays. The measurement was done with the Pierce LAL 

Chromogenic Endotoxin Quantitation Kit, following the manufacturer’s instructions. 

Briefly, a series of endotoxin standards in the range of 0.1 to 1 EU/ml was prepared. 

Endotoxin free water was used as negative control. Standards, samples of interest and 

negative control were transferred to a 96 well tissue culture plate (50 µl per sample) in 

duplicates. 50 µl of LAL reagent was added to each well. The plate was incubated for 10 

min at 37 °C. Subsequently, 100 µl of chromogenic substrate solution was applied to each 

sample. After additional 6 min of incubation at 37 °C, the reaction was stopped by adding 

100 µl of stop reagent (25 % acetic acid) to each well. The absorbance was measured at 

405-410 nm on a microplate reader. The average absorbance of the negative control was 

subtracted from the average absorbance of all standards and samples. A standard curve was 

generated by plotting the resulting absorbance of the endotoxin standards in Excel. This 

curve was used to quantify the samples endotoxin contaminations. Thereby, the coefficient 

of determination, R
2
, had to be ≥ 0.98. In accordance with recommendations of the FDA, an 

endotoxin concentration of 0.5 EU/ml was used as permitted maximum [246]. 

3.12 Statistical analysis 

Data are presented as means ± SD (standard deviation) of the values. Data were analyzed 

by applying Student’s t test using GraphPad Prism. A p value of less than 0.05 was 

considered to be statistically significant. 
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4. Results 

4.1 One nanocarrier for DC-directed T cell stimulation 

An essential objective of this project was to generate and evaluate a nanocarrier that 

combines the two main components of a vaccine, antigen and adjuvant in an effective 

manner. Therefore, an adjuvant combination that showed stimulatory synergies for BMDCs 

was identified first. Next, this combination was encapsulated in Dex-NPs and thoroughly 

tested to be sure that it maintains its effects. Afterwards, OVA-NCs were evaluated as an 

antigen delivery system for BMDCs to mediate OVA-specific T cell proliferation. To align 

these two approaches, the adjuvant combination was encapsulated into OVA-NCs to 

generate a nanocarrier that has both properties. To check if adjuvant-loaded OVA-NCs 

featured the intended functionality, the capsules’ effect on BMDCs in the context of DC 

maturation and DC-mediated OVA-specific T cell stimulation was assessed. To understand 

the interplay between BMDCs and adjuvant-loaded OVA-NCs in more detail and on a 

deeper analysis level, the transcriptome of accordingly treated BMDCs was analyzed by 

RNA-Seq. Interaction assays with spleen cells were additionally performed to test, which 

splenic immune cell population showed a preference to bind OVA-NCs. Finally, a different 

cross-linking method for OVA-NCs was evaluated as a potential alternative for the 

controversially discussed cross-linker TDI. 

4.1.1 Potent NLR and TLR ligands as adjuvants for DC stimulation 

Adjuvant-mediated immune stimulation is one of the key factors of an effective 

vaccination. But the underlying mechanisms are versatile. A first step to realize an effective 

nanovaccine was to identify a suitable adjuvant combination. It is well-known, that some 

combinations provide stimulatory synergies, which may enable a reduction of the required 

adjuvant doses and thus weaker side effects.  

One project idea was to target differently localized intracellular PRRs addressing in 

particular a combination of a NLR and a TLR. Since the effects of NLR ligands were less 

predictable due to their poor membrane penetrability and the cytosomal receptor 

localization, six NLR ligands (according to the manufacturer’s recommendations) were 
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initially tested in different concentrations for their BMDC stimulatory effect based on the 

expression of co-stimulatory molecules (Figure 9). Three ligands were specific for NOD1 

and three for NOD2. The analysis was performed via flow cytometry and based on the 

attached gating strategy (see Figure S 1). 

 

 

Figure 9 Stimulatory effects of NLR ligands on CD80 and CD86 expression in BMDC 

BMDCs (2 x 10
5
 cells/ml) were treated with three NOD1 and three NOD2 ligands. The adjuvants were 

applied as indicated for 24 h. Frequencies of CD80 and CD86 in CD11c
+
/MHC-II

+
 BMDCs after in vitro 

stimulation were measured by flow cytometry (mean ± SD; n=3). *p < 0.05, **p < 0.01, ***p < 0.001, sample 

versus (vs.) untreated. 

 

The results indicated that all tested NLR ligands exert a detectable dose-dependent 

stimulatory effect on BMDCs. Particularly the highest concentrations of each adjuvant 
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induced a significantly increased expression of CD80 and CD86 after an incubation of 24 h. 

The NOD2 ligands MDP and L18-MDP turned out to be the most potent BMDC 

stimulators in the setup, whereas Murabutide, a synthetic derivative of MDP, evoked the 

weakest stimulation. Since L18-MDP, a stearoyl group-modified MDP, showed the 

strongest stimulatory effect on BMDCs, this NLR ligand was chosen to be tested for 

potential synergies when combined with TLR ligands. Thereby, L18-MDP served as an 

effective representative of MDP, since it carries the minimal NOD2 motif and shows good 

membrane penetrability due to its hydrophobicity. To identify synergistic or rather 

superadditive NLR/TLR combinations with L18-MDP, three commonly used TLR ligands, 

which are specific for endosomal TLRs, were picked for experimental setup: Poly I:C 

(engages TLR3), R848 (TLR7/8) and CpG (TLR9).  

4.1.2 Identification of (L18-)MDP + R848 as superadditive combination 

To assess potential superadditive stimulatory effects, BMDCs were treated with L18-MDP 

in combination with either the TLR3 ligand Poly I:C, the TLR7 ligand R848, or the TLR9 

ligand CpG for 24 h. All substances were applied simultaneously into the corresponding 

samples. The stimulatory capacities of these agents were evaluated on the basis of the 

expression of co-stimulatory molecules (via flow cytometry) and the secretion of pro-

inflammatory cytokines (via cytometric bead array). For cytometric measurements, all 

adjuvants were used in three concentrations as indicated in the figure legends. The analysis 

was done as shown in the gating strategy (see Figure S 1). To assess the induction of 

cytokine secretion, the highest concentration of each adjuvant was used. 

The measurement of CD80 and CD86 expression after administration of those adjuvants 

revealed diverse patterns of superadditive cooperation. Especially, the combined 

application of L18-MDP with Poly I:C and R848, respectively, showed increased 

stimulatory effects compared with the single adjuvant ones. This was particularly the case 

when focusing on the mean fluorescence intensities (MFIs) of CD86 (also by those of 

CD80 but weaker). There it seemed that the combination of 100 ng/ml of L18-MDP with 

either 1 µg/ml Poly I:C or 100 ng/ml R848 induced a significantly higher CD86 expression 

than the addition of the single agents. In this context it was remarkable that Poly I:C alone 

did not induce a detectable stimulation, whereas it exerted superadditive stimulatory effects 
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when combined with L18-MDP. In contrast, R848 triggered CD80 and CD86 upregulation 

in a dose-dependent manner. Moreover, when applied in combination with L18-MDP this 

effect was even more enhanced (Figure 10). CpG as potent TLR9 ligand showed no 

relevant superadditive cooperation with L18-MDP in this setup. Increases in CD80/CD86 

expression of L18-MDP (100 ng/ml) treated BMDCs by additional administration of CpG 

(5-500 ng/ml) were consistently non-significant (ns). 

 

 

 
Figure 10 Identification of superadditive TLR/NLR ligand combinations by MFIs 

BMDCs (2 x 10
5
 cells/ml) were analyzed for CD80 and CD86 expression after 24 h treatment with different 

TLR ligands and L18-MDP, alone or in combination as indicated, via flow cytometry. CpG (5-500 ng/ml), 

Poly I:C (0.1-10 µg/ml) and R848 (10-1000 ng/ml) were applied simultaneously to L18-MDP (1-100 ng/ml). 

Identification of possible superadditive effects was done on the basis of MFIs (mean ± SD; n=3). *p < 0.05, 

**p < 0.01. Data and figure published in the Journal of Controlled Release [249].  
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In contrast to the MFIs, CD80 and CD86 frequencies did not enable a comprehensive 

differentiation between differentially stimulated BMDCs (see Figure S 2). Accordingly, the 

final assessment of superadditive effects was based on the MFI results.  

Potential superadditive effects regarding the induction of cytokine secretion were analyzed 

by cytometric bead array. Therefore, the supernatants of adjuvant-treated samples were 

collected and analyzed for cytokines. The resulting cytokine patterns allowed drawing 

conclusions about the stimulatory capacity of the corresponding adjuvants, the pro- or anti-

inflammatory character of stimulation, and the theoretical phenotype of a subsequent 

stimulation-associated T cell polarization. IL-1β, IL-6, IL-12 and TNF-α, as prominent pro-

inflammatory markers of DC stimulation, as well as IL-10, a typical anti-inflammatory 

cytokine, were selected for analysis. The cytokine secretion induced by L18-MDP alone 

was consistently low, partly comparable to that of the untreated control. However, when 

combined with CpG, Poly I:C or R848, significantly increased concentrations of IL-6, 

TNF-α and IL-12 were detectable. Nonetheless, the overall IL-12 levels were very low. As 

in the flow cytometric analysis, the stimulatory effect of Poly I:C alone was marginal. The 

secretion of IL-1β was clearly enhanced after treatment with the combination L18-MDP + 

R848. The other two combinations did not reveal such an effect. Measurements of the anti-

inflammatory cytokine IL-10 showed superadditive effects in case of L18-MDP combined 

with Poly I:C or R848 (Figure 11). LPS was used as a well-established positive control.  

Since R848 turned out to be the most promising partner for L18-MDP to achieve a 

sufficient stimulation, the experimental focus was placed on this combination. In both flow 

cytometric analysis of co-stimulatory receptor expression and measurement of pro- and 

anti-inflammatory cytokine secretion, this combination evoked the strongest superadditive 

effects on BMDCs. The results for L18-MDP and R848 were summarized in one figure 

(Figure 12). 
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Figure 11 Cytokine profiles after treatment with soluble TLR/NLR ligand combinations 

Cytokine (pro-inflammatory: IL-1β, IL-6, IL-12, TNF-α, anti-inflammatory: IL-10) concentrations in 

supernatants of BMDCs (1 x 10
6
 cells/ml) treated with the NOD2 ligand L18-MDP (100 ng/ml) in 

combination with the TLR ligands CpG (500 ng/ml), Poly I:C (10 µg/ml) or R848 (100 ng/ml) for 24 h were 

assessed by cytometric bead array. Untreated as well as LPS-treated (100 ng/ml) BMDCs were used as 

control (mean ± SD; n=3). *p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in the Journal of 

Controlled Release [249]. 
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Figure 12 Superadditive BMDC stimulation with L18-MDP + R848 

BMDCs treated with L18-MDP (100 ng/ml) and R848 (100 ng/ml) for 24 h, were analyzed for maturation by 

flow cytometry and cytometric bead array. (a) Frequencies of CD80 and CD86 expression in CD11c
+
/MHC-

II
+
 BMDC after stimulation are indicated. Shown graphs are representative of three independent experiments 

each. (b) Quantification of CD80 and CD86 expression of differently treated BMDC. Data show the MFIs. (c) 

Cytokine contents in supernatants of L18-MDP/R848-treated BMDCs were assessed (mean ± SD; n=3). LPS 

(100 ng/ml) was used as positive control. *p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in 

the Journal of Controlled Release [249]. 
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4.1.3 Dual-adjuvant loaded Dex-NPs 

A next step was to synthesize and evaluate a nano-sized delivery system i) to transport the 

identified adjuvant combination into BMDCs as effective as possible and ii) to release the 

adjuvants intracellularly for subsequent receptor engagement. Due to its better suitability 

for nanoparticle synthesis, MDP was used instead of L18-MDP. In the following 

experimental sections the combination MDP + R848 constitutes the combination of choice. 

Acetal-modified Dex-NPs are a well-established drug delivery system used in different 

biomedical approaches and described in numerous publications. They are known to be a 

suitable carrier for a variety of substances and provide biocompatible properties at the same 

time. To test if these NPs are a suitable system for the delivery of MDP and R848 into 

BMDCs, four different Dex-NP variants were synthesized (see 3.1.1). Empty Dex-NPs 

(Dex-blank) were used as control to exclude unwanted effects induced by the Dex-NPs 

itself. Two variants were loaded with either MDP (Dex-MDP) or R848 (Dex-R848) alone 

to study the effect of the encapsulated single adjuvants. To examine whether the 

superadditive effect of MDP and R848 was preserved when encapsulated in Dex-NP, one 

variant was loaded with MDP + R848 (Dex-MDP/R848) in almost equimolar amounts 

(equal MDP/R848 concentrations as in Dex-MDP and Dex-R848).  

First, the generated Dex-NPs were characterized in detail. The diameter of the prepared 

Dex-NPs was on average 150 nm as determined by NTA (Figure S 3, Table S 1). For the 

single adjuvant particles (Dex-MDP and Dex-R848), the adjuvant loading was determined 

to be 1.34 nmol MDP and 1.26 nmol R848 per mg particle material, respectively. 

Regarding Dex-MDP/R848, the measurements revealed comparable payloads with 1.38 

nmol MDP and 1.29 nmol R848 per mg particle material (Table S 2). 

To ensure a sufficient NP quality and purity and to exclude cytotoxic effects on DCs, all 

Dex-NP formulations were initially checked for three relevant parameters: i) endotoxin 

contaminations, ii) binding properties and iii) cytotoxic effects. Endotoxin contaminations 

in NP formulations can induce DC stimulation. To avoid this potential source of errors, 

endotoxin concentrations in Dex-NP formulations were determined by LAL assay (see 

3.11). The binding of Dex-NPs by BMDCs was visualized by incubating those with Dex-

NPs including MDP-FITC. The frequencies of MDP-FITC
+
 BMDCs were assessed in a 
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nanoparticle interaction assay (see 3.5.2) by flow cytometry (see Figure S 1). NPs itself as 

well as their individual components are potential sources for cytotoxicity. To rule out that 

the synthesized Dex-NPs were toxic for DCs, the viability of BMDCs treated with different 

concentrations of adjuvant-loaded Dex-NP was analyzed by 7AAD/Annexin V double 

staining (see 3.6.2). Cells treated with the soluble adjuvant counterparts were used as a 

control. 

The quality tests for endotoxins showed no relevant contaminations according to the FDA 

recommendations (maximum 0.5 EU/ml). In all samples the endotoxin concentrations were 

below the permitted maximum, even lower than that of sterile PBS which was used as 

control (Figure 13a). Unwanted stimulatory effects due to endotoxins could therefore be 

excluded in case of Dex-NPs. The interaction analysis of BMDCs with Dex-NPs on the 

basis of MDP-FITC revealed a dose-dependent binding. The frequencies of MDP-FITC
+
 

BMDCs were thereby highly comparable for both NPs, Dex-MDP-FITC and Dex-MDP-

FITC/R848 (Figure 13b), indicating a high degree of comparability across the Dex-NP 

formulations. Regarding NP cytotoxicity, no notable effect of the used Dex-NPs on BMDC 

viability was detectable. Compared with the positive control (10 vol-% DMSO), the 

viability of all Dex-NP samples was as high as in the untreated sample. Only the highest 

concentration of Dex-MDP (100 µg/ml) as well as soluble R848 (100 ng/ml) showed a 

slightly toxic effect on BMDCs as reflected by minimal increases in apoptotic and necrotic 

cells respectively (Figure 13c).  
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Figure 13 Quality tests for Dex-NP formulations 

Dex-NPs were tested to exclude endotoxin contaminations and cytotoxic effects on BMDCs. In addition, their 

binding by BMDCs was analyzed. (a) Endotoxin concentrations in Dex-NP formulations were assessed by 

LAL assay (n=2, two independent NP batches). (b) BMDCs (2 x 10
5
 cells/ml) were treated with Dex-MDP-

FITC and Dex-MDP-FITC/R848 (1-100 µg/ml). Binding of these NPs was measured based on MDP-FITC
+
 

cells (mean ± SD; n=2). (c) To measure cytotoxicity of adjuvant-loaded Dex-NPs, BMDCs (1 x 10
6
 cells/ml) 

were incubated with increasing concentrations (10-100 µg/ml) for 24 h. Viability was determined by 

7AAD/Annexin V staining and was visualized as classification into living, early apoptotic, late 

apoptotic/necrotic and necrotic cells. Cytotoxicity of soluble MDP and R848 (100 ng/ml) was analyzed for 

comparison. 10 vol-% DMSO was used as positive control. Figure 13b and c as well as corresponding data 

published in the Journal of Controlled Release [249]. 
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4.1.3.1 Superadditive DC stimulation with adjuvant-loaded Dex-NPs 

To evolve their stimulatory potential, MDP as well as R848 have to cross the plasma 

membrane. After entering the cell, it is essential that these agents reach specific 

intracellular compartments to be recognized by associated PRRs. Endocytosis is usually 

responsible for that transport into the cell. A drug delivery system such as Dex-NPs can 

also mediate and even enhance this trans-membrane transfer to induce a much more potent 

stimulation. NP loading capacity, transport efficiency, intracellular release and fate as well 

as drug quantity are examples of crucial factors influencing the overall system’s efficacy.  

To validate the potential of MDP/R848-loaded Dex-NPs to stimulate BMDCs, we 

measured the CD80 and CD86 expression after 24 h incubation testing different 

concentrations (1-100 µg/ml) of the established adjuvant-loaded Dex-NPs (see Figure S 1). 

Dex-blank NPs were included in the analysis to exclude stimulatory effects of the carrier 

itself. As an internal control, some BMDC samples were treated with soluble MDP 

(sMDP), soluble R848 (sR848) or both in combination. In these experiments, the 

concentrations of soluble adjuvants were equimolar to the encapsulated ones (see Table S 

2). Dex-blank evoked no effect on the CD80 and CD86 expression of BMDCs, whereas 

LPS, used as an internal positive control, induced a strong upregulation of both co-

stimulatory receptors (Figure 14). As expected, treatment of BMDCs with sMDP, which is 

unable to penetrate cell membranes, did not induce any stimulatory effect regarding CD80 

and CD86, while sR848 stimulated BMDCs. The combination of sMDP and sR848 did not 

reveal any advantages compared with R848 alone here. Dex-MDP induced an increase in 

CD80 and CD86 expression in a dose-dependent manner. At the highest concentration 

applied, Dex-MDP stimulated BMDCs significantly better than equimolar amounts of 

sMDP. Compared to LPS, Dex-R848 mediated moderate BMDC stimulation, though 

stronger than that of sR848 in case of CD86. Only half the amount of Dex-R848 was 

thereby needed to reach the maximal stimulatory effect. Furthermore, Dex-MDP/R848 

exhibited the strongest stimulatory effect on CD80/CD86 expression, even higher than 

exerted by the soluble combination.   
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Figure 14 BMDC stimulation with adjuvant-loaded Dex-NPs 

BMDCs (2 x 10
5
 cells/ml) were treated with Dex-blank (blue), Dex-MDP (green), Dex-R848 (orange) or 

Dex-MDP/R848 (red) as indicated for 24 h. For comparison, equimolar amounts of sMDP (66 ng/ml) and 

sR848 (44 ng/ml) alone or in combination were also used as stimulants. LPS (100 ng/ml) treated BMDCs 

served as positive control. Surface expression of CD80 and CD86 on differently treated BMDCs was 

measured by flow cytometry based on MFIs. Dashed lines indicate expression levels of the untreated control 

(mean ± SD; n=3). *p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in the Journal of 

Controlled Release [249]. 
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As already described in 4.1.2 , the release of pro-inflammatory cytokines was used as an 

additional parameter to assess the stimulatory capacity of adjuvant-loaded Dex-NPs to 

activate BMDCs. Therefore, the supernatants of differentially treated BMDCs were 

checked for IL-1β, IL-6, TNF-α and IL-12. Dex-MDP/R848 induced a strong secretion of 

the first three mentioned cytokines in a superadditive manner compared to the single-

adjuvant carrying Dex-NPs (Figure 15). BMDCs treated with the soluble combination at 

equimolar amounts showed highly comparable cytokine levels. In general, the 

concentrations of IL-12, an essential cytokine for Th1 differentiation, were again very low 

and close to the detection limit.  

 

 

Figure 15 Cytokine secretion triggered by adjuvant-loaded Dex-NPs 

Cytokine contents in supernatants of BMDCs (1 x 10
6
 cells/ml) treated with adjuvant-loaded Dex-NPs (100 

µg/ml) or equimolar amounts of soluble adjuvant (sMDP: 66 ng/ml, sR848: 44 ng/ml) for 24 h were analyzed 

by CBA. LPS treated BMDCs were used as positive control (mean ± SD; n=3). *p < 0.05. Data and figure 

published in the Journal of Controlled Release [249]. 
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Potential leakage of encapsulated adjuvants was ruled out by treating BMDCs with Dex-NP 

supernatants for 24 h and measuring the expression of CD80 and CD86. In contrast to 

treatment with adjuvant-loaded Dex-NPs, none of the supernatants of the different Dex-NP 

formulations induced any significant upregulation of the markers. Only in case of CD86, 

the supernatants of the adjuvant-loaded Dex-NPs induced a very slight increase which was 

weaker than that induced by the empty Dex-NPs (Figure 16).  

 

 

Figure 16 Biological activity of Dex-NPs’ supernatants 

To detect potential free adjuvants (MDP, R848) in the Dex-NP formulations, BMDCs (2 x 10
5
 cells/ml) were 

treated with the different types of Dex-NPs (100 µg/ml) or with the corresponding volumes of their 

supernatants for 24 h. Afterwards, the frequencies of CD80- and CD86-positive BMDCs were measured by 

flow cytometry. The results are displayed relative to the untreated control (dashed line, mean ± SD; n=2). 

Data and figure published in the Journal of Controlled Release [249]. 
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4.1.4 OVA-NCs as antigen delivery system 

Apart from adjuvants for stimulation, a nanovaccine usually requires a target-specific 

antigen. Polymeric nanocapsules with an aqueous core and a shell consisting of OVA 

protein, which was cross-linked with TDI in an inverse miniemulsion process, were used 

for this task. To test if these OVA-NCs are a suitable antigen delivery system for DCs and 

can serve as antigen source to mediate OVA-specific T cell responses, the interaction of 

BMDCs with OVA-NCs was analyzed. For that purpose, unmodified OVA-NCs (OVA-

blank-NC) were synthesized and characterized in detail. Cy5-Oligo (hereinafter called Cy5) 

was encapsulated to be able to detect the NCs (see 3.1.2). The diameter of the OVA-NCs 

was approximately 250 nm in cyclohexane. In water the size increased by about 90 nm. The 

zeta potential was -26 mV (Table S 3). The capsules morphology was visualized by SEM 

and TEM images (Figure 17). 

 

 

Figure 17 Visualization of OVA-NC morphology 

The morphology of OVA-NCs was microscopically visualized by SEM (left) and TEM (right). Indicated scale 

bars illustrate NC sizes. Figure published in the Journal of Controlled Release [249]. 
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To detect intracellular NC degradation, a slightly different type of capsule was generated. 

To this end, OVA-DQ was incorporated into the NC shell in addition to the unmodified 

OVA (OVA-DQ-NC, see 3.1.2). Enzymatic degradation of OVA-DQ induces detectable 

fluorescence emission, which was utilized to measure and visualize OVA-NC degradation. 

Initially, both synthesized OVA-NCs (OVA-blank-NC, OVA-DQ-NC) were routinely 

checked for endotoxin contaminations and potential cytotoxic effects. All tested OVA-NC 

batches were almost free of endotoxins and the measured concentrations were consistently 

under 0.5 EU/ml (Figure S 4a). Referring to cytotoxicity, OVA-blank-NCs were well-

tolerated by BMDCs. Although the frequencies of living cells inversely correlated with 

increasing NC concentration, they were always over 70 %. At a concentration of 150 µg 

OVA-DQ-NC per ml, approximately 20 % of all cells were defined as necrotic (Figure S 

4b). Since these NCs were exclusively used for degradation analysis and OVA-DQ was not 

incorporated in further capsules, the moderate cytotoxicity of OVA-DQ-NCs was tolerated. 

4.1.4.1 Binding/degradation of OVA-NCs by DCs 

A protein antigen has to be taken up by the DC to be available for intracellular degradation 

and subsequent MHC loading. To do so, the cell binds the antigen and internalizes it via 

endocytosis and macropinocytosis. In case of NCs, it is essential to know whether the DC is 

able to recognize and bind it. Those interactions are highly dependent on the NC’s material 

and properties, such as hydrophobicity and zeta potential. Low interaction potentially 

results in low uptake and a lack of antigen presentation. Missing or insufficient antigen-

presentation impedes antigen-specific immune responses, which are indispensable for 

vaccinations. For this reason, the binding of OVA-blank-NCs by BMDCs was analyzed by 

flow cytometry (based on Cy5 emission). Antigen-presentation also requires degradation of 

internalized proteins. To prove OVA-NCs’ intracellular degradation, BMDCs were 

incubated with OVA-DQ-NCs and the emission derived from OVA-DQ degradation was 

measured by flow cytometry as well. Cytometric analysis of binding and degradation 

followed a specific gating strategy (Figure S 5). 

To verify the cellular binding of OVA-NCs, BMDCs were treated with different amounts of 

OVA-blank-NCs (37.5-150 µg/ml). The cytometric analysis showed that after an 

incubation time of 24 h almost all BMDCs were positive for OVA-NCs (Cy5
+
 cells). 
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Nonetheless, the MFIs revealed dose-dependent capsule binding. The higher the NC 

concentration, the higher was the resulting Cy5 intensity (Figure 18a). By measuring Cy5 

intensities and frequencies at different incubation time points, it turned out that BMDCs 

bound OVA-NCs also in a time-dependent manner. Although nearly all BMDCs were Cy5
+
 

after 0.5 h already, the MFIs showed a constant increase over time (Figure 18b).  

 

 

Figure 18 Cellular binding of OVA-NCs by BMDCs 

For binding analysis, BMDCs (2 x 10
5
 cells/ml) were incubated with OVA-blank-NCs (labeled with Cy5). 

Frequencies of Cy5
+
 cells and MFIs were collected by flow cytometry. (a) To test for dose-dependency, cells 

were incubated with different NC concentrations (37.5-100 µg/ml) for 24 h (n=3). (b) Time-dependency was 

examined by treating cells with OVA-blank-NCs (100 µg/ml) for indicated periods of time (0.5-24 h, mean ± 

SD; n=4). Data and figure published in the Journal of Controlled Release [249]. 
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Similarly, the intracellular degradation of OVA-NCs was examined by means of OVA-DQ-

NCs. For this, BMDCs were treated either with different concentrations of OVA-DQ-NCs 

for 24 h or with 100 µg/ml of those NCs for various periods of time, as indicated. The 

fluorescence emission derived from degraded OVA-DQ proteins was measured by flow 

cytometry. As shown in Figure 19, OVA-DQ-NCs were degraded by BMDCs in a dose- 

and time-dependent manner. Increasing NC concentrations (Figure 19a) and incubation 

times (Figure 19b) increased the frequencies of degradation
+
 cells and corresponding 

emission intensities. 

 

 

Figure 19 Degradation of OVA-NCs by BMDCs 

To detect OVA-NC degradation, BMDCs (2 x 10
5
 cells/ml) were incubated with OVA-DQ-NCs. Frequencies 

of OVA-DQ
+
 cells and MFIs were collected by flow cytometry. (a) To test for dose-dependent degradation, 

cells were incubated with different NC concentrations (37.5-100 µg/ml) for 24 h (n=3). (b) Time-dependent 

degradation was examined by treating cells with OVA-DQ-NCs (100 µg/ml) for indicated periods of time 

(0.5-24 h, mean ± SD; n=4). Data and figure published in the Journal of Controlled Release [249]. 
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Additionally, confocal images of BMDCs treated with OVA-DQ-NCs at 4 and 37 °C, 

respectively, for 3 h (as outlined in 3.5.2) revealed temperature-dependent degradation of 

OVA-NCs. Thereby, CLSM (see 3.8) enabled the visualization of intracellular NC 

degradation. Upon cleavage of OVA-DQ to peptides, the included quenching property was 

relieved. The fluorescence of the single, dye-labeled peptides was imaged in combination 

with CellMask Orange used to visualize plasma membranes and DAPI which stained cell 

nuclei. This combination allowed a precise localization of OVA-DQ degradation signals (as 

exemplarily shown in Figure S 6). During analysis, not a single degradation signal was 

detectable extracellularly regardless of incubation temperature.  

 

 

Figure 20 Temperature-dependent OVA-NC degradation 

Intracellular degradation of OVA-DQ-NC was analyzed by CLSM and flow cytometry. (a) Representative 

confocal images of BMDCs (7.5 x 10
5
 cells/ml) treated with OVA-DQ-NCs (100 µg/ml) at 4 and 37 °C 

respectively for 3 h. Cell membranes were stained with CellMask Orange (red), nuclei with DAPI (blue). 

OVA-DQ degradation was detected by its characteristic fluorescent emission (green). Scale bars represent 5 

µm. (b) BMDCs (2 x 10
5
 cells/ml) were analyzed for OVA-DQ degradation at 4 and 37 °C after incubation 

with OVA-DQ-NCs (37.5-150 µg/ml) for 24 h. Resulting MFIs were measured by flow cytometry (mean ± 

SD; n=2). Data and figure published in the Journal of Controlled Release [249]. 
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Clearly visible signals with the characteristic fluorescent properties of OVA-DQ-derived 

peptides were observed intracellularly after 3 h at 37 °C, while at 4 °C such signals did not 

appear at all (Figure 20a). This temperature-dependency was confirmed by flow cytometry. 

After incubating BMDCs with OVA-DQ-NC for 24 h in parallel assays at 4 and 37 °C, the 

low-temperature samples showed only weak degradation signals in flow cytometry, while 

the BMDCs treated under physiological conditions showed a strong, dose-dependent 

increase in degradation emission (Figure 20b). 

4.1.4.2 NC-derived peptides for DC-directed T cell stimulation 

Next, we aimed to demonstrate that OVA-NCs can be used to trigger antigen-directed 

immune reactions. The availability of degraded OVA from OVA-NCs, serving as antigen 

source, was analyzed using OVA peptide-specific transgenic OT-I (CD8
+
) and OT-II 

(CD4
+
) primary T cells (see 3.2 and 3.3.3). OT-I T cells recognize a specific OVA peptide 

in the context of MHC-I, while OT-II T cells are specific for a distinct OVA peptide 

presented on MHC-II. These T cell populations are commonly used test systems for 

measuring the efficiency of OVA peptide presentation via MHC-I and -II. Since antigen 

presentation via both MHC-I and -II can be essential for vaccination approaches, the 

suitability of OVA-NCs as an antigen source for BMDC-mediated T cell stimulation was 

analyzed with both two T cell systems. The assessment was carried out by DC-mediated T 

cell proliferation (see 3.5.3), measured by [Methyl-
3
H] thymidine incorporation (see 3.9).  

Aliquots of BMDCs pre-incubated with OVA-blank-NCs at different concentrations for 24 

h induced a moderate OT-I proliferation in case of the highest dose (100 µg/ml), and a 

dose-correlating proliferation of OT-II T cells was observed (Figure 21, left panel). 

Concomitant stimulation of OVA-blank-NC pre-treated BMDCs with LPS (100 ng/ml) 

resulted in an increased proliferation of CD8
+
 and CD4

+
 T cells (Figure 21, right panel), 

particularly at the highest dose of OVA-NCs applied. 
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Figure 21 OVA-NC-mediated T cell proliferation 

BMDCs (1 x 10
6
 cells/ml) were incubated with OVA-blank-NCs (1-100 µg/ml) for 24 h. Aliquots were co-

treated with LPS (100 ng/ml). Titrated numbers of pre-treated BMDCs (starting with 10
5
 cells) were co-

cultured with OVA peptide-specific OT-I (CD8
+
) and OT-II (CD4

+
) T cells (each 5 x 10

5
 cells) in triplicates 

in 96 well plates. T cell proliferation was measured in counts per minute (cpm) by 
3
H-thymidine 

incorporation, applied after three days of BMDC/T cell co-culture for 16 h (mean ± SD; n=3). *p < 0.05, **p 

< 0.01, OVA-blank-NCs (100 µg/ml) vs. OVA-blank-NCs (10 µg/ml). Data and figure published in the 

Journal of Controlled Release [249]. 
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4.1.5 Adjuvant-loaded Dex-NPs + OVA-NCs 

The question arose, whether both nanocarrier systems – Dex-MDP/R848 for adjuvant 

delivery and OVA-NCs as antigen source – could work together to mediate OVA-specific 

T cell proliferation. Consequently, a combined application of the two evaluated systems 

was tested. To do this, BMDCs were co-treated with OVA-blank-NCs + Dex-MDP/R848, 

again followed by a co-culture with OT-I and OT-II T cells. Those BMDCs, which received 

a pre-treatment with Dex-MDP/R848 and OVA-blank-NCs, initiated the strongest 

proliferation of OT-I as well as OT-II T cells compared to samples treated with one of 

either type of nanocarriers only (Figure 22).  

 

 

Figure 22 T cell proliferation triggered by nanocarrier combination 

BMDCs (1 x 10
6
 cells/ml) were treated with Dex-blank, Dex-MDP/R848 and OVA-blank-NCs (each 100 

µg/ml) in the indicated combinations for 24 h. Titrated numbers of pre-treated BMDCs (starting with 10
5
 

cells) were co-cultured with OVA peptide-specific OT-I (CD8
+
) and OT-II (CD4

+
) T cells (each 5 x 10

5
 cells) 

in triplicates in 96 well plates. T cell proliferation was measured in cpm by 
3
H-thymidine incorporation, 

applied after three days of BMDC/T cell co-culture for 16 h. Proliferation of BMDCs and T cells without 

further treatment was used as control (mean ± SD; n=3). *p < 0.05, **p < 0.01, Dex-MDP/R848 + OVA-

blank-NCs vs. Dex-blank + OVA-blank-NCs. Data and figure published in the Journal of Controlled Release 

[249]. 
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Especially in case of OT-II proliferation, Dex-MDP/R848 enhanced the T cell stimulatory 

capacity of OVA-blank-NC-treated BMDCs (Figure 22, left). BMDCs co-treated with 

OVA-blank-NCs + Dex-blank also induced T cell proliferation, although to a lower extent. 

As expected, the administration of Dex-MDP/R848 alone did not trigger any proliferation 

of OT-I and OT-II T cells. The individual proliferation signals of BMDCs, OT-I and OT-II 

T cells without any further treatment were assessed as controls. 

 

 

Figure 23 Cytokine secretion triggered by nanocarrier combination 

BMDCs (1 x 10
6
 cells/ml) were treated with Dex-blank, Dex-MDP/R848 and OVA-blank-NCs (each 100 

µg/ml) in the indicated combinations for 24 h. After three days of co-culture with (a) OT-I and (b) OT-II T 

cells, supernatants were collected, and characteristic cytokines (IFN-γ, IL-5, IL-10) were measured by CBA 

(mean ± SD, n=3). *p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in the Journal of 

Controlled Release [249]. 
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To characterize the observed induction of OVA-specific T cell stimulation in more detail, 

cytokine contents in the corresponding BMDC/T cell co-culture supernatants were 

measured by CBA. The results showed significantly increased levels of the Tc1/Th1 marker 

cytokine IFN-γ in samples containing BMDCs pre-treated with Dex-MDP/R848 in 

combination with OVA-blank-NCs co-cultured with OT-I (Figure 23a) as well as OT-II 

(Figure 23b) T cells. In contrast, an expression of the Th2 marker IL-5 and dual Th2/Treg 

marker IL-10 was barely detectable in any culture supernatant.  

4.1.6 Adjuvant-loaded OVA-NCs combining adjuvant and antigen 

As an important next step to generate a nanocarrier combining the two main requirements 

of a vaccine, namely adjuvanticity and antigen delivery, the evaluated adjuvant 

combination MDP + R848 was integrated into OVA-NCs. The resulting nanocapsule offers 

a degradable protein shell, usable as antigen source, and at the same time protects the 

adjuvant combination due to complete encapsulation and an aqueous capsule core. Energy-

dependent degradation of the OVA-NCs ensures intracellular release of the encapsulated 

adjuvants. Similar to the experiments with adjuvant-loaded Dex-NPs, a new batch of OVA-

NCs including four different variants was synthesized for the following experiments: empty 

OVA-NCs (OVA-blank-NCs), MDP-loaded OVA-NCs (OVA-MDP-NCs), R848-loaded 

OVA-NCs (OVA-R848-NCs) and MDP/R848-loaded ones (OVA-MDP/R848-NCs). 

Additionally, Cy5 was co-encapsulated in all variants to enable NC detection via flow 

cytometry. The diameter of the capsules was determined by DLS. On average it was about 

290 nm in cyclohexane. In water the size increased to approximately 360 nm. The zeta 

potential was roughly -29 mV (Table S 3).  

These nanocarrier formulations were routinely checked for endotoxin contaminations. As 

described in 4.1.3, such contaminations are a potential source for unintended BMDC 

stimulation. All tested formulations were almost free of endotoxins (Figure S 4a). Also, 

cytotoxicity of the OVA-NC variants was analyzed by 7AAD/Annexin V staining. As 

exemplarily shown in Figure S 4c, no relevant cytotoxicity of the adjuvant-loaded OVA-

NCs was detectable. For the single adjuvant capsules (OVA-MDP-NCs and OVA-R848-

NCs), the adjuvant loading was determined to be 7.78 nmol MDP and 3.16 nmol R848 per 

mg capsule material, respectively. Regarding OVA-MDP/R848-NCs, the measurements 
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revealed comparable payloads of 7.14 nmol MDP and 2.85 nmol R848 per mg capsule 

material (Table S 4).  

4.1.6.1 Superadditive DC stimulation with adjuvant-loaded OVA-NCs 

To assess the potential of adjuvant-loaded OVA-NCs to stimulate BMDCs and to analyze 

how efficient OVA-NCs transferred MDP and R848 to their intracellular PRRs, BMDCs 

were treated with all four OVA-NC variants (mentioned above) for 24 h. The resulting 

expression of the surface markers CD80 and CD86 was measured by flow cytometry (see 

Figure S 1) once again compared to equimolar amounts of soluble adjuvants (see Table S 

4). OVA-blank-NCs, OVA-MDP-NCs as well as sMDP showed no stimulatory effect on 

BMDCs in this experimental setup, while OVA-R848-NCs at the two highest 

concentrations (50 and 100 µg/ml) and the corresponding amounts of sR848 induced a 

comparable, moderate upregulation of both surface markers. Compared to the single 

adjuvant carrying OVA-NCs, the co-delivery of MDP + R848 in OVA-NCs (OVA-

MDP/R848-NCs) increased the expression of CD80 and CD86 in a superadditive manner. 

In contrast to BMDCs treated with OVA-MDP- or OVA-R848-NCs, significantly higher 

MFIs for both markers were detectable after administration of OVA-MDP/R848-NCs, 

especially in case of 50 and 100 µg/ml NCs (Figure 24). In this context, the combined 

application of sMDP and sR848 did not show any advantages compared to OVA-

MDP/R848-NCs. The stimulatory effect of the dual-adjuvant OVA-NCs was similar to that 

of LPS, our positive control, and stronger than that of the corresponding Dex-NP 

formulation (see Figure 14).  

The efficiency of MDP/R848-loaded OVA-NCs to stimulate BMDCs was also analyzed 

with a focus on stimulation-induced cytokine secretion. The supernatants of BMDCs, 

treated with the four different types of OVA-NCs for 24 h, were checked for IL-1β, IL-6, 

TNF-α and IL-12 secretion. MDP- as well as R848-loaded OVA-NCs did not induce any 

remarkable cytokine secretion. The only exception was a moderate increase in IL-1β upon 

OVA-R848-NC treatment. In contrast to that, OVA-MDP/R848-NCs triggered the 

secretion of high amounts of IL-1β, IL-6, TNF-α and IL-12 in BMDCs (Figure 25).  
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Figure 24 BMDC stimulation with adjuvant-loaded OVA-NCs 

BMDCs (2 x 10
5
 cells/ml) were treated with OVA-blank- (blue), OVA-MDP- (green), OVA-R848 (orange) or 

OVA-MDP/R848-NCs (red) as indicated for 24 h. For comparison, equimolar amounts of sMDP (383 ng/ml) 

and sR848 (111 ng/ml) alone or in combination were also used as stimulants. LPS (100 ng/ml) treated 

BMDCs were used as positive control. Surface expression of CD80 and CD86 on differently treated BMDCs 

was measured by flow cytometry based on MFIs. Dashed lines indicate expression levels of the untreated 

control, dotted lines those induced by the highest concentration of OVA-MDP-R848-NCs (mean ± SD; n=3). 

*p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in the Journal of Controlled Release [249]. 
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Figure 25 Cytokine secretion triggered by adjuvant-loaded OVA-NCs 

Cytokine contents in supernatants of BMDCs (1 x 10
6
 cells/ml) treated with adjuvant-loaded OVA-NCs (100 

µg/ml) for 24 h were analyzed by CBA. LPS treated BMDCs were used as positive control (mean ± SD; n=3). 

**p < 0.01, ***p < 0.001. Data and figure published in the Journal of Controlled Release [249]. 
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The detected cytokine profile was in general comparable to that of BMDCs treated with 

Dex-MDP/R848. However, IL-12, an essential cytokine for Th1 promotion, was not 

detectable in case of Dex-MDP/R848 treatment (see Figure 15). In contrast, IL-12 secretion 

in BMDCs was strongly induced by OVA-MDP/R848-NCs, and to a significantly higher 

extent than evoked by LPS. Taken together, the adjuvant combination MDP + R848 

encapsulated in OVA-NCs induced a strong Th1-promoting BMDC activation, even 

stronger than with the use of Dex-NPs.  

As a complementary measure, all adjuvant-loaded OVA-NC formulations were checked for 

potential adjuvant leakage. Therefore, BMDCs were stimulated with these NCs and 

corresponding volumes of NC supernatants for 24 h. The subsequent analysis of CD80 and 

CD86 expression showed no relevant upregulation induced by NC supernatants, indicating 

that the encapsulated adjuvants were tightly sealed in the capsules (Figure S 7).  

4.1.6.2 T cell stimulation with adjuvant-loaded OVA-NCs 

To characterize the suitability of MDP/R848-loaded OVA-NCs to trigger OVA-specific T 

cell responses, proliferation assays with OT-I (CD8
+
) and OT-II (CD4

+
) T cells were 

performed based on the adjuvant-loaded OVA-NCs. OVA-blank- as well as OVA-MDP-

NCs mediated only a weak OT-I and OT-II proliferation, whereas BMDC pre-treatment 

with OVA-R848-NC induced a moderate proliferation of OT-I, but not of OT-II T cells. A 

pre-incubation with OVA-MDP/R848-NCs triggered the strongest proliferation rates of 

both T cell types (Figure 26a). These results were highly consistent with the stimulation 

results of the corresponding OVA-NCs on BMDCs (see Figure 24).  

To complete the picture, cytokines in the co-culture supernatants were measured by CBA. 

When stimulated with OVA-MDP/R848-NCs, BMDCs induced significantly increased 

levels of IFN-γ in both T cell systems, while IL-5 and IL-10 concentrations remained on 

low to moderate levels in the OT-II co-cultures (Figure 26b).  
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Figure 26 T cell stimulation induced by adjuvant-loaded OVA-NCs 

BMDCs (1 x 10
6
 cells/ml) were incubated with OVA-blank-, OVA-MDP-, OVA-R848- or OVA-MDP/R848-

NCs (each 100 µg/ml) for 24 h. (a) For proliferation measurement, titrated numbers of pre-treated BMDCs 

(starting with 10
5
 cells) were co-cultured with OVA peptide-specific OT-I and OT-II T cells (each 5 x 10

5
 

cells) in triplicates in 96 well plates. Proliferation was recorded in cpm by 
3
H-thymidine incorporation, 

applied after three days of BMDC/T cell co-culture for 16 h. Proliferation of BMDCs and T cells without 

treatment was used as control (n=3). (b) Supernatants of BMDC/T cell co-culture were collected after 3 days, 

and cytokines of interest were measured by CBA (mean ± SD, n=3). *p < 0.05, **p < 0.01, ***p < 0.001, 

OVA-MDP/R848-NC vs. OVA-R848-NC, unless otherwise indicated. Data and figure published in the 

Journal of Controlled Release [249]. 
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4.1.7 Transcriptome analysis of stimulated DC 

Since the actual adjuvant effect might be different on transcriptional level, we analyzed the 

transcriptome of BMDCs after incubation with 75 µg/ml OVA-MDP/R848-NCs (1, 2 and 4 

h pooled). As a control we used OVA-blank-NC-treated and untreated BMDCs. 

Transcriptome analysis allows a deeper understanding of the cellular processes that were 

initiated by a nanocarrier and its payload.   

First of all, the total RNA of the treated samples was isolated and checked for purity. 

Therefore, RNA samples were separated by gel electrophoresis. RNA purity in all samples 

was confirmed by the characteristic 28S and 18S ribosomal RNA (rRNA) bands with a 

ratio of ≥ 2 (Figure S 9). Total RNA quantity was measured by NanoDrop. After 

transferring the RNA samples to StarSEQ, quality and quantity were checked once again 

prior to mRNA isolation. Samples with poor quality or low quantity were rejected. By 

RNA-Seq analysis, a total of 14,531 genes was identified of which numerous were strongly 

upregulated in the OVA-MDP/R848-NC-treated samples compared to both controls. First 

of all, the gene list was scanned for genes, which could be assigned to defined categories of 

interest, such as DC marker genes, cytokines or activation markers. The TPM values (see 

3.10.3) of the corresponding genes were analyzed comparatively to identify changes on 

RNA level triggered by the MDP/R848-loaded OVA-NCs.  

Focusing on genes of co-stimulatory molecules, we observed higher TPM values for CD40, 

CD80, CD83 and CD86 mRNA as well as for OX40L, ICAM-1 and ICOS-L in BMDCs 

after treatment with OVA-blank-NCs compared to the untreated cells. When treated with 

OVA-MDP/R848-NCs for the aforementioned short periods of time, the transcript numbers 

were increased by approximately 50 % as compared with the untreated control (Figure 

27a). Regarding cytokines, the empty OVA-NCs induced only a decent increase in the 

expression of IL-1α, IL-1β, IL-6, IL-12β and TNF-α mRNA. In contrast to that, the 

administration of adjuvant-loaded OVA-NCs triggered high numbers of all indicated 

cytokine mRNAs (Figure 27b).  
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Figure 27 mRNA expression of BMDCs treated with adjuvant-loaded OVA-NCs 

BMDCs (2 x 10
6
 cells/ml) were treated with OVA-blank- or OVA-MDP/R848-NCs (both 75 µg/ml) for 1, 2 

and 4 h. Untreated BMDCs were used as negative control. The three time points of each sample were pooled, 

mRNA was isolated and RNA-Seq performed. TPM values for BMDC (a) activation markers, (b) cytokines, 

(c) chemokines and (d) interferon-stimulated genes were calculated (mean ± SD; n=2).  
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Chemokine mRNA expression in BMDCs was differentially affected by the MDP/R848-

loaded capsules. Certain chemokine mRNAs were upregulated, such as CCL3, CCL5, 

CCL22, CXCL2 and CXCL3, whereas some showed no changes, reductions or were not 

detectable at all (Figure 27c). Interferon-stimulated gene products are important for an 

effective immune response. Therefore, we checked the mRNA expression of some 

members of this gene family. The mRNA levels of all indicated genes were consistently 

increased by the OVA-MDP/R848-NC treatment as compared to the controls (Figure 27d). 

To characterize the influence of MDP/R848-loaded OVA-NCs on BMDCs mRNA 

expression as detailed as possible, the mRNA levels of further gene groups were analyzed, 

too. Gene groups in which an altered mRNA expression was not necessarily expected, for 

instance DC marker genes or TLRs/NLRs, were included in the analysis on purpose. 

Except some fluctuations and expected changes, the mRNA expression in the PRR and DC 

marker groups were relatively unaffected (Figure S 10). Expression analysis of important 

signaling components revealed some upregulated genes associated with MAPK/ERK- (e.g. 

TRAF6, Figure S 11a), NF-κB (e.g. IκB, Figure S 11b) and IFN-signaling (e.g. IRF7, 

Figure S 11c).  

After calculating the mean enrichment scores (see 3.10.4) of all sample combinations for 

every gene, the gene list was sorted using these scores. A KEGG-annotated pathway 

analysis based on the DAVID software with a threshold of 2 (mean enrichment score ≥ 2) 

was performed for all sample combinations. So, only genes that were at least upregulated 

by the factor 2 were included into the analysis. Thereby, fitting genes were assigned to 

immunologically-relevant signaling pathways to assess the overall impact of OVA-

MDP/R848-NCs on mRNA level.  

Comparing the untreated control with the OVA-MDP/R848-NC-treated sample, ten 

relevant signaling pathways were determined of which marker genes were upregulated. All 

these pathways were connected with essential immunological processes, such as cell-cell-

interaction, stimuli response and cell signaling. The number of upregulated genes ranged 

from 6 regarding NLR signaling (10.7 % of all NLR-associated genes according to 

DAVID) to 35 associated with cytokine-cytokine receptor interaction (14.3 % of all 

associated genes). The comparison of the OVA-blank-NC-treated sample with the OVA-
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MDP/R848-NC-treated one revealed reduced but still relatively high numbers of 

upregulated genes for seven of the analyzed pathways. For three pathways, namely cell 

adhesion molecules, antigen processing/presentation, and NLR signaling, no upregulated 

genes were detectable using a threshold of 2. The pathway analysis of the sample 

combination OVA-blank-NC versus untreated showed a further decrease in the number of 

upregulated genes. Still 16 genes were associated with cytokine-cytokine receptor 

interaction (6.5 %), whereas less than 10 genes were assigned to the other pathways. As 

expected, this time upregulated genes regarding antigen processing/presentation were 

detectable again (Table 18). 

 

Pathway 

Upregulated genes (threshold = 2) 

OVA-blank-NC  

/ untreated 

OVA-MDP/R848-NC 

/ OVA-blank-NC 

OVA-MDP/R848-NC 

/ untreated 

Cytokine-cytokine  

receptor interaction 
16 (6.5 %) 29 (11.8 %) 35 (14.3 %) 

TNF signaling 8 (7.3 %) 15 (13.8 %) 25 (22.9 %) 

JAK/STAT signaling 7 (4.8 %) 14 (9.7 %) 21 (14.5 %) 

TLR signaling 9 (8.9 %) 12 (11.9 %) 20 (19.8 %) 

Chemokine signaling 6 (3.1 %) 14 (7.1 %) 17 (8.7 %) 

NF-κB signaling 5 (5.2 %) 11 (11.3 %) 17 (17.5 %) 

Cell adhesion molecules 0 0 15 (9.3 %) 

MAPK/ERK signaling 0 8 (3.2 %) 13 (5.1 %) 

Antigen 

processing/presentation 
4 (4.9 %) 0 9 (11 %) 

NLR signaling 0 0 6 (10.7 %) 

 

Table 18 KEGG-annotated pathway analysis 

A KEGG-annotated pathway analysis was performed for BMDCs treated with OVA-blank-NCs and OVA-

MDP/R848-NCs respectively (both 75 µg/ml for 1, 2 and 4 h pooled). Untreated BMDCs served as control. A 

mean enrichment score ≥ 2 was used as threshold. The numbers of upregulated genes and the corresponding 

percentages of the total number of associated genes for all sample combinations were assigned to 

immunologically-relevant signaling pathways.  
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Since the KEGG-annotated pathway analysis indicated remarkable differences in the 

numbers of upregulated genes in distinct signaling groups of the three sample 

combinations, heat maps based on mean enrichment scores (n-fold transcripts) of well-

described pathway members were generated. Some genes were listed more than once due to 

their association to several signaling pathways. Heat map analysis of the different signaling 

pathways revealed distinct genes (mainly key regulators) with increased transcript numbers 

in every group, whereas many genes were not influenced at all (Figure 28-Figure 30).  

To verify the RNA-Seq results with a different method, we picked four upregulated (IL-

12β, IRF7, CXCL10 and NOS2), one downregulated (F2RL2) and one slightly 

downregulated gene (CD11c) and measured the relative copy numbers of those genes in the 

three mentioned samples by qPCR. The computational analysis of the PCR data showed 

results similar to those observed with RNA-Seq for all measured genes. Partially, the 

relative copy numbers were highly comparable (Figure 31, Figure 32). A direct comparison 

with the results from 4.1.6.1 showed a strong consistency between protein translation and 

gene transcription of co-stimulatory markers and cytokines induced by OVA-MDP/R848-

NCs in BMDCs. All measured markers were upregulated on both analysis levels upon NC 

treatment (Table 19).  
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Figure 28 Heat map based on mRNA mean enrichment scores (part 1) 

Based on the calculated mean enrichment scores of the three sample combinations, heat maps for the 

pathways TLR signaling, NLR signaling, antigen processing/presentation and chemokine signaling were 

generated. Coloring indicates the n-fold of gene mRNA transcripts in the corresponding combination. 
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Figure 29 Heat map based on mRNA mean enrichment scores (part 2) 

Based on the calculated mean enrichment scores of the three sample combinations, heat maps for the 

pathways TNF signaling and MAPK/ERK signaling were generated. Coloring indicates the n-fold of gene 

mRNA transcripts in the corresponding combination. 
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Figure 30 Heat map based on mRNA mean enrichment scores (part 3) 

Based on the calculated mean enrichment scores of the three sample combinations, heat maps for the 

pathways cytokine-cytokine receptor interaction, NF-κB and JAK/STAT signaling were generated. Coloring 

indicates the n-fold of gene mRNA transcripts in the corresponding combination. 
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Figure 31 qPCR and RNA-Seq results for exemplary upregulated genes 

To verify the RNA-Seq results for BMDCs treated with MDP/R848-loaded OVA-NCs (75 µg/ml, incubation 

for 1, 2 and 4 h pooled) with a different method, qPCR measurements for exemplary upregulated genes (IL-

12β, IRF7, CXCL10 and NOS2) were performed. Relative copy numbers were compared to the 

corresponding RNA-Seq numbers (mean ± SD; n=2). 
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Figure 32 qPCR and RNA-Seq results for exemplary downregulated/balanced genes 

To verify the RNA-Seq results for BMDCs treated with MDP/R848-loaded OVA-NCs (75 µg/ml, incubation 

for 1, 2 and 4 h pooled) with a different method, qPCR measurements were also performed for exemplary 

downregulated (F2RL2) and balanced (CD11c) genes. The relative copy numbers from qPCR were blotted 

next to the corresponding RNA-Seq numbers (mean ± SD; n=2). 

 

Marker Flow cytometry / CBA  RNA-Seq 

CD80 ↑↑  ↑ 

CD86 ↑↑  ↑ 

IL-1β ↑↑  ↑↑ 

IL-6 ↑↑  ↑ 

TNF-α ↑↑  ↑ 

IL-12 ↑↑   IL-12α ↑, IL-12β ↑↑ 

Table 19 Translational vs. transcriptional effects of OVA-MDP/R848-NCs in BMDCs 
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4.1.8 Spleen cell interaction with dual-adjuvant OVA-NCs 

As a first important step towards in vivo application of OVA-NC formulations for 

vaccination approaches, we analyzed the interplay between OVA-NCs (empty as well as 

adjuvant-loaded) and primary immune cell populations derived from spleen. Since the 

spleen is a relevant (secondary) lymphoid organ and provides high immune cell yields, 

spleen cells are an appropriate test system for such an analysis. This complex immune cell 

mixture contains, among others, DCs, T cells, B cells and macrophages in varying ratios. 

The cytometric analysis was performed based on a pre-defined gating strategy (Figure S 8).  

 

 

Figure 33 Spleen cell interaction with adjuvant-loaded OVA-NCs 

Isolated spleen cells (1 x 10
6
 cells per sample) were incubated with empty or adjuvant-loaded OVA-NCs 

(each 100 µg/ml) for 24 h. Cellular binding by DCs, macrophages, B and T cells was assessed by measuring 

frequencies of Cy5
+
 cells. Activation of DCs and macrophages was analyzed via CD86 expression (MFIs). 

Untreated and LPS (100 ng/ml) treated cells were used as controls (mean ± SD; n=3). *p < 0.05, **p < 0.01, 

sample vs. untreated. Data and figure published in the Journal of Controlled Release [249]. 
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DCs as well as macrophages showed strong OVA-NC binding, whereas their binding by B 

cells was rather low. T cells did not show any significant binding of OVA-NCs. An 

influence of encapsulated adjuvants on cellular binding was not detectable. Similarly, all 

OVA-NC formulations were preferentially bound by DCs and macrophages regardless of 

any adjuvant payload. The expression of CD86 in DCs and macrophages was significantly 

increased after treatment with adjuvant-loaded OVA-NCs, and was highest in case of 

OVA-MDP/R848-NCs (Figure 33). These results were highly comparable to those obtained 

using BMDCs.  

4.1.9 Alternative cross-linking method for protein nanocapsules 

In case of the previously used OVA-NC formulations, TDI was used as cross-linker to 

generate a hollow nanocapsule with a protein shell around an aqueous core. This procedure 

is well-established and robust, but lacks compound selectivity. Since it cannot be excluded 

that the electrophilic isocyanate also reacts with soluble cargo substances during synthesis, 

possibly leading to loss of substance functionality, alternative, more selective cross-linking 

methods for the generation of protein-based nanocapsules were assessed.  

One interesting approach for effective drug encapsulation paired with high compound 

selectivity is the application of bioorthogonal tetrazole-ene cycloaddition (see 3.1.2.1). 

OVA and HSA were exploited for the preparation of such nanocapsules. To this end, these 

proteins were modified with TET and cross-linked with DN. To be able to test the new 

capsule batch for their suitability as drug delivery system, R848 was encapsulated as an 

active drug. The resulting NCs based on OVA (OT-DN-R848-NCs) and HSA (HT-DN-

R848-NCs) showed an average diameter of 287.5 nm in cyclohexane and 303 nm in water 

due to swelling. Their zeta potential was determined as approximately -33.5 mV (Table S 

5). Subsequently, the new capsules were administered to BMDCs for 24 h to check for 

effective R848 release and resulting stimulation via CD86 expression. BMDCs were also 

treated with OVA-R848-NCs (TDI cross-linked, as already described) to allow direct 

comparison between TDI and TET-DN cross-linked capsules. In this context, the same 

amounts of soluble R848 were used for the synthesis of the different capsule formulations. 

Cytometric analysis of the CD86 expression of accordingly treated BMDCs showed a 

strong increase when using 100 µg/ml of either R848-loaded NC, though OT-DN-R848- 



RESULTS 

105 

 

and HT-DN-R848-NCs triggered such an increase at a dose of 10 µg per ml already (Figure 

34). 

 

Figure 34 Comparison of TDI and TET-DN cross-linked nanocapsules 

BMDCs (2 x 10
5
 cells/ml) were treated with OVA-R848-NCs, OT-DN-R848-NCs and HT-DN-R848-NCs in 

indicated concentrations for 24 h. Untreated (dashed line) and LPS-treated (100 ng/ml) BMDCs were used as 

control. Resulting expression of CD86 was measured by flow cytometry and plotted as fold untreated (mean ± 

SD; n=2). Data published in Nanoscale Horizons in a modified version [238]. 

 

Similar to TDI cross-linked OVA-NC formulations, a leakage of encapsulated adjuvants 

could potentially lead to unintended BMDC stimulation here, too. To exclude that, BMDCs 

were additionally stimulated with corresponding volumes of the NCs supernatants. At all 

concentrations tested, the NC supernatants did not induce increased expression of CD86 in 

BMDCs (Figure S 12). 
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4.2 PEG shielding of nanocarriers 

Surface modification with PEG is a commonly used and well-described, albeit 

controversially discussed, method to increase a nanocarriers’ blood circulation time (stealth 

effect). In theory, a shielding with the relatively inert PEG molecules reduces unspecific 

NP interactions with cells, gives the NP more time to reach its target and thus enhances the 

specificity of a potential targeting moiety. OVA-NCs offer the opportunity to be modified 

with PEG chains. Since these capsules were intended to be taken up and processed 

specifically by DCs, but were also effectively bound by macrophages (see 4.1.8), a reduced 

unspecific NC interaction by PEGylation might be useful. Additionally, PEG protects the 

NC against enzymatic degradation and increases its water solubility. All these points would 

be advantageous regarding in vivo application. 

To assess if a PEG modification of OVA-based NCs actually reduces unspecific cell 

interactions, PEGylated OVA-NCs were synthesized (see 3.1.2), varying in MW of the 

used PEG and in the density of PEGylation. Since it is known that the protein environment 

can influence the interaction between NPs and cells, binding studies with BMDCs were 

performed under different protein supplementations. FCS, mS and hS were applied to the 

samples at defined concentrations. Samples applied without additional serum 

supplementation were used as control.  

Serum of a foreign species might cause unintended rejection reactions when coming in 

contact with murine BMDCs. To exclude that, BMDCs were incubated with defined 

amounts (1-10 vol-%) of the different sera in an initial experiment without any NCs. Since 

complement factors are known to be a potential trigger for increased rejection, BMDCs 

were also treated with the same protein solutions but heat-inactivated (HI, 30 min, 56 °C). 

HI is used to inactivate containing complement. The cell viability after a 4 h treatment was 

used as readout (see 3.6.2). It was shown, that FCS and mS did not mediate increased cell 

death, neither native nor HI. In contrast, native hS caused a massive reduction in viability 

of BMDCs. Upon HI, hS lost its cytotoxic properties against BMDCs. To ensure a high 

level of comparability, FCS, mS and hS were consequently HI before use from then on.  
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Figure 35 Cytotoxicity of different sera on murine BMDCs 

To check for potential cytotoxicity, BMDCs (1 x 10
6
 cells/ml) were treated with indicated volumes (1-10 vol-

%) of FCS, mS and hS (each native and HI) for 4 h. The resulting viability was measured by 7AAD/Annexin 

V staining. Untreated cells were used as negative, DMSO-treated (10 vol-%) ones as positive control.  

 

4.2.1 Influence of PEG molecular weight 

PEG is available in various MW (numerically equivalent to atomic mass in Dalton (Da)). 

To analyze to what extent the MW of the coupled PEG influences the interaction of 

protein-based NCs with BMDCs, we generated OVA-NCs surface-functionalized with 

three PEG variants (2000, 3400, 5000 Da), coupled at almost the same density with ~ 0.2 

PEG chains per nm
2
 NC (see Table 9). These capsules were tested for their stealth 

properties on BMDCs compared to non-PEGylated OVA-NCs (OVA-blank-NCs). All NC 

formulations were applied to the cells simultaneously with the different sera (5 vol-%). 

After 4 h of incubation, the binding of PEGylated OVA-NCs to BMDCs was assessed by 

flow cytometry.  

It turned out, that the NC modification with the high MW PEG (PEG5000) was the most 

effective one regarding the extent of gained stealth effect followed by the modification with 

moderate (PEG3400) and low MW PEG (PEG2000). The increase in MW of the PEG 

correlated inversely with the resulting Cy5 frequencies and MFIs of such treated BMDCs. 

Despite the relatively low PEGylation density, a reduced interaction of BMDCs with PEG-
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modified OVA-NCs compared to non-PEGylated ones was still detectable. Regarding 

protein environment, the results for BMDCs which were supplemented with FCS and mS 

were highly comparable. Those, which were not treated with serum, showed slightly higher 

binding of the non-PEGylated and the PEG2000-modified OVA-NCs. Cellular binding of the 

unmodified capsule was further increased when co-applied with hS. The observed binding 

of OVA-NCs modified with PEG3400 was consistently between those modified with 

PEG2000 and with PEG5000. However, the impact of the different sera on OVA-NC 

interaction with BMDCs was relatively low but particularly detectable on MFI level (Figure 

36). 

 

 

Figure 36 NCs’ stealth effect determined by PEG MW 

The interaction of BMDCs with PEGylated OVA-NCs depending on PEG MW was assessed by incubating 

BMDCs (1 x 10
6
 cells/ml) with capsules that were modified with PEG chains of different MW (2000, 3400, 

5000 Da) but in almost the same PEGylation density (~ 0.2 / nm
2
). After 4 h of incubation, the resulting 

frequencies of NC positive cells and corresponding MFIs were measured by flow cytometry. Cells treated 

with non-PEGylated OVA-NCs and untreated ones were used as control (mean ± SD; n=2).  
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4.2.2 Influence of PEGylation density 

The density of PEG coupling on the NC’s surface was another crucial factor to be 

considered. A PEGylation of high density potentially reduces the surface that is effectively 

accessible for cellular interaction. To measure the influence of different PEGylation 

densities on the interplay with BMDCs, OVA-NCs were modified with PEG2000 at three 

densities (2.47, 0.54 and 0.18 PEG chains per nm
2
). BMDC interaction with these capsules 

was analyzed by flow cytometry.  

 

 

Figure 37 NCs’ stealth effect determined by PEGylation density 

The interaction of BMDCs with PEG-modified OVA-NCs depending on PEGylation density was assessed by 

incubating BMDCs (1 x 10
6
 cells/ml) with capsules that were modified with PEG2000 in different densities 

(2.47, 0.54, 0.18 PEG chains per nm
2
). After 4 h of incubation, the resulting frequencies of NC positive cells 

and corresponding MFIs were measured by flow cytometry. Cells treated with non-PEGylated OVA-NCs and 

untreated ones were used as control (mean ± SD; n=2).  
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It was shown that OVA-NCs with the highest surface density of PEG2000 induced the 

strongest binding reduction. The lower the PEG density, the weaker was the resulting 

stealth effect. This tendency was particularly apparent in case of “no serum” and hS 

supplementation. Upon FCS and mS, these differences were much weaker (Figure 37).   

4.2.3 Relevance of mass density 

Another interesting factor to be considered regarding OVA-NC shielding with PEG was the 

mass density of NC-coupled PEG chains. Mass density means the atomic mass of PEG per 

nm
2
 of NC surface.  

If the stealth effect evoked by PEG was due to the total mass of PEG but independent of the 

individual PEG chain mass, two OVA-NCs with the same PEG mass density would be 

expected to bind equally to BMDCs. To test this theory, two OVA-NCs with different PEG 

chain masses (PEG2000 / PEG5000) and densities (0.54 / 0.19 PEG chains per nm
2
) but almost 

the same mass density (~ 1,000 Da/nm
2
) were used for experiments. 

Although both OVA-NCs exhibited almost the same mass density, the capsule modified 

with PEG5000 showed a much stronger binding reduction compared to the non-PEGylated 

capsules than the PEG2000-modified one. The simultaneous administration of serum did not 

affect this result. The only differences were slightly reduced MFIs for both OVA-NCs upon 

FCS and mS (Figure 38). 

In summary, the strongest stealth effects were achieved by using PEG5000, though its 

density on OVA-NC’s surface was always lower than in case of PEG2000 or PEG3400. As 

exemplified by PEG2000 modifications, an increased PEG density on NC’s surface also 

increased the resulting stealth effect. Moreover, it turned out that mass density of the 

coupled PEG played a minor role. A short PEG chain coupled at a high density does not 

seem to provide advantages over a longer PEG chain coupled in a lower density.  
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Figure 38 NCs’ stealth effect determined by PEG mass density 

BMDC interaction with PEG-modified OVA-NCs depending on mass density was assessed by incubating 

BMDCs (1 x 10
6
 cells/ml) with capsules of the same mass density but different PEG chain masses and 

densities. After 4 h of incubation, resulting Cy5 frequencies and MFIs were measured by flow cytometry. 

Cells treated with non-PEGylated OVA-NCs and untreated ones were used as control (mean ± SD; n=2).  
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4.3 Gene silencing with siRNA-loaded nanocarriers 

Another method to influence and control processes of the immune system is the usage of 

siRNA to precisely knockdown expression of specific genes. These small RNA molecules 

are integrated into a multiprotein complex, called RNA-induced silencing complex (RISC), 

after entering the cell. As part of the RISC, the siRNA binds its complementary sequence 

on the target cell’s mRNA and mediates cleavage. In this way, it inhibits the expression of 

the corresponding sequence or gene. By this approach, the activity of a regulatory gene 

might be affected to boost or extend a cellular immune response. This procedure, called 

RNA interference (RNAi), is a very powerful genetic tool, even though it necessarily 

requires efficient transfer of the siRNA into the cell. In addition, siRNA molecules need 

constant protection against enzymatic degradation processes mainly mediated by RNases. 

Nanocapsules with an aqueous core perfectly fulfil those requirements by accommodating 

the hydrophilic siRNA inside. Therefore, RNAi is a promising concept for nanocapsule-

based immune modulation, in particular as an add-on for nanovaccines. The integration of a 

specific siRNA into an existing nanovaccine provides an additional level of control and 

fine-tuning.  

PEGylated HES-NCs are a well-described drug delivery system that has already been used 

for diverse biological approaches. For that reason, it was tested whether such modified 

HES-NCs are a suitable delivery system for siRNA. Since RNA inference is a sensitive and 

error-prone process, we decided to leave out any antigen source (such as OVA) to be able 

to assess the siRNA effect as unbiased as possible. In principle, the synthesis was 

comparable to that of TDI cross-linked OVA-NCs (see 3.1.2). But instead of adjuvants, 

siRNA (target-specific or negative control) was encapsulated into the HES-NCs. As a 

siRNA target, the commonly used firefly luciferase reporter gene was chosen. The 

genetically modified DC cell line DC2.4-mCMV (see 3.4.1), which expresses firefly 

luciferase at moderate levels, was used as a readout system. The expression of luciferase 

could be assessed by measuring the bioluminescence after administration of a specific 

luciferase substrate (see 3.5.4). Additionally, the HES-NCs’ surface was modified with 

PEG5000 to reduce unspecific uptake.  
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First of all, the generated cell line was checked for successful transduction by measuring 

luciferase and copGFP expression. Bioluminescence measurements of DC2.4-mCMV 

compared to non-transduced DC2.4 revealed a clearly detectable luciferase activity in the 

transduced version, whereas the non-transduced cells showed almost no signal (Figure 

39a). As a further control, expression of the co-transduced reporter copGFP was visualized 

by fluorescence microscopy (Figure 39b). To test the bioactivity of the used siRNAs, 

namely Luciferase GL2 Duplex (αLuc siRNA) and AF647-labeled AllStars Negative 

Control siRNA (control siRNA), in the same setup, samples of DC2.4-mCMV were treated 

with the siRNAs alone or after their complexation with the transfection reagent 

lipofectamine for 24 h. As expected, siRNA alone, lipofectamine without siRNA as well as 

lipofectamine plus control siRNA did not reduce the basic bioluminescence of DC2.4-

mCMV, whereas the combination of lipofectamine and αLuc siRNA knocked-down the 

luciferase signal by approximately 60 % (Figure 39a).  

 

 

 

Figure 39 Transduction and siRNA functionality check 

To check for successful transduction of DC2.4 (to DC2.4-mCMV) and to control functionality of the chosen 

siRNAs (αLuc siRNA and control siRNA), (a) the corresponding cells (1 x 10
5
 cells/ml, seeded 24 h before) 

were treated with either soluble siRNA (10 pmol/ml) or complexed with lipofectamine. Untreated DC2.4-

mCMV and non-transduced DC2.4 were used as negative control. Luciferase activity was measured in 

relative light units (RLU) after administration of luciferase substrate (mean ± SD; n=3). (b) Transduction was 

further checked by imaging copGFP expression in DC2.4-mCMV by fluorescence microscopy. Cells are 

edged by dashed lines (scale bar = 10 µm). *p < 0.05, **p < 0.01. 
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4.3.1 Luciferase knockdown with siRNA-loaded HES-NCs 

First, siRNA-loaded HES-NCs were checked for their size, morphology, encapsulation 

efficiency as well as for cellular binding and cytotoxicity using DC2.4 cells. For measuring 

binding of HES-NCs loaded with αLuc siRNA, Cy5 was co-encapsulated. Cellular 

interactions of DC2.4-mCMV with HES-NCs containing the control siRNA were assessed 

by detecting the AF647-label attached to the siRNA. Both fluorochromes have almost the 

same excitation and emission properties. The diameters of all HES-NC formulations were 

measured by DLS and determined to be 170 nm on average. Sphere-shaped capsule 

morphology was imaged by SEM and TEM (Figure 40). The encapsulation efficiency of 

HES-NCs was assessed by the release of D-mannosamine and turned out to be 

approximately 70 % (Figure S 13). Binding analysis with DC2.4-mCMV using 300 µg/ml 

HES-NCs, based on a specific gating strategy (Figure S 14), showed a moderate, 

comparable cell association for both siRNA-loaded HES-NCs of 10-20 %. Despite similar 

binding frequencies, cells treated with αLuc siRNA-loaded HES-NCs showed remarkably 

higher MFIs than cells treated with control siRNA HES-NCs, most likely due to different 

intensities of the two incorporated fluorochromes (Figure S 15a). The viability of the 

modified DC cell line was only slightly influenced by the HES-NC formulations (Figure S 

15b). 

 

 

Figure 40 Visualization of HES-NC morphology 

The morphology of HES-NCs was microscopically visualized by SEM (left) and TEM (right). Indicated scale 

bar illustrates NC size. 
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The basic luciferase expression of DC2.4-mCMV was used as readout to assess the 

suitability of HES-NCs to deliver siRNA into DCs in a functional way to mediate specific 

gene knockdown. Therefore, DC2.4-mCMV cells were incubated with 300 µg/ml HES-

NCs, containing αLuc siRNA and the control siRNA respectively, for 24 h. After that, the 

remaining luciferase expression was measured. The analysis showed that treatment with 

HES-NCs loaded with αLuc siRNA triggered a significant reduction and an almost 

complete knockdown of the firefly luciferase activity in DC2.4-mCMV.  

 

 

Figure 41 Luciferase knockdown with siRNA-loaded HES-NCs 

Knockdown efficiency of αLuc siRNA encapsulated in HES-NCs was assessed. DC2.4-mCMV (1 x 10
5
 

cells/ml, seeded 24 h before) were treated with 300 µg/ml of siRNA-loaded HES-NCs (luciferase-specific or 

control) for 24 h and the remaining luciferase activity was determined by bioluminescence measurement. 

Non-transduced DC2.4 cells were used as negative control. As positive control, DC2.4-mCMV cells were 

transfected with αLuc siRNA via lipofectamine (lipo). Results were normalized to untreated DC2.4-mCMV 

(dashed line). Non-transduced DC2.4 were used as control (dotted line, mean ± SD; n=3). **p < 0.01, ***p < 

0.001. 
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The remaining activity was thereby comparable to the background bioluminescence of non-

transduced DC2.4 or the positive control with lipofectamine and αLuc siRNA. In contrast, 

HES-NCs loaded with unspecific control siRNA did not induce such an effect. In this case, 

the luciferase activity was rather comparable with that of untreated DC2.4-mCMV (Figure 

41) indicating a high specificity of the used αLuc siRNA. In summary, HES-NCs are 

suitable for efficient transport and release of bioactive siRNA concerning DCs.  
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4.4 Nanocarrier-mediated DC targeting 

The modification of a NP with antibodies specific for an endocytically/phagocytically 

active receptor is supposed to increase NP’s binding and uptake by a specific cell type. 

Therefore, cell type specific surface targets are required, that upon binding also mediate 

internalization of the associated NP, if needed. Especially in case of an in vivo application 

of NPs, the addition of a targeting moiety is frequently recommended [250, 251]. DC-SIGN 

is a prominent representative of promising DC surface targets. To investigate, whether cell 

targeting via anti-DC-SIGN antibodies (αDC-SIGN) is an appropriate way to increase the 

DC specificity of siRNA-loaded HES-NCs, the surface of the previously described NCs 

(see 4.3) was additionally modified with αDC-SIGN. DC2.4-mCMV cells were used as test 

system, since DC-SIGN is constitutively expressed in that cell line.  

4.4.1 DC-SIGN targeting with antibody-modified HES-NCs 

The newly synthesized HES-NCs modified with antibodies were initially checked for 

cytotoxicity. A 7AAD/Annexin V double staining of DC2.4-mCMV, which were treated 

with the antibody-modified HES-NCs, revealed that both NC formulations were non-toxic 

for the cells. The observed viabilities were comparable to that of untreated cells (Figure S 

15b).  

The antibody-modified, siRNA-loaded HES-NCs were then checked for their functionality 

to transfer siRNA into DC2.4 cells. An increased cellular interaction due to DC-SIGN 

targeting might result in enhanced uptake, higher intracellular siRNA release and 

eventually a stronger knockdown effect as obtained using non-targeting NCs. 

Lipofectamine + αLuc siRNA was used as positive control again. Luciferase activity 

measurements after 24 h administration of the mentioned NCs confirmed the high 

efficiency and specificity for the siRNA-loaded, non-targeting HES-NCs. Those loaded 

with αLuc siRNA triggered an almost complete knockdown of luciferase activity, whereas 

the capsules carrying the control siRNA did not. In contrast, a treatment with HES-NCs 

modified with αDC-SIGN did not alter luciferase expression (Figure 42).  
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Figure 42 Luciferase expression upon treatment with targeting HES-NCs 

To assess the impact of a αDC-SIGN modification on the functionality of siRNA-loaded HES-NCs to 

knockdown a target gene, luciferase-expressing DC2.4-mCMV cells (1 x 10
5
 cells/ml, seeded 24 h before) 

were treated with the indicated HES-NC formulations (± targeting, each 300 µg/ml) for 24 h. The remaining 

luciferase expression was determined by luciferase activity measurement. Results were normalized to 

untreated DC2.4-mCMV (dashed line). Non-transduced DC2.4 were used as control (dotted line, mean ± SD; 

n=3). ***p < 0.001. 

 

Despite the missing knockdown effect, the actual potential of αDC-SIGN-modified HES-

NCs to mediate effective DC targeting was assessed in comparison to the non-modified 

NCs, focusing on cellular binding by DC2.4-mCMV. Therefore, cells were incubated with 

the different HES-NCs (loaded with αLuc or control siRNA, ± targeting) and cellular 

binding was measured by flow cytometry.  
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Figure 43 DC2.4 targeting with αDC-SIGN-modified HES-NCs 

The influence of DC-SIGN-directed antibody modification of HES-NCs on the interaction between DC2.4-

mCMV and such equipped NCs was assessed by cytometric binding analysis and CLSM. (a) DC2.4-mCMV 

(1 x 10
5
 cells/ml, seeded 24 h before) were treated with 300 µg/ml of antibody-modified (+ targeting) and 

non-modified (-targeting) siRNA-loaded (αLuc or control siRNA) HES-NCs for 24 h. Cy5/AF647
+
 cells as 

well as Cy5/AF647 MFIs were measured by flow cytometry (mean ± SD; n=6). (b) Cellular uptake of 

differently-modified HES-NCs into DC2.4-mCMV was microscopically analyzed by CLSM, incubating cells 

(7.5 x 10
5
 cells/ml) with 100 µg per ml of the indicated NCs for 24 h. Cell membranes were stained with 

CellMask Orange (green), nuclei with DAPI (blue). HES-NCs were detected via Cy5/AF647 label (violet). 
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It turned out, that those NCs modified with αDC-SIGN showed significantly increased cell 

association frequencies and MFIs compared to non-targeting HES-NCs in flow cytometry 

(Figure 43a). In this context, the frequencies of Cy5/AF647
+
 cells mediated by the αDC-

SIGN-modified NCs were comparable, whereas the MFIs of those cells differed most likely 

due to different fluorescence intensities (see Figure S 15a), as already described in 4.3.1. 

Nevertheless, the antibody modification significantly enhanced the interaction of HES-NCs 

with DC2.4 cells, which was also visualized via CLSM. There, the HES-NCs were 

exclusively detectable when modified with αDC-SIGN. Without targeting, no intracellular 

NC signals appeared at all (Figure 43b). 
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5. Discussion 

5.1 DC-directed T cell stimulation with nanovaccine 

About 15 years ago, it was shown for the first time that sets of distinct PRRs can cooperate 

in a synergistic manner when simultaneously engaged by according ligands [106, 252, 

253]. This mechanism potentially allows reducing the amounts of adjuvants in vaccines 

while still possessing a constant stimulatory potential or to enhance the effect by a 

cooperative action of more than one adjuvant. Stimulatory synergy has already been 

described for diverse combinations of TLR ligands, such as CpG plus Poly I:C [254], CpG 

plus LPS [255] or R848 plus monophosphoryl lipid A (MPLA) [256]. But also some 

combinations of TLR and NLR ligands have been identified to work in synergistic 

cooperation [257-259].  

The main objective of this work was to develop a nanocarrier that can be used as a 

nanovaccine for the treatment of melanoma. To do so, the first initial step was to choose an 

appropriate adjuvant. Such an adjuvant should trigger i) an upregulation of the co-

stimulatory molecules CD80 and CD86 as well as ii) an increased secretion of distinct pro-

inflammatory cytokines by DCs. Both factors are essential and highly required for DC/T 

cell interaction and thus for the induction of a tumor-directed adaptive immune response 

[260]. Particularly in case of tumor diseases, a cellular Tc1/Th1-dominated response has to 

be the goal [136], since a humoral Th2-biased response has proven to be insufficient in 

tumor rejection [137]. Recent studies have shown that alum and Freud’s adjuvant do not 

induce a cellular but rather a humoral, antibody-dominated immune response [261-263]. 

Therefore, a focus was set to establish Th1/Tc1-promoting adjuvants for use in NP 

formulations. We decided to search for an efficient adjuvant combination of a TLR and a 

NLR ligand, since a priority objective was to combine adjuvants which are recognized by 

different intracellular PRRs. Several publications have underlined the therapeutic potential 

of NLRs for vaccination [76, 264, 265], but less is known about the stimulatory potential 

and the cross-talk of TLR/NLR ligand combinations [266, 267], particularly when co-

delivered by nanocarriers.  
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In contrast to TLRs, which are localized on the cell surface or in endosomes, NLRs are 

located in the cytosol. Since the NLR effect was less predictable due to the cytosomal 

receptor localization and the required endosomal ligand release, we started initial 

experiments using BMDCs to test to which extent NLR ligands trigger maturation. The 

cytometric measurements revealed that all tested NLR ligands were capable of inducing 

increased expression of CD80 and CD86, but L18-MDP, a C18-modified MDP derivative, 

was by far the strongest (see Figure 9). Consequently, we decided to use L18-MDP for 

further synergy experiments. Since it carries the NOD2 minimal bioactive motif MDP, 

displays high membrane penetrability due to its hydrophobicity [268] and was subject of 

many immunological studies [269-273], it served as an effective representative of all 

NOD2 ligands. 

Afterwards, to identify synergistic combinations, BMDCs were treated with L18-MDP in 

combination with specific ligands of endosomal TLRs which have been used in vaccination 

approaches, Poly I:C (TLR3 ligand), R848 (TLR7 ligand) or CpG (TLR9 ligand) [274-

277]. Additionally, all combinations trigger different signaling adaptors. NOD2 signaling is 

based on the recruitment and activation of RIP2, allowing the activation of the NF-κB 

signaling regulator IKK [278]. In contrast, R848 and CpG are associated with MYD88, the 

canonical adaptor molecule of TLR signaling [73], whereas Poly I:C recognition by TLR3 

triggers the TRIF signaling pathway [279].  

The expression of the co-stimulatory molecules CD80 and CD86 upon adjuvant treatment 

was significantly increased by L18-MDP combined with R848 and Poly I:C respectively. 

Interestingly, Poly I:C evoked no increase when applied alone (see Figure 10). Regarding 

cytokine secretion, L18-MDP alone did not induce any variations in the measured 

concentrations of the pro-inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α. IL-10 was 

also not influenced. When applied together with the mentioned TLR ligands, the secretion 

of IL-6, IL-12 and TNF-α was significantly increased in all combinations compared to the 

single adjuvant samples. But the secretion of IL-1β was exclusively enhanced by the 

combination L18-MDP plus R848 (see Figure 11). These results indicated an effective, 

superadditive DC maturation by the combination of L18-MDP plus R848, since 

CD80/CD86 expression, as an important requirement of T cell activation [280, 281], the 

Th1-promoting cytokines IL-1β [129], TNF-α [130], and IL-12 [282] as well as the acute 
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phase cytokine IL-6 [283] were significantly increased. Our results are in agreement with 

publications from other groups showing that the combined application of MDP and R848 

substantially increased the secretion of pro-inflammatory cytokines in human peripheral 

blood mononuclear cells [284] and monocyte-derived DCs [285]. In general, combinations 

of NLR and TLR ligands have been recognized to enhance IL-12 production in APCs and 

to promote Th1 responses [254, 258, 286, 287]. IL-10, a major anti-inflammatory cytokine, 

is known to inhibit MHC-II and CD80/CD86 expression as well as the production of pro-

inflammatory cytokines in APCs [288]. Furthermore, autocrine IL-10 signaling can block 

IL-12 production and DC trafficking to the lymph nodes [289, 290]. Therefore, the 

observed increase in IL-10 production upon treatment with L18-MDP plus R848 has to be 

taken into account. As just stated, IL-10 is a negative regulator of IL-12. Due to the 

underlying feedback loop, DC activation associated with an increased production of IL-12 

triggers the production of IL-10 in return [291, 292]. For that reason, it was more or less 

expected to detect elevated IL-10 levels. 

Adjuvant application via nanocarriers can increase its immunostimulatory capacity due to 

higher local concentrations or improved delivery [293-295]. Moreover, several TLR ligand 

combinations are known to maintain their synergy when applied by a NP [296, 297]. 

Therefore, we decided to incorporate the identified adjuvant combination into a NP drug 

delivery system. Dextran-based nanoparticles were chosen, since they have been used for 

the transport of a variety of substances and provide high biocompatibility [236, 293, 298-

300]. Due to L18-MDP’s amphiphilic character and the tendency of stearoyl derivatives to 

form micelles [268], L18-MDP was not available for water-based nanoparticle syntheses. 

Instead, the similar structure MDP was used for encapsulation. In contrast to L18-MDP, 

MDP requires a vector for effective membrane transfer [301]. Otherwise, ten times higher 

concentrations of soluble MDP are needed to achieve the effectiveness of L18-MDP (see 

Figure 9). MDP has been described as a mediator of cellular immune responses when 

applied by nanocarriers, whereas a soluble application was shown to evoke a primarily 

humoral response [302]. 

The quality controls confirmed the suitability of the new synthesized Dex-NPs as a drug 

delivery system, since the formulations were endotoxin free, non-toxic and were bound by 

BMDCs in a dose-dependent manner (see Figure 13). The average NP diameter of 150 nm 
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(see Table S 1) was large enough to limit NP uptake to endocytic active cells [303-305]. 

According to the literature, NPs of a similar size are potentially taken up via clathrin-

mediated (CME) and -independent endocytosis (CIE) pathways [306]. CME is mainly 

responsible for intracellular signaling, membrane recycling and nutrient uptake [307], 

whereas CIE pathways are associated with plasma membrane repair and cell polarization 

[308]. Macropinocytosis, as an actin-driven endocytic process [309], can also be involved 

in the uptake of NPs [310]. However, most studies analyzing routes of NP uptake reported 

the involvement of more than one endocytic pathway [311, 312], basically dependent on 

size [313], shape [314] and charge [179]. Furthermore, it has been described for NPs 

smaller than 200 nm that they can enter the spleen directly via the lymphatic vessels [186]. 

The stimulatory potential of single-adjuvant and dual-adjuvant Dex-NPs was directly 

comparable due to equimolar encapsulation of MDP and R848 (see Table S 2). However, 

the binding of Dex-NPs by BMDCs was checked by a FITC-label of MDP, but not by 

direct fluorescence labeling of NPs. In case of an incomplete MDP-FITC encapsulation, it 

is possible that soluble MDP-FITC was responsible for the binding results. This assumption 

was partially refuted by the observation that NP supernatants did not induce any stimulation 

(see Figure 16).  

Indeed, the cytometric analysis of BMDCs treated with adjuvant-loaded Dex-NPs showed 

that all of these induced an increase in CD80 and CD86 expression. While soluble MDP 

exerted no stimulatory effect, Dex-MDP triggered a dose-dependent moderate stimulation. 

In comparison, Dex-R848 triggered a higher upregulation of CD80 and CD86. Compared 

to LPS, Dex-R848 was nonetheless remarkably weaker. This finding might be explained by 

the fact that LPS signals via MYD88 and TRIF [315], whereas the R848 signaling cascade 

comprises the MYD88 pathway only. Nevertheless, Dex-R848 mediated a stronger 

upregulation of CD86, which is more important in the murine system [316, 317], compared 

to equimolar amounts of soluble R848. Dex-MDP/R848 mediated a significantly stronger 

expression of CD80 and CD86 than the single adjuvant formulations. The stimulatory 

potential of these NPs was also illustrated by the cytokine measurements. The secretion of 

IL-1β, TNF-α and IL-6 by BMDCs was significantly higher upon treatment with Dex-

MDP/R848 than in case of Dex-MDP or Dex-R848. However, IL-12, an essential cytokine 

of Th1 differentiation, was only slightly increased and even close to the detection limit (see 
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Figure 15). These results confirmed that the adjuvant combination of MDP plus R848 

exerts a superadditive stimulatory character when co-delivered by Dex-NPs. As their 

receptors are localized in the cytosol and endosome, respectively, the results suggest that 

the adjuvants were released from the NP into the endosome and even managed to escape 

from there into the cytosol. The concept of TLR/NLR ligand combinations in nanocarriers 

is relatively new, though MDP and R848 have already been used as single adjuvants in 

nanovaccines [193, 318]. One of the few exceptions was published by Poecheim et al. in 

2015, combining MDP and CpG motif rich plasmid DNA in trimethyl chitosan NPs, 

squalene-in-water and mineral oil-in-water nanoemulsion, respectively. It was shown that 

the simultaneous targeting of NOD2 and TLR9 significantly enhanced the release of pro-

inflammatory cytokines in RAW264.7 macrophages in a synergistic manner [319]. In 

another interesting approach described by Pavot et al. a novel chimeric NOD2/TLR2 

ligand, composed of murabutide covalently bound to the TLR2 ligand Pam2C was used 

[320]. When encapsulated in p24-coated poly(lactic acid) NPs, this adjuvant combination 

induced a synergistic upregulation of DC maturation markers, co-stimulatory molecules 

and the secretion of pro-inflammatory cytokines. 

Stimulation of DCs needs to be accompanied by delivery of a desired antigen [321]. More 

recently, a polymeric nanocapsule with a shell consisting of OVA protein cross-linked with 

TDI was introduced by our group [237]. It was shown that these OVA-NCs were efficiently 

taken up by human monocyte-derived DCs and degraded intracellularly. Based on these 

findings, we assumed that OVA-NCs might also be a suitable antigen source for BMDCs to 

mediate OVA-specific T cell responses in our setting, as already shown in a study with 

chronic hepatitis B virus antigens [322, 323]. A protein antigen has to be taken up and 

processed intracellularly by DCs. The resulting peptides are then loaded onto MHC-I and -

II, which in turn are transported to the cell surface and present the antigen to the respective 

T cell population [324].  

Compared to Dex-NPs, OVA-NCs are much bigger. Due to an average capsule diameter of 

approximately 350 nm in water (see Table S 3), macropinocytosis is likely the most 

prominent endocytic pathway for internalization of OVA-NCs [303, 310, 325, 326]. Since 

macropinocytosis is closely linked to antigen capture and presentation via MHC-II [327, 

328], it is one of the commonly preferred and intended endocytic pathways for antigen-
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bearing NPs. Moreover, Manolova et al. have reported that NPs bigger than 200 nm are 

preferentially taken up by APCs at the injection site and are actively transported to the next 

draining lymph node [186]. To verify cellular binding of OVA-NCs, BMDCs were 

incubated with those capsules. The results of the cytometric analysis confirmed dose- and 

time-dependent rapid binding of the capsules by the vast majority of BMDCs. Furthermore, 

degradation analysis with OVA-DQ-NCs revealed a dose- and time-dependent degradation 

at 37 °C. In contrast, at 4 °C no degradation signal was detectable in BMDCs. Since 

endocytic, energy-dependent processes, such as macropinocytosis, are inhibited at 4 °C 

[245], we concluded that OVA-NCs were taken up by active endocytosis. These 

observations confirmed an effective internalization and degradation of OVA-NCs in our 

system. To check for effective presentation of OVA-NC-derived peptides via MHC-I and -

II, BMDCs were pre-treated with OVA-blank-NCs, and co-incubated with OVA-reactive 

OT-I (CD8
+
) and OT-II (CD4

+
) T cells, respectively. An effective OVA peptide 

presentation on MHC-II was shown by the increased proliferation of CD4
+
 T cells upon 

additional LPS treatment. The detected induction of CD8
+
 and CD4

+
 T cell proliferation 

suggested that OVA peptides derived from internalized and degraded OVA-NCs were 

efficiently presented via MHC-I and -II. BMDCs, pre-treated with OVA-NCs without 

additional stimulation, triggered a slight proliferation of both T cell populations only. These 

results indicated that the OVA-NC-derived peptides were not only loaded onto MHC-II but 

also on MHC-I, allowing cross-presentation and activation of CD8
+
 T cells. Usually, MHC-

I presents peptides that derived from endogenous proteins [113]. To be able to induce an 

effective cytotoxic T cell response against a foreign antigen like a virus peptide, specific 

DC subsets are endowed with the capacity to present antigens from the extracellular 

environment on MHC-I [116], including BMDCs [117]. Both CD8
+
 and CD4

+
 T cells are 

necessary to elicit an effective antitumor response [329]. Activated CD8
+
 cytotoxic T cells 

are able to directly eliminate malignant cells [330], whereas CD4
+
 T helper cells are 

required for the generation and maintenance of CD8
+
 T cell responses [331, 332]. Since 

OVA-NCs triggered both CD4
+
 and CD8

+
 T cell responses, we focused on these capsules 

as a reliable antigen source.  

Protein-based nanocapsules have been describes as drug delivery system in several studies, 

but primarily for the transport of other substances, such as siRNA or cytostatics [221-223, 
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333-335]. Thereby, the molding protein was rather used because of its high 

biocompatibility, low cytotoxicity and its chemical properties, but less because of its 

antigenicity. In comparison, the idea to use the capsule shell itself as antigen source is quite 

new. The chemical bonding of the antigen and using it as a capsule material could 

potentially have made the protein unsuitable to act as an antigen. So it could have been that 

the degradation of the protein into peptides needed for an effective loading onto MHC 

molecules would not have been functional anymore. So the question remained whether 

OVA-NCs could be effectively combined with the aforementioned adjuvant combination. 

The first step to answer this question was to combine both nanocarrier systems directly in 

one approach. Therefore, BMDCs were pre-treated with Dex-MDP/R848 or Dex-blank in 

combination with OVA-blank-NCs, and co-cultured with OT-I and OT-II T cells. In 

contrast to the previous experiment, the adjuvant-loaded Dex-NPs replaced LPS in this 

setup. The combination of MDP/R848-loaded Dex-NPs and OVA-blank-NCs triggered a 

significantly increased proliferation of both OT-I and OT-II T cells compared to the 

combination of Dex-blank plus OVA-blank-NCs (see Figure 22). This indicated that the 

chosen adjuvant combination evoked a suitable stimulation for BMDCs to present the 

OVA-NC-derived peptides to the T cells in an effective manner. Interestingly, the 

combination of both empty nanocarriers also mediated a moderate OT-II proliferation. This 

might be due to the fact that in all experiments a small proportion of BMDCs was in an 

active state without further stimulation, visible as CD80
+
 and CD86

+
 cells in the untreated 

controls. These pre-activated cells could be responsible for the OT-II T cell proliferation 

without an additional stimulus, since the co-stimulatory molecules CD80 and CD86 were 

already present and OVA available as antigen. A lack of OT-I proliferation could thereby 

be explained by insufficient cross-presentation by these cells. Besides that, an OVA-NC 

mediated stimulation of the BMDCs was taken into account as the trigger. But this option 

was almost entirely refuted by the finding that empty OVA-NC never evoked any 

upregulation of CD80 and CD86 (see Figure 24) or pro-inflammatory cytokines (see Figure 

25). Additionally, all OVA-NC formulations were almost free of endotoxins (see Figure S 

4). Due to the transgenic origin of the employed T cell populations it cannot be excluded 

that the altered proliferation of OT-II T cells in presence of OVA-NCs without stimulation 

was due to various sensitivity against OVA itself. In this case, the simple presence of OVA 
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protein might be sufficient to mediate a moderate OT-II proliferation. This hypothesis was 

supported by similar results in Figure 21 and Figure 26, where the basic proliferation 

triggered by OVA-blank-NCs was always stronger for OT-II than for OT-I T cells. 

To characterize the induced T cell activation in more detail, we also measured prominent T 

cell cytokines in the co-culture. OT-I and OT-II T cells that were co-cultured with BMDCs, 

pre-treated with Dex-MDP/R848 and OVA-blank-NCs, showed significantly increased 

levels of the Tc1/Th1 marker IFN-γ (see Figure 23). IFN-γ is a crucial cytokine for innate 

and adaptive immunity against viral and some bacterial infections [336]. In case of OT-I, it 

indicated a differentiation towards cytotoxic Tc1 T cells [337]. For OT-II, high IFN-γ 

production reflects an acquired Th1 response [338, 339]. Since Tc1 and Th1 T cells are 

mediators of cellular immune responses and essential for antitumor reactions, the detected 

T cell cytokine pattern was in congruence with our requirements for a NP-based melanoma 

vaccine. In contrast, the Th2 marker IL-5 and the ambiguous Th2/Treg marker IL-10 were 

not increased. On the basis of these results, we decided to fuse both systems into one 

functional nanocarrier, including a superadditive adjuvant combination and an antigen 

source. 

Many studies developing nanovaccines conjugate the needed substances (e.g. antigen, 

adjuvants and fluorochrome) chemically to NP’s surface [340-344]. By this, the cell 

recognizes PAMPs either by extracellular PRRs or after internalization by intercellularly 

located ones. Subsequently, the antigen is generally cleaved from the NP and thereafter 

available for processing. However, the NP-coupled molecules are completely exposed to all 

kinds of enzymatic, chemical and physical processes in the harsh extracellular environment 

[345]. In case of our NCs, the PRR ligands are in an aqueous core and completely 

surrounded by a protein shell, in contrast to the antigen which is accessible on the NC’s 

surface. In this way, the ligands are protected from unintended interactions till intracellular 

release. Thus, it is prevented that the adjuvants stimulate APCs before NC internalization. 

This is an important advantage since DC maturation reduces their endocytic activity after a 

strong transient increase [346-348]. Consequently, an early stimulation like by a soluble 

adjuvant or adjuvants on the surface of a NP could inhibit further NP uptake and thus 

diminish the final outcome. The same strategy was chosen for the fluorochrome. Although 

Cy5-Oligo is considered to be relatively unsusceptible to environmental factors like pH, it 
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was additionally encapsulated into the liquid core to provide stable conditions. A further 

advantage of the protein-based NCs was that the availability of antigen is directly 

associated with the payload release. Fast interaction and degradation ensures fast 

availability of peptides and a quick release of encapsulated adjuvants. Moreover, due to 

their superior loading capacity and efficiency compared to NCs consisting of synthetic base 

materials (such as PLGA or PLA) [349], degradation of NCs based on biopolymers like 

polysaccharides or proteins mediates high local adjuvant concentrations.  

It turned out that the adjuvant combination MDP plus R848 also worked when encapsulated 

in OVA-NCs. The frequencies and MFIs of CD80 and CD86 in BMDCs were significantly 

increased in a superadditive manner when stimulated with OVA-MDP/R848-NCs 

compared to the corresponding single-adjuvant capsules and equimolar amounts of soluble 

adjuvants (see Figure 24). Also the cytokine measurements revealed a strong stimulatory 

potential. IL-1β, IL-6 and TNF-α levels were significantly higher upon treatment with 

OVA-MDP/R848-NCs than with the other NCs (see Figure 25). The cytokine profile was 

thereby comparable with that of BMDCs treated with Dex-MDP/R848. However, IL-12, 

the essential Th1-promoting cytokine, which was almost undetectable with Dex-NPs, was 

secreted in high quantities, and to a significantly higher extent than evoked by LPS. As 

mentioned before, LPS, as a TLR4 ligand, activates MYD88 and TRIF in synergy [315], 

and therefore is well-accepted as a gold standard to mediate BMDC activation. Altogether, 

the adjuvant combination MDP plus R848 encapsulated in OVA-NCs induced a stronger 

Th1-promoting DC activation than in case of Dex-NPs. These remarkable differences to 

Dex-MDP/R848 might be due to a faster uptake and degradation of the OVA-NCs, 

resulting in more efficient cargo release, a different uptake route and intracellular 

trafficking or merely to the higher loading capacity of the NCs. It is also possible that the 

transfer of MDP into the cytoplasm depends on the nanocarrier type. In this case, the 

effectiveness of the synergy between NOD2 and TLR7 ligands would be highly dependent 

on the chosen drug delivery system. 

Regarding OVA-specific T cell activation, OVA-MDP/R848-NCs triggered the strongest 

proliferation rates of OT-I and OT-II T cells (see Figure 26). These results were consistent 

with the stimulatory effects of the corresponding adjuvant-loaded NC-formulations. 

Additionally, we observed that BMDCs induced a Tc1/Th1-biased cytokine pattern in the 
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corresponding T cell population when stimulated with OVA-MDP/R848-NCs as evidenced 

by significantly increased IFN-γ levels, while IL-5 and IL-10 concentrations remained on 

low to moderate levels. This cytokine pattern largely matched the high activation level of 

OVA-MDP/R848-NC pre-treated BMDCs and their high expression of Th1-promoting pro-

inflammatory cytokines (IL-1β, TNF-α, IL-12).  

A totally new approach to characterize the effect of a nanovaccine on DCs is the analysis of 

the cell transcriptome after administration of the nanovaccine. RNA-Seq allowed us to 

detect any changes on mRNA level of BMDCs that were mediated by the treatment with 

OVA-MDP/R848-NCs. The main reason for using this technique was to be able to 

reconstruct the adjuvant and nanocapsule effects on mRNA level. Since mRNA expression 

does not consequently result in accordingly regulated protein production [350], RNA-Seq 

may give a hint for future nanovaccine development to understand how and why a drug 

delivery system acts in a particular way. RNA-Seq has been used for the analysis of 

nanoparticle effects in some studies, but those were primarily focused on toxicological 

effects [351-354]. Furthermore, a few studies have characterized adjuvant effects by this 

method. Recently, Mathan et al. have evaluated protamine-RNA complexes and CpG-P as 

new adjuvants for dendritic cell immunotherapy by RNA-Seq [355]. To the best of our 

knowledge is has never been used for the analysis of immune cell interactions with 

adjuvant-loaded nanocarriers. Due to a lack of appropriate data regarding early alterations 

in mRNA expression upon NC treatment, we decided to incubate BMDCs with adjuvant-

loaded OVA-NC for 1, 2 and 4 hours (based on already used incubation times for 

transcriptome analysis of stimulated BMDCs according to the Sequence Read Archive, 

NCBI) and pooled the samples afterwards to capture every mRNA alteration over time in 

one sample. In the comparative analysis of the transcriptomes of untreated, OVA-blank-

NC- and OVA-MDP/R848-NC-treated BMDCs, we were able to detect and identify the 

mRNAs of 14,531 genes in total, which corresponds to a share of approximately 58 % of 

the whole mouse genome [356]. Apart from high transcript numbers for the activation 

markers CD40, CD80, CD83 and CD86 (see Figure 27a), we detected increased mRNA 

levels for the pro-inflammatory cytokines IL-1α, IL-1β, IL-6, IL-12β and TNF-α but not for 

the anti-inflammatory IL-10 (see Figure 27b). These results were highly consistent with the 

activation and cytokine measurements of BMDCs treated with OVA-MDP/R848-NCs. 
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Hereby, the upregulation of co-stimulatory markers and Tc1/Th1-promoting cytokines upon 

MDP/R848 stimulation was detectable on mRNA level. It has already been reported by 

several studies that DC stimulation with different adjuvants not only triggers increased 

amounts of co-stimulatory molecules and pro-inflammatory cytokines but also an 

upregulation of those markers, in particular CD40, CD83, CD86, TNF-α, IL-1β and IL-6, 

on transcriptional level [357-359]. Moreover, Hotz et al. reported in 2016 that BMDC 

stimulation with R848 for 4 h triggered increased mRNA expression of IL-6, IL-12α and 

IL-12β [360]. The increase in transcript numbers of several chemokines (such as CCL3, 

CCL4, CCL5, CCL22, CXCL1, CXCL2, CXCL3, CXCL10), which are responsible for the 

recruitment of distinct immune cell types [361], indicates DC maturation (see Figure 27c). 

In contrast, some chemokines were not influenced or even downregulated. The ability to 

express specific chemokines differs substantially among different DC subsets [362]. 

Furthermore, the chemoattractive properties of stimulated DCs seem to be dependent on the 

corresponding stimulus [358]. Since, as far as we know, nothing has been published about 

the chemokine transcriptome of DCs (or even BMDCs) stimulated with TLR/NLR ligand 

combinations so far, there was a lack of sources for comparison. Nonetheless, some 

similarities indicating a sufficient BMDC activation by OVA-MDP/R848-NCs could be 

found in literature. The inflammatory chemokines CCL3, CCL4 and CCL5 have been 

described to be transcriptionally upregulated in human moDCs and murine splenic DCs 

upon treatment with LPS, TNF-α or CD40 ligand [363-365]. Ross et al. have discovered 

that murine LCs transcribe the T cell attracting CCL22 upon maturation [366]. In case of 

viral exposure, the chemokines CXCL1, CXCL2 and CXCL3 have been reported to be 

transcribed by human pDCs and cDCs as part of the first (after 2-4 h) of three distinct 

chemokine waves [367]. Finally, for CXCL10, an inflammatory chemokine with Th1-

attracting properties, it has been shown that it is transcribed by murine lymphoid-resident 

cDCs upon maturation [368]. Regarding chemokine receptors, we recognized a 

downregulation of CCR1 and CCR5 mRNA upon treatment with OVA-MDP/R848-NC 

compared to the controls, whereas the mRNA level of CCR7 was increased (see Figure S 

11e). These results were in line with a study from Sallusto et al. from 1998, where they 

showed that human moDCs expressed high levels of CCR7 mRNA after stimulation with 

LPS or TNF-α, whereas the mRNA levels of CCR1 and CCR5 were decreased by this 

treatment [369].  
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The strong BMDC activation was further confirmed by the transcriptional upregulation of 

numerous interferon-stimulated genes (see Figure 27d), such as RSAD2 (Viperin) and 

ISG15, which play an emerging role in antiviral immunity [370, 371]. Gene groups in 

which an altered mRNA expression was not necessarily expected, for instance DC marker 

genes, or only partially activation-dependent, such as PRR or scavenger receptor genes, 

were also analyzed. The most transcript numbers in these groups were relatively stable. 

Nonetheless, several changes in mRNA expression upon treatment with MDP/R848-loaded 

OVA-NCs were detectable. The observed downregulation of CD11c upon DC stimulation 

has already been described by Singh-Jasuja et al. [372]. Regarding the upregulation of 

TLR2 and CD14, which is a co-receptor of TLR4, it has been reported that the expression 

of these PRRs on BMDCs was increased by stimulation [373, 374]. The strong 

upregulation of SCARA2 (MARCO) after administration of OVA-MDP/R848-NCs was 

highly consistent with results from Kissick et al. showing that the relative MARCO 

expression in BMDCs is increased upon stimulation with different TLR ligands [375].  

To analyze the vast amount of data, we performed a KEGG-annotated pathway analysis to 

identify signaling pathways that were associated with upregulated genes. The analysis 

supported our expectations and the previous findings, that immunological relevant 

pathways were addressed by the adjuvant-loaded OVA-NCs, such as cytokine-cytokine 

receptor, NF-κB, TLR/NLR and JAK/STAT signaling (see Table 18). These pathways are 

known to be associated with adjuvant effects and are closely linked to the induction of 

immune responses [376-380]. In comparison, the results also illustrated that empty OVA-

NCs triggered an upregulation of some, but far less, genes that could be assigned to distinct 

immunologically relevant pathways. Particularly striking, however, was the detection of 

several genes associated with antigen processing and presentation which were designated as 

upregulated (mean enrichment score ≥ 2.0) when comparing the capsule samples to the 

untreated control. In case of a direct comparison of the two capsule samples, with and 

without adjuvant cargo, not a single gene of the mentioned pathway showed a mean 

enrichment score ≥ 2.0. However, more genes associated with that pathway were 

significantly upregulated when comparing the OVA-MDP/R848-NC sample with the 

untreated control (=8) than for the corresponding comparison between OVA-blank-NC and 

that negative control (=4). Consequently, BMDCs reacted to both capsules, but the induced 
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effect regarding antigen processing and presentation on mRNA level was stronger for the 

adjuvant-loaded one. 

Altogether, the RNA-Seq results demonstrated the induction of many relevant 

immunological pathways on mRNA level in BMDCs in response to treatment with OVA-

MDP/R848-NCs. As expected, genes of co-stimulatory molecules, diverse chemokines and 

Th1-promoting cytokines were upregulated compared to the negative control and also 

OVA-NC treatment, though weaker. Several genes, associated with antigen processing and 

presentation, such as HSPA1B, a gene that represents a protein (HSP70) involved in the 

proteasome pathway [381], were assigned as upregulated in the OVA-blank-NC sample 

compared to the untreated control by KEGG-annotated pathway analysis. In contrast, four 

genes, for instance TAP1, which encodes for the antigen peptide transporter of the same 

name and is known to be upregulated upon adjuvant-mediated stimulation [382], were 

found upregulated exclusively when analyzing the OVA-MDP/R848-NC sample against 

the untreated one. To check the RNA-Seq results for specificity and accuracy, we picked 

six representative genes (four upregulated, one downregulated and one slightly 

downregulated) and measured the relative copy numbers also via qPCR. RNA-Seq and 

qPCR showed similar results for all genes. Compared to the widely used Sanger 

sequencing, NGS as well as qPCR provide significantly higher but similar analytical 

sensitivity, specificity and high concordance [383]. Moreover, it has recently been shown 

that qPCR is a sufficient method to validate RNA-Seq results [384]. Therefore, the qPCR 

analysis confirmed the RNA-Seq results. Interestingly, the transcriptome of BMDCs has 

never been deciphered for a study by RNA-Seq, only for selected genes by microarray or 

qPCR [52, 385]. In contrast, Miller et al. have already analyzed the transcriptomes of 

several murine DC linage subsets by RNA-Seq [386].  

A first important step towards an in vivo application of OVA-NC formulations for 

vaccination purposes was to analyze the interaction of adjuvant-loaded OVA-NCs with 

primary immune cell populations derived from spleen. In agreement with their profound 

endocytic activity [387], DCs as well as macrophages showed strong OVA-NC binding, 

whereas their binding by B cells was rather low. This might be explained by the finding 

that B cells differ in the capacity to internalize antigens compared to other APCs [388, 

389]. T cells, which are known to lack considerable endocytic activity, did not show any 
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significant binding. Additionally, DCs and macrophages showed a significantly increased 

expression of CD86 upon treatment with R848- and MDP/R848-loaded OVA-NCs (see 

Figure 33). These results were highly comparable to the results obtained using BMDCs. 

Taken together, our analysis confirmed passive targeting of endocytically active primary 

splenic DCs and macrophages, which constitute only 3-5 % of all splenic immune cells, and 

their adjuvant-dependent activation. In comparison, T and B cells represent 30-35 % and 

45-50 % respectively, of all splenic immune cells. NP size seems to be one of the key 

factors for passive targeting of nanovaccines and thus determines the resulting immune 

response [390]. Reddy et al. have used pluronic-stabilized polypropylene sulfide NPs (25-

100 nm) modified with OVA to passively target lymphoid-resident DCs via the interstitial 

flow [391]. Moreover, Moon et al. have demonstrated the suitability of interbilayer-cross-

linked multilamellar vesicles (~ 200 nm) loaded with the malaria antigen VMP001 for 

passive targeting of lymphoid-resident macrophages and DCs, thereby enhancing the 

vaccination outcome compared to conventional vaccines [392].  

The reactive component TDI has repeatedly been used for the synthesis of nanocapsules by 

inverse miniemulsion [393, 394] but is rather unselective due to its chemical properties. 

Unwanted side reactions cannot be excluded. Moreover, it is a highly toxic organic solvent. 

Although TDI has been reported to be non-toxic in low doses [395] and no cytotoxic effect 

was detectable in our experiments at all, it is undoubtedly useful to find a functional 

alternative. Therefore, we tested R848-loaded protein nanocapsules, cross-linked by either 

TDI or TET-DN, for their stimulatory capacity concerning BMDCs. Compared to TDI, 

cross-linking with TET-DN provides a much higher selectivity and proceeds at more 

ambient conditions [233, 396]. Similar to the previously described OVA-NCs cross-linked 

with TDI, adjuvant leakage of the TET-DN cross-linked ones was excluded by stimulation 

assays with NC supernatants (see Figure S 12). The average diameter as well as the zeta 

potential of the new capsules was comparable than that of the TDI cross-linked ones (see 

Table S 5). Cytometric analysis of CD86 expression upon treatment with these capsules 

showed similar stimulatory potentials, even though the TET-DN cross-linked NCs were 

slightly stronger with 10 µg per ml (see Figure 34). The usage of HSA instead of OVA 

evoked no remarkable differences. These results illustrated that cross-linking with TET-DN 

represents a good alternative for TDI. Since TET-DN-NCs provided almost the same size 
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and charge as TDI cross-linked NCs, TET-DN NCs were equally suitable for R848 

delivery. Furthermore, they constitute a high selectivity, reducing unspecific, unwanted side 

reactions.  

All findings regarding MDP/R848-loaded protein-based nanocapsules confirmed their 

potential to serve as an effective nanovaccine for melanoma treatment. They provide a good 

biocompatibility, protect their cargo, co-deliver antigen and adjuvant in a very effective 

manner, show a high stimulatory capacity, trigger Tc1/Th1-promoting DC activity and are 

preferentially bound by primary APCs. In light of the fact that such NCs may be easily 

modified and the option to replace OVA by any protein or peptide (e.g. a tumor-related 

protein), qualifies these capsules as an interesting candidate NC platform for nanovaccine 

approaches. 

To test the actual suitability of MDP/R848-loaded OVA-NCs for melanoma treatment in 

vivo, vaccination experiments with the melanoma cell line B16-OVA in mice are planned.  
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5.2 OVA-NC shielding with PEG 

Nanovaccines designed for in vivo application can be equipped with surface PEG chains to 

prolong their blood circulation time and to reduce unspecific interactions with cells and 

proteins. Thereby, an important and critical factor that has to be considered, when planning 

an in vivo application of a nanocarrier, is the adsorption of serum proteins on the particle 

surface. The formation of such a protein corona usually facilitates unspecific cell uptake 

[397], mediates a further decrease in circulation time [398] and can also reduce the 

efficiency of targeting moieties [399]. Even proteins in cell culture media (e.g. components 

of FCS) are known to adsorb on NPs, thereby changing the actual NP identity [400]. 

Consequently, a new NP that was PEGylated for in vivo application has to be tested for 

cellular interaction under different protein conditions to understand the impact of different 

natural protein sources [401]. 

To further optimize the described OVA-NC and to cover the antigen shell, we decided to 

modify the NC’s surface with PEG. Since many studies give different recommendations 

regarding the optimal PEG MW and coating density [402], OVA-NCs with three different 

PEG variants (MW: 2,000, 3,400, 5,000 g/mol) at varying coating densities were 

synthesized. BMDCs were treated with these capsules under defined protein conditions (no 

protein, FCS, mS, hS) for 4 h. To exclude the potential problem of complement-mediated 

cell lysis [403], we incubated BMDCs with the different protein solutions, left untreated or 

heat-inactivated, for 4 h in an initial experiment and measured the cell viability 

subsequently. FCS, mS and the no protein condition were not toxic for the cells. In contrast, 

untreated hS triggered a remarkable cell lysis, whereas heat-inactivated hS did not. This 

might be due to the mentioned complement-mediated cell lysis by hS components [404]. It 

is also known that mS constitutes a low intrinsic complement activity [405] compared to 

hS. However, to ensure a high comparability between the different experimental groups and 

to prevent unnecessary cell death, we consequently used heat-inactivated protein sources 

for the PEG experiments in spite of the loss of complement factors. Of course, it has to be 

noted that heat-inactivation affects the protein corona composition [406] and thus the 

interaction between cell and NP. 



DISCUSSION 

137 

 

To test to what extent the stealth properties of the PEG-modified OVA-NCs were 

dependent on PEG MW, we incubated BMDCs with the NCs under different conditions for 

4 h and measured the resulting cell association via flow cytometry (see Figure 36). Our 

findings were in agreement with other publications, showing that an increase in PEG MW 

prevented the adsorption of blood proteins to NPs [407] and reduced their uptake by MPS 

[408]. Particularly PEG5000 has been described to strongly enhance the stealth effect of NPs 

[408] and to minimize protein adsorption [409]. Interestingly, PEG2000 has been identified 

as the minimal PEG MW that is required to exert stealth properties at all [410, 411]. 

Focusing on coating density, binding of OVA-NCs modified with PEG2000 at three different 

densities from 0.18 to 2.47 PEG molecules per nm
2
 was assessed. Cytometric analysis 

revealed a positive correlation between PEGylation density and resulting stealth effect. 

Again, co-application with hS and without any proteins triggered the strongest reduction of 

cellular binding (see Figure 37). As already shown by Vonarbourg et al. in 2006, 

PEGylation density is an essential parameter determining the PEG-mediated stealth 

properties of a nanocarrier [412]. In 2010, Braeckmans et al. reported that an increase in 

PEGylation density on liposomes prevented liposome aggregation [413]. Although an 

increase in PEG density has been assumed to be advantageous regarding stealth properties, 

some studies indicated that there is an upper density threshold, above which a further 

increase does not result in an enhanced stealth effect [414]. Our results perfectly matched 

the already known facts. However, a density threshold was not detectable in this setup. At 

last, we analyzed the impact of mass density on the PEG-mediated stealth effect for OVA-

NCs. The mass density, or the number of ethylene oxide (base component of PEG) units 

per nm
2
, is a rarely considered but equally important parameter of nanoparticle studies. It 

raises the question, whether two PEGylations with the same mass density provide 

comparable stealth properties. Therefore, BMDCs were treated simultaneously with two 

PEGylated OVA-NCs with the same mass density, but different PEG MWs (PEG2000 / 

PEG5000) and coating densities (0.54 / 0.19 PEG chains per nm
2
). The binding assays 

revealed a stronger stealth effect for the PEG5000-modified OVA-NC despite a lower 

coating density. The absence of protein as well as hS enhanced that difference even further 

(see Figure 38).  
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Many studies dealing with nanoparticles and PEG did not consider PEGylation density or, 

in some cases, even the PEG MW. Here we were able to show that the MW of the used 

PEG as well as the coating density influences the final stealth properties of protein-based 

NCs on DCs. Our results suggest a positive correlation between PEG MW and the resulting 

stealth effect. Also an increase of PEGylation density enhances the NC’s stealth properties. 

The mass density of the coupled PEG plays a minor role, since the mass of the individual 

PEG chain turned out to be much more relevant than the total PEG mass. In addition, the 

protein environment can also affect the stealth properties of OVA-NCs and has to be 

assessed accordingly. In this context, it might be useful to analyze the protein corona 

composition (e.g. by mass spectrometry) to understand and subsequently be able to predict 

the interaction between NPs, proteins and even cells. The PEG-mediated stealth effect on 

OVA-NCs was maintained upon all protein conditions, even when using PEG2000. This 

emphasizes the potential of PEGylated OVA-NCs for in vivo approaches. Nevertheless, 

numerous unpredictable factors remain [415, 416]. Therefore, it would be rather negligent 

to extrapolate from the in vitro to the actual in vivo efficiency. 

In recent times, the use of PEG as a stealth-mediating component on nanomaterials has 

frequently been scrutinized [417]. Some studies have criticized the very long clearance time 

and low biodegradability of PEG [418], others have issued the induction of anti-PEG 

antibodies on repeated use of PEGylated products [419]. However, PEG represents the 

best-studied and -characterized stealth component by now and was successfully used in 

numerous pharmaceuticals. Therefore, it was used in this study and was successfully 

mounted on the NC surface. Nevertheless, there is a need for alternative components with 

better stealth properties, higher biocompatibility and lower antigenicity [420].  
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5.3 Gene knockdown with siRNA-loaded HES-NCs 

RNAi was recognized for the first time by Ecker et al. as a mechanism of gene regulation in 

transgenic plants in 1986 [421], confirmed by many other reports in the following decade. 

Based on these observations, Fire et al. successfully used double-stranded RNA to inhibit 

mRNA translation of the gene unc-22 in Caenorhabditis elegans [422]. Since then, RNA 

silencing was extensively used for genetic manipulation and has become a routine research 

tool. The use of siRNA allows the targeting of single genes which cannot be reached by 

conventional drugs, making it particularly attractive for tumor treatment approaches [423]. 

Therefore, enormous effort has been made for the development of siRNA-based drugs. As 

of September 2017, approximately 20 clinical trials based on siRNA therapeutics have been 

initiated [424]. For example, Excellair, a siRNA-based inhibitor of the spleen tyrosine 

kinase for the treatment of lymphoma [425], is currently in a clinical phase III trial [424]. 

Regarding immune modulation, it has been shown that the siRNA-mediated silencing of 

immunosuppressive molecules, such as IL-10RA, in DCs, can enhance the induction of 

antigen-specific CD8
+
 T cell responses [426]. But the use of siRNA for gene manipulation 

in clinical approaches encounters some tremendous obstacles: i) Target cells need to be 

transfectable [427], ii) high mRNA turnover rates decrease siRNA efficacy [428], iii) 

siRNA’s polyanionic nature limits passive uptake by cells [429] and iv) siRNA is easily 

degraded by RNases due to a low chemical stability [430] and a short circulation half-life 

[431]. Moreover, siRNA can trigger innate immune responses via recognition by PRRs and 

danger receptors [432]. Therefore, a carrier is needed to protect the siRNA and to shuttle it 

into the cell and subsequently into the cytosol. Liposomal formulations are most frequently 

used to transfer siRNA into target cells [433-435]. Especially cationic liposomes are 

discussed as the most promising carriers regarding siRNA transfection [436]. 

Commercially available substances like DOTAP complement the anionically charged 

siRNA due to electrostatic interactions and mediate its effective transfer. Despite that, 

liposomal formulations have been described to potentially evoke innate immune responses 

[437] and as rapidly removed from blood stream via MPS [438]. 

In this context, the delivery of siRNA by polymeric nanocapsules constitutes a promising 

alternative. As a model system to test the suitability of those NCs to effectively transfer 

siRNA into cells, we chose PEGylated HES-NCs (see 3.1.3), synthesized by inverse 
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miniemulsion. They provide a high loading capacity [439], a comparatively long blood 

circulation time [440-442] and a low tendency to interact with blood proteins [443-445] 

combined with a good biocompatibility [446] and modifiability [447]. Moreover, the starch 

derivative HES, which was used as a base component instead of OVA here, is FDA 

approved for intravenous injection as plasma expander. There has been a long-lasting 

discussion about side effects of HES in case of sepsis or critical illness [448], starting soon 

after licensing, which was intensified by three randomized trials [449-451]. However, these 

risks are only relevant for very high amounts of HES as compared to our envisioned 

applications. The amount of HES applied by HES-NC administration is significantly lower 

compared to the use of HES as plasma expander.  

The knockdown experiments using the luciferase-expressing subline DC2.4-mCMV and 

the different types of siRNA-loaded HES-NCs showed a significantly reduced expression 

of firefly luciferase upon treatment with the αLuc siRNA-containing HES-NCs. The 

observed knockdown effect was highly comparable to those of the positive control, αLuc 

siRNA transfected by lipo, and the non-transduced DC2.4. These results indicated HES-NC 

uptake by DC2.4 cells, intracellular cargo release, endosomal escape of the corresponding 

siRNA molecules and effective interference of the luciferase mRNA. Since it has been 

reported by Tseng et al. that free siRNA is degraded in lysosomes after internalization 

[452], altered gene expression due to non-encapsulated siRNA was highly unlikely. In 

general, the physicochemical properties of siRNA like a negative charge and a large 

molecular weight are unfavorable for cellular uptake [431].  

Curiously, the siRNA-loaded HES-NCs were bound by DC2.4-mCMV only at moderate 

frequencies. Approximately 15 % of all cells were detected as Cy5
+
/AF647

+
 in flow 

cytometry (see Figure S 15). Via CLSM, the HES-NCs were not detectable at all (see 

Figure 43b). These observations appear incompatible with the knockdown results. An 

insufficient fluorochrome labeling could not be responsible, since both capsules were 

labeled differently (free Cy5-Oligo vs. AF647-labeled siRNA) but showed comparable 

binding frequencies. Furthermore, both types of capsules were detectable via CLSM when 

modified with a targeting moiety, as discussed in the following section. NC-mediated 

cytotoxicity did also not explain these contradictory results, since all HES-NC formulations 

were evaluated as non-toxic at the concentrations applied. A possible explanation for the 
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relatively low binding frequencies of HES-NCs but almost complete knockdown might be a 

low level cellular binding and uptake of the HES-NCs below the sensitivity of the flow 

cytometer. Non-ionic HES is known to reduce cellular interactions of nanoparticular 

formulations [444, 453]. Therefore, a moderate binding by DC2.4-mCMV cannot be 

excluded. Nonetheless, even this low amount of internalized siRNA-loaded HES-NCs 

might be apparently enough to yield a sufficient knockdown. This theory was supported by 

the negative knockdown results for the HES-NCs loaded with the control siRNA. Hence, 

the observed knockdown effect could not be induced by the HES-NC itself. Since HES-

NCs provide a high loading capacity, the uptake of a few NCs might be sufficient for a 

knockdown of the already moderate luciferase expression in DC2.4-mCMV. Another 

possible explanation is the excretion of HES-NCs or their components by exocytosis, which 

has been described for numerous other nanoparticular systems [454]. Since both capsules 

showed still comparable binding frequencies irrespective of the fluorochrome being either 

soluble or siRNA-coupled, exocytosis could most likely be excluded as explanation. A 

further theory is based on a mechanism called ‘kiss-and-run’. Originally reported as a form 

of exocytic vesicle release [455], it has been used as a model to describe non-invasive drug 

delivery through a ‘kiss-and-run’ interaction between nanocarrier and cell membrane. 

Another study has reported the intracellular pharmacokinetics to be the critical factor of 

siRNA delivery with nano-sized systems [456]. 

An extended analysis focusing on time-dependent knockdown and binding kinetics might 

shed new light on the issue of siRNA-loaded HES-NCs for gene knockdown. Once 

clarified, HES-NCs could potentially be used for the effective transfer of other gene-

specific siRNAs. In this regard, it seemed useful to increase HES-NCs uptake by DC2.4-

mCMV with a targeting moiety. 
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5.4 DC targeting with HES-NCs 

The conjugation of NPs with targeting moieties is a common approach to increase 

specificity. Such moieties are usually antibodies or receptor-specific ligands like 

carbohydrates or glycoproteins. A NP modified in this way is intended to be preferentially 

bound by those cells that express the corresponding moiety counterpart. If NP uptake is 

desired, receptors that are internalized upon binding are preferable. Regarding the targeting 

of tumor cells, folate is a prominent and extensively used targeting molecule [457]. The 

folate receptor is overexpressed on various tumors [458] and can be targeted by conjugating 

folate or folic acid to NPs [459]. Accordingly equipped carriers, loaded with doxorubicin, 

have been used for tumor targeting and treatment in numerous studies [460-462]. In case of 

tumor vaccination approaches, DCs are the intended target cells. A conventional method for 

DC-based vaccination is to load DCs with tumor antigen ex vivo combined with an 

appropriate stimulation. After reinjection, these DCs are supposed to induce a tumor-

specific immune response [250]. A further, less expensive and laborious alternative is the in 

vivo targeting of DCs. Since vaccination requires antigen processing and presentation, 

internalizing receptors are preferentially addressed. Very interesting and promising DC 

targets are C-type lectins (for instance DEC-205, MR, CLEC9A and DC-SIGN). Besides 

their function for cell-cell adhesion, the mentioned members of that group are also 

associated with pathogen recognition and binding of apoptotic cells [463]. DEC-205 is 

expressed at high levels on CD8
+
 splenic DCs [464], whereas the MR can be found on 

macrophages and immature DCs [465]. CLEC9A is mainly present on CD8
+
 cDCs and 

pDCs [466]. DC-SIGN, a lectin that is preferentially expressed by immature DCs [467], is a 

well-described and frequently used candidate for DC targeting in vaccination approaches 

[468-471]. First of all, it was described to enable the migration of myeloid DCs along the 

blood endothelium by binding the vascular ligand ICAM-2 [472]. Nonetheless, it also 

facilitates the interaction between DCs and resting T cells via ICAM-3 [473]. Furthermore, 

it turned out that DC-SIGN features endocytic activity associated with antigen uptake, as 

shown for the HIV glycoprotein gp120 by Engering et al. [474], and its engagement can 

modulate DC maturation [475]. 

In this work, a targeting of DC-SIGN by αDC-SIGN antibodies was chosen with the aim to 

increase the specificity of the siRNA-loaded HES-NCs for DC2.4-mCMV cells. Therefore, 
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these antibodies were modified with an azide group and were covalently bound to the NC’s 

surface by a DBCO-PEG4-NHS click reaction. DC2.4 cells are particularly suitable for 

testing DC-SIGN targeting since almost all cells are positive for the marker (in personal 

communication with Dominika Hobernik, Department of Dermatology, University Medical 

Center, Mainz). Contrary to our expectations, the modification of HES-NCs with targeting 

antibodies resulted in strongly elevated binding of HES-NCs to DC2.4 cells, but completely 

eliminated the αLuc siRNA-mediated knockdown effect (see Figure 42). At this point, it 

was not possible to identify the exact underlying reason for that problem. But the antibody 

modification was basically the only difference between both HES-NCs.  

These results could be due to a different uptake route or intracellular trafficking of targeting 

versus non-targeting HES-NCs. Binding of DC-SIGN mediates clathrin-dependent 

endocytosis [476]. According to its function as an antigen receptor, internalized DC-SIGN-

ligand complexes are rapidly targeted to late endosomal and lysosomal compartments 

[475], in which the antigens are usually processed for MHC loading. It is possible that this 

form of intracellular trafficking affected the cytoplasmic release and/or the function of the 

siRNA, leading to its degradation or impairment of cytosomal release. In comparison, the 

non-modified HES-NCs were apparently taken up by a more suitable internalization 

process for siRNA. More probable, however, is an unintended problem regarding the NC 

synthesis. An unsuccessful degradation of the internalized targeting HES-NCs would 

explain the distinct signals in CLSM and the lack of luciferase knockdown. The surface 

modification of HES-NCs with antibodies was, as mentioned, based on a DBCO-PEG4-

NHS click reaction. This modification results in a higher shell density and an increased 

thickness. Most likely, the intracellular degradation processes were not sufficient to break 

this kind of HES-NC and to release the siRNA cargo. In this case, an optimization of the 

synthesis process would be necessary to achieve an effective siRNA release combined with 

targeting.  

It should be emphasized that the DC-SIGN targeting with αDC-SIGN antibodies seems to 

work for HES-NCs that were synthesized by inverse miniemulsion. It is also conceivable to 

transfer this modification to adjuvant-loaded OVA-NCs, since both capsule systems are 

based on similar synthesis processes. With such a modification, the specificity and 

efficiency of those NCs to stimulate DCs could be further increased. Nonetheless, the 
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actual cause for the contrary results (stronger NC binding, no siRNA bioactivity) should be 

clarified.  

In summary, protein-based nanocapsules combined with the superadditive adjuvant 

combination MDP/R848 and the options to reduce unspecific interaction by PEGylation 

and to use tumor-related antigens for the synthesis constitute a promising platform for the 

development of new nanovaccines. DC-SIGN targeting for increased uptake and siRNA 

incorporation in a functional manner seem to work as individual modifications but have to 

be optimized to allow a combined approach.  
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6. Summary 

In summary, we demonstrated that the combination of the NOD2 ligand MDP and the 

TLR7 ligand R848 exerted superadditive stimulatory properties on BMDCs. When 

encapsulated in Dex-NPs, the stimulatory capacity of co-delivered MDP/R848 on BMDCs 

was superior to co-application of the components in their soluble form. In addition, OVA-

NCs synthesized by inverse miniemulsion were readily internalized and degraded by 

BMDCs, and constituted an effective antigen delivery system. DCs pre-treated with a 

combination of MDP/R848-loaded Dex-NPs and OVA-NCs led to a significant increase in 

the antigen-specific proliferation of CD4
+
 and CD8

+
 T cells. The transfer of the adjuvant 

combination into OVA-NCs boosted the T cell stimulatory and Tc1/Th1-promoting activity 

of BMDCs to an extent that even outperformed the effect of LPS. Transcriptome analysis 

of such treated BMDCs confirmed these results by revealing an upregulation of numerous 

genes associated with immunologically relevant signaling pathways. The successful 

evaluation of an alternative cross-linker for a more selective capsule synthesis and a higher 

capsule biocompatibility completed these experiments. This first project section 

demonstrated the suitability of MDP/R848-loaded protein-based nanocapsules to induce 

effective antigen cross-presentation and to trigger antigen-specific T cell responses. 

Furthermore, it was shown that OVA-NCs were preferentially bound by DCs and 

macrophages when applied to splenic immune cells. 

To optimize the evaluated OVA-NCs for in vivo application, the NC’s surface was 

modified with PEG. It was shown that the PEG MW and density positively correlated with 

the resulting stealth effect, which describes a reduction of unspecific NP interactions with 

proteins and cells. Mass density turned out to be less important, since the impact of the 

individual PEG chain mass was much higher than that of the total PEG mass. The 

composition of the protein environment slightly affected the NC’s stealth properties, 

though the PEGylation retained its basic functionality upon all conditions. 

Next, we tested the suitability of HES-NCs, also synthesized by inverse miniemulsion, as a 

carrier for siRNA to knockdown gene expression. HES-NCs loaded with αLuc siRNA 

turned out to knockdown the expression of firefly luciferase in transduced DC2.4-mCMV 
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almost completely, whereas the control siRNA did not show any effect. Nonetheless, the 

binding frequencies of those capsules were rather low. Therefore, the NCs were modified 

with αDC-SIGN antibodies to increase the uptake into DC2.4-mCMV. In this way, the 

binding frequencies were significantly increased. However, the knockdown effect was no 

longer present. Further studies are obviously needed to ensure the compatibility of DC-

SIGN targeting and siRNA transfer in protein-based nanocapsules. 

The new nanovaccine concept introduced in this study has the perspective to allow the 

development of multi-functionalized nanovaccines for DC-directed immunotherapy. The 

option to replace the used model antigen OVA by any given protein or peptide, for instance 

a tumor-related antigen, makes the protein-based nanocapsule system extremely versatile 

and broadly applicable for vaccination approaches. When loaded with the adjuvant 

combination MDP plus R848, these capsules can trigger the induction of potent antigen-

specific Tc1/Th1-dominated T cell responses. Combined with an alternative cross-linking 

method with higher selectivity, a PEGylation for longer blood circulation and optional 

modifications with targeting antibodies and siRNA cargo, our system represents a further 

step towards an optimized nanovaccine for effective melanoma treatment. 

Our system represents a further step towards an optimized nanovaccine for effective 

melanoma treatment, in particular since it also offers an alternative cross-linking method 

for better synthesis selectivity, a PEGylation for longer blood circulation and optional 

modifications with targeting antibodies for increased cell specificity and siRNA for 

immune modulation. 
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8. Appendix 

8.1 Supplementary data 

 

 

Figure S 1 Gating strategy for soluble adjuvants and adjuvant-loaded nanocarriers 

BMDCs stimulated with soluble adjuvants or adjuvant-loaded nanocarriers were analyzed by (1) debris 

exclusion, (2) doublet exclusion, (3) gating on CD11c
+
/MHC-II

+
 BMDCs and subsequent measurement of 

(4.1) CD80 and (4.2) CD86 expression. To measure association with MDP-loaded Dex-NPs, (4.3) MDP-

FITC
+
 BMDCs were assessed. The red framed gating was merely used for Dex-NP experiments. Figure 

published in the Journal of Controlled Release in a modified version [249]. 
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Figure S 2 Identification of superadditive TLR/NLR ligand combinations by frequency 

BMDCs (2 x 10
5
 cells/ml) were analyzed for CD80 and CD86 expression after 24 h treatment with different 

TLR ligands and L18-MDP, alone or in combination as indicated, via flow cytometry. CpG (5-500 ng/ml), 

Poly I:C (0.1-10 µg/ml) and R848 (10-1000 ng/ml) were applied simultaneously to L18-MDP (1-100 ng/ml). 

Identification of possible superadditive effects was done on the basis of CD80/CD86 frequencies (mean ± SD; 

n=3). *p < 0.05, **p < 0.01, ***p < 0.001. Data and figure published in the Journal of Controlled Release 

[249]. 
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Figure S 3 Exemplary NTA primary data 

Primary data for size determination of adjuvant-loaded Dex-NPs was generated by NTA. Shown are the data 

for empty Dex-NPs as well as for MDP-, R848- and MDP/R848-loaded ones. Data and figure published in the 

Journal of Controlled Release [249]. 

 

Particle type  Ø Mean / nm  Ø Mode / nm  SD Value / nm 

Dex-blank  156.1 ± 2.4  134.5 ± 3.2  52.8 ± 3.2 

Dex-MDP  143.9 ± 2.5  122.4 ± 5.7  53.2 ± 1.1 

Dex-R848  148.1 ± 0.8  125.5 ± 3.5  53.5 ± 2.0 

Dex-MDP/R848  151.5 ± 2.0  131.6 ± 4.5  54.0 ± 0.9 

 

Table S 1 Size determination of Dex-NPs via NTA 

Particle size (diameter Ø) of the Dex-NP formulations was determined with five individual measurements per 

samples. Mean size and SD correspond to the arithmetic values calculated based on the sizes of all particles 

detected in NTA measurement. Mode values describe the average size of the main particle population. Data 

published in the Journal of Controlled Release [249]. 
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Particle type 
nmol MDP/ 

mg NP 

µg MDP/ 

mg NP 

nmol R848/ 

mg NP 

µg R848/ 

mg NP 

Dex-blank - - - - 

Dex-MDP 1.34 0.66 - - 

Dex-R848 - - 1.26 0.44 

Dex-MDP/R848 1.38 0.68 1.29 0.45 

 

Table S 2 Quantification of encapsulated MDP-FITC and R848 in Dex-NPs 

The particulation of MDP and R848 in Dex-NPs was analyzed by means of fluorescent MDP-FITC and the 

fluorescent properties of R848 itself. To do so, MDP-FITC and R848 fluorescence in four Dex-NP types 

(Dex-blank, Dex-MDP-FITC, Dex-R848, and Dex-MDP-FITC/R848) was measured by fluorescence 

spectroscopy. Based on these results, the actual MDP/R848 contents in Dex-NP formulations used for 

stimulation assays (including Dex-MDP and Dex-MDP/R848 with non-labeled MDP) were calculated with a 

calibration curve in the range of 0.0625 µg/ml to 10 µg/ml. Data published in the Journal of Controlled 

Release [249]. 

 

 

Capsule type 
Ø / nm in 

cyclohexane 

Ø / nm 

in water 
ζ / mV 

OVA-blank-NC 256 348 -26 

OVA-MDP-NC 268 404 -27 

OVA-R848-NC 331 335 -32 

OVA-MDP/R848-NC 302 338 -31 

 

Table S 3 Size and charge determination of OVA-NCs via DLS 

The diameters of the experimentally used OVA-NCs in cyclohexane and water as well as the zeta potential (ζ) 

were measured via DLS. Data published in the Journal of Controlled Release [249]. 
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Figure S 4 Quality tests for OVA-NC formulations 

OVA-NCs were tested to exclude endotoxin contaminations and cytotoxic effects on BMDCs. (a) Endotoxin 

concentrations in OVA-NC formulations were assessed by LAL assay (mean ± SD; n=2, two independent NC 

batches). (b) Cytotoxicity of OVA-blank- and OVA-DQ-NC was measured. Therefore, BMDCs (1 x 10
6
 

cells/ml) were incubated with increasing concentrations (37.5-150 µg/ml) for 24 h. Viability was determined 

by 7AAD/Annexin V staining. 10 vol-% DMSO was used as positive control. (c) BMDC viability after 

treatment with adjuvant-loaded OVA-NCs (100 µg/ml) for 24 h.  Plots are representative of two experiments. 

Figure S 4c as well as corresponding data published in the Journal of Controlled Release [249]. 
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Figure S 5 Gating strategy for OVA-blank- and OVA-DQ-NCs 

BMDCs stimulated with OVA-blank- and OVA-DQ-NC were analyzed by (1) debris exclusion, (2) doublet 

exclusion, (3) gating on CD11c
+
/MHC-II

+
 BMDCs and subsequent measurement of (4.1) OVA-blank-NC

+
 

cells (based on Cy5 signal) and (4.2) OVA-DQ-NC degradation by degradation-derived emission. Figure 

published in the Journal of Controlled Release in a modified version [249]. 
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Figure S 6 Confocal image of OVA-DQ-NC degradation 

The representative CLSM tile scan image shows BMDCs (7.5 x 10
5
 cells/ml) that were treated with OVA-

DQ-NC (100 µg/ml) for 3 h at 37 °C. OVA-DQ degradation is indicated by green signals inside the cells 

(white arrows). Membranes were stained with CellMask Orange (red), and cell nuclei with DAPI (blue). 

Figure published in the Journal of Controlled Release [249]. 
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Capsule type 

nmol 

MDP/ 

mg NP 

µg 

MDP/ 

mg NP 

nmol 

R848/ 

mg NP 

µg 

R848/ 

mg NP 

Enceff / % 

(MDP/R848) 

OVA-blank-NC - - - - - 

OVA-MDP-NC 7.78 3.83 - - (80.2 / -----) 

OVA-R848-NC - - 3.16 1.11 (----- / 69.6) 

OVA-MDP/R848-NC 7.14 3.52 2.85 1.00 (73.6 / 65.9) 

 

Table S 4 Quantification of encapsulated MDP-Alexa 488 and R848 in OVA-NCs 

Encapsulation of MDP and R848 in OVA-NPs was analyzed by means of fluorescent MDP-Alexa 488 and 

the fluorescent properties of R848 itself. MDP-Alexa 488 and R848 fluorescence in four OVA-NC types 

(OVA-blank-NC, OVA-MDP-Alexa 488-NC, OVA-R848-NC, and OVA-MDP-Alexa 488/R848-NC) was 

measured by fluorescence spectroscopy. Based on these results, the actual MDP/R848 contents in OVA-NC 

formulations used for stimulation assays (including OVA-MDP-NCs and OVA-MDP/R848-NCs with non-

labeled MDP) were calculated with a calibration curve in the range of 20 µg/ml to 135 µg/ml. Encapsulation 

efficiency (Enceff) was determined by comparison of applied and remaining adjuvant fluorescence. Data 

published in the Journal of Controlled Release [249]. 

 

 

Figure S 7 Biological activity of OVA-NCs’ supernatants 

To detect potential free adjuvants (MDP, R848) in the OVA-NC formulations, BMDCs (2 x 10
5
 cells/ml) 

were treated with the different types of OVA-NCs (100 µg/ml) or with the corresponding volumes of their 

supernatants for 24 h. Afterwards, the frequencies of CD80- and CD86-positive BMDCs were measured by 

flow cytometry. The results are displayed relative to the untreated control (dashed line, mean ± SD; n=2). 

Data and figure published in the Journal of Controlled Release [249]. 
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Figure S 8 Gating strategy for spleen cell interaction analysis 

(1) Exclusion of cell debris and unbound nanocapsules. (2) Exclusion of cell doublets. (3) Distinction between 

MHC-II
+
 and MHC-II

-
 cells. MHC-II

+
/CD11c

+
 (dendritic cells), MHC-II

+
/CD68

+
 (macrophages), MHC-

II
+
/CD19

+
 (B cells) and MHC-II

-
/CD3

+
 (T cells) populations were analyzed separately. Activated DCs and 

macrophages were identified via CD86 expression, OVA-NC+ cells by the encapsulated Cy5-Oligo. Gates 

were defined based on unstained BMDCs. Figure published in the Journal of Controlled Release in a modified 

version [249]. 
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Figure S 9 Total RNA quality control by gel electrophoresis 

RNA samples of BMDCs treated with OVA-blank-NCs or OVA-MDP/R848-NCs (each 75 µg/ml) were 

checked for purity by agarose gel electrophoresis. Bands for 28S and 18S rRNA are indicated. A DNA latter 

from 100 to 3000 bp was used as size orientation.  
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Figure S 10 mRNA expression of PRRs and DC markers in stimulated BMDCs 

BMDCs (2 x 10
6
 cells/ml) were treated with OVA-blank- or OVA-MDP/R848-NCs (both 75 µg/ml) for 1, 2 

and 4 h. Untreated BMDCs were used as negative control. The three time points of each sample were pooled, 

mRNA was isolated and RNA-Seq performed. TPM values for (a) DC markers, (b) MHC components, (c) 

TLRs/NLRs, (d) scavenger receptors and (e) C-type lectins were calculated (mean ± SD; n=2).  
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Figure S 11 mRNA expression of signaling components in stimulated BMDCs 

BMDCs (2 x 10
6
 cells/ml) were treated with OVA-blank- or OVA-MDP/R848-NCs (both 75 µg/ml) for 1, 2 

and 4 h. Untreated BMDCs were used as negative control. The three time points of each sample were pooled, 

mRNA was isolated and RNA-Seq performed. TPM values for (a) MAPK/ERK signaling, (b) NF-κB 

signaling (c), IFN signaling, (d) TLR/NLR signaling and (d) chemokine receptors were calculated (mean ± 

SD; n=2).  
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Capsule type 
Ø / nm in 

cyclohexane 

Ø / nm 

in water 
ζ / mV 

OT-DN-R848-NC 290 291 -37 

HT-DN-R848-NC 285 315 -30 

 

Table S 5 Size and charge determination of alternative protein nanocapsules via DLS 

The diameters of protein nanocapsules, cross-linked by bioorthogonal tetrazole-ene cycloaddition, in 

cyclohexane and water as well as the zeta potential (ζ) were measured via DLS. Data published in Nanoscale 

Horizons [238]. 

 

 

 

Figure S 12 Biological activity of OT- and HT-DN-R848-NCs’ supernatants 

To detect potential free R848 in the OT- and HT-DN-R848-NC formulations, BMDCs (2 x 10
5
 cells/ml) were 

treated with the different types of NCs (1-100 µg/ml) or with the corresponding volumes of their supernatants 

for 24 h. Untreated (dashed line) and LPS-treated (100 ng/ml) BMDCs were used as control. Afterwards, 

CD86 expression was measured by flow cytometry. Results were plotted as fold untreated (mean ± SD; n=2). 

Data and figure published in Nanoscale Horizons [238]. 
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Figure S 13 Encapsulation efficiency of HES-NCs 

D-mannosamine release after transfer into water dispersion was used to assess the encapsulation efficiency of 

HES-NCs. The large initial release on day 1 results from free non-encapsulated D-mannosamine. The released 

D-mannosamine was detected by a fluorogenic reaction with fluorescamine. 
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Figure S 14 Gating strategy for HES-NCs 

DC2.4-mCMV treated with siRNA-loaded HES-NCs were analyzed by flow cytometry by (1) debris 

exclusion, (2) doublet exclusion and (3) subsequent measurement of HES-NC
+
 cells (based on Cy5/AF647 

signal).  
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Figure S 15 Quality tests for HES-NC formulations 

To test to what extent siRNA-loaded HES-NCs were bound by DC2.4-mCMV and how far these capsules 

were cytotoxic for those cells, appropriate tests were performed. (a) HES-NC
+
 DC2.4-mCMV were measured 

based on encapsulated Cy5 (in case of αLuc siRNA) and Alexa647-label (in case of control siRNA) 

respectively. For this purpose, cells (1 x 10
5
 cells/ml, seeded 24 h before) were treated with 300 µg/ml NCs 

for 24 h and the resulting frequencies and MFIs were determined by flow cytometry (mean ± SD; n=3). (b) 

Cytotoxicity of siRNA-loaded HES-NCs (± αDC-SIGN) was measured. Therefore, DC2.4-mCMV (1 x 10
5
 

cells/ml, seeded 24 h before) were incubated with 300 µg/ml of the indicated HES-NC formulations for 24 h. 

Resulting viability was determined by 7AAD/Annexin V staining. 10 vol-% DMSO was used as positive 

control (n=3).  
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EDTA-Na2 ..................................... Ethylenediaminetetraacetic acid disodium salt dehydrate 

EMEM ............................................................................ Eagle’s Minimum Essential Medium 

ERK ............................................................................ Extracellular signal-regulated kinases 
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ERp57 .................................................................................................. ER-resident protein 57 

FCS ................................................................................................................. Fetal calf serum 

FDA ........................................................................................ Food and Drug Administration 

FITC ...................................................................................................................... Fluorescein 

Gbp ................................................................................................................. Giga base pairs 

GFP .................................................................................................. Green fluorescent protein 

gp100 ............................................................................................................ Glycoprotein 100 

HBSS ....................................................................................... Hank’s Balanced Salt Solution 

HDDP .......................................................................................... 1,6-hexanediol dipropiolate 

HES .......................................................................................................... Hydroxyethyl starch 

HI ................................................................................................................... Heat-inactivated 

hP ...................................................................................................................... Human plasma 

HPV ..................................................................................................... Human papillomavirus 

hS ....................................................................................................................... Human serum 

HSA ..................................................................................................... Human serum albumin 

HSC .................................................................................................. Hematopoietic stem cells 

HT-DN-R848-NCs ........................................................... HSA-based R848-loaded TET-NCs 

iE-DAP .................................................................... γ-D-glutamyl-meso-diaminopimelic acid 

Ii... .................................................................................................................... Invariant chain 

IKK .......................................................................................................................... IκB kinase 

IMDM ......................................................................... Iscove’s Modified Dulbecco’s Medium 

iNOS ........................................................................................ Inducible nitric oxide synthase 

IR ........................................................................................................... Infrared spectroscopy 

IRF3 .......................................................................................... Interferon regulatory factor 3 

iTreg ............................................................................................... Induced regulatory T cells 

JNKs ................................................................................................. c-Jun N-terminal kinases 

kDa .......................................................................................................................... Kilodalton 

L18-MDP ................................................................................. Stearoyl group-modified MDP 

lipo ..................................................................................................................... Lipofectamine 

LPS ........................................................................................................... Lipopolysaccharide 

MAGE-A3 ............................................................................. Melanoma-associated antigen 3 

MAPK ................................................................................ Mitogen-activated protein kinases 

MDP .......................................................................................................... Muramyl dipeptide 

MDP-Alexa 488 ......................................... MDP modified with Alexa Fluor 488 5-SDP ester 

MDP-FITC ................................................................................................ FITC-labeled MDP 

MFIs ......................................................................................... Mean fluorescence intensities 

MHC ................................................................................... Major histocompatibility complex 

MHC-I ................................................................................................................... MHC type I 

MHC-II ................................................................................................................. MHC type II 

MO ........................................................................................................................... Monocytes 

moDCs ................................................................................................. Monocyte-derived DCs 

MoDP ........................................................................ Monocyte and dendritic cell progenitor 

MPS ....................................................................................... Mononuclear phagocyte system 

MR ............................................................................................................... Mannose receptor 

mS ...................................................................................................................... Murine serum 

MW ............................................................................................................... Molecular weight 

MYD88 .............................................................. Myeloid differentiation primary response 88 
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NCs ..................................................................................................................... Nanocapsules 

NLRs ......................................................................................................... NOD-like receptors 

NP ........................................................................................................................ Nanoparticle 

ns. ..................................................................................................................... Non-significant 

nt. ........................................................................................................................... Nucleotides 

OT-DN-R848-NCs ........................................................... OVA-based R848-loaded TET-NCs 

OVA ....................................................................................................................... Ovalbumin 

OVA-blank-NC ............................................................................................. empty OVA-NCs 

OVA-DQ ................................................................................................................... DQ OVA 

OVA-DQ-NC .......................................................................... OVA-DQ-containing OVA-NC 

OVA-MDP/R848-NCs .............................................................. MDP/R848-loaded OVA-NCs 

OVA-MDP-Alexa 488/R848-NCs .......................... MDP-Alexa 488/R848-loaded OVA-NCs 

OVA-MDP-Alexa 488-NCs .............................................. MDP-Alexa 488-loaded OVA-NCs 

OVA-MDP-NCs ................................................................................. MDP-loaded OVA-NCs 

OVA-NCs ....................................................................................................... OVA-based NCs 

OVA-R848-NCs ................................................................................. R848-loaded OVA-NCs 

PAMPs ..................................................................... Pathogen-associated molecular patterns 

PBS ................................................................................................ Phosphate-buffered Saline 

PC ............................................................................................................ Phosphatidylcholine 

PE ...................................................................................................................... Phycoerythrin 

PE-Cy7 ................................................................................................................ PE/cyanine 7 

PEG ............................................................................................................ Polyethylene glycol 

PFA ............................................................................................................. Paraformaldehyde 

PLA .................................................................................................................. Poly lactic acid 

PLGA ............................................................................................ Poly lactic-co-glycolic acid 

Poly I:C ................................................................................... Polyinosinic:polycytidylic acid 

PRRs ......................................................................................... Pattern recognition receptors 

PS ........................................................................................................................... Polystyrene 

PVA .............................................................................................................. Polyvinyl alcohol 

qPCR ........................................................... Quantitative real-time polymerase chain reaction 

R848 ...................................................................................................................... Resiquimod 

RIP2 .................................................. Receptor-interacting serine/threonine-protein kinase 2 

RISC ...................................................................................... RNA-induced silencing complex 

RLU ............................................................................................................ Relative light units 

RNAi ............................................................................................................. RNA interference 

ROS ................................................................................................... Reactive oxygen species 

rpm ....................................................................................................... Revolutions per minute 

rRNA .............................................................................................................. Ribosomal RNA 

SD .............................................................................................................. Standard deviation 

SDP ....................................................................................................... Sulphodichlorophenol 

SDS ...................................................................................................... Sodium dodecyl sulfate 

SEM .......................................................................................... Scanning electron microscopy 

sMDP .................................................................................................................. Soluble MDP 

Sp-Ac-Dex ......................................................... Spermine-functionalized and acetalated Dex 

sR848 ................................................................................................................... Soluble R848 

TAK1 ............................................................................................... TGF-β-activated kinase 1 

TAP ............................................................... Transporter associated with antigen processing 
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TBK1 ................................................................................................... TANK binding kinase 1 

Tc ................................................................................................................... Cytotoxic T cells 

Tc1 ............................................................................................................................. Tc type 1 

Tc17 ......................................................................................................................... Tc type 17 

Tc2 ............................................................................................................................. Tc type 2 

TDI .................................................................................................... 2,4-toluene diisocyanate 

TEA .................................................................................................................... Triethylamine 

TEM ................................................................................... Transmission electron microscopy 

TET ........................................................................ 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid 

Th ........................................................................................................................ T helper cells 

Th1 ............................................................................................................................. Th type 1 

Th17 ......................................................................................................................... Th type 17 

Th2 ............................................................................................................................. Th type 2 

TIR ............................................................................................................... Toll/IL-1 receptor 

TLRs ........................................................................................................... Toll-like receptors 

TPM ....................................................................................... Transcripts per kilobase million 

TRAF6 ................................................................................ TNF receptor-associated factor 6 

Tri-DAP ....................................................................................... L-Alanine-modified iE-DAP 

TRIF .................................................. TIR-domain-containing adapter-inducing interferon-β 

TS ................................................................................................................................ Tapasin 

vs. .................................................................................................................................... versus 

WHO ............................................................................................. World Health Organization 

β2m ............................................................................................................... β2-microglobulin 
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