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ABSTRACT

Discrete-space kinetic models, i.e., Markov state models, have emerged as powerful tools for reducing the complexity of
trajectories generated from molecular dynamics simulations. These models require configuration-space representations that
accurately characterize the relevant dynamics. Well-established, low-dimensional order parameters for constructing this rep-
resentation have led to widespread application of Markov state models to study conformational dynamics in biomolecular
systems. On the contrary, applications to characterize single-molecule diffusion processes have been scarce and typically employ
system-specific, higher-dimensional order parameters to characterize the local solvation state of the molecule. In this work,
we propose an automated method for generating a coarse configuration-space representation, using generic features of the
solvation structure—the coordination numbers about each particle. To overcome the inherent noisy behavior of these low-
dimensional observables, we treat the features as indicators of an underlying, latent Markov process. The resulting hidden
Markov models filter the trajectories of each feature into the most likely latent solvation state at each time step. The filtered
trajectories are then used to construct a configuration-space discretization, which accurately describes the diffusion kinet-
ics. The method is validated on a standard model for glassy liquids, where particle jumps between local cages determine the
diffusion properties of the system. Not only do the resulting models provide quantitatively accurate characterizations of the
diffusion constant, but they also reveal a mechanistic description of diffusive jumps, quantifying the heterogeneity of local
diffusion.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064808

I. INTRODUCTION

Molecular dynamics (MD) simulations of condensed-
phase systems provide a wealth of microscopically detailed
information about complex dynamical processes. The extrac-
tion of useful insight from MD trajectories relies on sim-
plifying the underlying, high-dimensional free-energy land-
scape to a handful of essential degrees of freedom that
retain an accurate description of the processes of interest.
In recent years, Markov state models (MSMs) have emerged
as powerful tools for reducing the complexity of MD data
through a discrete-time and discrete-space description of the

system’s dynamics.! Indeed, these simple kinetic models have
been successfully employed to describe complex processes
in biomolecular systems, e.g., protein folding,>* binding,>”
and allostery.® For these systems, there are a set of well-
established, low-dimensional order parameters, e.g., the tor-
sional angles along the peptide backbone, which provide
an excellent starting point for characterizing the confor-
mational landscape. Using standard dimensionality reduction
techniques,®'° these order parameters may be combined with
other potentially important degrees of freedom to generate
collective variables on which accurate and robust MSMs can
be built.
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There are significantly fewer examples of MSMs applied
to describe diffusion in condensed-phase systems. Tradition-
ally, Stillinger and Weber’s inherent structure theory for lig-
uids provides a general starting point for configuration-space
discretizations in many-particle systems.!' Despite successes
in characterizing the potential energy landscapes for a broad
range of systems,’? the approach becomes prohibitively
expensive as the system size and complexity increase. Alter-
native approaches bypass the calculation of inherent struc-
tures by employing an explicit discretization along the global
coordinate system'3"15 although the coordinate dependence
may lead to difficulties in aligning models built from distinct
simulation trajectories.

The problem can be simplified significantly by consider-
ing the diffusion properties of individual molecules and char-
acterizing configuration space with respect to their local envi-
ronment. For example, Rao and co-workers'®'7 demonstrated
that the hydrogen-bonding dynamics in liquid water can be
well described by an MSM, employing a graph representation
of the hydrogen bonding network to represent the relevant
set of solvation states. The transferability of this approach to
distinct or less-ordered liquids has not yet been investigated.
In a different study, Sodt et al.'® used more generic proper-
ties of the local composition to build a hidden Markov model
(HMM) for describing ordering dynamics in a binary lipid mix-
ture, probing the relationship between the low-order descrip-
tors of solvation and the “true” set of underlying solvation
states.

A more general investigation into the relevant order
parameters for describing activated diffusion processes has
been performed in the field of glassy liquids.'® While sev-
eral studies have employed inherent structure potential
energies as an order parameter for characterizing parti-
cle jumps in these systems,?°22 other researchers have
attempted to find simpler descriptions of these jumps.?324
For example, de Souza and Wales?® investigated coordination-
number-based order parameters for characterizing the cage-
breaking process in a binary Lennard-Jones mixture. They
demonstrated that these order parameters suffer from being
rather noisy indicator functions of a cage break and, conse-
quently, may be incapable of resolving reversal events, sig-
nificantly degrading the resulting description of diffusion.
Moreover, their analysis employed a user-specified defini-
tion of cage breaking, complicating applications to other
systems.

In this work, we propose a systematic method for con-
structing configuration-space representations for diffusion
processes in condensed-phase systems, without relying on
previous physical or chemical intuition about the system.
Instead of working with higher-dimensional properties of
the solvation state (e.g., hand-crafted definitions of a cage
break), we restrict ourselves to features that are simple func-
tions of the instantaneous coordination number (CN) about
each particle. The methodology can also be extended to fea-
tures that describe orientational or 3-body correlations, which
may be important for characterizing more complex liquid
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solvation structures.?¢-2° Following the work of Sodt et al.,'®
we treat the CN features as indicators of an underlying, latent
Markov process, in order to overcome the inherent noisy
behavior of CN-based observables. From the time series of
each coordination number feature, we first infer a hidden
Markov model describing the dynamics of the hidden vari-
ables through probabilistic emissions to the observed data.
We then employ this model to transform the observations
into trajectories of the underlying (i.e., hidden) states of the
corresponding solvation feature. We subsequently perform
a dimensionality reduction on these filtered trajectories to
extract a low-dimensional free-energy landscape, upon which
a coarse configuration-space representation is built. From
the resulting metastable solvation states, a continuous time
random walk (CTRW) model of the underlying diffusion pro-
cess is built, revealing a transparent picture of single-particle
diffusion.

We consider single-particle dynamics in a standard model
for glassy liquids and demonstrate that the proposed method
results in a structured, low-dimensional free-energy land-
scape that accurately describes the relevant diffusion pro-
cesses, i.e., cage breaks. In particular, we verify the accuracy of
the automated configuration-space representation by demon-
strating that the diffusion constant, as determined from the
CTRW model, is quantitatively accurate. The general utility of
the approach is clearly demonstrated through the mechanistic
picture of diffusive jumps and, in particular, the characteri-
zation of local dynamic heterogeneity, which arises from an
analysis of the resulting kinetic networks.

1. METHODS
A. Model and simulations

In this work, we consider the Kob-Andersen binary
Lennard-Jones model®° as a representative system for diffu-
sion in complex liquids. This model has two particle types,
A and B, interacting according to Lennard-Jones potentials
with eapn =1, oaa = 1, €ap = 1.5, oag = 0.8, epg = 0.5,
and opg = 0.88. Both particle types have the same mass:
my =mp =m = 1. We considered a system of 4000 A particles
and 1000 B particles in a rectangular box with Ly ~ 1.5Ly = 1.5L,.
All simulations were performed using the Espresso++ simula-
tion package®' in the NPT ensemble at a constant pressure
of 0 €/03, where o = oas, while employing the Berend-
sen barostat®? and a Langevin thermostat.>*> A time step of
0.005 t* was used, where t* = tymo2/e is the reduced time.
Initially, we considered five different reduced temperatures:
T* = kgT /€ = {0.6, 0.5, 0.4, 0.3, 0.2}. After equilibration, each
system was simulated for a total of 25 000 t*, saving config-
urations every 0.5 t*, for a total of 50 000 configurations per
system. From these simulations, the average reduced densi-
ties were determined to be p* = po-® = {1.04, 1.09, 1.13, 1.17, 1.19},
respectively.

Figure 1 presents structural and dynamical characteris-
tics of the model. Panel (a) illustrates the structure of the
liquid with a simulation snapshot, while panel (b) presents a
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FIG. 1. Characterization of the simulation models. (a) Representative snapshot
demonstrating the mixing of A (gray) and B (orange) particles. (b) Representa-
tive set of radial distribution functions from the T* = 0.4 simulations. (c) Mean
square displacement (msd) of particle positions as a function of time obtained from
simulations over a range of temperatures.

representative set of radial distribution functions between
the various pair types from the T* = 0.4 simulation. Panel
(c) presents the mean squared displacement of the particle
positions as a function of time for each simulation tempera-
ture. This plot demonstrates that as the temperature is low-
ered, the subdiffusive region of the mean square displacement
quickly extends over a very large range of time scales, indi-
cating glassy dynamics and making it difficult to accurately
sample configuration space.>* As a consequence of the lat-
ter, we restrict ourselves to the higher three temperatures in
this study, where the long-time scale dynamics can be accu-
rately determined directly from the simulation data. In this
way, we can assess the accuracy of our coarse-grained, kinetic
description of dynamics, as described further below.

B. Weighted coordination numbers (WCNs)

Our aim is to build a low-dimensional representation
of configuration space capable of describing single-particle
diffusion. This requires the determination of order param-
eters that accurately characterize the local environment of
each particle. Ideally, these order parameters should be
constructed in an automated fashion from a set of gen-
eral descriptors of solvation. The instantaneous coordination
number (CN) of a particle (i.e., the number of particles in a
surrounding spherical shell at a particular time) is perhaps
the simplest example of such a descriptor. CN-based fea-
tures suffer from at least two major limitations: (i) the use of
strict cut-off values to indicate whether a surrounding par-
ticle is counted as in or out of the solvation shell results in
discontinuous time series and (ii) their low-dimensionality
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provides noisy and incomplete characterizations of the solva-
tion state.

To ease the former problem, we employ “weighted coor-
dination numbers” (WCNs), which use a Gaussian function to
weight the contribution of each surrounding particle to indi-
vidual solvation features based on the outer particle’s dis-
tance from the center particle. We first identify relevant sol-
vation features as the various maxima along each radial dis-
tribution function. We then place a Gaussian weighting func-
tion at the center of each of these features (Fig. 2). These
Gaussians are normalized to 1 at their maximum. The width
of each Gaussian was chosen based on the position of the
neighboring Gaussians such that the value of the intersec-
tion point of the Gaussians was either O or approximately
0.25, depending on if the solvation features were largely sep-
arated or highly overlapping, respectively. However, we do
not expect the results to be particularly sensitive to the cho-
sen overlap. Then, the WCN of each particle for a particular
surrounding particle type (A or B) and a particular feature
(given the pair type, e.g., 1-4 for A-B pairs) was determined
as a function of time by summing up the weights for each
configuration.

Panel (a) of Fig. 3 presents an illustrative example of such
a trajectory, for B particles surrounding a specific A parti-
cle, using the weights from the first solvation feature for A-B
pairs, w/(xll)s(r)' This time series characterizes the number of par-
ticles residing close to the first solvation distance around this
particular A particle. The WCN property counts a particle sit-
ting directly at the center of this feature as a whole parti-
cle, while particles further away from the feature center are
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FIG. 2. Gaussian weights (colored distributions) for determining the weighted coor-
dination number, as described in the main text. Radial distribution functions (solid
black curves) are presented between A and B pairs (a) and between pairs of B
particles (b).
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FIG. 3. Workflow for hidden-Markov-model filtering. First, for each particle, trajectories

of the weighted coordination numbers (a) are determined using the weights presented

in Fig. 2, for each pair type and for each feature in the corresponding radial distribution function. Then, a hidden Markov model with a specified number of hidden states is

parameterized from all the simulation trajectories of a given feature (b). Here, p(Hy —

Hy) represents the transition probability from hidden state H; to hidden state Hy, while

p(E3|H,) represents the probability of observing emission state E3, given that the system is in hidden state H,. Using this model, each trajectory is filtered by determining the

most likely hidden state (transparent blocks) at each time step (c).

counted as a fraction of a particle, as dictated by the Gaussian
weighting function. In this way, there are smoother transitions
between solvation features.

C. Hidden-Markov-model filtering

The WCNs contain information about the solvation state
of each particle but are imperfect indicators of this underlying
state. For this reason, we treat the solvation state as a latent
variable and construct a hidden Markov model (HMM),>> based
on the information in the WCNs, to predict the underlying
state. HMMs describe a Markov process occurring between a
set of n hidden states, through their probabilistic relationship
to a set of N emission signals or observed states. HMMs are
often employed as non-linear filters that infer the most proba-
ble hidden state of the system, given a set of observations. The
parameters of this model correspond to the set of n? transi-
tion probabilities between pairs of hidden states as well as the
set of nN emission probabilities—the probability that a given
hidden state gives rise to the observation of a particular emis-
sion state. Panel (b) of Fig. 3 presents a schematic of the HMM
structure.

Ideally, all WCN information should be considered simul-
taneously to determine the HMM. However, this results in an
HMM with many parameters which may be difficult to param-
eterize. Instead, for each pair type and solvation feature, we
parameterized a separate HMM from the WCN trajectories
of the corresponding particles using the Baum-Welch algo-
rithm.3® We employed the trajectories of 1000 particles for
parameterization of the HMM, allowing cross validation for
the A particles (see the “Cross validation of HMMs” section in
the supplementary material for details). For each HMM, the
emission states correspond to a discretization of the respec-
tive WCN distribution into 20 bins although we do not expect
the results to be particularly sensitive to the exact number
of chosen emission states. Based on a Markovianity criterion
for the resulting HMMs, we constructed all HMMs with 4
hidden states using a lag time of 4 t* (see the “Selection of
hyperparameters” section of the supplementary material for
details).

Each HMM characterizes the relationship between the
(hidden) solvation state of the particle and the observed WCN
value and can be used to filter the WCN time series into trajec-
tories of the most likely hidden state, as illustrated in panel (c)
of I'ig. 3. The Viterbi algorithm*” was employed to perform this
“decoding” of the trajectories, applied at the level of resolution
of the HMM (i.e., trajectories were pruned with a spacing of
4 t* for filtering).

D. Dimensionality reduction and clustering

The filtered WCN trajectories describe the hidden state
of each particle as a function of time with respect to the
type of surrounding particles and the particular solvation fea-
ture. However, because the HMMs for each feature were
constructed independently, these filtered trajectories will
not align perfectly in general. As a consequence, we per-
form a dimensionality reduction to detect correlations in
the hidden states predicted using HMMs for distinct fea-
tures. Since the HMM filtering procedure already performs
a nonlinear transformation from the emission to hidden
states of a particle, we apply a linear dimensionality reduc-
tion scheme, rather than considering higher-dimensional
schemes.>*1 Principal component analysis (PCA) was applied
to the complete set of filtered trajectories for each par-
ticle type, while treating the particles as indistinguishable,
to construct a low-dimensional configuration-space repre-
sentation of the local solvation state of a single particle.
In each case, only the two “most significant” PCA dimen-
sions were retained for clustering since the trajectory data
were approximately Gaussian distributed along subsequent
dimensions.

Figure 4 presents a representative free-energy surface
along the two principal components obtained using the raw
(a) and filtered (b) set of trajectories. The emergence of
clear conformational basins in panel (b) demonstrates sig-
nificant correlations between the predicted hidden states
along individual WCN trajectories. As discussed in more
detail in Sec. III A below, the basins with positive PC; val-
ues correspond to solvation states depleted with respect to
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surrounding B particles, while those with negative values cor-
respond to solvation states with an increased number of sur-
rounding B particles relative to the overall average. The sup-
plementary material presents a more detailed analysis of the
individual basins. In contrast to panel (b), panel (a) demon-
strates that the noise in the raw WCN trajectories effec-
tively wipes out any correlations between the various fea-
tures. Thus, Fig. 4 demonstrates the role of the filtering pro-
cedure in generating a useful configuration-space represen-
tation that characterizes distinct features of the solvation
environment.

We note that while time-lagged independent compo-
nent analysis is often employed for dimensionality reduc-
tion for building kinetic models,'? this procedure yielded an
insufficient description of solvation states. This may have
to do with the uncertainty of the filtering procedure in
transition regions of the trajectory. However, any resulting
dynamical artifacts are effectively removed by the coarse-
graining and coring procedure described below (see the
“Cross validation of HMMSs” section of the supplementary
material for a more detailed discussion of these potential
artifacts).

With a low-dimensional description of solvation states
in hand, we aimed to determine a small number of rele-
vant metastable solvation states to describe the underlying
diffusion process. First, we generated 50 microstates which
spanned the 2-D PCA space (see Fig. S18), using the k-means
clustering algorithm.“? We then constructed a Markov state
model' —a discrete-time and discrete-space kinetic model—
in terms of these microstates, using the pyEmma software
package.*> Based on a standard implied time scale test,’
we employed lag times of approximately 25 t* for these
models. We then applied the Perron cluster analysis tech-
nique (PCCA+)**—a method for systematic coarse-graining of
a Markov state model-to reduce the 50 microstate repre-
sentation to between 2 and 6 metastable states. We consid-
ered an increasing number of metastable states, beginning
with 2, until the uncertainty of the kinetic model reached
a predefined threshold. PCCA+ outputs a set of membership
probabilities, i.e., the probability that a microstate belongs to
a particular metastable state. We constructed the metastable
states by requiring that microstates belonging to a particu-
lar metastable state have a membership probability of greater
than 0.75. As a consequence, the metastable states do not

represent a strict partition of configuration space. We then
generated trajectories along the metastable solvation states by
specifying that a particle remains within its current metastable
state until a new metastable state is reached. This simple “cor-
ing” procedure effectively reduces recrossing artifacts due
to an imperfect description of the dividing surfaces between
metastable states, as described elsewhere.*> From these cored
trajectories, we determined the distribution of (i) waiting
times in metastable state i, before transitioning to metastable
state j, {tw}ij, and (i) squared jump lengths for transitions
from state i to state j, {Ar?};, using the particle coordinates
from the original trajectories (see Fig. S25 for representative
distributions).

Ill. RESULTS AND DISCUSSION

We have proposed a methodology for constructing a low-
dimensional configuration-space representation from simple
and general descriptors of local solvation, using a hidden-
Markov-model (HMM) filtering technique. We applied the
methodology to the Kob-Andersen binary Lennard-Jones mix-
ture at three different temperatures, resulting in 2- to 6-state
representations for each system.

A. Solvation state characterization

To understand the identity of the metastable solvation
states, we determined the distribution of weighted coordi-
nation numbers (WCNs) sampled, while the system resides
in each particular state. We found that these distributions
are often highly overlapping, with an increased overlap at
higher temperatures. Nonetheless, the differences between
these distributions are sufficient for distinguishing distinct
solvation states.

Figure 5 quantifies the difference between the distribu-
tions of each WCN feature, n, for A particles in terms of sur-
rounding B particles. This difference is measured by the devia-
tion of the average value of the WCN distribution for a particu-
lar metastable state i, (w™);, relative to the overall average, w:
[(w™y; —™]/w™. Note that here w refers to the total value of
the WCN and not an individual Gaussian weight. For simplicity,
Fig. 5 presents results for the 2-state models (see Figs. S22-S24
for characterization of the multi-state models). We present
WCN features from the A-B radial distribution since these dis-
tributions are more informative for the definition of solvation
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states than the A-A radial distribution features. The 2-state
model characterizes solvation in terms of a state solvated with
B-particles (state 1) and a state depleted of B particles (state
2), relative to the average. These states are anti-correlated
with the distribution of A particles (Fig. S20). The three panels
in Fig. 5 demonstrate a consistent metastable state definition
over the various temperatures although the deviation from the
average WCN values for each state diminish as temperature
increases. The inset in the bottom panel illustrates the (mild)
overlap of the WCN distributions for the first solvation shell
feature.

Similar to Fig. 5, Fig. 6 characterizes the difference in
the WCN distributions for the B-B radial distribution fea-
tures of a 2-state representation. The distribution of B par-
ticles around the center particle again largely dictates the
solvation state. Similar to the solvation of A particles, the
2-state representation characterizes solvated (state 1) and
depleted (state 2) states in terms of surrounding B parti-
cles. For the lowest temperature, these states correspond to
the free-energy basins with positive and negative PC; values,

T
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respectively, in Fig. 4(b). The bottom panel of Fig. 6 demon-
strates an inconsistency in the definitions of the metastable
states in terms of the first feature of the radial distribu-
tion function at the lowest temperature. This discrepancy is
probably due to poor sampling in the low temperature sim-
ulation since B-B pairs only seldom come within the dis-
tance corresponding to the first feature. Based on the PCA,
we determined that this shoulder feature plays only a minor
role in determining the overall solvation state of the particle.
As a result, this apparent artifact does not affect the accu-
rate description of the diffusion process, as demonstrated
below.

B. Properties of single-particle diffusion
1. Particle jumps in structural glasses

The single-particle dynamics of supercooled liquids and
structural glasses has been extensively studied in an attempt
to understand the disparate behavior of structural versus
dynamical properties upon cooling. In these systems, particles
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FIG. 6. Characterization of a 2-state rep-
resentation of solvation for B particles.
The transparent bars quantify the dif-
ference in the average WCN within a
metastable state relative to the ensem-
ble average. The radial distribution func-
tions (dashed black curves), included as
reference for the feature definitions, are
rescaled to the magnitude of the pre-
sented data. The inset in the bottom
panel presents the distributions of the

first solvation shell WCN for the two

metastable states.
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diffuse via a cage-breaking mechanism, where individual par-
ticles are trapped for relatively long periods of time oscillating
in local cages, before spontaneously undergoing larger-scale
transitions until relaxing into a new cage.'® Many theories
have been proposed to describe these jumps using mode-
coupling, random first order, and free volume approaches*®
although the precise connection between these descriptions
remains elusive.’® One of the simplest approaches to the
relaxation dynamics in structural glasses is the adoption of
a continuous-time random walk (CTRW) description,*” which
assumes the absence of spatial and temporal correlations
between jumps. Although correlations are known to occur
in reality, even at high temperatures, this approximation is
of use for simplifying the description of jumps for clearer
insight into the diffusion mechanism. In practice, one must
first choose the precise definition of a jump before determin-
ing properties of the diffusion dynamics such as the average
squared jump length, (ATJZ), and waiting time between jumps,

(tw). Since jumps are assumed to be uncorrelated, the diffu-
sion constant can be determined in terms of these average
properties,?°

_(arh
6(tw)’ @

de Souza and Wales?> investigated the CTRW descrip-
tion in the context of a binary Lennard-Jones mixture.
They investigated to what extent low-dimensional features
of the solvation structure about a particle could be used to
define a cage break. In particular, they tracked the number
of particles within a cutoff distance of a center particle
and defined jumps as occurring when two particles simul-
taneously left the solvation shell. From this definition, they
built a CTRW model and demonstrated that this represen-
tation provided a relatively accurate characterization of the
diffusion constant but only when they adjusted the jump
definition to account for reversal events, where particles
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returned to their cage after the initial break. Although quan-
titatively accurate at high densities and low temperatures,
their CTRW models demonstrated significant errors at lower
densities and higher temperatures, supposedly due to an
insufficient effective dividing surface dictated by their jump
definition.

2. CTRW models for multi-state representations
of particle jumps

In this work, we examine a CTRW representation of par-
ticle jumps in the Kob-Andersen model. As described in more
detail in Sec. I, we employ instantaneous weighted coordi-
nation numbers—measures of the number of particles within
spherical slices about a central particle—as indicators of the
solvation state of a particle. We employ a hidden-Markov-
model filter to predict the underlying state of solvation from
the noisy trajectories provided by these features. Using the
filtered trajectories, we determine a coarse representation
of the local solvation state (2-6 states) and then construct
a CTRW model to describe single-particle diffusion in the
underlying simulation.

We extend the CTRW formalism to our multi-state rep-
resentation of diffusion by determining the “local” diffusion
constants between pairs of states in our model,

Ay
1 = mv (2)

where i and j represent metastable solvation states in our rep-
resentation and the ensemble averages are determined from
the filtered trajectories (using coordinate data from the orig-
inal simulation trajectories). We set diagonal terms of this
local diffusion matrix to zero by definition. The total diffusion
can then be determined as a weighted sum of local diffusion

constants,
D = Z 7riDij7 (3)
ij

where 7; is the equilibrium probability of state i.

Figure 7 presents the diffusion constants calculated from
the CTRW models for various multi-state representations,
compared with the exact values determined in the con-
ventional way from the original simulation trajectories. The
error bars were calculated by determining the standard
error from the jump length and waiting time distributions
and then propagating these errors into the diffusion con-
stant assuming no correlation between the variables. Remark-
ably, the CTRW models determine nearly quantitatively accu-
rate diffusion constants, with exception of the low tem-
perature models for A particles, which demonstrate small
deviations.

However, the various multi-state representations are not
possible in every case. For example, at high temperature,
only a 2-state representation is possible for describing the
diffusion of B particles. Representations with a higher num-
ber of metastable states resulted in rarely visited solvation
states and, thus, insufficient statistics for the waiting time
and jump length distributions. As the temperature increases,
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FIG. 7. Diffusion constants for A and B particles determined from the original simu-
lation trajectories (“exact,” black square markers) and also from the CTRW models
with varying number of metastable states (colored with various markers).

thermal noise blurs the identity of distinct solvation states,
making multi-state representations of solvation difficult. This
issue is analogous to the errors observed in previous work
at higher temperatures with hand-crafted definitions of dif-
fusion jumps.?> The onset of these problems for B particles
and not A particles at T* = 0.6 likely has to do with the larger
size of the A particles, resulting in better separated features
in the A-A and A-B radial distribution functions relative to
B-B pairs. Figure 7 also demonstrates a limited resolution for
A particles at low temperatures although this is more likely
due to issues of statistics (as explained in more detail in
the “Cross validation of HMMSs” section in the supplementary
material).

A direct comparison to the investigation of de Souza and
Wales?® is not possible due to differences in model parameters
and the simulation setup. Our results strongly suggest that the
automated configuration-space representations are at least
as accurate as employing manual definitions. This is signifi-
cant since the manual definitions utilized specific knowledge
about the system dynamics and explicitly accounted for rever-
sal events during the particle jumps. Further investigation
is necessary to assess whether the automated scheme can
outperform manual definitions in certain regimes. However,
the benefit of our proposed scheme is clear since it employs
generic order parameters, in lieu of system-specific features
or insight.

3. Heterogeneity of local diffusion

The potential of the proposed methodology extends
beyond the description of long-time diffusion with a CTRW
model. The multi-state representations of solvation provide a
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platform for investigating the mechanisms of single-particle
diffusion. For the Kob-Andersen model, the known cage-
breaking mechanism is consistent with the hopping between
local solvation states in our models although the perspective
is slightly different. Normally, jumps between local cages are
described without specifying the identity of the local cage.
(Note that here we are effectively ignoring transitions between
identical cages.) With these extra details, we can investi-
gate local features of particle jumps, e.g., the difference in
local diffusion behavior between particular pairs of metastable
states.

Figure 8 presents network representations of various
multi-state models describing the single-particle diffusion of
A (a) and B (b) particles. We consider models with various
numbers of chosen states to ensure that our conclusions
are robust to the precise network representation. The net-
work is plotted in the 2-D PCA space of the lower temper-
ature system. The node positions correspond to the average
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FIG. 8. Characterization of local diffusion networks. Network representations of
the multi-state CTRW models, plotted along the 2-D PCA coordinates obtained
from the T* = 0.4 simulation. The node sizes represent the relative population of

each metastable state. The arrows illustrate the deviation, Dgev = ”iw'

of the local diffusion constants (between pairs of states i and j) from the total
average.
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position when particles are in the corresponding metastable
state at this temperature. It is important to note that because
the network states were determined independently for each
particle type and simulation temperature, there is no direct
correspondence between metastable states at different tem-
peratures. However, by analyzing the characteristics of the
metastable states, as in Figs. 5 and 6, we can make approx-
imate comparisons between the states. The size of the
node represents the relative population of each metastable
state.

Using the definition of the local diffusion constant, Dy,
we determined the deviation from the total diffusion con-
stant, D?.e" = mj—5—, which characterizes the heterogene-

ity of local diffusion in the solvation network. The relative
deviation is weighted by the stationary distribution of state
i, to quantify the relative contribution to the total diffu-
sion constant. That is, it is possible that a transition has
a very large deviation from the average diffusion but is so
rare that it does not significantly contribute to the diffusion
constant. Such transitions will be effectively ignored by this
metric.

The network arrows in Fig. 8 represent the various Dgev

values between pairs of metastable states. Red (blue) arrows
denote local diffusion constants that are larger (smaller)
than the overall average. Transitions with D%e" < 1075 were

removed for clarity. Figure 8 demonstrates that as the tem-
perature decreases, the local diffusivities become increasingly
heterogeneous for both A and B particles. This observation is
consistent with the emergence of dynamical heterogeneities
as the system enters the glassy regime.'?

IV. CONCLUSIONS

In this work, we have proposed a workflow for generat-
ing configuration-space representations capable of accurately
describing single-particle diffusion in complex liquids. Impor-
tantly, the approach does not rely on system-specific or hand-
crafted, high-dimensional features for distinguishing solvation
states. Instead, a hidden-Markov-model filtering procedure
is applied to generic, low-dimensional solvation features, in
order to predict the underlying solvation states. The result-
ing filtered trajectories of the solvation features give rise to a
structured free-energy landscape, upon which a coarse repre-
sentation can be easily constructed using standard clustering
and kinetic modeling techniques.

The method was applied to a standard model for
glassy liquids, where continuous-time random walk mod-
els of jumping between local cages are known to charac-
terize the long time diffusion properties. We demonstrated
that the automated configuration-space discretization is
capable of quantitatively describing the diffusion constant
within the continuous-time random walk framework, with-
out assuming specific characteristics of the jumping process
a priori or building in reversal events into the jump definition.
Characterization of the heterogeneity of local diffusion as the
system enters the glassy regime motivates the utility of this
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framework for constructing models that provide insight into
the mechanism of diffusion in complex liquids.

More generally, the proposed methodology outlines a
data-driven route for detecting the set of relevant many-
particle solvation states from low-dimensional order param-
eters. In some ways, the philosophy of applying the hidden-
Markov-model filter is similar to the inherent structure for-
malism introduced by Stillinger and Weber—removing thermal
noise reveals the relevant minima along the underlying poten-
tial energy landscape—but bypasses the expensive determina-
tion of these hidden solvation states. The approach is lim-
ited to characterizing activated diffusion processes where
the Markovian assumption is valid although generalizations of
the methodology to non-Markovian dynamics may be possi-
ble. Overall, the approach demonstrates significant promise
for elucidating mechanisms of heterogeneous dynamics in
complex liquids.

SUPPLEMENTARY MATERIAL

See supplementary material for further methodological
details as well as additional results which can be found at
https:/ /aip.scitation.org. An online database consisting of
various analysis scripts and input files for the simulations can
be found online at https: //github.com /JFRudzinski/Scripts_
for_Automated_detection_of_many-particle_solvation_sta
tes.git.
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