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Figure 1. We propose multi-frame self-supervised training of a deep network based on in-the-wild video data for jointly learning a face
model and 3D face reconstruction. Our approach successfully disentangles facial shape, appearance, expression, and scene illumination.

Abstract

Monocular image-based 3D reconstruction of faces is
a long-standing problem in computer vision. Since image
data is a 2D projection of a 3D face, the resulting depth am-
biguity makes the problem ill-posed. Most existing methods
rely on data-driven priors that are built from limited 3D face
scans. In contrast, we propose multi-frame video-based
self-supervised training of a deep network that (i) learns
a face identity model both in shape and appearance while
(ii) jointly learning to reconstruct 3D faces. Our face model
is learned using only corpora of in-the-wild video clips col-
lected from the Internet. This virtually endless source of
training data enables learning of a highly general 3D face
model. In order to achieve this, we propose a novel multi-
frame consistency loss that ensures consistent shape and
appearance across multiple frames of a subject’s face, thus
minimizing depth ambiguity. At test time we can use an
arbitrary number of frames, so that we can perform both
monocular as well as multi-frame reconstruction.

1. Introduction

The reconstruction of faces from visual data has a wide
range of applications in vision and graphics, including face
tracking, emotion recognition, and interactive image/video
editing tasks relevant in multimedia. Facial images and
videos are ubiquitous, as smart devices as well as consumer
and professional cameras provide a continuous and virtually
endless source thereof. When such data is captured with-
out controlled scene location, lighting, or intrusive equip-
ment (e.g. egocentric cameras or markers on actors), one

speaks of “in-the-wild” images. Usually in-the-wild data is
of low resolution, noisy, or contains motion and focal blur,
making the reconstruction problem much harder than in a
controlled setup. 3D face reconstruction from in-the-wild
monocular 2D image and video data [71] deals with disen-
tangling facial shape identity (neutral geometry), skin ap-
pearance (or albedo) and expression, as well as estimating
the scene lighting and camera parameters. Some of these
attributes, e.g. albedo and lighting, are not easily separable
in monocular images. Besides, poor scene lighting, depth
ambiguity, and occlusions due to facial hair, sunglasses and
large head rotations complicates 3D face reconstruction.

In order to tackle the difficult monocular 3D face re-
construction problem, most existing methods rely on the
availability of strong prior models that serve as regulariz-
ers for an otherwise ill-posed problem [6, 20, 68]. Although
such approaches achieve impressive facial shape and albedo
reconstruction, they introduce an inherent bias due to the
used face model. For instance, the 3D Morphable Model
(3DMM) by Blanz et al. [6] is based on a comparably small
set of 3D laser scans of Caucasian actors, thus limiting gen-
eralization to general real-world identities and ethnicities.
With the rise of CNN-based deep learning, various tech-
niques have been proposed, which in addition to 3D recon-
struction also perform face model learning from monocular
images [63, 62, 59, 55]. However, these methods heavily
rely on a pre-existing 3DMM to resolve the inherent depth
ambiguities of the monocular reconstruction setting. An-
other line of work, where 3DMM-like face models are not
required, are based on photo-collections [30, 37, 57]. How-
ever, these methods need a very large number (e.g. ≈100)
of facial images of the same subject, and thus they impose
strong demands on the training corpus.
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In this paper, we introduce an approach that learns a
comprehensive face identity model using clips crawled from
in-the-wild Internet videos [19]. This face identity model
comprises two components: One component to represent
the geometry of the facial identity (modulo expressions),
and another to represent the facial appearance in terms of
the albedo. As we have only weak requirements on the
training data (cf. Sec. 3.1), our approach can employ a vir-
tually endless amount of community data and thus obtain a
model with better generalization; laser scanning a similarly
large group of people for model building would be nearly
impossible. Unlike most previous approaches, we do not
require a pre-existing shape identity and albedo model as
initialization, but instead learn their variations from scratch.
As such, our methodology is applicable in scenarios when
no existing model is available, or if it is difficult to create
such a model from 3D scans (e.g. for faces of babies).

From a technical point of view, one of our main con-
tributions is a novel multi-frame consistency loss, which
ensures that the face identity and albedo reconstruction is
consistent across frames of the same subject. This way we
can avoid depth ambiguities present in many monocular ap-
proaches and obtain a more accurate and robust model of
facial geometry and albedo. Moreover, by imposing or-
thogonality between our learned face identity model and an
existing blendshape expression model [20], our approach
automatically disentangles facial expressions from identity
based geometry variations, without resorting to a large set
of hand-crafted priors. In summary, our approach is based
on the following technical contributions:

1. A deep neural network that learns a facial shape and
appearance space from a big dataset of unconstrained
images that contains multiple images of each subject,
e.g. multi-view sequences, or even monocular videos.

2. Explicit blendshape and identity separation by a pro-
jection onto the blendshapes’ nullspace that enables a
multi-frame consistency loss.

3. A novel multi-frame identity consistency loss based
on a Siamese network [67], with the ability to handle
monocular and multi-frame reconstruction.

2. Related Work
The literature on 3D model learning is quite vast and we

mainly review methods for reconstructing 3D face models
from scanner data, monocular video data, photo-collections
and a single 2D image. An overview of the state-of-the-art
in model-based face reconstruction is given in [71].

Morphable Models from High-quality Scans:
3DMMs represent deformations in a low-dimensional
subspace and are often built from scanner data [7, 8, 36].
Traditional 3DMMs model geometry/appearance variation
from limited data via PCA [7, 6, 26]. Recently, richer
PCA models have been obtained from large-scale datasets

[13, 44]. Multilinear models generalize statistical models
by capturing a set of mutually orthogonal variation modes
(e.g., global and local deformations) via a tensor decompo-
sition [68, 9, 10]. However, unstructured subspaces or even
tensor generalizations are incapable of modeling localized
deformations from limited data. In this respect, Neumann
et al. [41] and Bernard et al. [5] devise methods for com-
puting sparse localized deformation components directly
from mesh data. Lüthi et al. [38] propose the so-called
Gaussian Process morphable models (GPMMs), which are
modeled with arbitrary non-linear kernels, to handle strong
non-linear shape deformations. Ranjan et al. [46] learn a
non-linear model using a deep mesh autoencoder with fast
spectral convolution kernels. Garrido et al. [25] train radial
basis functions networks to learn a corrective 3D lip model
from multiview data. In an orthogonal direction, Li et al.
[36] learn a hybrid model that combines a linear shape
space with articulated motions and semantic blendshapes.
All these methods mainly model shape deformations and
are limited to the availability of scanner data.

Parametric Models from Monocular Data: Here,
we distinguish between personalized, corrective, and mor-
phable model learning. Personalized face models have been
extracted from monocular video by first refining a para-
metric model in a coarse-to-fine manner (e.g., as in [49])
and then learning a mapping from coarse semantic defor-
mations to finer non-semantic detail layers [28, 24]. Cor-
rective models represent out-of-space deformations (e.g., in
shape or appearance) which are not modeled by the under-
lying parametric model. Examples are adaptive linear mod-
els customized over a video sequence [15, 27] or non-linear
models learned from a training corpus [48, 59]. A num-
ber of works have been proposed for in-the-wild 3DMM
learning [53, 63, 4, 12]. Such solutions decompose the face
into its intrinsic components through encoder-decoder ar-
chitectures that exploit weak supervision. Tran et al. [63]
employ two separate convolutional decoders to learn a non-
linear model that disentangles shape from appearance. Sim-
ilarly, Sengupta et al. [53] propose residual blocks to pro-
duce a complete separation of surface normal and albedo
features. There also exist approaches that learn 3DMMs of
rigid [65] or articulated objects [29] by leveraging image
collections. These methods predict an instance of a 3DMM
directly from an image [29] or use additional cues (e.g., seg-
mentation and shading) to fit and refine a 3DMM [65].

Monocular 3D Reconstruction: Optimization-based
reconstruction algorithms rely on a personalized model
[18, 21, 23, 69] or a parametric prior [2, 15, 35, 24, 54]
to estimate 3D geometry from a 2D video. Learning-based
approaches regress 3D face geometry from a single image
by learning an image-to-parameter or image-to-geometry
mapping [42, 48, 60, 59, 52, 64, 32]. These methods re-
quire ground truth face geometry [64, 34], a morphable
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model from which synthetic training images are generated
[47, 48, 52, 32], or a mixture of both [39, 33]. Recently,
Tewari et al. [60] trained fully unsupervised through an
inverse rendering-based loss. However, color and shape
variations lie in the subspace of a parametric face prior.
Only very recent methods for monocular face reconstruc-
tion [59, 63, 62, 12] allow for out-of-space model general-
ization while training from in-the-wild data.

3D Reconstruction via Photo-collections: Face recon-
struction is also possible by fitting a template model to
photo-collections. In [31], an average shape and appear-
ance model is reconstructed from a person-specific photo-
collection via low-rank matrix factorization. Suwajanakorn
et al. [57] use this model to track detailed facial motion from
unconstrained video. Kemelmacher-Shlizerman [30] learns
a 3DMM from a large photo-collection of people, grouped
into a fixed set of semantic labels. Also, Liang et al. [37]
leverage multi-view person-specific photo-collections to re-
construct the full head. In a different line of research, Thies
et al. [61] fit a coarse parametric model to user-selected
views to recover personalized face shape and albedo. Roth
et al. [49] personalize an existing morphable model to
an image collection by using a coarse-to-fine photometric
stereo formulation. Note that most of these methods do not
learn a general face model, e.g. a shape basis that spans
the range of facial shapes of an entire population, but in-
stead they obtain a single person-specific 3D face instance.
Besides, these methods require curated photo-collections.
We, on the contrary, build a 3DMM representation that gen-
eralizes across multiple face identities and impose weaker
assumptions on the training data.

Multi-frame 3D Reconstruction: Multi-frame recon-
struction techniques exploit either temporal information or
multiple views to better estimate 3D geometry. Shi et al.
[54] globally fit a multilinear model to 3D landmarks at
multiple keyframes and enforce temporal consistency of in-
between frames via interpolation. In [24], person-specific
facial shape is obtained by averaging per-frame estimates
of a parametric face model. Ichim et al. [28] employ a
multi-view bundle adjustment approach to reconstruct facial
shape and refine expressions using actor-specific sequences.
Piotraschke et al. [43] combine region-wise reconstructions
of a 3DMM from many images using a normal distance
function. Garg et al. [22] propose a model-free approach
that globally optimizes for dense 3D geometry in a non-
rigid structure from motion framework. Beyond faces, Tul-
sian et al. [66] train a CNN to predict single-view 3D shape
(represented as voxels) using multi-view ray consistency.

3. Face Model Learning
Our novel face model learning approach solves two

tasks: it jointly learns (i) a parametric face geometry and
appearance model, and (ii) an estimator for facial shape,

expression, albedo, rigid pose and incident illumination pa-
rameters. An overview of our approach is shown in Fig. 2.

Training: Our network is trained in a self-supervised
fashion based on a training set of multi-frame images, i.e.,
multiple images of the same person sampled from a video
clip, see Section 3.1. The network jointly learns an appear-
ance and shape identity model (Section 3.2). It also esti-
mates per-frame parameters for the rigid head pose, illu-
mination, and expression parameters, as well as shape and
appearance identity parameters that are shared among all
frames. We train the network based on a differentiable ren-
derer that incorporates a per-vertex appearance model and
a graph-based shape deformation model (Section 3.3). To
this end, we propose a set of training losses that account
for geometry smoothness, photo-consistency, sparse feature
alignment and appearance sparsity, see Section 3.4.

Testing: At test time, our network jointly reconstructs
shape, expression, albedo, pose and illumination from an
arbitrary number of face images of the same person. Hence,
the same trained network is usable both for monocular and
multi-frame face reconstruction.

3.1. Dataset

We train our approach using the VoxCeleb2 multi-frame
video dataset [19]. This dataset contains over 140k videos
of over 6000 celebrities crawled from Youtube. We sample
a total of N = 404k multi-frame images F1, . . . ,FN from
this dataset. The `-th multi-frame image F` = {F [f ]

` }Mf=1

comprises M = 4 frames F [1]
` , . . . , F

[M ]
` of the same per-

son ` extracted from the same video clip to avoid unwanted
variations, e.g., due to aging or accessories. The same per-
son can appear multiple times in the dataset. To obtain these
images, we perform several sequential steps. First, the face
region is cropped based on automatically detected facial
landmarks [50, 51]. Afterwards, we discard images whose
cropped region is smaller than a threshold (i.e., 200 pixels)
and that have low landmark detection confidence, as pro-
vided by the landmark tracker [50, 51]. The remaining
crops are re-scaled to 240×240 pixels. When sampling
the M frames in F`, we ensure sufficient diversity in head
pose based on the head orientation obtained by the land-
mark tracker. We split our multi-frame dataset F1, . . . ,FN

into a training (383k images) and test set (21k images).

3.2. Graph-based Face Representation

We propose a multi-level face representation that is
based on both a coarse shape deformation graph and a high-
resolution surface mesh, where each vertex has a color value
that encodes the facial appearance. This representation en-
ables our approach to learn a face model of geometry and
appearance based on multi-frame consistency. In the fol-
lowing, we explain the components in detail.
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Figure 2. Pipeline overview. Given multi-frame input that shows a person under different facial expression, head pose, and illumination,
our approach first estimates these parameters per frame. In addition, it jointly obtains the shared identity parameters that control facial
shape and appearance, while at the same time learning a graph-based geometry and a per-vertex appearance model. We use a differentiable
mesh deformation layer in combination with a differentiable face renderer to implement a model-based face autoencoder.

Learnable Graph-based Identity Model: Rather than
learning the identity model on the high-res mesh V with
|V| = 60k vertices, we simplify this task by considering
a lower-dimensional parametrization based on deformation
graphs [56]. We obtain our (coarse) deformation graph G
by downsampling the mesh to |G| = 521 nodes, see Fig. 3.
The network now learns a deformation on G that is then
transferred to the mesh V via linear blend skinning. The
vector g ∈ R3|G| of the |G| stacked node positions of the
3D graph is defined as

g = ḡ + Θsα , (1)

where ḡ ∈ R3|G| denotes the mean graph node positions.
We obtain ḡ by downsampling a face mesh with slightly
open mouth (to avoid connecting the upper and lower lips).
The columns of the learnable matrix Θs ∈ R3|G|×g span
the g-dimensional (g = 500) graph deformation subspace,
and α ∈ Rg represents the graph deformation parameters.

The vertex positions v ∈ R3|V| of the high-resolution
mesh V that encode the shape identity are then given as

v(Θs,α) = v̄ + SΘsα . (2)

Here, v̄ ∈ R3|V| is fixed to the neutral mean face shape
as defined in the 3DMM [7]. The skinning matrix S ∈
R3|V|×3|G| is obtained based on the mean shape v̄ and mean
graph nodes ḡ.

To sum up, our identity model is represented by a de-
formation graph G, where the deformation parameter α is
regressed by the network while learning the deformation
subspace basis Θs. We regularize this ill-posed learning
problem by exploiting multi-frame consistency.

Blendshape Expression Model: For capturing facial
expressions, we use a linear blendshape model that com-
bines the facial expression models from [3] and [16]. This
model is fixed, i.e. not learned. Hence, the expression de-
formations are directly applied to the high-res mesh. The
vertex positions of the high-res mesh that account for shape
identity as well as the facial expression are given by

v(Θs,α, δ) = v̄ + S ·OCL(Θs)α + Bδ , (3)

where B ∈ R3|V|×b is the fixed blendshape basis, δ ∈ Rb

is the vector of b = 80 blendshape parameters, and OCL is
explained next.

Separating Shape and Expression: We ensure a sepa-
ration of shape identity from facial expressions by imposing
orthogonality between our learned shape identity basis and
the fixed blendshape basis. To this end, we first represent
the blendshape basis B ∈ R3|V|×b with respect to the defor-
mation graph domain by solving B = SBG for the graph-
domain blendshape basis BG ∈ R3|G|×bG in a least-squares
sense. Here, bG = 80 is fixed. Then, we orthogonalize the
columns of BG . We propose the Orthogonal Complement
Layer (OCL) to ensure that our learned OCL(Θs) fulfills
the orthogonality constraint BT

G OCL(Θs) = 0. Our layer
is defined in terms of the projection of Θs onto the orthog-
onal complement B⊥G of BG , i.e.,

OCL(Θs) = projB⊥
G

(Θs) = Θs − projBG
(Θs) (4)

= Θs −BG(BT
GBG)−1BT

GΘs . (5)

The property BT
G OCL(Θs) = 0 can easily be verified.

Learnable Per-vertex Appearance Model: The facial
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Figure 3. Neutral face shape and appearance (left), and the coarse
deformation graph of the face mesh (right).

appearance is encoded in the 3|V|-dimensional vector

r(β) = r̄ + Θaβ (6)

that stacks all |V| per-vertex colors represented as RGB
triplets. The mean facial appearance r̄ ∈ R3|V| and the
appearance basis Θa ∈ R3|V|×|β| are learnable, while the
facial appearance parameters β are regressed. Note that we
initialize the mean appearance r̄ to a constant skin tone and
define the reflectance directly on the high-res mesh V .

3.3. Differentiable Image Formation

To enable end-to-end self-supervised training, we em-
ploy a differentiable image formation model that maps 3D
model space coordinates v ∈ R3 onto 2D screen space
coordinates u ∈ R2. The mapping is implemented as
u = Π(Φ(v)), where Φ and Π denote the rigid head pose
and camera projection, respectively. We also apply a differ-
entiable illumination model that transforms illumination pa-
rameters γ as well as per-vertex appearance ri and normal
ni into shaded per-vertex color ci(ri,ni,γ). We explain
these two models in the following.

Camera Model: We assume w.l.o.g. that the camera
space corresponds to world space. We model the head pose
via a rigid mapping Φ(v) = Rv + t, defined by the global
rotation R ∈ SO(3) and the translation t ∈ R3. After
mapping a vertex from model space v onto camera space
v̂ = Φ(v), the full perspective camera model Π : R3 → R2

projects the points v̂ into screen space u = Π(v̂) ∈ R2.
Illumination Model: Under the assumption of distant

smooth illumination and purely Lambertian surface proper-
ties, we employ Spherical Harmonics (SH) [45] to represent
the incident radiance at a vertex vi with normal ni and ap-
pearance ri as

ci(ri,ni,γ) = ri ·
B2∑
b=1

γb ·Hb(ni) . (7)

The illumination parameters γ ∈ R27 stackB2 = 9 weights
per color channel. Each γb ∈ R3 controls the illumination
w.r.t. the red, green and blue channel.

3.4. Multi-frame Consistent Face Model Learning

We propose a novel network for consistent multi-frame
face model learning. It consists of M Siamese towers that

simultaneously process M frames of the multi-frame image
in different streams, see Fig. 2. Each tower consists of an
encoder that estimates frame-specific parameters and iden-
tity feature maps. Note that the jointly learned geometric
identity Θs and appearance model (Θa, r̄), which are com-
mon to all faces, are shared across streams.

Regressed Parameters: We train our network in a
self-supervised manner based on the multi-frame images
{F`}N`=1. For each frame F

[f ]
` ,∀f = 1 : M of the

multi-frame image F`, we stack the frame-specific param-
eters regressed by a Siamese tower (see Parameter Esti-
mation in Fig. 2) in a vector p[f ]=(R[f ], t[f ],γ[f ], δ[f ])
that parametrizes rigid pose, illumination and expression.
The frame-independent person-specific identity parameters
p̂=(α,β) for the whole multi-frame image F` are pooled
from all Siamese towers. We use p=(p̂,p[1], . . . ,p[M ]) to
denote all regressed frame-independent and frame-specific
parameters of F`.

Per-frame Parameter Estimation Network: We em-
ploy a convolutional network to extract low-level features.
Based on these features, we apply a series of convolutions,
ReLU, and fully connected layers to regress the per-frame
parameters p[f ]. We refer to the supplemental document for
further details.

Multi-frame Identity Estimation Network: As ex-
plained in Section 3.1, each frame of our multi-frame in-
put exhibits the same face identity under different head
poses and expression. We exploit this information and use
a single identity estimation network (see Fig. 2) to impose
the estimation of common identity parameters p̂ (shape α,
appearance β) for all M frames. This way, we model a
hard constraint on p̂ by design. More precisely, given the
frame-specific low-level features obtained by the Siamese
networks we apply two additional convolution layers to ex-
tract medium-level features. The resultingM medium-level
feature maps are fused into a single multi-frame feature map
via average pooling. Note that the average pooling opera-
tion allows us to handle a variable number of inputs. As
such, we can perform monocular or multi-view reconstruc-
tion at test time, as demonstrated in Sec. 4. This pooled fea-
ture map is then fed to an identity parameter estimation net-
work that is based on convolution layers, ReLU, and fully
connected layers. For details, we refer to the supplemental.

3.5. Loss Functions

Let x = (p,Θ) denote the regressed parameters p as
well as the learnable network weights Θ = (Θs,Θa, r̄).
Note, x is fully learned during training, whereas the net-
work infers only p at test time. Here, p is parameterized
by the trainable weights of the network. To measure the re-
construction quality during mini-batch gradient descent, we
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employ the following loss function:

L(x) = λpho·Lpho(x) + λlan·Llan(x)+ (8)
λsmo·Lsmo(x) + λspa·Lspa(x) + λble·Lble(x) , (9)

which is based on two data terms (8) and three regulariza-
tion terms (9). We found the weights λ• empirically and
kept them fixed in all experiments, see supplemental docu-
ment for details.

Multi-frame Photometric Consistency: One of the key
contributions of our approach is to enforce multi-frame con-
sistency of the shared identity parameters p̂. This can
be thought of as solving model-based non-rigid structure-
from-motion (NSfM) on each of the multi-frame inputs dur-
ing training. We do this by imposing the following photo-
metric consistency loss with respect to the frame F [f ]:

Lpho(x) =

M∑
f=1

|V̂|∑
i=1

∣∣∣∣F [f ](ui(p
[f ], p̂))− ci(p

[f ], p̂)
∣∣∣∣2
2
.

Here, with abuse of notation, we use ui to denote the pro-
jection of the i-th vertex into screen space, ci is its rendered
color, and V̂ is the set of all visible vertices, as determined
by back-face culling in the forward pass. Note that the iden-
tity related parameters p̂ are shared across all frames in F .
This enables a better disentanglement of illumination and
appearance, since only the illumination and head pose are
allowed to change across the frames.

Multi-frame Landmark Consistency: To better con-
strain the problem, we also employ a sparse 2D landmark
alignment constraint. This is based on a set of 66 automat-
ically detected 2D feature points s

[f ]
i ∈ R2 [50, 51] in each

frame F [f ]. Each feature point s
[f ]
i comes with a confidence

c[f ]i , so that we use the loss

Llan(x) =

M∑
f=1

66∑
i=1

c[f ]i ·
∣∣∣∣s[f ]i − usi(p

[f ], p̂)
∣∣∣∣2
2
.

Here, usi ∈ R2 is the 2D position of the i-th mesh fea-
ture point in screen space. We use sliding correspondences,
akin to [59]. Note, the position of the mesh landmarks de-
pends both on the predicted per-frame parameters p[f ] and
the shared identity parameters p̂.

Geometry Smoothness on Graph-level: We employ
a linearized membrane energy [14] to define a first-order
geometric smoothness prior on the displacements ti(p̂) =
gi(p̂)− ḡi of the deformation graph nodes

Lsmo(x) =

|G|∑
i=1

∑
j∈Ni

∣∣∣∣ti(p̂)− tj(p̂)
∣∣∣∣2
2
, (10)

where Ni is the set of nodes that have a skinned vertex in
common with the i-th node. Note, the graph parameterizes

the geometric identity, i.e., it only depends on the shared
identity parameters p̂. This term enforces smooth defor-
mations of the parametric shape and leads to higher quality
reconstruction results.

Appearance Sparsity: In our learned face model, skin
appearance is parameterized on a per-vertex basis. To fur-
ther constrain the underlying intrinsic decomposition prob-
lem, we employ a local per-vertex spatial reflectance spar-
sity prior as in [40, 11], defined as follows

Lspa(x) =

|V|∑
i=1

∑
j∈Ni

wij ·
∣∣∣∣ri(p̂)− rj(p̂)

∣∣∣∣p
2
. (11)

The per-edge weights wij model the similarity of neighbor-
ing vertices in terms of chroma and are defined as

wij = exp
[
− η · ||hi(p̂old)− hj(p̂old)||2

]
.

Here, hi is the chroma of ci and p̂old denotes the parameters
predicted in the last forward pass. We fix η = 80 and p =
0.9 for training.

Expression Regularization: To prevent over-fitting and
enable a better learning of the identity basis, we regularize
the magnitude of the expression parameters δ:

Lble(x) =

M∑
f=1

|δ[f]|∑
u=1

(δ[f ]u

σδu

)2
. (12)

Here, δ[f ]u is the u-th expression parameter of frame f ,
and σδu is the corresponding standard deviation computed
based on Principal Component Analysis (PCA).

4. Results
We show qualitative results reconstructing geometry, re-

flectance and scene illumination from monocular images
in Fig. 4. As our model is trained on a large corpus of
multi-view images, it generalizes well to different ethnic-
ities, even in the presence of facial hair and makeup. We
implement and train our networks in TensorFlow [1]. We
pre-train the expression model and then train the full net-
work end-to-end. After convergence, the network is fine-
tuned using a larger learning rate for reflectance. We empir-
ically found that this training strategy improves the capture
of facial hair, makeup and eyelids, and thus the model’s gen-
eralization. Our method can also be applied to multi-frame
reconstruction at test time. Fig. 5 shows that feeding two
images simultaneously improves the consistency and qual-
ity of the obtained 3D reconstructions when compared to the
monocular case. Please note that we can successfully sep-
arate identity and reflectance due to our novel Orthogonal
Complement Layer (OCL). For the experiments shown in
the following sections, we trained our network on M = 4
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Figure 4. Our approach produces high-quality monocular recon-
structions of facial geometry, reflectance and illumination by
learning an optimal model from in-the-wild data. This enables
us to also reconstruct facial hair and makeup.

Figure 5. Monocular vs. multi-frame reconstruction. For clarity,
all results are shown with a frontal pose and neutral expression.
Multi-view reconstruction improves consistency and quality espe-
cially in regions which are occluded in one of the images.

multi-frame images and used only one input image at test
time, unless stated otherwise. Our networks take around
30 hours to train on a Titan V. Inference takes only 5.2 ms
on a Titan Xp. More details, results, and experiments can
also be found in the supplemental document.

4.1. Comparisons to Monocular Approaches

State-of-the-art monocular reconstruction approaches
that rely on an existing face model [60] or synthetically gen-
erated data [52, 48] during training, do not generalize well
to faces outside the span of the model. As such, they can
not handle facial hair, makeup, and unmodeled expressions,
see Fig. 7. Since we train our models on in-the-wild videos,
we can capture these variations and thus generalize better in
such challenging cases. We also compare to the refinement
based approaches of [59, 62]. Tran et al. [62] (see Fig 8) re-
fine a 3DMM [7] based on in-the-wild data. Our approach
produces better geometry without requiring a 3DMM and,

Figure 6. Comparison to Tewari et al. [59]. Multi-frame based
training improves illumination estimation. Our approach also out-
performs that of Tewari et al. when the face is largely occluded.

Figure 7. Comparison to [48, 52, 60]. These approaches are con-
strained by the (synthetic) training corpus and/or underlying 3D
face model. Our optimal learned model produces more accurate
results, since it is learned from a large corpus of real images.

contrary to [62], it also separates albedo from illumination.
The approach of Tewari et al. [59] (see Fig 6) requires a
3DMM [7] as input and only learns shape and reflectance
correctives. Since they learn from monocular data, their
correctives are prone to artifacts, especially when occlu-
sions or extreme head poses exist. In contrast, our approach
learns a complete model from scratch based on multi-view
supervision, thus improving robustness and reconstruction
quality. We also compare to [12], which only learns a tex-
ture model, see Fig. 9. In contrast, our approach learns
a model that separates albedo from illumination. Besides,
their method needs a 3DMM [7] as initialization, while we
start from a single constantly colored mesh and learn all
variation modes (geometry and reflectance) from scratch.

4.2. Quantitative Results

We also evaluate our reconstructions quantitatively on a
subset of the BU-3DFE dataset [70], see Tab. 1. This dataset
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Table 1. Geometric reconstruction error on the BU-3DFE dataset [70]. Our approach produces higher quality results than the current state
of the art. The approach of Tewari et al. [60] does not generalize to the ±45 degree head poses contained in this dataset.

Ours [59] Fine [59] Coarse [60]
Train M = 1 M = 2 M = 4 M = 2 M = 4
Test M = 1 M = 1 M = 1 M = 2 M = 2

Mean 1.92 mm 1.82 mm 1.76 mm 1.80 mm 1.74 mm 1.83 mm 1.81 mm 3.22 mm
SD 0.48 mm 0.45 mm 0.44 mm 0.46 mm 0.43 mm 0.39 mm 0.47 mm 0.77 mm

Table 2. Geometric error on FaceWarehouse [17]. Our approach competes with [59] and [58], and outperforms [60] and [32]. Note, in
contrast to these approaches, ours does not require a precomputed face model during training, but learns it from scratch. It comes close to
the off-line high-quality approach of [24], while being orders of magnitude faster and not requiring feature detection.

Ours Others
Learning Learning Optimization Hybrid

[59] Fine [59] Coarse [60] [32] [24] [58]
Mean 1.90 mm 1.84 mm 2.03 mm 2.19 mm 2.11 mm 1.59 mm 1.87 mm
SD 0.40 mm 0.38 mm 0.52 mm 0.54 mm 0.46 mm 0.30 mm 0.42 mm

Time 5.2 ms 4 ms 4 ms 4 ms 4 ms 120 s 110 ms

Figure 8. In contrast to Tran et al. [62], we estimate better geome-
try and separate reflectance from illumination. Note, the approach
of Tran et al. does not disentangle reflectance and shading.

Figure 9. In contrast to the texture model of Booth et al. [12] that
contains shading, our approach estimates a reflectance model.

contains images and corresponding ground truth geometry
of multiple people performing a variety of expressions. It

includes two different viewpoints. We evaluate the impor-
tance of multi-frame training in the case of monocular re-
construction using per-vertex root mean squared error based
on a pre-computed dense correspondence map. The lowest
error is achieved with multi-view supervision during train-
ing, in comparison to monocular input data. Multi-view su-
pervision can better resolve depth ambiguity and thus learn
a more accurate model. In addition, the multi-view super-
vision also leads to a better disentanglement of reflectance
and shading. We also evaluate the advantage of multi-frame
input at test time. When both images corresponding to a
shape are given, we consistently obtain better results. Fur-
ther, our estimates are better than the state-of-the-art ap-
proach of [59]. Since [59] refine an existing 3DMM only
using monocular images during training, it cannot resolve
depth ambiguity well. Thus, it does not improve the per-
formance compared to their coarse model on the ±45 de-
gree poses of BU-3DFE [70]. Similar to previous work, we
also evaluate monocular reconstruction on 180 meshes of
FaceWarehouse [17], see Tab. 2. We perform similar to the
3DMM-based state-of-the-art. Note that we do not use a
precomputed 3DMM, but learn a model from scratch dur-
ing training, unlike all other approaches in this comparison.
For this test, we employ a model learned starting from an
asian mean face, as FaceWarehouse mainly contains asians.
Our approach is agnostic to the mean face chosen and thus
allows us this freedom.

5. Conclusion & Discussion

We have proposed a self-supervised approach for joint
multi-frame learning of a face model and a 3D face recon-
struction network. Our model is learned from scratch based
on a large corpus of in-the-wild video clips without avail-
able ground truth. Although we have demonstrated com-
pelling results by learning from in-the-wild data, such data

8



is often of low resolution, noisy, or blurred, which imposes
a bound on the achievable quality. Nevertheless, our ap-
proach already matches or outperforms the state-of-the-art
in learning-based face reconstruction. We hope that it will
inspire follow-up work and that multi-view supervision for
learning 3D face reconstruction will receive more attention.
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P. Pérez, and C. Theobalt. Reconstruction of personalized
3D face rigs from monocular video. ACM Transactions on
Graphics, 35(3):28:1–15, June 2016. 2, 3, 8

9
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P. Pérez, and C. Theobalt. High-fidelity monocular face re-
construction based on an unsupervised model-based face au-
toencoder. PAMI, 2018. 8
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[60] A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard,
P. Perez, and T. Christian. MoFA: Model-based Deep Convo-
lutional Face Autoencoder for Unsupervised Monocular Re-
construction. In ICCV, 2017. 2, 3, 7, 8
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with multilinear models. ACM Trans. Graph., 24(3):426–
433, July 2005. 1, 2

[69] C. Wu, D. Bradley, P. Garrido, M. Zollhöfer, C. Theobalt,
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Figure 1. We propose multi-frame self-supervised training of a deep network based on in-the-wild video data for jointly learning a face
model and 3D face reconstruction. Our approach successfully disentangles facial shape, appearance, expression, and scene illumination.

In this supplemental document, we provide more details
on the network architecture and the empirically determined
weights in the employed loss function. We also show more
qualitative and quantitative comparisons and discuss limi-
tations of our approach. In addition, we describe how to
extract statistics from the learned model and visualize its
modes. A large amount of qualitative results can also be
found on the submitted webpage in the supplemental mate-
rial.

1. Network Details
We provide further details of the feature extraction,

shared identity and parameter estimation network in Tab. 1,
2 and 3, respectively. Overall, our network has 124M pa-
rameters. Note that a subset of these parameters includes
the learned geometry and appearance model.

1.1. Visualizing the Modes of Variation

While the learned model is an optimal basis for the
monocular face reconstruction task, it does not allow for an
intuitive analysis of the most prominent modes of variation
observed in the data. However, we can easily reparameter-
ize the learned model and construct a new representation us-
ing e.g. Principle Component Analysis (PCA). More specif-
ically, we compute PCA on 3D reconstructions obtained by
our approach for over 10k images of our training set. Note,
our approach is trained in a self-supervised manner without
requiring ground truth in the form of dense geometry and
appearance annotations. The new parametrization allows us
to build a statistical face model of facial identity and ap-
pearance, as in [1], but based on in-the-wild video data, see

Figure 2. Visualization of the Reflectance Model. We show four
of the learned modes.

Fig. 2, 3 and 4. Our model learns global variation modes
that roughly correspond to gender (see Fig. 2, 3) as well as
local variation modes, such as nose and eye deformations
(see Fig. 3, 4). The visualization also shows the separation
between the learned shape identity model and the expres-
sion model.

2. Weights of the Energy
We found the weights in our energy empirically and kept

them fixed in all experiments: λpho = 1.6/|V̄|, λlan =

1



Table 1. Feature Extractor Network Details. ↑ means that the input is taken from the layer in the row above.
Input Layers Activation Shape Siamese Output

Image (240, 240, 3) Conv2D (kernel 11x11, stride 4) + ReLU (60, 60, 96) Yes unnamed
↑ MaxPool (kernel 3x3, stride 2) (29, 29, 96) n/a unnamed
↑ Conv2D (kernel 5x5, stride 1) + ReLU (14, 14, 256) Yes unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes lowFeaturesf
↑ Conv2D (kernel 3x3, stride 2) + ReLU (7, 7, 256) Yes unnamed
↑ Conv2D (kernel 3x3, stride 2) + ReLU (4, 4, 256) Yes mediumFeaturesf

Table 2. Shared Identity Network Details. ↑ means that the input is taken from the layer in the row above.
Input Layers Activation Shape Siamese Output

lowFeatures0...M Concat (M, 4, 4, 256) n/a unnamed
↑ MeanPool (4, 4, 256) n/a unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (4, 4, 384) No unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (4, 4, 256) No unnamed
↑ Fully Connected + ReLU (1000, 1) No unnamed
↑ Fully Connected + ReLU (1000, 1) No unnamed
↑ Fully Connected (500 + 500, 1) No shapeParam + reflectanceParam

Figure 3. Visualization of the Shape Model. We show four of the
learned modes.

4.7, λsmo = 0.001, λspa = 1e−7, λble = 1e−8.

3. Results

In the following, we show more detailed qualitative and
quantitative evaluations of our approach.

Monocular vs multi-frame reconstruction Figure 5
shows the advantage of using multiple frames at test time.
Multi-frame reconstruction improves overall consistency of
the estimated 3D face and resolves ambiguity due to occlu-
sions that are present in one of the images. Such ambiguities
cannot be resolved completely when feeding only a single

Figure 4. Visualization of the Shape Model. We show two of the
learned modes from a side view.

image to the network. Still, our network is able to obtain
plausible facial identity for the monocular case thanks to
our multi-frame based training.

Comparison to state-of-the-art methods Fig. 6, 7, 8
and 9 show more comparisons to related state-of-the-art ap-
proaches for monocular 3D face reconstruction. Our multi-
frame based training succeeds in reconstructing 3D faces
for images with large poses and harsh yet low-frequency il-
lumination, as shown in Fig. 6. The method of Tewari et
al. [8] is unable to deal with these cases, as it is trained
on monocular images. Fig. 7 shows that our approach also
generalizes well to facial identities having beards and non-
average faces thanks to the learning of the optimal model

2



Table 3. Parameter Estimation Network Details. ↑ means that the input is taken from the layer in the row above.
Inputs Layers Activation Shape Siamese Output

shapeParam, reflectanceParam Fully Connected + ReLU + Reshape (14, 14, 1) No unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) No unnamed

↑, lowFeaturesf Concat (14, 14, 768) n/a unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 256) Yes unnamed
↑ MaxPool(kernel 3x3, stride 2) (6, 6, 256) Yes unnamed
↑ Fully Connected + ReLU (2048, 1) Yes unnamed
↑ Fully Connected (6 + 64 + 27, 1) Yes rigidf + expressionParamf+

illuminationParamf

Figure 5. Monocular vs. multi-frame reconstruction. Multi-view
reconstruction improves consistency and reconstruction quality,
especially for regions occluded in one of the images. Note that
all results are shown with a frontal pose and neutral expression for
comparison purposes.

from in-the-wild data. On the contrary, methods relying
on synthetic data [5, 7] and/or an underlying 3DMM [9],
fail to generalize to novel identities not explained by the
3D model or training corpus. Our approach not only es-
timates 3D faces from challenging in-the-wild images, but
also successfully disentangles facial geometry, reflectance
and scene illumination. Fig. 8 and 9 show that we obtain a
fairly clean reflectance estimation, up to a small global scal-
ing factor. Current state-of-the-art methods, on the contrary,
only estimate facial texture that bakes in shading effects
[11, 2]. We remark that our approach learns a reflectance
model from scratch using only a colored template mesh,
whereas the method of Booth et al. [2] require a 3DMM
as initialization to learn a texture model, see Fig. 9.

Quantitative evaluations We quantitatively evalu-
ate the photometric error of our approach on 1000 images
of the CelebA dataset [4], see Fig. 11 and Tab. 4. We
achieve lower errors when using larger models for shape

Figure 6. Comparison to Tewari et al. [8]. Multi-frame based train-
ing improves illumination estimation. Our approach also outper-
forms that of Tewari et al. when the face is largely occluded.

and appearance. We also obtain lower errors compared to
the 3DMM-based optimization approach presented in [3].
This demonstrates better generalization capabilities of our
learned shape and appearance models to in-the-wild images,

3



Table 4. Average photometric error (R,G,B ∈ [0, 255]) over 1000 images of the CelebA[4] dataset. Size refers to the number of vectors in
our learned shape and appearance models. Larger models lead to lower errors. Our method outperforms [3] which reconstructs faces using
an existing face model [1].

Ours [3]
Size M = 0 M = 10 M = 50 M = 125 M = 500 M = 80

Mean 32.54 23.13 21.27 20.71 20.65 21.95
SD 8.88 6.66 6.15 6.04 6.04 5.60

Figure 7. Comparison to [6, 7, 9]. These approaches are con-
strained by the (synthetic) training corpus and/or underlying 3D
face model. Our optimal learned model produces more accurate
results, since it is learned from a large corpus of real images.

compared to the fixed face model [1] used by [3].
Fig. 12 shows the quantitative evaluation of our geome-

try reconstruction on 324 images of the BU-3DFE dataset
[12]. Training on multiple frames consistently improves re-
construction quality. Multi-frame reconstruction with two
images at test time also increases reconstruction quality
compared to the monocular reconstruction case. We remark
that our approach outperforms that of Tewari et al. [9, 8] on
this dataset.

4. Limitations

In this paper, we have proposed a multi-frame self-
supervised deep learning approach that jointly learns a 3D
face model (3D geometry and facial identity) and recon-
structs 3D faces from in-the-wild videos. Although we have
shown compelling results, our approach still has a few limi-
tations that can be addressed in follow-up work, see Fig. 10.
Overall our approach can deal with large head poses quite

Figure 8. In contrast to Tran et al. [10], we estimate better geome-
try and separate reflectance from illumination. Note, the approach
of Tran et al. does not disentangle reflectance and shading.

well. Still, reconstructing extreme poses is a hard task in
itself that challenges all face reconstruction techniques. Oc-
clusions, e.g., by accessories or thick facial hair might ad-
versely impact the reconstruction quality of our approach.
Facial hair, such as beards are modeled in the reflectance
channel, and thus are not reconstructed in a physically cor-
rect manner. Even though our multi-frame supervision ap-
proach can obtain quite clean reflectance estimates that are
free of shading, there is still a remaining global scale am-
biguity between illumination and reflectance. As such, the
global skin tone can not be reliably disentangled from the
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Figure 9. In contrast to the texture model of Booth et al. [2] that
contains shading, our approach estimates a reflectance model.

Figure 10. Limitations of our approach. From top to bottom: Ex-
treme illumination conditions, severe occlusions by accessories,
thick facial hair, non-average facial shapes, scale ambiguity be-
tween illumination and reflectance, and extreme head poses.

general ambient brightness of the illumination. Strong and
colorful directional illumination outside the norm might
also harm the estimation of 3D faces. Specular reflections
and cast shadows are currently not modeled by our differen-
tiable renderer, and thus they might slightly be baked into
the reflectance channel. Non-standard facial shapes chal-
lenge our approach. We remark that all of these are difficult
settings for almost any face reconstruction technique. Our
approach already handles the aforementioned cases quite
well by learning from in-the-wild videos without any sort
of explicit 3D supervision.
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Figure 11. Quantitative evaluation of photometric error on the CelebA [4] dataset. Size is the number of learnable vectors in our shape
and appearance models. Our method outperforms [3] which uses an existing model for reconstruction. The numbers are the average
photometric errors (R,G,B ∈ [0, 255]) over 1000 images of the CelebA[4] dataset.

Figure 12. Quantitative evaluation on the BU-3DFE [12] dataset. The numbers are the geometric reconstruction errors averaged over 324
meshes. M is the size of the multi-frame images used at training time. Multi-frame inputs at training and at testing time help in obtaining
better reconstructions.

6


