
ar
X

iv
:1

70
6.

03
94

9v
1 

 [
cs

.L
O

] 
 1

3 
Ju

n 
20

17

On Generalizing Decidable Standard Prefix Classes

of First-Order Logic

Marco Voigt

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany,

Saarbrücken Graduate School of Computer Science

Abstract

Recently, the separated fragment (SF) of first-order logic has been introduced. Its defining
principle is that universally and existentially quantified variables may not occur together in
atoms. SF properly generalizes both the Bernays–Schönfinkel–Ramsey (BSR) fragment and
the relational monadic fragment. In this paper the restrictions on variable occurrences in SF
sentences are relaxed such that universally and existentially quantified variables may occur
together in the same atom under certain conditions. Still, satisfiability can be decided. This
result is established in two ways: firstly, by an effective equivalence-preserving translation
into the BSR fragment, and, secondly, by a model-theoretic argument.

Slight modifications to the described concepts facilitate the definition of other decidable
classes of first-order sentences. The paper presents a second fragment which is novel, has a
decidable satisfiability problem, and properly contains the Ackermann fragment and—once
more—the relational monadic fragment. The definition is again characterized by restric-
tions on the occurrences of variables in atoms. More precisely, after certain transformations,
Skolemization yields only unary functions and constants, and every atom contains at most
one universally quantified variable. An effective satisfiability-preserving translation into the
monadic fragment is devised and employed to prove decidability of the associated satisfiability
problem.

1 Introduction

Quantifier prefix classes have for long been a dominating paradigm for the classification of first-
order sentences into decidable and undecidable fragments. The Bernays–Schönfinkel–Ramsey frag-
ment (BSR)—∃∗∀∗ sentences—and the Ackermann fragment—∃∗∀∃∗ sentences—are two prefix
classes that are well-known for their decidable satisfiability problem. We show in this paper how
both of them can be generalized to substantially larger, decidable fragments in which quantifier
prefixes are not restricted anymore. Instead, we formulate certain conditions on how existentially
and universally quantified variables may be interlinked by joint occurrences in atoms. This means
that the classes of relational first-order sentences characterized by the quantifier prefixes ∃∗∀∗

and ∃∗∀∃∗ are merely the tips of two icebergs that we shall call the generalized BSR fragment
(GBSR) and the generalized Ackermann fragment (GAF), respectively. To the best knowledge of
the author, both fragments are novel. Interestingly, the relational monadic fragment—relational
first-order sentences in which all predicate symbols have arity one—is contained in both GBSR
and GAF.

Recently, the separated fragment (SF) has been introduced [21]. It can be considered as an in-
termediate step between BSR and GBSR. Its defining principle is that universally and existentially
quantified variables may not occur together in atoms. In [22] it is shown that the satisfiability
problem for SF is non-elementary. Yet, SF as well as GBSR enjoy the finite model property. How-
ever, the size of smallest models of a satisfiable GBSR sentences grows at least k-fold exponentially
with the length of the sentences for arbitrarily large k ≥ 0. This is in contrast with BSR, where the
size of smallest models grows at most linearly with the length of satisfiable sentences. Since every
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GBSR sentence is equivalent to some BSR sentence, one could say that GBSR is as expressive as
BSR but admits a non-elementarily more compact representation of models. It remains an open
question whether a similar result holds for GAF relative to the Ackermann fragment.

The following example gives a taste of the kind of sentences treated in this paper and outlines
a key method that we shall employ later. The sentence ϕ1 is a sample taken from GAF and ϕ2

belongs to GBSR and to GAF.

Example 1. Consider the first-order sentence ϕ1 := ∃u∀x∃v∀z∃y1y2.
(
¬P (u, x)∨

(
Q(x, v)∧R(u, z,

y1)
))

∧
(
P (u, x)∨

(
¬Q(x, v)∧¬R(u, z, y2)

))
. Due to the Boolean structure of ϕ1, the quantifiers

∃y2, ∃y1, and ∀z can be moved inwards immediately but ∃v cannot. Because of the two universal
quantifiers ∀x and ∀z, which are even interspersed with an existential one, ϕ1 does not lie in
the Ackermann fragment or in BSR. Skolemization of ϕ1 leads to ∀xz.

(
¬P (c, x) ∨

(
Q
(
x, f(x)

)
∧

R
(
c, z, g(x, z)

)))
∧
(
P (c, x) ∨

(
¬Q

(
x, f(x)

)
∧ ¬R

(
c, z, h(x, z)

)))
and thus explicitly fixes the de-

pendency of y1 on the universally quantified variables x and z, as y1 is replaced with the term
g(x, z). However, the shape of the original ϕ1 did not immediately indicate such a dependency of
y1 on x, since x and y1 do not occur together in any atom. Moreover, there are no other variables
that depend on x and establish a connection between x and y1 by means of joint occurrences in
atoms. One may say that it is the Boolean structure of ϕ1 alone which causes a dependency of
y1 on x, and that such a form of dependency has only a finite character. (This finite character
will be made explicit by the notions of fingerprints and uniform strategies that we introduce in
Section 3.2.)

The described point of view is supported by the existence of an equivalent sentence ϕ′
1, in

which the dependency of y1 on x has vanished. The price we have to pay, however, is an increase
in the size of the formula.
ϕ′
1 := ∃u.

(
∀x.

(
¬P (u, x) ∨ ∃v.Q(x, v)

))
∧
((
∀x.¬P (u, x)

)
∨ ∀z∃y1.R(u, z, y1)

)

∧
(
∀x.

(
∃v.¬Q(x, v)

)
∨ P (u, x)

)
∧
((
∀x.∃v.¬Q(x, v)

)
∨ ∀z∃y1.R(u, z, y1)

)

∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀x.P (u, x)

)
∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀x∃v.Q(x, v)

)

∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀z∃y1.R(u, z, y1)

)

Transforming ϕ1 into ϕ′
1 requires only basic logical laws (details can be found in the appendix):

first, we push the quantifiers ∃y2, ∃y1, ∀z inwards as far as possible. Then, we construct a dis-
junction of conjunctions of certain subformulas using distributivity. This allows us to move the
quantifier ∃v inwards. Afterwards, we apply the laws of distributivity again to obtain a conjunc-
tion of disjunctions of certain subformulas. This step enables us to push the universal quantifier
∀x inwards. In the resulting sentence every occurrence of an existential quantifier lies in the scope
of at most one universal quantifier. Moreover, every atom in the original formula ϕ1 contains at
most one universally quantified variable.

Skolemization of ϕ′
1 leads to a sentence whose shape is quite close to the shape of a Skolemized

sentence from the Ackermann fragment. More precisely, every atom contains at most one variable,
possibly with multiple occurrences. The only difference is that we allow for more than only one
universally quantified variable in the sentence as a whole, but at most one in every atom. It is
this particular form that one can exploit to construct an equisatisfiable monadic sentence.

As another example, consider the sentence ϕ2 := ∃u∀x∃y∀z.
(
P (u, z) ∧ Q(u, x)

)
∨
(
P (y, z) ∧

Q(u, y)
)
. This sentence can be transformed in the same spirit, leading to the equivalent

ϕ′
2 := ∃u∃y∀xzv.

((
P (u, x) ∨ P (y, x)

)
∧ P (u, x) ∧Q(u, x)

)

∨
((
P (u, z) ∨ P (y, z)

)
∧Q(u, y) ∧Q(u, z)

)

∨
((
P (u, v) ∨ P (y, v)

)
∧Q(u, y) ∧ P (y, v)

)
.

While Skolemization of ϕ2 introduces terms f(x) to replace y, ϕ′
2 is a much nicer target for

Skolemization, since all introduced symbols are constants. This second approach is so attractive,
because it leads to a BSR sentence.

As a matter of fact, the sentence ϕ2 belongs to GBSR and GAF at the same time, while it
does not belong to the Ackermann fragment, SF, BSR, or the monadic fragment. Hence, even the
intersection of GBSR and GAF contains sentences which do not fall into the categories offered by
standard fragments.
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The transformation technique outlined in Example 1 is one tool with which we establish the
decidability of GBSR and GAF. An interesting model-theoretic approach to establishing a small
model property for GBSR sentences is presented as well. Moreover, we employ a proof-theoretic
result to argue that satisfiability of GAF sentences with equality is decidable.

In short, the main contributions of the present paper are the following. In Section 3 we de-
fine GBSR and outline an effective equivalence-preserving transformation from GBSR into BSR
(Lemma 12), which entails decidability of GBSR-satisfiability (Theorem 9). Using this translation,
we moreover derive a Craig–Lyndon interpolation theorem for GBSR (Theorem 13). In Section 3.2
we develop a model-theoretic point of view, which eventually leads to a small model property for
GBSR (Theorem 23). The computational hardness of GBSR-satisfiability is derived from the hard-
ness of SF-satisfiability (cf. Theorems 10 and 11). In Section 4 we introduce GAF. Decidability of
GAF-satisfiability is shown (a) for GAF sentences with equality but without non-constant function
symbols by employing a proof-theoretic result (Theorem 32) and (b) for GAF sentences without
equality but with arbitrarily nested unary function symbols via an effective, (un)satisfiability-
preserving transformation from GAF into the monadic fragment with unary function symbols
(Theorem 34).

In order to facilitate smooth reading, long proofs are only sketched in the main text and
presented in full in the appendix.

2 Notation and preliminaries

We consider first-order logic formulas with equality. We call a first-order formula relational if it
contains neither function nor constant symbols. We use ϕ(x1, . . . , xm) to denote a formula ϕ whose
free variables form a subset of {x1, . . . , xm}. In all formulas, if not explicitly stated otherwise, we
tacitly assume that no variable occurs freely and bound at the same time and that no variable is
bound by two different occurrences of quantifiers. For convenience, we sometimes identify tuples
~x of variables with the set containing all the variables that occur in ~x. By vars(ϕ) we denote the
set of all variables occurring in ϕ. Similar notation is used for other syntactic objects.

A sentence ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ is said to be in standard form if and only if ψ is quantifier
free, in negation normal form, and exclusively contains the connectives ∧,∨,¬. In addition, we
assume that all variables bound in the quantifier prefix actually occur in ψ. The tuples ~x1 and ~yn
may be empty, i.e. the quantifier prefix does not have to start with a universal quantifier, and it
does not have to end with an existential quantifier.

As usual, we interpret a formula ϕ with respect to given structures. A structure A consists of
a nonempty universe UA and interpretations fA and PA of all considered function and predicate
symbols, in the usual way. Given a formula ϕ, a structure A, and a variable assignment β, we
write A, β |= ϕ if ϕ evaluates to true under A and β. We write A |= ϕ if A, β |= ϕ holds for
every β. The symbol |= also denotes semantic entailment of formulas, i.e. ϕ |= ψ holds whenever
for every structure A and every variable assignment β, A, β |= ϕ entails A, β |= ψ. The symbol
|=| denotes semantic equivalence of formulas, i.e. ϕ |=| ψ holds whenever ϕ |= ψ and ψ |= ϕ.
We call two sentences ϕ and ψ equisatisfiable if ϕ has a model if and only if ψ has one. A
structure A is a substructure of a structure B (over the same signature) if (1) UA ⊆ UB, (2)
cA = cB for every constant symbol c, (3) PA = PB ∩ UmA for every m-ary predicate symbol P ,
and (4) fA(a1, . . . , am) = fB(a1, . . . , am) for every m-ary function symbol f and every m-tuple
〈a1, . . . , am〉 ∈ UmA . The following are standard lemmas, see, e.g., [8] for a proof.

Lemma 2 (Substructure Lemma). Let ϕ be a first-order sentence in prenex normal form without
existential quantifiers and let A be a substructure of B. B |= ϕ entails A |= ϕ.

Lemma 3 (Miniscoping). Let ϕ, ψ, χ be arbitrary first-order formulas, and assume that x and y
do not occur freely in χ. We have the following equivalences, where ◦ ∈ {∧,∨}:
(i) ∃y.(ϕ ∨ ψ) |=| (∃y.ϕ) ∨ (∃y.ψ) (ii) ∀x.(ϕ ∧ ψ) |=| (∀x.ϕ) ∧ (∀x.ψ)
(iii) ∃y.(ϕ ◦ χ) |=| (∃y.ϕ) ◦ χ (iv) ∀x.(ϕ ◦ χ) |=| (∀x.ϕ) ◦ χ
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3 The generalized Bernays–Schönfinkel–Ramsey fragment

In this section we generalize the Bernays–Schönfinkel–Ramsey fragment—∃∗∀∗ sentences with
equality but without non-constant function symbols. We show in two ways that the satisfiability
problem for the new fragment is decidable. The first approach (Section 3.1) is of a syntactic
nature, as it is based on an effective translation into BSR. The second approach (Section 3.2) uses
model-theoretic techniques to establish a small model property.

For the considerations in this section we fix a first-order sentence ϕ := ∀~x1∃~y1 . . .∀~xn∃~yn.ψ
in standard form that may contain the distinguished equality predicate and constant symbols
but no non-constant function symbols. Let At be the set of all atoms occurring in ϕ and let
~x := ~x1 ∪ . . . ∪ ~xn and ~y := ~y1 ∪ . . . ∪ ~yn.

Definition 4 (GBSR fragment, axiomatically). The sentence ϕ belongs to the generalized Bernays–
Schönfinkel–Ramsey fragment (GBSR) if and only if we can partition At into sets At0,At1, . . . ,Atn
such that

(i) for every i, 0 ≤ i ≤ n, it holds vars(Ati) ⊆ ~y1 ∪ . . . ∪ ~yi ∪ ~xi+1 ∪ . . . ∪ ~xn, and

(ii) for all distinct i, j, 0 ≤ i < j ≤ n, it holds vars(Ati) ∩ vars(Atj) ∩ ~x = ∅.

We shall see in Section 3.2 how the described way of partitioning the atoms in GBSR sentences
facilitates a model-theoretic approach to proving decidability of the satisfiability problem for GBSR
sentences (GBSR-satisfiability).

We complement the axiomatic definition of GBSR with an alternative definition of an algorith-
mic flavor. For one thing, the algorithmic definition shows that membership in GBSR is easily
decidable. Moreover, the notions used in the algorithmic definition will be of use in the syntactic
approach to decidability of GBSR-satisfiability outlined in Section 3.1. We shall see in Lemma 7
that both definitions are equivalent. But first, we need additional notation.

Given ϕ, we define the undirected graph Gϕ := 〈V,E〉 by setting V := ~x and E := {〈x, x′〉 |
there is an atom in ϕ containing both x and x′}. A connected component in Gϕ is a maximal sub-
set C ⊆ V such that for all distinct variables x, x′ ∈ C the transitive closure of E contains the pair
〈x, x′〉. The set of all connected components in Gϕ forms a partition of V . For every connected
component C in Gϕ we denote by L(C) the set of all literals in ϕ which contain at least one
variable from C.

For every index k, 1 ≤ k ≤ n, we denote by Lk the smallest set of literals such that Lk contains
all literals taken from ϕ in which variables from ~yk occur, and for every connected component C
in Gϕ containing a variable x ∈ vars(Lk) it holds L(C) ⊆ Lk. Intuitively, every Lk constitutes
a reasonably small superset of the literals in ϕ which remain in the scope of the quantifier block
∃~yk when the rules of miniscoping (cf. Lemma 3) are applied from left to right.

Definition 5 (GBSR fragment, algorithmically). The sentence ϕ is in GBSR if and only if for all
k, ℓ with 1 ≤ ℓ ≤ k ≤ n it holds vars(Lk) ∩ ~xℓ = ∅.

By L̃k we denote the set Lk \
⋃
ℓ>k Lℓ. Moreover, L̃0 stands for the set of all literals in ϕ which

do not belong to any of the L̃k. Note that the sets L̃0, . . . , L̃n form a partition of the set of all
literals in ϕ. For every k, 0 ≤ k ≤ n, we write X̃k to address the set vars(L̃k) ∩ ~x.

Lemma 6.

(i) For all distinct indices k, ℓ we have X̃k ∩ X̃ℓ = ∅.

(ii) For every k it holds vars(L̃k) ∩ ~y ⊆
⋃

1≤ℓ≤k ~yℓ.

(iii) If ϕ satisfies Definition 5, then for every k it holds X̃k ⊆
⋃
k<ℓ≤n ~xℓ.

Proof.
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Ad (i): Suppose there are distinct indices k, ℓ, k < ℓ, and a variable x ∈ ~x such that x ∈ X̃k ∩ X̃ℓ.

But then, there must be literals Lk ∈ L̃k ⊆ Lk and Lℓ ∈ L̃ℓ ⊆ Lℓ, both containing x. Let
C denote the (unique) connected component in Gψ to which x belongs. By definition of
L(C), both Lk and Lℓ belong to L(C). Therefore, it holds {Lk, Lℓ} ⊆ L(C) ⊆ Lℓ. But since

L̃k ⊆ Lk \ Lℓ, Lk cannot belong to Lk. A contradiction.

Ad (ii): Let k ≤ n be some non-negative integer. Since for any ℓ > k Lℓ contains all literals

in which a variable y ∈ ~yℓ occurs, L̃k ⊆ Lk \ Lℓ cannot contain any occurrence of such a
variable y.

Ad (iii): Let k ≤ n be some non-negative integer. ϕ’s belonging to GBSR means vars(Lk) ∩⋃
ℓ′≤k ~xℓ′ = ∅. Because of X̃k = vars(L̃k)∩~x ⊆ vars(Lk)∩~x, we conclude X̃k∩

⋃
ℓ′≤k ~xℓ′ = ∅.

Hence, we have X̃k ⊆
⋃
ℓ>k ~xℓ.

We now have the right notions at hand to show that the axiomatic and the algorithmic defini-
tions of GBSR sentences yield the same fragment of first-order logic.

Lemma 7. The sentence ϕ satisfies Definition 4 if and only if it satisfies Definition 5.

Proof. The if -direction follows immediately from Lemma 6. We just define the Atk ⊆ At such
that A ∈ Atk if and only if either A or ¬A or both belong to L̃k.

The only if -direction can be argued as follows. For every i, 0 ≤ i ≤ n, let Xi := vars(Ati) ∩ ~x.
Consider the graph Gϕ. Since the X1, . . . , Xn are pairwise disjoint, they induce subgraphs of Gϕ
that are not connected to one another. Moreover, for every connected component C in Gϕ, there
is one Xi such that C ⊆ Xi. When we write At(C) to denote all atoms in ψ that contain variables
from C, then the previous observation entails that for every connected component C in Gϕ there
is some Ati such that At(C) ⊆ Ati.

Let At′k be the set of atoms occurring in Lk. In other words, let At′k be the smallest set of all
atoms in ψ that contain variables from ~yk and for every connected component C in Gϕ containing
a variable x ∈ vars(Atk), At′k contains At(C). Hence, At′k ⊆ Atk ∪ . . . ∪ Atn and, moreover,
vars(At′k) ∩ ~x ⊆ ~xk+1 ∪ . . . ∪ ~xn. This means, vars(At′k) ∩ ~xℓ = vars(Lk) ∩ ~xℓ = ∅ for every ℓ,
1 ≤ ℓ ≤ k. It follows that Definition 5 is satisfied.

In [21] the separated fragment (SF) is defined to be the set of first-order sentences χ :=
∃~z∀~u1∃~v1 . . . ∀~un∃~vn.χ′ with quantifier-free χ′ that may contain equality but no non-constant
function symbols. Moreover, for every atom A in χ it is required that either vars(A) ∩

⋃
i ~ui = ∅

or vars(A) ∩
⋃
i ~vi = ∅ or both hold, i.e. variables u ∈ ~uk and v ∈ ~vℓ may not occur together in

any atom in χ for arbitrary k, ℓ. We have advertised GBSR as an extension of SF. Indeed, we can
partition the set of χ’s atoms into two sets At0,Atn such that vars(At0) ⊆ ~z ∪ ~u1 ∪ . . . ∪ ~un and
vars(Atn) ⊆ ~z ∪ ~v1 ∪ . . . ∪ ~vn. This partition obviously satisfies the requirements of Definition 4.
Moreover, it is known that SF contains the BSR fragment as well as the relational monadic
fragment without equality [21].

On the other hand, Example 1 contains the sentence ϕ2 which belongs to GBSR but not to
SF, thus showing that GBSR is a proper extension of SF.

Proposition 8. GBSR properly contains the separated fragment, the BSR fragment, and the
relational monadic fragment without equality.

One of the main results of the present paper is that GBSR-satisfiability is decidable.

Theorem 9. Satisfiability of GBSR sentences is decidable.

We prove this theorem in two ways. The first route is a syntactic one (Section 3.1): we show
that every GBSR sentence can be effectively transformed into an equivalent BSR sentence (see
the proof Lemma 12). Our second approach is a model-theoretic one: we devise a method that,
given any model A of a GBSR sentence ϕ, constructs a model B of ϕ with a domain of a bounded
size. In other words, we show that GBSR enjoys a small model property (Theorem 23). Although
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already the existence of an effective translation of GBSR sentences into equivalent BSR sentences
entails that GBSR inherits the small model property from BSR, our approach does not exploit
this fact. It rather relies on a technique that emphasizes the finite character of the dependencies
between universal variables and the existential variables that lie within their scope in a given
GBSR sentence.

Concerning computational complexity, the hierarchy of k-NExpTime-complete subproblems
of SF-satisfiability presented in [22] together with the containment of SF in GBSR leads to the
observation that GBSR-satisfiability is non-elementary.

Theorem 10. GBSR-satisfiability is k-NExpTime-hard for every positive integer k.

The small model property that we derive for GBSR sentences in Section 3.2 entails the existence
of a similar hierarchy of complete problems for GBSR as there exists for SF.

Theorem 11. We can divide the GBSR fragment into an increasing sequence of subclasses GBSRk
with k = 1, 2, 3, . . . such that for every k the set of all satisfiable sentences from GBSRk forms a
k-NExpTime-complete set.

Proof sketch. The division of GBSR into subfragments GBSR1 ⊆ GBSR2 ⊆ . . . is based on the
degree ∂ϕ of GBSR sentences ϕ, which we shall define right after Corollary 21. More precisely,
we define GBSRk to be the subfragment of GBSR that contains all GBSR sentences ϕ with
∂ϕ = k − 1. By Theorem 23, every satisfiable GBSR sentence ϕ has a model with at most

len(ϕ)2 ·
(
2↑∂ϕ+1(len(ϕ))

)len(ϕ)2
domain elements. Hence, for any k ≥ 1 the satisfiability problem

for GBSRk is decidable in nondeterministic k-fold-exponential time.
On the other hand, the lower bound proof for SF-satisfiability in [22] is based on SF-formulas

that encode computationally hard domino problems. One can use the same formulas to show that
every set GBSRk contains an infinite subset SFk of SF formulas of degree1 k such that there is a
polynomial reduction from some k-NExpTime-hard domino problem to the satisfiability problem
for SFk (see Lemma 20 in [22]). Hence, the satisfiability problem for GBSRk is k-NExpTime-hard
as well.

Every GBSR sentence with n ∀∃ quantifier alternations occurs in GBSRn at the latest. It
might occur earlier in the sequence GBSR1 ⊆ GBSR2 ⊆ . . ., though. For instance, every relational
monadic sentence ϕ (in prenex form) without equality belongs to GBSR1 and thus also to every
later set in the sequence, no matter what form ϕ’s quantifier prefix has.

3.1 A syntactic approach to decidability of GBSR-satisfiability

The next lemma provides the key ingredient to show decidability of GBSR-satisfiability by a
reduction to the satisfiability problem for the BSR fragment. Moreover, it will help proving that
relational GBSR without equality is closed under Craig–Lyndon interpolation.

Lemma 12. Let ϕ := ∀~x1∃~y1 . . .∀~xn∃~yn. ψ be a GBSR sentence in standard form. There exists
a quantifier-free first-order formula ψ′(~u, ~v) such that ϕ′ := ∃~u ∀~v. ψ′(~u, ~v) is in standard form
and semantically equivalent to ϕ and all literals in ϕ′ also occur in ϕ (modulo variable renaming).

Proof sketch. The following transformations mainly use the standard laws of Boolean algebra
and the miniscoping rules (Lemma 3) to (re-)transform ψ into particular syntactic shapes. Note
that this does not change the set of literals occurring in the intermediate steps (modulo variable
renaming), since we start from a formula in negation normal form restricted to the connectives

∧,∨,¬. We make use of the partition of the literals in ψ into the sets L̃0, L̃1, . . . , L̃n (defined right
before Lemma 6) to group exactly those literals in each step of our transformation.

To begin with, we transform the matrix ψ into a disjunction of conjunctions of literals
∨
i ψi.

In addition, we rewrite every ψi into ψi = χ̃
(1)
i,0 ∧ . . . ∧ χ̃

(1)
i,n. Every χ̃

(1)
i,ℓ is a conjunction of literals

1Notice that the notion of degree used in the present paper differs from the notion of degree used in [22]. The
proof of Theorem 11 solely refers to the notions from the present paper.
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and comprises exactly the literals from the ψi which belong to L̃ℓ. Moreover, by Lemma 6(ii) and

(iii), we know that vars(χ̃
(1)
i,ℓ ) ⊆ ~y1 ∪ . . . ∪ ~yℓ ∪ ~xℓ+1 ∪ . . . ∪ ~xn. Using the rules of miniscoping,

we move the existential quantifier block ∃~yn inwards such that it binds the χ̃
(1)
i,n alone. The thus

obtained sentence ϕ′′ has the form ∀~x1∃~y1 . . .∀~xn.
∨
i χ̃

(1)
i,0 ∧ . . . ∧ χ̃

(1)
i,n−1 ∧ ∃~yn.χ̃

(1)
i,n. In further

transformations, we treat the subformulas
(
∃~yn.χ̃

(1)
i,n

)
as indivisible units.

Next, we transform the big disjunction in ϕ′′ into a conjunction of disjunctions
∧
k ψ

′
k, group

the disjunctions ψ′
k into subformulas η̃

(1)
k,ℓ as before, and move the universal quantifier block ∀~xn

inwards. Due to Lemma 6(i), we can split the quantifier block ∀~xn so that universal quantifiers

can be moved directly before the η̃
(1)
k,ℓ . The result is of the form ∀~x1∃~y1 . . . ∀~xn−1∃~yn−1.

∧
k

(
∀(~xn∩

X̃0). η̃
(1)
k,0

)
∨ . . . ∨

(
∀(~xn ∩ X̃n−1). η̃

(1)
k,n−1

)
∨ η̃

(1)
k,n.

We reiterate this process until all quantifier blocks have been moved inwards as described.
In the resulting formula we observe that no existential quantifier occurs within the scope of any
universal quantifier. Using the miniscoping rules, we can move all quantifiers outwards again—
existential quantifiers first—, renaming variables as necessary. In the end, we obtain a prenex
formula of the form ϕ′ := ∃~u ∀~v.ψ′, where ψ′ is quantifier free and contains exclusively literals
that are renamed variants of literals occurring in the original ψ.

The just proven lemma shows that every GBSR sentence ϕ is equivalent to some BSR sentence
ϕ′ := ∃~u ∀~v. ψ′. This immediately entails decidability of GBSR-satisfiability. The number of
leading existential quantifiers in BSR sentences induces an upper bound on the size of small
models—every satisfiable BSR sentences has such a small model. One can adapt the methods
applied in [22] to facilitate the derivation of a tight upper on the number of leading existential
quantifiers. To this end, the notion of degree of interaction of existential variables used in that
paper needs to be extended so that it also covers the interaction of universally and existentially
quantified variables caused by joint occurrences in atoms.

In Section 3.2, we present a different, a model-theoretic approach to deriving an upper bound
on the size of small models. In order to formulate this bound accurately, we introduce a related,
yet complementary notion of degree based on the interaction of universally quantified variables in
atoms.

We conclude the present section by applying the above lemma to show that relational GBSR
without equality is closed under Craig–Lyndon interpolation [6, 17]. Hence, relational GBSR
without equality additionally enjoys Beth’s definability property, which is well-known to be a
consequence of the Craig–Lyndon interpolation property (see, e.g., Chapter 20 in [4]).

Given a formula ϕ that exclusively contains the connectives ∧,∨,¬, we say that a predicate
symbol P occurs positively in ϕ if there is an occurrence of some atom P (. . .) in ϕ such that the
number of subformulas of ϕ that contain this occurrence and have a negation sign as topmost
connective is even. Analogously, we say that a predicate symbol P occurs negatively in ϕ if there
is an occurrence of some atom P (. . .) in ϕ such that the number of subformulas of ϕ that contain
this occurrence and have a negation sign as topmost connective is odd.

Theorem 13 (Interpolation Theorem for GBSR). Let ϕ and ψ be relational GBSR sentences in
standard form without equality. If ϕ |= ψ, then there exists a relational BSR sentence χ without
equality such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (neg-
atively) in ϕ and in ψ.

This is a consequence of Lemma 12 combined with the following lemma.

Lemma 14. Let ϕ and ψ be relational BSR sentences without equality in which the only Boolean
connectives are ∧,∨,¬. If ϕ |= ψ, then there exists a relational BSR sentence χ without equality
such that
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(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (neg-
atively) in ϕ and in ψ.

Since the proof of Lemma 14 requires techniques that are largely unrelated to the rest of the
present paper, the proof sketch has been moved to the appendix.

3.2 A model-theoretic approach to decidability of GBSR-satisfiability

In this section we investigate the finite character of the dependency of existential variables y
on universal variables x that appear earlier in the quantifier prefix . . . ∀x . . . ∃y . . . of a GBSR
sentence. This finite character will be made explicit with the following concepts: fingerprints are
sets of sets of . . . sets of atoms that characterize certain tuples of domain elements by finite means;
fingerprint functions µ assign fingerprints to tuples of domain elements; µ-uniform strategies select
domain elements for existentially quantified variables exclusively depending on the fingerprints of
the domain elements that have been assigned to preceding universally quantified variables.

Again, for the considerations in this section we fix a GBSR sentence ϕ := ∀~x1∃~y1 . . .∀~xn
∃~yn.ψ in standard form in which ψ is quantifier free. Without loss of generality, we assume that ϕ
is relational and, hence, does not contain any function or constant symbols. Let At denote the set
of all atoms occurring in ϕ and let ~x := ~x1∪. . .∪~xn and ~y := ~y1∪. . .∪~yn. By Definition 4, we may
assume that At can be partitioned into (possibly empty) sets At0, . . . ,Atn such that Conditions (i)
and (ii) of Definition 4 are met.

Let A be any structure over the vocabulary of ψ. We next define the semantic equivalent of
Skolem functions.

Definition 15. A strategy σ comprises a tuple of n mappings 〈σ1, . . . , σn〉 with signatures σi :

U
|~x1|
A × . . .× U

|~xi|
A → U

|~yi|
A . A strategy σ is satisfying for ϕ if and only if

A, [~x1 7→~b1, . . . , ~xn 7→~bn, ~y1 7→σ1(~b1), . . . , ~yn 7→σn(~b1, . . . ,~bn)] |= ψ

holds for every choice of tuples ~b1 ∈ U
|~x1|
A , . . . ,~bn ∈ U

|~xn|
A .

Definition 16. Let ~b1 ∈ U
|~x1|
A , . . . ,~bn ∈ U

|~xn|
A be tuples of domain elements. By outAt,σ(~b1, . . . ,~bn)

we denote the set
{
A ∈ At

∣∣ A, [~x1 7→~b1, . . . , ~xn 7→~bn, ~y1 7→σ1(~b1), . . . , ~yn 7→σn(~b1, . . . ,~bn)] |= A
}
,

dubbed the outcome of ~b1, . . . ,~bn under σ with respect to the atoms in At. By OutAt,σ we
denote the set of all possible outcomes of σ with respect to the atoms in At, i.e. OutAt,σ :={
outAt,σ(~b1, . . . ,~bn)

∣∣ ~b1 ∈ U
|~x1|
A , . . . ,~bn ∈ U

|~xn|
A

}
.

The Boolean abstraction ψbool of ψ is the propositional formula that results from ψ if we
conceive every atom A in ψ as propositional variable pA. A subset S ⊆ At can be conceived as a
valuation of ψbool by setting S |= pA if and only if A ∈ S. Clearly, a strategy σ is satisfying for ϕ
if and only if for every outcome S ∈ OutAt,σ it holds S |= ψbool.

Proposition 17. The structure A is a model of ϕ if and only if there exists a strategy σ which
is satisfying for ϕ.

If ϕ is satisfied by A, we are interested in special satisfying strategies whose image only covers
a finite portion of A’s domain. Such a strategy induces a finite substructure of A that also satisfies
ϕ. In order to find such strategies, we need to identify the key features of domain elements that
make them distinguishable by the formula ϕ. We express these features by the already mentioned
fingerprints.

We use P to denote the power set operator, i.e. PS stands for the set of all subsets of a given
set S. The iterated application of P is denoted by Pk, meaning P0S := S and Pk+1S := Pk(PS)
for every k ≥ 0.

Definition 18. We define the family of fingerprint functions µℓ,k with 0 ≤ ℓ < k ≤ n as follows
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µℓ,n : U
|~y1|
A × . . .×U

|~yℓ|
A ×U

|~xℓ+1|
A × . . .×U

|~xn|
A → PAtℓ such that for all tuples ~a1 ∈ U

|~y1|
A , . . . ,~aℓ ∈

U
|~yℓ|
A ,~bℓ+1 ∈ U

|~xℓ+1|
A , . . . ,~bn ∈ U

|~xn|
A and every A ∈ Atℓ we have A ∈ µℓ,n(~a1, . . . ,~aℓ,~bℓ+1, . . . ,

~bn) if and only if A, [~y1 7→~a1, . . . , ~yℓ 7→~aℓ, ~xℓ+1 7→~bℓ+1, . . . , ~xn 7→~bn] |= A;

µℓ,n−1 : U
|~y1|
A × . . . × U

|~yℓ|
A × U

|~xℓ+1|
A × . . . × U

|~xn−1|
A → P2Atℓ such that for all tuples ~a1 ∈

U
|~y1|
A , . . . ,~aℓ ∈ U

|~yℓ|
A ,~bℓ+1 ∈ U

|~xℓ+1|
A , . . . ,~bn−1 ∈ U

|~xn−1|
A and every S ∈ PAtℓ we have S ∈

µℓ,n−1(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bn−1) if and only if there exists some ~bn such that µℓ,n(~a1, . . . ,~aℓ,
~bℓ+1, . . . ,~bn−1,~bn) = S;

...

µℓ,ℓ+1 : U
|~y1|
A × . . . × U

|~yℓ|
A × U

|~xℓ+1|
A → Pn−ℓAtℓ such that for all tuples ~a1 ∈ U

|~y1|
A , . . . ,~aℓ ∈

U
|~yℓ|
A ,~bℓ+1 ∈ U

|~xℓ+1|
A and every S ∈ Pn−ℓ−1Atℓ we have S ∈ µℓ,ℓ+1(~a1, . . . ,~aℓ,~bℓ+1) if and

only if there exists ~bℓ+2 such that µℓ,ℓ+2(~a1, . . . ,~aℓ,~bℓ+1,~bℓ+2) = S.

We denote the image of a fingerprint function µℓ,k under a strategy σ = 〈σ1, . . . , σn〉 by

imσ(µℓ,k) :=
{
µℓ,k

(
σ1(~b1), . . . , σℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bk

) ∣∣ ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A

}
.

Having a suitable notion of fingerprints at hand, we next define strategies that induce finite
substructures of A.

Definition 19. A strategy σ = 〈σ1, . . . , σn〉 is µ-uniform if for every k, 1 ≤ k ≤ n, the following

holds. For all tuples ~b1,~b
′
1 ∈ U

|~x1|
A , . . . ,~bk,~b

′
k ∈ U

|~xk|
A we have σk(~b1, . . . ,~bk) = σk(~b

′
1, . . . ,

~b′k)
whenever for every k′, 1 ≤ k′ ≤ k, all of the following conditions are met:

µ0,k′
(
~b1, . . . ,~bk′) = µ0,k′(~b

′
1, . . . ,

~b′k′
)
,

µ1,k′
(
σ1(~b1),~b2, . . . ,~bk′

)
= µ1,k′

(
σ1(~b

′
1),
~b′2, . . . ,

~b′k′
)
,

...
µk′−1,k′

(
σ1(~b1), . . . , σk′−1(~b1, . . . ,~bk′−1),~bk′

)
= µk′−1,k′

(
σ1(~b

′
1), . . . , σk′−1(~b

′
1, . . . ,

~b′k′−1),
~b′k′

)
.

Intuitively, µ-uniformity of a strategy σ means that σ reacts in the same way on inputs that
have identical fingerprints. The next lemma provides the key argument to infer the existence of
some satisfying µ-uniform strategy from the existence of any satisfying strategy.

Lemma 20. For every strategy σ = 〈σ1, . . . , σn〉 there is a µ-uniform strategy σ̂ = 〈σ̂1, . . . , σ̂n〉
such that OutAt,σ̂ ⊆ OutAt,σ.

Proof sketch. For i = 1, . . . , n we define Ui as abbreviation of U
|~x1|
A × . . . × U

|~xi|
A . We construct

certain representatives α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

∈ Uk inductively as follows. The S
(k)

i stand for sequences

S
(k)
i,i+1 . . . S

(k)
i,k of fingerprints satisfying S

(k)
i,k ∈ S

(k)
i,k−1 ∈ . . . ∈ S

(k)
i,i+1.

Let k = 1. We partition U1 into sets U
1,〈S

(1)
0 〉

with S
(1)
0 ∈ imσ(µ0,1) by setting U

1,〈S
(1)
0 〉

:=
{
~b1 ∈

U
|~x1|
A | µ0,1(~b1) = S

(1)
0

}
. We pick one representative α

1,〈S
(1)
0 〉

from each U
1,〈S

(1)
0 〉

.

Let k > 1. We construct subsets U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

⊆ Uk with S
(k)
0,j ∈ imσ(µ0,j), . . . , S

(k)
k−1,j ∈

imσ(µk−1,j), for every j ≤ k, by setting U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

:=
{〈
~c1, . . . ,~ck−1,~bk

〉 ∣∣ ~bk ∈ U
|~xk|
A and there is some α

k−1,〈S
(k−1)
0 ,...,S

(k−1)
k−2 〉

=
〈
~c1, . . . ,~ck−1

〉

with ~ci ∈ U
|~xi|
A , for every i, such that µ0,k

(
~c1, . . . ,~ck−1,~bk

)
= S0, µ1,k

(
σ1(~c1),~c2, . . . ,

~ck−1,~bk
)
= S1, . . . , µk−1,k

(
σ1(~c1), . . . , σk−1(~c1, . . . ,~ck−1),~bk

)
= Sk−1, and

S
(k)

0 = S
(k−1)

0 S0; . . . ; S
(k)

k−2 = S
(k−1)

k−2 Sk−2; S
(k)

k−1 = Sk−1

}
.

We pick one representative α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

from each nonempty U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

.

Having all the representatives α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

at hand, we inductively construct σ̂, starting

from σ̂1 and going to σ̂n.
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Let k = 1. For every ~b1 ∈ U
|~x1|
A we set σ̂1(~b1) := σ1(α1,〈S0〉), where S0 := µ0,1

(
~b1

)
.

Let k > 1. For all tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A we set σ̂k(~b1, . . . ,~bk) := σk(~c1, . . . ,~ck), where

〈~c1, . . . ,~ck〉 := α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

with ~ci ∈ U
|~xi|
A , for every i, and we have

S
(k)
0,j = µ0,j

(
~b1, . . . ,~bj

)
for every j, 0 < j ≤ k,

S
(k)
1,j = µ1,j

(
σ̂1(~b1),~b2, . . . ,~bj

)
for every j, 1 < j ≤ k,

...
S
(k)
k−2,j = µk−2,j

(
σ̂1(~b1), . . . , σ̂k−2(~b1, . . . ,~bk−2),~bk−1, . . . ,~bj

)
for every j, k − 2 < j ≤ k,

S
(k)
k−1,k = µk−1,k

(
σ̂1(~b1), . . . , σ̂k−1(~b1, . . . ,~bk−1),~bk

)
,

if such an α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

exists.

Claim I: For every k, 1 ≤ k ≤ n, and all tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A there is a representative

αk,〈S0,...,Sk−1〉
such that

S0,j = µ0,j

(
~b1, . . . ,~bj

)
for every j, 0 < j ≤ k,

S1,j = µ1,j

(
σ̂1(~b1),~b2, . . . ,~bj

)
for every j, 1 < j ≤ k,

...
Sk−2,j = µk−2,j

(
σ̂1(~b1), . . . , σ̂k−2(~b1, . . . ,~bk−2),~bk−1, . . . ,~bj

)
for every j, k − 2 < j ≤ k,

Sk−1,k = µk−1,k

(
σ̂1(~b1), . . . , σ̂k−1(~b1, . . . ,~bk−1),~bk

)
.

Proof: We proceed by induction on k. Details can be found in the appendix. ♦

By construction, σ̂ is µ-uniform.

Now let S ∈ OutAt,σ̂, i.e. there exist tuples ~b1 ∈ U
|~x1|
A , . . . ,~bn ∈ U

|~xn|
A such that S =

outAt,σ̂(~b1, . . . ,~bn). We partition S into sets S0 := S∩At0, . . . , Sn := S ∩Atn and thus obtain the

fingerprints Sℓ = µℓ,n
(
σ̂1(~b1), . . . , σ̂ℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bn

)
⊆ Atℓ for every ℓ, 0 ≤ ℓ < n. Claim

I guarantees the existence of some representative α
n,〈S

′
0,...,S

′
n−1〉

= 〈~c1, . . . ,~cn〉, with ~ci ∈ U
|~xi|
A , for

every i, such that Sℓ = µℓ,n
(
σ1(~c1), . . . , σℓ(~c1, . . . ,~cℓ),~cℓ+1, . . . ,~cn

)
for every ℓ, 0 ≤ ℓ < n.

Consider any A ∈ At, and fix the ℓ for which A ∈ Atℓ. We distinguish two cases.
Suppose that ℓ < n. The definition of αn,〈S′

0,...,S
′
n−1〉

and the fingerprint functions µℓ,n entail that

A ∈ Sℓ if and only if A, [~y1 7→σ̂1(~b1), . . . , ~yℓ 7→σ̂ℓ(~b1, . . . ,~bℓ), ~xℓ+1 7→~bℓ+1, . . . , ~xn 7→~bn] |= A if and
only if A, [~y1 7→σ1(~c1), . . . , ~yℓ 7→σℓ(~c1, . . . ,~cℓ), ~xℓ+1 7→~cℓ+1, . . . , ~xn 7→~cn] |= A.

In case of ℓ = n, we have A ∈ Sn if and only if A, [~y1 7→σ̂1(~b1), . . . , ~yn 7→σ̂n(~b1, . . . ,~bn)] |= A if and
only if A, [~y1 7→σ1(~c1), . . . , ~yn 7→σn(~c1, . . . ,~cn)] |= A.

In both cases, we get A ∈ outAt,σ̂(~b1, . . . ,~bn) if and only if A ∈ outAt,σ(~c1, . . . ,~cn). Conse-

quently, we have S = outAt,σ̂(~b1, . . . ,~bn) = outAt,σ(~c1, . . . , ~cn) ∈ OutAt,σ.
Altogether, it follows that OutAt,σ̂ ⊆ OutAt,σ.

Corollary 21. If there is a satisfying strategy σ for ϕ, then there is also a µ-uniform strategy σ̂
that is satisfying for ϕ.

Proof. Let σ be a satisfying strategy for ϕ. By Lemma 20, there is a µ-uniform strategy σ̂ such
that for every S ∈ OutAt,σ̂ we have S ∈ OutAt,σ. Since σ is satisfying for ϕ, we get S |= ψbool for
every S ∈ OutAt,σ. Hence, we observe S |= ψbool for every S ∈ OutAt,σ̂ ⊆ OutAt,σ. This means
that σ̂ is also satisfying for ϕ.

In order to derive a small model property for GBSR sentences, it remains to show that any
satisfying µ-uniform strategy induces a finite substructure ofA that satisfies ϕ. In what follows, we
denote by κ the smallest positive integer meeting the following condition. For every Ati, 0 ≤ i < n,
there are at most κ distinct indices i + 1 < j1 < . . . < jκ ≤ n such that ~xjℓ ∩ vars(Ati) 6= ∅. We
call κ the degree of ϕ and write ∂ϕ = κ. Notice that we have 0 ≤ κ < n.

To formulate the upper bound on the size of the domain, we need some notation for the

tetration operation. We define 2↑k(m) inductively: 2↑0(m) := m and 2↑k+1(m) := 2(2
↑k(m)).
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Lemma 22. If there is a satisfying µ-uniform strategy σ for ϕ, then there is a model B |= ϕ such

that UB contains at most n · |~y| ·
(
2↑κ+1(|At|)

)n2

domain elements.

Proof sketch. One can derive the following observations for all integers ℓ, k, 0 ≤ ℓ < k < n: (a) we

have |imσ(µℓ,k)| ≤ 2|imσ(µℓ,k+1)|, and (b) for all tuples ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk with ~ai ∈ U
|~yi|
A and

~bi ∈ U
|~xi|
A , for every i, we observe that, if vars(Atℓ)∩~xk+1 = ∅, then

∣∣µℓ,k(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk)
∣∣

= 1 and, consequently, |imσ(µℓ,k)| ≤ |imσ(µℓ,k+1)|.
Due to (a) and (b), our assumptions about κ entail that

(c) for all integers ℓ, k with 0 ≤ ℓ < k ≤ n we have |imσ(µℓ,k)| ≤ 2↑κ+1(Atℓ).
Let Tσ be the target set of σ, defined by Tσ :=

⋃n
k=1 Tk, where

Tk :=
{
a ∈ UA

∣∣ there are tuples ~b1, . . . ,~bk with ~bi ∈ U
|~xi|
A , for every i,

such that σk(~b1, . . . ,~bk) = 〈. . . , a, . . .〉
}
.

Since σ is µ-uniform, Tσ is a finite set. By definition of the fingerprint functions µℓ,k, and by virtue

of (c), we derive the following upper bounds, where we write îmσ(µi,j) to abbreviate imσ(µi,i+1)×
imσ(µi,i+2)× . . .× imσ(µi,j) for all i, j, 0 ≤ i < j ≤ n.∣∣T1

∣∣ ≤ |~y1| ·
∣∣îmσ(µ0,1)

∣∣ ≤ |~y1| · 2↑κ+1(|At|),∣∣T2
∣∣ ≤ |~y2| ·

∣∣îmσ(µ0,2)× îmσ(µ1,2)
∣∣ ≤ |~y2| ·

(
2↑κ+1(|At|)

)3
,

...∣∣Tn
∣∣ ≤ |~yn| ·

∣∣îmσ(µ0,n)× . . .× îmσ(µn−1,n)
∣∣ ≤ |~yn| ·

(
2↑κ+1(|At|)

)n2

.

Consequently, Tσ contains at most n · |~y| ·
(
2↑κ+1(|At|)

)n2

domain elements.
Let ϕSk be the result of exhaustive Skolemization of ϕ, i.e. every existentially quantified variable

y ∈ ~yk in ϕ is replaced by the Skolem function fy(~x1, . . . , ~xk). Clearly, σ induces interpretations
for all the Skolem functions fy such that A can be extended to a model A′ of ϕSk for which we

have fA′

y (~b1, . . . ,~bk) ∈ Tk for every fy with y ∈ ~yk and all tuples ~b1, . . . ,~bk.
We define B to be the substructure of A′ (with respect to ϕSk’s vocabulary) with universe

UB := Tσ. By the Substructure Lemma, B satisfies ϕSk and thus also the original ϕ. Moreover,

we can bound the number of elements in B’s domain from above by n · |~y| ·
(
2↑κ+1(|At|)

)n2

.

Theorem 23. Every satisfiable GBSR sentence ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ in standard form with

quantifier-free ψ and degree ∂ϕ ≥ 1 has a model with at most len(ϕ)2 ·
(
2↑∂ϕ+1(len(ϕ))

)n2

domain
elements.

Note that the notion of degree used in this paper depends on a fixed partition of At into the sets
At0, . . . ,Atn. Consider, for instance, a relational monadic formula ϕMon. We could partition its
atoms into two parts At0,Atn, where At0 contains all atoms that contain a universally quantified
variable and Atn comprises all atoms with existentially quantified variables. Clearly, At0 will cause
the highest possible degree for ϕMon, since all universally quantified variables occur in atoms in
At0. To obtain a lower degree, we could partition At as follows. For every i, 0 ≤ i < n, we
set Ati :=

{
P (x) ∈ At

∣∣ x ∈ ~xi+1

}
, and the set Atn again contains all atoms with existentially

quantified variables. Clearly, this partition induces a degree ∂ϕMon = 0 and thus a potentially
much lower degree.

4 The generalized Ackermann fragment

In this section we generalize the Ackermann fragment (relational ∃∗∀∃∗ sentences without equality)
in the same spirit as we have generalized the BSR fragment in Section 3. We even go farther than
Ackermann’s original result, and, doing so, diverge in two directions: In one direction we allow for
unary function symbols to appear in formulas, even in a nested fashion, but do not allow equality.
In the other direction we allow equality but no non-constant function symbols. In the former
case, we devise an effective (un)satisfiability-preserving translation from the new fragment into
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the monadic fragment with unary function symbols. In the latter case, we employ a result due to
Fermüller and Salzer [10] to argue decidability of the satisfiability problem.

For the remainder of this section we fix a sentence ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ in standard form
without equality and without non-constant function symbols. Before Lemma 31 we do not have
to pose any restrictions on the function symbols occurring in ϕ, and even the equality predicate
would not do any harm. Still, for the sake of clear definitions, we add the restrictions here and
soften them where appropriate.

Let At be the set of all atoms occurring in ϕ and let ~x := ~x1 ∪ . . .∪ ~xn and ~y := ~y1 ∪ . . . ∪ ~yn.
We define the index of a variable v ∈ ~x ∪ ~y by idx(v) := k if and only if v ∈ ~xk or v ∈ ~yk.

Definition 24 (GAF, axiomatically). The sentence ϕ belongs to the generalized Ackermann
fragment (GAF) if and only if we can partition At into sets At0 and Atx, x ∈ ~x, such that the
following conditions are met.

(a) vars(At0) ∩ ~x = ∅.

(b) For every x ∈ ~x we have vars(Atx) ∩ ~x = {x}.

(c) For every y ∈ ~y occurring in some Atx there are two (mutually exclusive) options

(c.1) either for every Atx in which y occurs we have idx(y) < idx(x),

(c.2) or there is exactly one Atx in which y occurs and y does not occur in At0 and we have
idx(y) ≥ idx(x).

Intuitively speaking, Conditions (b) and (c) entail that, although a quantifier ∃y may lie within
the scope of two different quantifiers ∀x and ∀x′ in ϕ, we can move ∃y out of the scope of at least
one of ∀x and ∀x′ by suitable equivalence-preserving transformations. This will be the essence
of the proof of Lemma 30. In Example 1 we have sketched the transformation procedure for the
GAF sentence ϕ1.

As in the case of GBSR, we complement the axiomatic definition of GAF with an alternative
definition of an algorithmic flavor. We shall see in Lemma 27 that both definitions are equivalent.
For the algorithmic point of view we need additional notation.

Let Gϕ := 〈V,E〉 be a directed graph such that V := ~y and E :=
{
〈y, y′〉

∣∣ idx(y) ≤

idx(y′) and there is an atom A in ψ in which both y and y′ occur
}
. For any variable y ∈ ~y the

upward closure C↑
y is the smallest subset of ~y such that y ∈ C↑

y and for every y′ ∈ C↑
y the existence

of an edge 〈y′, y′′〉 in Gϕ entails y′′ ∈ C↑
y . L(C↑

y) denotes the set of all literals in ψ, in which a

variable from C↑
y occurs. For any x ∈ ~x let Lx be the smallest set of literals such that (a) every

literal in ψ in which x occurs belongs to Lx, and (b) for every y ∈ vars(Lx)∩~y with idx(y) ≥ idx(x)
we have L(C↑

y) ⊆ Lx. Intuitively, Lx collects all literals from ψ which will remain in the scope of
the quantifier ∀x when we apply the laws of Boolean algebra and the rules of miniscoping to ϕ.
By L0 we denote the set of all literals that occur in ψ but in none of the Lx with x ∈ ~x. Moreover,
we use the notation Yx := vars(Lx) ∩

⋃
i≥idx(x) ~yi.

Definition 25 (GAF, algorithmically). The sentence ϕ belongs to GAF if and only if

(i) every atom in ψ contains at most one variable from ~x, and

(ii) for all distinct variables x, x′ ∈ ~x with idx(x) ≤ idx(x′) and any variable y ∈
⋃
i≥idx(x) ~yi it

holds y 6∈ vars(Lx) ∩ vars(Lx′).

Lemma 26. If ϕ satisfies Definition 25, then the following properties hold.

(i) For all distinct x, x′ ∈ ~x it holds Lx ∩ Lx′ = ∅.

(ii) For every x ∈ ~x it holds vars(Lx) ∩ ~x = {x}.

(iii) For every x ∈ ~x we have Yx ∩ vars(L0) = ∅.
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(iv) For all distinct x, x′ ∈ ~x with idx(x) ≤ idx(x′) we have Yx ∩ (vars(Lx′)) = ∅.

Proof.

Ad (i): Suppose there are variables x, x′ ∈ ~x and there is a literal L ∈ Lx ∩ Lx′ . L must
belong to L(C↑

y ) for some variable y ∈ ~y with idx(y) ≥ idx(x) or idx(y) ≥ idx(x′), since
otherwise it would hold {x, x′} ⊆ vars(L) which contradicts part (i) of Definition 25. This
in turn means that some variable y′ ∈ ~y occurs in L for which idx(y′) ≥ idx(y). Hence,
y′ ∈ vars(L) ⊆

(
vars(Lx) ∩ vars(Lx′)

)
with idx(y′) ≥ idx(x) or idx(y′) ≥ idx(x′). This

constitutes a contradiction to the second part of Definition 25.

Ad (ii): This is a direct consequence of (i) and the definition of Lx.

Ad (iii): From y ∈ Yx ⊆
⋃
i≥idx(x) ~yi it follows that L(C↑

y) ⊆ Lx, by definition of Lx. Suppose

there is a y ∈ Yx∩vars(L0), i.e. there is some L ∈ L0 with y ∈ vars(L). Since L ∈ L(C↑
y) ⊆ Lx,

L cannot occur in L0, by definition of L0.

Ad (iv): From y ∈ Yx ⊆
⋃
i≥idx(x) ~yi it follows that L(C↑

y) ⊆ Lx, by definition of Lx. Suppose

there is some y ∈ Yx ∩ vars(Lx′). Hence, there must be some literal L ∈ Lx′ in which y
occurs. But since L belongs to L(C↑

y ), we know that L ∈ Lx. This contradicts (i).

We now have the right notions at hand to show equivalence of Definitions 24 and 25.

Lemma 27. The sentence ϕ satisfies Definition 24 if and only if it satisfies Definition 25.

Proof. Regarding the if -direction, we define At0 to be the set of all atoms in L0 and, analogously,
for every x ∈ ~x we define Atx to be the set of atoms in Lx. Condition (a) of Definition 24 holds
due to the definition of L0 and the Lx. (b) is an immediate consequence of Lemma 26(ii). (c)
is entailed by Lemma 26 (iii) together with (iv). More precisely, we observe that, if a variable y
occurs in a set Yx, then condition (c.2) applies. If, on the other hand, y does not belong to any
Yx, then it satisfies condition (c.1).

For the only if -direction we argue as follows. Condition (i) of Definition 25 is certainly satisfied,
if Condition (a) of Definition 24 is met by ϕ. Consider any variable y ∈ ~y to which Option (c.2)
applies and let Atxy

be the set in which y occurs. By definition of upward closure, every variable
y′ in C↑ must also be an Option-(c.2) variable that occurs exclusively in Atxy

. Hence, we conclude
C↑
y ⊆ vars(Atxy

). This in turn entails that every atom occurring in L(C↑
y) belongs to Atxy

.
Consequently, for every x ∈ ~x and for every literal [¬]A in Lx we have A ∈ Atx. Now consider

two distinct variables x, x′ ∈ ~x with idx(x) ≤ idx(x′) and let y be some variable in Yx. Since y
occurs in Lx and thus also in Atx, and since idx(y) ≥ idx(x), y must be an Option-(c.2) variable.
Hence, it does not occur in any atom in Atx′ . And, due to the observation that for every literal
[¬]A ∈ Lx′ it also holds A ∈ Atx′ , y cannot occur in any literal in Lx′ . This shows that ϕ satisfies
Condition (ii) of Definition 25.

The name generalized Ackermann fragment suggests that it properly contains the Ackermann
fragment. This is confirmed by the next proposition. But we also observe that the relational
monadic fragment without equality is a proper subfragment of GAF. Since neither the Ackermann
fragment contains the monadic fragment nor vice versa, it is immediately clear that GAF consti-
tutes a proper extension of both. Moreover, the sentence ϕ1 treated in Example 1 belongs to GAF
but lies in neither of the two other fragments.

Proposition 28. GAF properly contains the Ackermann fragment and the monadic first-order
fragment, both without equality and non-constant function symbols.

Proof. Let ϕ′ := ∃~y ∀x∃~z.ψ′ be an Ackermann sentence in standard form, which does neither
contain equality nor any non-constant function symbols. Any atom in ϕ′ contains at most one
universally quantified variable, namely x. Let Atx be the set of all atoms occurring in ϕ′. Condi-
tion (b) of Definition 24 is satisfied by Atx. Moreover, every y ∈ ~y is a (c.1) variable and every
z ∈ ~z is a (c.2) variable. Consequently, ϕ′ belongs to GAF.
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Let ϕ′′ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ′′ be a monadic first-order sentence without equality that is
in standard form. For every x ∈ ~x define Atx to be the set containing exactly the atoms in ϕ′′

that contain x. Let At0 be the set of all atoms in ϕ′′ that do not belong to any Atx. Clearly,
this partition of ϕ′′’s atoms meets all the conditions posed in Definition 24. Hence, ϕ′′ belongs to
GAF.

We shall now work towards showing that the satisfiability problem for GAF sentences (GAF-
satisfiability) is decidable, even if we extend it with equality or unary function symbols. But first,
we need additional notation.

For every x ∈ ~x we refine the set Lx into subsets Lx,0,Lx,idx(x),Lx,idx(x)+1, . . . ,Lx,n:

Lx,n :=
⋃
y∈vars(Lx)∩~yn

L(C↑
y),

Lx,k :=
⋃
y∈vars(Lx)∩~yk

L(C↑
y) \

⋃
ℓ>k Lx,ℓ for every k satisfying idx(x) ≤ k < n, and

Lx,0 := Lx \
⋃
ℓ≥idx(x) Lx,ℓ.

Similarly, we define Yx,k := vars(Lx,k) ∩ Yx for every k, 0 ≤ k ≤ n.

Lemma 29. If ϕ belongs to GAF, then the following properties hold for every x ∈ ~x.

(i) For every k we have Lx,k ⊆ Lx.

(ii) For all distinct k, ℓ we have Lx,k ∩ Lx,ℓ = ∅.

(iii) For every k > 0 it holds vars(Lx,k) ∩ ~y ⊆
⋃
i≤k ~yi.

(iv) We have vars(Lx,0) ∩ ~y ⊆
⋃
i<idx(x) ~yi.

Proof.

Ad (i): The claim holds by definition of Lx and Lx,k.

Ad (ii): Assume, without loss of generality, that k < ℓ. By definition of Lx,k and by (i), we have
Lx,k ⊆ Lx \ Lx,ℓ.

Ad (iii): Suppose there is some index ℓ > k and a variable y ∈ ~yℓ which occurs in some literal
L ∈ Lx,k. By definition of L(C↑

y), we observe L ∈ L(C↑
y ). But, by definition of Lx,ℓ, we

conclude L(C↑
y ) \

⋃
j>ℓ Lx,j ⊆ Lx,ℓ. Hence, it either holds L ∈ Lx,ℓ or L ∈

⋃
j>ℓ Lx,j . This

yields a contradiction, because Lx,k ⊆ Lx \
⋃
j≥ℓ Lx,j and thus Lx,k cannot contain L.

Ad (iv): Suppose there is some index ℓ ≥ k and a variable y ∈ ~yℓ which occurs in some literal
L ∈ Lx,0. By definition of L(C↑

y ), we observe L ∈ L(C↑
y ). But, by definition of Lx,ℓ, we

conclude L(C↑
y ) \

⋃
j>ℓ Lx,j ⊆ Lx,ℓ. Hence, it either holds L ∈ Lx,ℓ or L ∈

⋃
j>ℓ Lx,j . This

yields a contradiction, because Lx,0 ⊆ Lx \
⋃
j≥ℓ Lx,j and thus Lx,0 cannot contain L.

The next lemma provides the key ingredient to show decidability of GAF-satisfiability. Similar
to the transformation described in Lemma 12, the following lemma describes a transformation of
GAF sentences into a nicer syntactic form. However, this transformation constitutes only the first
stage of the decidability proof.

Lemma 30. If ϕ belongs to GAF, we can effectively construct an equivalent sentence ϕ′ in
standard form, in which every subformula lies within the scope of at most one universal quantifier.
Moreover, all literals in ϕ′ already occur in ϕ (modulo variable renaming).

Proof sketch. Similarly to the proof of Lemma 12, we (re-)transform parts of ϕ repeatedly into
a disjunction of conjunctions (or a conjunction of disjunctions) of subformulas which we treat as
indivisible units. The literals and indivisible units in the respective conjunctions (disjunctions)
will be grouped in accordance with the sets L0,Lx, and Lx,idx(x), . . . ,Lx,n, where needed. For this
purpose, it is important to note that Lemma 26(i) and the definition of L0 entail that L0 together
with the sets Lx partition the set of all literals occurring in ϕ. Moreover, every Lx is partitioned
by the sets Lx,0,Lx,idx(x), . . . ,Lx,n, by virtue of Lemma 29(i), (ii) and the definition of Lx,0.
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At the beginning, we transform ψ into a disjunction of conjunctions of literals
∨
i ψi. At this

point, we move the existential quantifier block ∃~yn inwards. Lemmas 26 and 29 guarantee that
the quantifiers from this quantifier block can be distributed over the constituents of the ψi in

a beneficial way. The thus obtained sentence ϕ′′ has the form ∀~x1∃~y1 . . .∀~xn.
∨
i

(
∃~yn.χ

(1)
i,0

)
∧

∧n
k=1

∧
x∈~xk

(
χ
(1)
i,x,0 ∧

(∧n−1
j=idx(x) χ

(1)
i,x,j

)
∧ ∃(~yn ∩ Yx,n).χ

(1)
i,x,n

)
, where χ

(1)
i,0 comprises all literals in

ψi which belong to L0, and for every k the χ
(1)
i,x,k group the literals which occur in ψi and belong

to Lx,k, respectively.
Next, we transform the big disjunction in ϕ′′ into a conjunction of disjunctions

∧
i ψ

′
i, and move

the universal quantifier block ∀~xn inwards. The resulting formula has the shape ∀~x1∃~y1 . . .∀~xn−1

∃~yn−1.
∧
i η

(1)
i,0 ∨

(∨n−1
k=1

∨
x∈~xk

η
(1)
i,x

)
∨
∨
x∈~xn

∀x. η
(1)
i,x , where grouping of the constituents of each ψ′

i

is similar to what we have done above, but this time in accordance with the more coarse-grained
sets L0 and Lx.

We reiterate the described process until all the quantifiers have been moved inwards in the
outlined way. The final result of this transformation is the sought ϕ′ and it does not contain any
nested occurrences of universal quantifiers.

The above proof still works if ϕ contains the equality predicate or non-constant function sym-
bols. Moreover, the sentence ϕ′ in Lemma 30 has a very particular shape. For one part, it does
not contain nested universal quantifiers. In addition, the vocabulary in ϕ′ is identical to the vo-
cabulary of the original ϕ. If, for instance, ϕ does not contain function symbols of arity larger
then one, then the same holds true for ϕ′. These two properties have implications for the outcome
ϕSk of Skolemizing ϕ′.

Lemma 31. The Skolemized variant ϕSk of ϕ′ satisfies the following properties:

(i) ϕSk does not contain any function symbol of arity larger than one.

(ii) Every atom A in ϕSk is either ground or contains exactly one variable.

Proof. Property (i) is a direct consequence of the fact that ϕ′ does neither contain free variables nor
nested occurrences of universal quantifiers. Concerning (ii), consider an atom A in ϕSk and suppose
that A is not ground. Since ϕSk resulted from Skolemization, it can only contain universally
quantified variables. Suppose A contains two distinct variables x, x′. Because of ϕSk being closed,
A must lie within the scope of two distinct universal quantifiers ∀x and ∀x′. But this contradicts
Lemma 30.

These observations lead to the first decidability result with respect to GAF-satisfiability.

Theorem 32. Satisfiability of a given GAF sentence ϕ is decidable, even if ϕ contains equality
(but no non-constant function symbols).

This result follows from Theorem 2 in [10], where Fermüller and Salzer show that the satisfi-
ability for a clausal fragment called A= is decidable. Roughly speaking, in any clause set in A=

every literal of the form P (t1, . . . , tm) or t1 ≈ t2 contains at most one variable (possibly with
multiple occurrences) and each ti is either a constant symbol, a variable, or a term of the form
f(v) for some variable v. Clause sets corresponding to GAF sentences with equality but without
non-constant function symbols, fall exactly into the syntactic category of A=. In order to see this
more clearly, we can strengthen (i) in Lemma 31 to the following property: (i)′ Every term t in
ϕSk is either a constant symbol, a variable, or of the form t = f(v) for some variable v.

On the other hand, we can show decidability of the satisfiability problem for GAF sentences
ϕ without equality in which we allow unary function symbols to occur in an arbitrarily nested
fashion. Given the Skolemized variant ϕSk of the result ϕ′ of Lemma 30, the following lemma
entails that we can effectively construct a sentence ϕ′

Sk which is equisatisfiable to ϕSk and belongs
to the full monadic fragment (monadic first-order sentences with unary function symbols but
without equality). Decidability of the satisfiability problem for the full monadic fragment has first
been shown by Löb and Gurevich [16, 13].
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Lemma 33. Let ϕSk be a first-order sentence without equality, in which

(a) function symbol of arity larger than one do not occur,

(b) existential quantifiers do not occur, and

(c) every atom contains at most one variable (possibly with multiple occurrences).

Then we can effectively construct an equisatisfiable sentence ϕ′
Sk in which all occurring predicate

symbols are unary, and no other constant symbols and function symbols appear than the ones
that occur in ϕSk. Moreover, the length of ϕ′

Sk lies in O
(
len(ϕSk)

4
)
.

Section 4.1 is devoted to the proof of this lemma. Putting Lemmas 30, 31 and 33 together, we
can prove decidability of GAF-satisfiability.

Theorem 34. Satisfiability of a given GAF sentence ϕ without equality is decidable, even if ϕ
contains arbitrarily nested unary function symbols.

4.1 Translating GAF sentences into monadic first-order sentences

We start with an auxiliary lemma.
Two atoms A and B are considered to be variable disjoint if and only if vars(A)∩vars(B) = ∅.

We say A is more general than B, denoted A . B, if and only if there is a substitution θ such
that Aθ = B. Moreover, we write A ≃ B if and only if A . B and A & B.

A substitution θ for which Aθ equals Bθ is called a unifier of A and B. If such a unifier exists,
then we say A and B are unifiable. A unifier θ of A and B is considered to be most general if and
only if for every unifier θ′ of A and B it holds Aθ . Aθ′. As usual, we shall abbreviate the term
most general unifier with the acronym mgu.

Lemma 35. Let A and B be two variable-disjoint atoms, and assume each of them contains at
most one variable (possibly with multiple occurrences). If A and B are unifiable, and θ is an mgu
of the two, then either Aθ ≃ A or Bθ ≃ B or Aθ = Bθ is ground.

Proof. Suppose Aθ 6≃ A and Bθ 6≃ B. Hence, there are distinct variables x1, x2 such that vars(A) =
{x1} and vars(B) = {x2}. Because of Aθ = Bθ, Aθ 6≃ A, and Bθ 6≃ B, and since θ is most general,
there must be two term positions π1, π2 such that

• A|π1 = x1 and B|π1 = t2 6= x2, and

• A|π2 = t1 6= x1 and B|π2 = x2.

Consequently, we know x1θ = t2θ and x2θ = t1θ.
If Aθ = Bθ were not ground, then vars(t1) = {x1} and vars(t2) = {x2} would hold true.

While x1θ = t2θ thus entails that the term depth of x1θ is strictly larger than that of x2θ, the
observation of x2θ = t1θ implies that the term depth of x1θ is strictly smaller then that of x2θ.
This contradiction means that Aθ = Bθ must be ground.

In order to show decidability of ∃∗∀∃∗ sentences, Ackermann translated ∃∗∀∃∗ sentences into
equisatisfiable monadic ones [1]. Fürer adopted Ackermann’s method to give an upper bound
on the complexity of the decision problem for the Ackermann Fragment [11]. We shall employ a
generalization of Fürer’s reduction approach to prove Lemma 33.

Without loss of generality, we assume that ϕSk contains at least the constant symbol d. Let At
be the set of all atoms occurring in ϕSk. Consider the set At′ which we define to be the smallest
set of variable-disjoint atoms such that (a) for every A ∈ At there is some B ∈ At′ such that
B ≃ A, (b) for all A,B ∈ At′, for which there is an mgu θ, we find some atom C ∈ At′ such that
C ≃ Aθ = Bθ, and (c) for all A,B ∈ At′ we have A 6≃ B.

By Lemma 35, the set At′ is finite. More precisely: At′ contains at most |At|·(|At|−1)
2 + |At| ≤

|At|2 elements. Let A1, . . . , Aq be an enumeration of all the atoms in At′, and let P1, . . . , Pq be
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distinct unary predicate symbols which do not occur in ϕSk. We construct the sentence ϕMon from
ϕSk as follows: (a) replace every occurrence of a non-ground atom B(x) in ϕSk with the atom Pi(x)
which corresponds to the (unique) atom Ai ∈ At′ with Ai ≃ B, and (b) replace every occurrence
of a ground atom B′ in ϕSk with Pj(d) corresponding to the unique Aj ∈ At′ with Aj = B′.

Consider two distinct atoms Ai, Aj ∈ At′. If there is a unifier θ of Ai and Aj , we must make
sure that the instances of Pi(x) and Pj(x

′) corresponding to Aiθ and Ajθ are interpreted in the
same way by any model of ϕMon. In order to do so, we define the sets Ψ,Ψ′ of formulas as follows.
Let x∗ be a fresh variable which does not occur in ϕMon, and let τ∗ be the substitution mapping
all variables to x∗. We set
Ψ :=

{
Pi
(
(xθ)τ∗

)
↔ Pj

(
x∗

)∣∣ Ai, Aj ∈ At′ are distinct, Ai . Aj , vars(Ai) = {x}, and Aiθ = Aj
}
.

In addition, we define Ψ′ :=
{
Pj(x∗) ↔ Pj(d)

∣∣ Aj ∈ At′ is ground
}
.

We now set ϕ′
Sk := ϕMon∧∀x∗.

∧
ψ∈Ψ∪Ψ′ ψ. By construction, ϕ′

Sk exclusively contains predicate
symbols which are unary. Its constituent ϕMon may contain the constant symbol d but no non-
constant function symbols. The formulas in Ψ∪Ψ′, on the other hand, may contain non-constant
function symbols. However, all of these symbols have already occurred in ϕSk.

By virtue of Lemma 35, the number of formulas in Ψ is at most |At| · |At′| ≤ |At|3. The length
of the formulas in Ψ is upper bounded by the length of xθ in Ψ’s definition plus some constant
value, and thus can exceed the length of the longest atom in ϕSk only by this constant value.
The cardinality of Ψ′ is upper bounded by |At′| ≤ |At|2 and the length of the formulas therein is
constant. All in all, the length of ϕ′

Sk lies in O
(
len(ϕSk)

4
)
.

In what follows, we tacitly assume that the signatures underlying ϕSk and ϕ′
Sk share the same

constant symbols and function symbols—namely, the ones occurring in ϕSk. Consequently, when
we refer to Herbrand structures with respect to ϕSk and ϕ′

Sk, we base these structures on exactly
the same universe of ground terms. However, the sets of occurring predicate symbols are disjoint
(as stipulated above).

Since ϕSk and ϕ′
Sk do neither contain equality nor existential quantifiers, we know that there

are Herbrand models for them, if they are satisfiable at all.

Lemma 36. Given any Herbrand model A |= ϕSk, we can construct a model B |= ϕ′
Sk.

Proof. Since A is a Herbrand model of ϕSk, the universe UA contains all ground terms constructed
from the constant symbols and function symbols occurring in ϕSk. We define B by taking over
A’s universe and its interpretations of the constant and function symbols. Moreover, we set
PB
i :=

{
t ∈ UB

∣∣ A, [x 7→ t] |= Ai
}
if there is some x ∈ vars(Ai). For any Pi, for which Ai is

ground, we set PB
i := UB if A |= Ai and P

B
i := ∅ otherwise.

We first prove B |= ϕMon. ϕSk differs from ϕMon only in the occurrences of atoms. It thus
suffices to show that for two corresponding atom occurrences A in ϕSk and B in ϕMon and for an
arbitrary variable assignment β it holds A, β |= A if and only if B, β |= B. But this is guaranteed
by construction of ϕMon and B: We need to consider two cases.

If A is ground, then there is some j such that A = Aj ∈ At′ and B = Pj(d). By construction of
B, we observe A |= Aj if and only if B |= P (d).

If A contains a variable x, then there is some Aj ∈ At′ such that A ≃ Aj . Moreover, we know
that B = Pj(x). Because of A ≃ Aj , there must be some x′ ∈ vars(Aj) such that for every
t ∈ UA = UB it holds A, [x 7→ t] |= A if and only if A, [x′ 7→ t] |= Aj . In addition, we have
constructed B in a way leading to A, [x′ 7→ t] |= Aj if and only if B, [x 7→ t] |= Pj(x).

Put togther, this yields A, [x 7→ t] |= A if and only if B, [x 7→ t] |= Pj(x).

Next, we have to show B |= ∀x∗.ψ for every ψ ∈ Ψ ∪Ψ′.

If ψ ∈ Ψ, then ψ = Pi
(
(xθ)τ∗

)
↔ Pj(x∗) with vars(Ai) = {x} and Aiθ = Aj . Assume, without

loss of generality, that vars(Aj) = vars(Ajθ) = {x′}. (If Aj is ground, the argument is still
valid.)

By construction of B, for any t we have B, [x∗ 7→ t] |= Pi
(
(xθ)τ∗

)
if and only if A, [x′ 7→

t] |= Aiθ and, moreover, B, [x∗ 7→ t] |= Pj(x∗) if and only of A, [x′ 7→ t] |= Aj . Consequently,
Aiθ = Aj leads to B, [x∗ 7→ t] |= Pi

(
(xθ)τ∗

)
if and only if B, [x∗ 7→ t] |= Pj(x∗).
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If ψ ∈ Ψ′, then ψ = Pj(x∗) ↔ Pj(d) for some ground atom Aj ∈ At′. The structure B is
constructed so that PB

j = UB ifA |= Aj and P
B
j = ∅ otherwise. Hence, we have B, β |= Pj(x∗)

if and only if B, β |= Pj(d).

Hence, B |= ∀x∗.ψ follows in both cases.

Lemma 37. Given any Herbrand model B |= ϕ′
Sk, we can construct a model A |= ϕSk.

Proof. Since B is a Herbrand model of ϕ′
Sk, and due to our assumption that the signature under-

lying ϕ′
Sk contains the same constant symbols and function symbols as the signature underlying

ϕSk does, the universe UB contains all ground terms constructed from the constant symbols and
function symbols occurring in ϕSk.

We now define A by taking over B’s universe and its interpretations of the constant and
function symbols. Moreover, for any predicate symbol Q of arity m occurring in ϕSk we define
QA := S1 ∪ S2, where

S1 :=
{
〈t1, . . . , tm〉 ∈ UmA

∣∣ there is a non-ground atom Q(s1, . . . , sm) ∈ At and some

Aj ∈ At′ with Aj ≃ Q(s1, . . . , sm) and there is a ground term t

such that Q(t1, . . . , tm) = (Q(s1, . . . , s1)τ∗)
[
x∗

]
t

and B |= Pj(t)
}

and

S2 :=
{
〈t1, . . . , tm〉 ∈ UmA

∣∣ there is a ground atom Aj ∈ At′ such that

Aj = Q(t1, . . . , tm) and B |= Pj(d)
}
.

Again, since ϕSk differs from ϕMon only in the occurrences of atoms, it suffices to show that
for two corresponding atom occurrences A in ϕSk and B in ϕMon and for an arbitrary variable
assignment β it holds A, β |= A if and only if B, β |= B.

Let A = Q(s1, . . . , sm). There must be some Aj ∈ At′ such that Aj ≃ A and B = Pj(t).

If t = d, then Aj must be ground. Hence, we have 〈s1, . . . , sm〉 ∈ S2 if and only if B |= Pj(d).

It remains to show that B 6|= Pj(d) entails 〈s1, . . . , sm〉 6∈ S1. Suppose 〈s1, . . . , sm〉 ∈ S1,
i.e. there is some non-ground atom Ai ∈ At′, some x ∈ vars(Ai), and some ground term
t′ such that Ai

[
x
]
t′ = Aj and B |= Pi(t). Because of Ai

[
x
]
t′ = Aj , we find the formula

Pi(t
′) ↔ Pj(x∗) in Ψ. Moreover, the formula Pj(x∗) ↔ Pj(d) belongs to Ψ′. Hence, B

is a model of both ∀x∗.Pi(t′) ↔ Pj(x∗) and ∀x∗.Pj(x∗) ↔ Pj(d). But then B |= Pi(t
′)

contradicts B 6|= Pj(d). Consequently, 〈s1, . . . , sm〉 cannot belong to S1.

If t = x for some variable x, then vars(A) = {x} and there is some x′ ∈ vars(Aj). Let θ :=[
x
]
β(x).

If B |= Pj(xθ), then we get 〈s1, . . . , sm〉θ ∈ S1 ⊆ QA, and thus A, β |= Q(s1, . . . , sm).

If B 6|= Pj(xθ), then we may conclude 〈s1, . . . , sm〉θ 6∈ S1 ∪ S2 = QA and thus A, β 6|=
Q(s1, . . . , sm) due to the following arguments.

Suppose 〈s1, . . . , sm〉θ ∈ S1. By definition of B, it holds B 6|= Aj(xθ). Hence, there must be
some non-ground Ai(x

′′) ∈ At′ with i 6= j, for which we can find a substitution ρ such that
Aiρ = Q(s1, . . . , sm)θ and it holds B |= Pi(x

′′ρ). But then, Ai and Aj are unifiable, and
there must exist an mgu σij of Ai and Aj .

By Lemma 35 and due to the definition of At′, we have to consider the following cases:

(1) Ai . Aj ,

(2) Aj . Ai, or

(3) Aiσij = Ajσij = Q(s1, . . . , sm)θ.
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In case (1) there must be some τ1 such that Aiτ1 = Aj and Ψ contains a formula ψ1 :=
Pi
(
(x′′τ1)τ∗

)
↔ Pj

(
x∗

)
. Hence, we get B |= Pj(xθ) if and only if B, [x∗ 7→ xθ] |= Pj(x∗) if

and only if B, [x∗ 7→ xθ] |= Pi((x
′′τ1)τ∗) if and only if B |= Pi(x

′′ρ). But this is contradictory
to our assumptions.

In case (2) there must be some τ2 such that Ajτ2 = Ai and Ψ contains a formula ψ2 :=
Pj

(
(x′τ2)τ∗

)
↔ Pi

(
x∗

)
. Therefore, it holds B |= Pi(x

′′ρ) if and only if B, [x∗ 7→ x′′ρ] |=

Pi
(
x∗

)
if and only if B, [x∗ 7→ x′′ρ] |= Pj

(
(x′τ2)τ∗

)
if and only if B |= Pj(xθ). Again, this

contradicts our assumptions.

In case (3) the set At′ contains some atom Ak := Aθ and Ψ contains the formulas ψ3 :=
Pj

(
xθ

)
↔ Pk

(
x∗

)
and ψ4 := Pi

(
x′′ρ

)
↔ Pk

(
x∗

)
. In addition, Ψ′ contains the formula

ψ5 := Pk(x∗) ↔ Pk(d). Since B is a model of ∀x∗.ψ3 ∧ ψ4 ∧ ψ5, we get B |= Pj(xθ) if
and only if B |= Pi(x

′′ρ). This is on contradiction with our assumptions B 6|= Pj(xθ) and
B |= Pi(x

′′ρ) as well.

In all three cases, we conclude 〈s1, . . . , sm〉θ 6∈ S1.

Suppose 〈s1, . . . , sm〉θ ∈ S2. Hence, there must be some ground atom Ak ∈ At′ with k 6= i
and Ak = Q(s1, . . . , sm)θ. Moreover, Pk(d) must hold true underB. Since we then ob-
serve Aj . Ak, Ψ must contain the formula ψ′

1 := Pj(xθ) ↔ Pk(x∗). Hence, it holds
B |= ∀x∗.Pk(x∗) if and only if B |= Pj(xθ), because xθ is ground. In particular, our as-
sumption B 6|= Pj(xθ) entails B, [x∗ 7→ d] 6|= Pk(d). Thus, we have reached a contradiction.
Consequently, 〈s1, . . . , sm〉θ 6∈ S2.

This finishes the proof of Lemma 33.

5 Related and future work

In [7] (page 65) Dreben and Goldfarb extend the relational monadic fragment to a certain extent
and call the result Initially-extended Essentially Monadic Fragment. This class lies in the inter-
section of GBSR and GAF. Hence, this result could be considered as a first step away from the
standard classification based on quantifier prefixes or the arity of used predicate symbols. In [9]
(page 152) Fermüller et al. combine the just described formula class with the Ackermann fragment
and call the result AM. AM is properly contained in GAF. Moreover, Fermüller et al. argue that
AM itself is a special case of Maslov’s fragment K [19]. K is incomparable to GBSR and GAF. In
the last couple of years several new fragments have been discovered [15, 3, 20], all of which are
incomparable to GBSR and GAF.

There exist a number of results showing decidability of ∃∗∀∃∗ sentences with arbitrary function
symbols [14, 18, 12]—see [5], chapter 6.3, for an overview. The methods therein may help to also
show decidability of GAF with arbitrary function symbols.

The methods and results described in the present paper may be extended in various directions:
generalizing other known decidable prefix classes, more liberal conditions regarding function sym-
bols, scenarios in interpreted theories such as arithmetic. Moreover, we have not yet thoroughly
investigated the complexity of deciding GAF-satisfiability.

References

[1] Wilhelm Ackermann. Solvable cases of the decision problem. North-Holland, 1954.

[2] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, volume I, pages 19–99. 2001.
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Mathématique, 27(1–2):137–162, 1981.
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A Appendix

A.1 Details omitted in Example 1 in Section 1

For convenience, we remove redundant subformulas at all stages.

Details regarding the transformation of ϕ1 into ϕ′
1:

∃u∀x∃v∀z∃y1y2.
(
¬P (u, x) ∨

(
Q(x, v) ∧R(u, z, y1)

))

∧
(
P (u, x) ∨

(
¬Q(x, v) ∧ ¬R(u, z, y2)

))

|=| ∃u∀x∃v.
(
¬P (u, x) ∨

(
Q(x, v) ∧ ∀z∃y1.R(u, z, y1)︸ ︷︷ ︸

=: A(u)

))

∧
(
P (u, x) ∨

(
¬Q(x, v) ∧ ∀z∃y2.¬R(u, z, y2)︸ ︷︷ ︸

=: B(u)

))

|=| ∃u∀x.
(
¬P (u, x) ∧

(
∃v.¬Q(x, v)

)

︸ ︷︷ ︸
=: C(x)

∧ B(u)
)

∨
(
P (u, x) ∧

(
∃v.Q(x, v)

)

︸ ︷︷ ︸
=: D(x)

∧ A(u)
)

|=| ∃u.
(
∀x.

(
¬P (u, x) ∨D(x)

))
∧
((

∀x.¬P (u, x)
)
∨ A(u)

)

∧
(
∀x.

(
C(x) ∨ P (u, x)

))
∧
(
∀x.

(
C(x) ∨D(x)

)

︸ ︷︷ ︸
|=| ⊤

)
∧
((

∀x.C(x)
)
∨ A(u)

)

∧
(
B(u) ∨ ∀x.P (u, x)

)
∧
(
B(u) ∨ ∀x.D(x)

)
∧
(
B(u) ∨ A(u)

)

|=| ∃u.
(
∀x.

(
¬P (u, x) ∨ ∃v.Q(x, v)

))
∧

((
∀x.¬P (u, x)

)
∨ ∀z∃y1.R(u, z, y1)

)

∧
(
∀x.

(
∃v.¬Q(x, v)

)
∨ P (u, x)

)
∧

((
∀x.∃v.¬Q(x, v)

)
∨ ∀z∃y1.R(u, z, y1)

)

∧
((

∀z∃y2.¬R(u, z, y2)
)
∨ ∀x.P (u, x)

)

∧
((

∀z∃y2.¬R(u, z, y2)
)
∨ ∀x∃v.Q(x, v)

)

∧
((

∀z∃y2.¬R(u, z, y2)
)
∨ ∀z∃y1.R(u, z, y1)

)

Details regarding the transformation of ϕ2 into ϕ′
2:

∃u∀x∃y∀z.
(
P (u, z) ∧Q(u, x)

)
∨
(
P (y, z) ∧Q(u, y)

)

|=| ∃u∀x∃y∀z.
(
P (u, z) ∨ P (y, z)

)
∧
(
P (u, z) ∨Q(u, y)

)

∧
(
Q(u, x) ∨ P (y, z)

)
∧
(
Q(u, x) ∨Q(u, y)

)

|=| ∃u∀x∃y.
(
∀z.P (u, z) ∨ P (y, z)

)

︸ ︷︷ ︸
=: A(u,y)

∧
((

∀z.P (u, z)
)

︸ ︷︷ ︸
=: B(u)

∨Q(u, y)
)

∧
(
Q(u, x) ∨

(
∀z.P (y, z)

)

︸ ︷︷ ︸
=: C(y)

)
∧
(
Q(u, x) ∨Q(u, y)

)
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|=| ∃u∀x.
((

∃y.A(u, y)
)

︸ ︷︷ ︸
=: D(u)

∧B(u) ∧Q(u, x)
)
∨
((

∃y.A(u, y) ∧Q(u, y)
)

︸ ︷︷ ︸
=: E(u)

∧Q(u, x)
)

∨
(
∃y.A(u, y) ∧Q(u, y) ∧ C(y)

)

︸ ︷︷ ︸
=: F (u)

|=| ∃u.
(
D(u) ∨ E(u) ∨ F (u)

)
∧
(
B(u) ∨ E(u) ∨ F (u)

)
∧
((

∀x.Q(u, x)
)

︸ ︷︷ ︸
=: G(u)

∨F (u)
)

|=| ∃u.
(
D(u) ∧B(u) ∧G(u)

)
∨
(
E(u) ∧G(u)

)
∨ F (u)

|=| ∃u.
((

∃y.
(
∀z.P (u, z) ∨ P (y, z)

))
∧
(
∀z.P (u, z)

)
∧
(
∀x.Q(u, x)

))

∨
((

∃y.
(
∀z.P (u, z) ∨ P (y, z)

)
∧Q(u, y)

)
∧
(
∀x.Q(u, x)

))

∨
(
∃y.

(
∀z.P (u, z) ∨ P (y, z)

)
∧Q(u, y) ∧

(
∀z.P (y, z)

))

|=| ∃u∃y∀xzv.
((
P (u, x) ∨ P (y, x)

)
∧ P (u, x) ∧Q(u, x)

)

∨
((
P (u, z) ∨ P (y, z)

)
∧Q(u, y) ∧Q(u, z)

)

∨
((
P (u, v) ∨ P (y, v)

)
∧Q(u, y) ∧ P (y, v)

)

A.2 Proof details concerning Section 3

Proof of Lemma 12

Lemma. Let ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ be a GBSR sentence. There exists a quantifier-free
first-order formula ψ′(~u, ~v) such that ϕ′ := ∃~u ∀~v.ψ′(~u, ~v) is semantically equivalent to ϕ and all
literals in ϕ′ already occur in ϕ (modulo variable renaming).

Proof. The following transformations will mainly use the laws of associativity, commutativity, and
distributivity from Boolean algebra and will employ Lemma 3 to (re-)transform ψ into particular
syntactic shapes. Note that this does not change the set of literals occurring in the intermediate
steps (modulo variable renaming), since we start from a formula in negation normal form restricted
to the connectives ∧,∨,¬. We shall make use of the partition of the literals in ψ into the sets
L̃0, L̃1, . . . , L̃n to group exactly those literals in each step of our transformation.

First, we give a description and, afterwards, present the formal part below.
To begin with, we transform the matrix ψ into a disjunction of conjunctions of literals

∨
i ψi. In

addition, we rewrite every ψi into ψi = χ̃
(1)
i,0 ∧ . . .∧ χ̃

(1)
i,n. Every χ̃

(1)
i,ℓ is a conjunction of literals and

comprises exactly the literals from the ψi which belong to L̃ℓ. Moreover, by Proposition 6(ii) and

(iii), we know that vars(χ̃
(1)
i,ℓ ) ⊆ ~y1 ∪ . . . ∪ ~yℓ ∪ ~xℓ+1 ∪ . . . ∪ ~xn. We move the existential quantifier

block ∃~yn inwards such that it binds the χ̃
(1)
i,n alone (none of the variables in ~yn occurs in any

of the χ̃
(1)
i,ℓ with ℓ < n). The thus obtained sentence ϕ′′ has the form ∀~x1∃~y1 . . . ∀~xn.

∨
i χ̃

(1)
i,0 ∧

. . . ∧ χ̃
(1)
i,n−1 ∧ ∃~yn.χ̃

(1)
i,n. In further transformations, we shall treat the subformulas

(
∃~yn.χ̃

(1)
i,n

)
as

indivisible units.
Next, we transform the big disjunction in ϕ′′ into a conjunction of disjunctions

∧
k ψ

′
k, group the

disjunctions ψ′
k into subformulas η̃

(1)
k,ℓ (in accordance with the sets L̃0, . . . , L̃n, as before), and move

the universal quantifier block ∀~xn inwards. Due to Proposition 6(i), we can split the quantifier

block ∀~xn so that universal quantifiers can be moved directly before the η̃
(1)
k,ℓ . The resulting formula

is of the form ∀~x1∃~y1 . . .∀~xn−1∃~yn−1.
∧
k

(
∀(~xn ∩ X̃0). η̃

(1)
k,0

)
∨
(
∀(~xn ∩ X̃1). η̃

(1)
k,1

)
∨ . . . ∨

(
∀(~xn ∩

X̃n−1). η̃
(1)
k,n−1

)
∨ η̃

(1)
k,n. In further transformations, we shall treat the subformulas

(
∀(~xn∩X̃ℓ). η̃

(1)
k,ℓ

)
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as indivisible units, as well.
We reiterate this process until all the quantifiers have been moved inwards in the described

way.
One notable difference between moving inward universal quantifier blocks and existential ones

is that Proposition 6(i) allows us to split universal quantifier blocks so that subformulas η̃
(j)
k,ℓ and

η̃
(j)
k,ℓ′ (for distinct ℓ, ℓ′) do not occur together in the scope of the same universal quantifier that
has been moved inward as described. We do not observe such a property for existential quantifier

blocks. Hence, subformulas of the form
(
∃~yℓ.χ̃

(j)
i,ℓ ∧ . . . ∧ χ̃

(j)
i,n

)
may appear and will be treated as

indivisible units. For the sake of readability, we will drop the neat division into parts in accordance

with L̃0, . . . , L̃n and rather use the shorthand
(
∃~yℓ.χ̃

(j)
i,≥ℓ

)
for such constructs.

∀~x1∃~y1 . . . ∀~xn∃~yn.ψ(~x1, . . . , ~xn, ~y1, . . . , ~yn)

|=| ∀~x1∃~y1 . . . ∀~xn∃~yn.
∨

i

χ̃
(1)
i,0 (~x1, . . . , ~xn) ∧ χ̃

(1)
i,1 (~y1, ~x2, . . . , ~xn) ∧ . . .

∧ χ̃
(1)
i,n−1(~y1, . . . , ~yn−1, ~xn) ∧ χ̃

(1)
i,n(~y1, . . . , ~yn)

|=| ∀~x1∃~y1 . . . ∀~xn.
∨

i

χ̃
(1)
i,0 (~x1, . . . , ~xn) ∧ χ̃

(1)
i,1 (~y1, ~x2, . . . , ~xn) ∧ . . .

∧ χ̃
(1)
i,n−1(~y1, . . . , ~yn−1, ~xn) ∧

(
∃~yn.χ̃

(1)
i,n(~y1, . . . , ~yn)

)

|=| ∀~x1∃~y1 . . . ∀~xn.
∧

k

η̃
(1)
k,0(~x1, . . . , ~xn) ∨ η̃

(1)
k,1(~y1, ~x2, . . . , ~xn) ∨ . . .

∨ η̃
(1)
k,n−1(~y1, . . . , ~yn−1, ~xn) ∨ η̃

(1)
k,n(~y1, . . . , ~yn−1)

|=| ∀~x1∃~y1 . . . ∃~yn−1.
∧

k

(
∀(~xn ∩ X̃0).η̃

(1)
k,0(~x1, . . . , ~xn)

)

∨
(
∀(~xn ∩ X̃1).η̃

(1)
k,1(~y1, ~x2, . . . , ~xn)

)
∨ . . .

∨
(
∀(~xn ∩ X̃n−1).η̃

(1)
k,n−1(~y1, . . . , ~yn−1, ~xn)

)

∨ η̃
(1)
k,n(~y1, . . . , ~yn−1)

|=| ∀~x1∃~y1 . . . ∃~yn−1.
∨

i

χ̃
(2)
i,0 (~x1, . . . , ~xn−1) ∧ χ̃

(2)
i,1 (~y1, ~x2, . . . , ~xn−1) ∧ . . .

∧ χ̃
(2)
i,n−1(~y1, . . . , ~yn−1) ∧ χ̃

(2)
i,n(~y1, . . . , ~yn−1)

|=| ∀~x1∃~y1 . . . ∀~xn−1.
∨

i

χ̃
(2)
i,0 (~x1, . . . , ~xn−1) ∧ χ̃

(2)
i,1 (~y1, ~x2, . . . , ~xn−1) ∧ . . .

∧
(
∃~yn−1.χ̃

(2)
i,n−1(~y1, . . . , ~yn−1) ∧ χ̃

(2)
i,n(~y1, . . . , ~yn−1)

)

...

|=| ∀~x1∃~y1.
∨

i

χ̃
(n)
i,0 (~x1) ∧ χ̃

(n)
i,≥1(~y1)

|=| ∀~x1.
∨

i

χ̃
(n)
i,0 (~x1) ∧

(
∃~y1.χ̃

(n)
i,≥1(~y1)

)

|=|
∧

k

(
∀~x1.η̃

(n)
k,0 (~x1)

)
∨ η̃

(n)
k,≥1()

Finally, we can move all quantifiers outwards again—existential quantifiers first, then univer-
sal ones—, renaming variables as necessary. In the end, we obtain the prenex formula ϕ′ :=

∃~u ∀~v.
∧
k η̂k,0(~v)∨ η̂k,≥1(~u, ~v), where η̂k,0 and η̂k,≥1 are quantifier-free variants of η̃

(n)
k,0 and η̃

(n)
k,≥1,

respectively, with appropriately renamed variables.
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Proof of Lemma 14

Lemma. Let ϕ and ψ be relational BSR sentences without equality in which the only Boolean
connectives are ∧,∨,¬. If ϕ |= ψ, then there exists a relational BSR sentence χ without equality
such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (neg-
atively) in ϕ and in ψ.

The general outline of the following proof based on ordered resolution with selection goes back to
Harald Ganzinger (lecture notes “Logic in Computer Science”, 2002).

Proof sketch. In the degenerate cases where ϕ is unsatisfiable, i.e. ϕ |= ⊥, or where ψ is a tautology,
i.e. ⊤ |= ψ, we set χ := ⊥ and χ := ⊤, respectively. In all other cases we proceed as follows.

Let ϕ′ and ψ′ be quantifier-free formulas and let ~u, ~v, ~x, ~y be tuples of variables such that
ϕ = ∃~y ∀~x. ϕ′ and ψ = ∃~v ∀~u. ψ′. Without loss of generality, we assume that ~u, ~v, ~x, ~y are
pairwise disjoint and that ϕ′ :=

∧
i ϕi and ψ

′ :=
∧
j ψj are in conjunctive normal form.

Let Π1 be the set of all predicate symbols that occur in ϕ′ but not in ψ′, let Π2 be the set of
all predicate symbols that occur positively in ϕ′ but not positively in ψ′ and that do not belong
to Π1, let Π3 be the set of all predicate symbols that occur negatively in ϕ′ but not negatively in
ψ′ and that do not belong to Π1, let Π4 be the set of all predicate symbols that occur in ϕ′ and
in ψ′ but do not belong to Π1 ∪ Π2 ∪ Π3. We construct the formulas ϕ̂′ and ψ̂′ from ϕ′ and ψ′,
respectively, by simultaneously replacing every literal ¬P (~s ) by P (~s ) and every literal P (~s ) by

¬P (~s ) for every P ∈ Π2. Hence, every P ∈ Π2 occurs negatively in ϕ̂′ but not negatively in ψ̂′,

and there are no predicate symbols that occur positively in ϕ̂′ but not positively in ψ̂′. Moreover,
we observe that the above transformation preserves (un)satisfiability of ϕ, ¬ψ, and ϕ ∧ ¬ψ, i.e.

• ∃~y ∀~x. ϕ′ |= ⊥ if and only if ∃~y ∀~x. ϕ̂′ |= ⊥,

• ¬∃~v ∀~u. ψ′ |= ⊥ if and only if ¬∃~v ∀~u. ψ̂′ |= ⊥, and

•
(
∃~y ∀~x. ϕ′

)
∧ ¬

(
∃~v ∀~u. ψ′

)
|= ⊥ if and only if

(
∃~y ∀~x. ϕ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
|= ⊥.

Let ϕ̂Sk := ∀~x. ϕ̂′
[
y1/c1, . . . , y|~y|/c|~y|

]
where the ci are fresh Skolem constants. Moreover, let

ψ̂Sk := ∀~v.¬ψ̂′
[
u1/f1(~v), . . . , u|~u|/f|~u|(~v)

]
where the fi are fresh Skolem functions of arity |~v|.

Hence, ϕ̂Sk ∧ ψ̂Sk is a Skolemized variant of
(
∃~y ∀~x. ϕ̂′

)
∧
(
∀~v ∃~u.¬ψ̂′

)
, which is semantically

equivalent to
(
∃~y ∀~x. ϕ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
. Therefore, we observe

ϕ ∧ ¬ψ |= ⊥ if and only if
(
∃~y ∀~x. ϕ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
|= ⊥

if and only if ϕ̂Sk ∧ ψ̂Sk |= ⊥ .

Let N be a clause set corresponding to ϕ̂Sk such that every P occurring positively (negatively)
in N also occurs positively (negatively) in ϕ̂Sk. (We define N to be the set containing all the
implicitly universally quantified clauses ϕ̂i from ϕ̂Sk whose variables are renamed so that the
clauses in N are pairwise variable disjoint). Analogously, let M be the clause set corresponding

to ψ̂Sk such that every P occurring positively (negatively) in M occurs positively (negatively) in

ψ̂Sk and negatively (positively) in ψ̂′.
We apply ordered resolution with selection (cf. the calculus O≻

S by Bachmair and Ganzinger
in [2], page 41) to N until the clause set is saturated (without using any redundancy criterion)
and call the result N∗. As underlying term ordering we apply some reduction ordering ≻ satis-
fying the following conditions. For all ground atoms P (s1, . . . , sm) and R(t1, . . . , tn) we require
P (s1, . . . , sm) ≻ ¬R(t1, . . . , tn) ≻ R(t1, . . . , tn) whenever P ∈ Π1 and R 6∈ Π1. To achieve this,
we use a lexicographic path ordering based on some precedence ≻ for which P ≻ R ≻ f ≻ c for any
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P ∈ Π1, R 6∈ Π1, any Skolem function f occurring in ψ̂Sk, and any Skolem constant c occurring in
ϕ̂Sk. We lift the resulting (total) ordering on ground terms to a (partial) ordering on non-ground
terms by stipulating s ≻ t if and only if for every substitution θ for which sθ and tθ are ground
we have sθ ≻ tθ. The selection function that we use shall select exactly the literals ¬P (~s ) with
P ∈ Π2 ∪ Π3 in clauses that contain such literals. In all other clauses nothing shall be selected.
Let M∗ be the result of saturating M in the same way as we have saturated N to obtain N∗.

Note that N∗ may be infinite, but may only contain clauses whose literals are instances of the
literals in N where variables are either instantiated with variables or constant symbols from ~c.
Since ϕ (and thus also ϕ̂Sk) is satisfiable and since ordered resolution with selection is sound, N∗

does not contain the empty clause. The set M∗ may also be infinite. Due to our assumption that
ψ is not valid, ¬ψ (and thus also ψ̂Sk) must be satisfiable. Hence, M∗ does not contain the empty
clause either.

As our assumption ϕ |= ψ is equivalent to ϕ ∧ ¬ψ |= ⊥ and to ϕ̂Sk ∧ ψ̂Sk |= ⊥, refutational
completeness of ordered resolution with selection entails that there is a (finite) derivation D of
the empty clause � (which at the same stands for falsity ⊥) from the unsatisfiable set of clauses
N∗ ∪M∗. We assume that D is based on the same calculus and the same term ordering that we
have used to saturate N and M . Let N ′

∗ be the set of clauses from N∗ whose instances are used as
premises in this derivation. Since N∗ and M∗ are both saturated and neither of them contains the
empty clause, D must indeed make use of clauses from N∗, and, hence, N

′
∗ is not empty. Since N ′

∗

is finite, we can define the sentence χ̂Sk := ∀~z.
∧
C∈N ′

∗
C, where we set ~z := vars(N ′

∗). We observe

the following properties for χ̂Sk and the underlying clause set N ′
∗:

(1) ϕ̂Sk |= χ̂Sk,

(2) χ̂Sk ∧ ψ̂Sk |= ⊥,

(3) for every C ∈ N ′
∗ we have

(3.1) for every literal P (s1, . . . , sm) in C there is a clause D ∈ M that contains some literal
¬P (t1, . . . , tm), and

(3.2) for every literal ¬P (s1, . . . , sm) in C there is a clause D ∈M that contains some literal
P (t1, . . . , tm).

Ad (1) and (2). Both observations follow by soundness of ordered resolution. ♦

Ad (3). Since N∗ and M∗ are both saturated and do not contain the empty clause, any inference
step in D that starts from two leaves of the derivation tree involves some clause taken from
N ′

∗ and some clause taken from M∗. Consider any such resolution step between clauses
C ∈ N ′

∗ and D ∈ M∗. By case distinction on the possible resolution steps we show that C
cannot contain any literal [¬]P (~s ) with P ∈ Π1 ∪ Π2 ∪ Π3.

Suppose there is an ordered resolution step between two clauses C = C′ ∨ R(~t ) ∈ N ′
∗ and

D = D′ ∨ ¬R(~t′) ∈ M∗ over the literals R(~t ) and ¬R(~t′) such that C contains some
literal [¬]P (~s ) with P ∈ Π1. Since R occurs in N∗ and in M∗, we have R 6∈ Π1. Hence,
we get P (~s ) ≻ R(~t ). Due to the order restrictions in ordered resolution, R(~t )τ must be
maximal in Cτ , where τ is the unifier that is used in the resolution step to unify R(~t )

and R(~t′). But this contradicts P (~s ) ≻ R(~t ), as the latter entails P (~s )τ ≻ R(~t )τ .

Suppose there is an ordered resolution step between two clauses C = C′ ∨ ¬R(~t ) ∈ N ′
∗

and D = D′ ∨ R(~t′) ∈ M∗ over the literals ¬R(~t ) and R(~t′) such that C contains
some literal [¬]P (~s ) with P ∈ Π1. Since R occurs negatively in N∗ and positively in
M∗, we conclude R 6∈ Π1 ∪ Π2 ∪ Π3. Hence, we have that P (~s ) ≻ R(~t ), which entails
P (~s ) ≻ ¬R(~t ), and ¬R(~t ) is not selected in C. But then, due to the order restrictions
in ordered resolution, ¬R(~t )τ must be maximal in Cτ , where τ is the unifier that is

used to unify R(~t ) and R(~t′). But this contradicts P (~s ) ≻ ¬R(~t ), as the latter entails
P (~s )τ ≻ ¬R(~t )τ .
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Suppose there is an ordered resolution step between two clauses C = C′ ∨ R(~t ) ∈ N ′
∗ and

D = D′ ∨ ¬R(~t′) ∈ M∗ over the literals R(~t ) and ¬R(~t′) such that C contains some
literal ¬P (~s ) with P ∈ Π2 ∪ Π3. Since ¬P (~s ) is selected in C, the resolution step
cannot be performed.

Suppose there is an ordered resolution step between two clauses C = C′ ∨ ¬R(~t ) ∈ N ′
∗

and D = D′ ∨R(~t′) ∈M∗ over the literals ¬R(~t ) and R(~t′) such that C contains some
literal ¬P (~s ) with P ∈ Π2 ∪Π3. Since R occurs negatively in N∗ and positively in M∗,

it must occur negatively in ψ̂′, and thus R 6∈ Π1 ∪ Π2 ∪ Π3. Hence, the literal ¬R(~t )
is not selected in C. Since, on the other hand, there is a selected literal in C, namely
¬P (~s ), the resolution step cannot be performed.

Consequently, the result of any inference starting from two leaf nodes of the derivation tree
of D cannot contain any predicate symbol P ∈ Π1 and it cannot contain any literal ¬R(. . .)
with R ∈ Π2 ∪ Π3.

By an inductive argument (over the height of derivation trees), this leads to the observation
that none of the clauses from N∗ that are involved in the derivation D can contain any
predicate symbol from Π1 or any negative literal ¬R(. . .) with R ∈ Π2 ∪ Π3. Since N ′

∗

contains only clauses that are involved in D, (3.2) is satisfied. By construction of N∗ from
ϕ = ∃~y ∀~x. ϕ′ via ∃~y ∀~x. ϕ̂′ and ϕ̂Sk, Condition (3.1) is satisfied as well. ♦

Since χSk contains exclusively constant symbols from ~c, we can easily construct χ̂′ from χ̂Sk’s
matrix by de-Skolemization, i.e. χ̂Sk = ∀~z. χ̂′

[
y1/c1, . . . , y|~y|/c|~y|

]
. Furthermore, we construct the

formula χ′ from χ̂′ by simultaneously replacing every literal ¬P (~s ) by P (~s ) and every literal P (~s )
by ¬P (~s ) for every P ∈ Π2. Finally, we set χ := ∃~y ∀~z. χ′.

It remains to prove the following properties:

(4) ϕ |= χ, and

(5) χ ∧ ¬ψ |= ⊥.

Ad (4). For every model A |= ∃~y ∀~x. ϕ̂′ there is some model B |= ϕ̂Sk such that A and B differ
only in their interpretation of the Skolem constants c1, . . . , c|~y|. By (1) and because of χ̂Sk |=
∃~y ∀~x. χ̂′, we get B |= ∃~y ∀~x. χ̂′. Since B differs from A only in the interpretation of symbols
that do not occur in ∃~y ∀~x. χ̂′, A is also a model of ∃~y ∀~x. χ̂′. Hence, ∃~y ∀~x. ϕ̂′ |= ∃~y ∀~x. χ̂′,
which can equivalently be written as

(
∃~y ∀~x. ϕ̂′

)
∧ ¬

(
∃~y ∀~x. χ̂′

)
|= ⊥.

Since
(
∃~y ∀~x. ϕ̂′

)
∧ ¬

(
∃~y ∀~x. χ̂′

)
|= ⊥ holds if and only if

(
∃~y ∀~x. ϕ′

)
∧ ¬

(
∃~y ∀~x. χ′

)
|= ⊥,

and since the latter is equivalent to
(
∃~y ∀~x. ϕ′

)
|=

(
∃~y ∀~x. χ′

)
we in the end get ϕ |= χ. ♦

Ad (5). The formula χ̂Sk ∧ ψ̂Sk can be conceived as a Skolemized variant of
(
∃~y ∀~x. χ̂′

)
∧(

∀~v ∃~u.¬ψ̂′
)
, which is semantically equivalent to

(
∃~y ∀~x. χ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
. Hence, we

have χ̂Sk ∧ ψ̂Sk |= ⊥ if and only if
(
∃~y ∀~x. χ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
|= ⊥. As we observe that(

∃~y ∀~x. χ̂′
)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
|= ⊥ holds if and only if

(
∃~y ∀~x. χ′

)
∧ ¬

(
∃~v ∀~u. ψ′

)
|= ⊥, we in

the end get

χ̂Sk ∧ ψ̂Sk |= ⊥ if and only if
(
∃~y ∀~x. χ̂′

)
∧ ¬

(
∃~v ∀~u. ψ̂′

)
|= ⊥

if and only if χ ∧ ¬ψ |= ⊥ .

By (2), this yields χ ∧ ¬ψ |= ⊥. ♦

Because of the equivalence of χ∧¬ψ |= ⊥ and χ |= ψ, we have shown that χ satisfies Require-
ment (i) of the lemma.

Due to (3) and due to the way χ is constructed from N ′
∗, every positive occurrence of a

predicate symbol P in χ entails the existence of a negative occurrence of P in ¬ψ, and every
negative occurrence of a predicate symbol P in χ entails the existence of a positive occurrence of
P in ¬ψ. Consequently, χ satisfies Requirement (ii) as well.

26



Proof of Lemma 20

Lemma. For every strategy σ = 〈σ1, . . . , σn〉 there is a µ-uniform strategy σ̂ = 〈σ̂1, . . . , σ̂n〉 such
that OutAt,σ̂ ⊆ OutAt,σ.

Proof. We start with two preliminary results.

Claim I: Let ℓ, k be two integers such that 0 ≤ ℓ < k ≤ n. Let ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk be tuples of

domain elements, where ~ai ∈ U
|~yi|
A , ~bi ∈ U

|~xi|
A for every i. Consider two sequences of tuples

~ck+1, . . . ,~cn and ~dk+1, . . . ,~dn that coincide in all positions that correspond to variables x

occurring in Atℓ, where ~ci,~di ∈ U
|~xi|
A for every i. We have

µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~ck′ ) = µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dk′)
for every k′, k ≤ k′ ≤ n.

Proof: We proceed inductively from k′ = n downwards.

Let k′ = n. By definition of the sequences ~ck+1, . . . ,~cn and ~dk+1, . . . ,~dn it holds
A, [~y1 7→~a1, . . . , ~yℓ 7→~aℓ, ~xℓ+1 7→bℓ+1, . . . , ~xk 7→bk, ~xk+1 7→ck+1, . . . , ~xn 7→~cn] |= A

if and only if
A, [~y1 7→~a1, . . . , ~yℓ 7→~aℓ, ~xℓ+1 7→bℓ+1, . . . , ~xk 7→bk, ~xk+1 7→dk+1, . . . , ~xn 7→~dn] |= A

for every atom A ∈ Atℓ. Hence, we have µℓ,n(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~cn) =

µℓ,n(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dn).

Let k′ < n. Consider any set S ∈ µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~ck′). By defini-

tion of µℓ,k′ , there must be some tuple ~ck′+1 such that S = µℓ,k′+1(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,

~ck+1, . . . ,~ck′ ,~ck′+1). By induction, S = µℓ,k′+1(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dk′ ,~ck′+1)

and thus we have S ∈ µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dk′).

Since this argument is symmetric, we obtain
µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~ck′)

= µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dk′). ♦

Claim II: Let ℓ, k, k′ be three integers such that 0 ≤ ℓ < k < k′ ≤ n. Let ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk
be tuples of domain elements, where ~ai ∈ U

|~yi|
A , ~bi ∈ U

|~xi|
A for every i. Consider two sequences

of tuples ~ck+1, . . . ,~ck′ and ~dk+1, . . . ,~dk′ that coincide in all positions that correspond to vari-

ables x occurring in Atℓ, where ~ci,~di ∈ U
|~xi|
A for every i. We have

µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~ck′) = µℓ,k′(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1, . . . ,~dk′ ).

Proof: For k′ = n Claim II follows immediately from Claim I. For k′ < n we simply pad the
sequences~ck+1, . . . ,~ck′ and ~dk+1, . . . ,~dk′ with tuples~c′k′+1, . . . ,~c

′
n and ~d′k′+1, . . . ,~d

′
n for which

we ensure~c′i = ~d′i and~c
′
i,~d

′
i ∈ U

|~xi|
A for every i. Then, Claim II follows from Claim I applied to

the sequences ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1, . . . ,~ck′ ,~c
′
k′+1, . . . ,~c

′
n and ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,

~dk+1, . . . ,~dk′ ,~d
′
k′+1, . . . ,~d

′
n. ♦

For i = 1, . . . , n we define Ui as abbreviation of U
|~x1|
A × . . .× U

|~xi|
A . We construct certain repre-

sentatives α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

∈ Uk inductively as follows. The S
(k)

i stand for sequences S
(k)
i,i+1 . . . S

(k)
i,k

of fingerprints satisfying S
(k)
i,k ∈ S

(k)
i,k−1 ∈ . . . ∈ S

(k)
i,i+1.

Let k = 1. We partition U1 into sets U
1,〈S

(1)
0 〉

with S
(1)
0 ∈ imσ(µ0,1) by setting U

1,〈S
(1)
0 〉

:=
{
~b1 ∈

U
|~x1|
A | µ0,1(~b1) = S

(1)
0

}
. We pick one representative α

1,〈S
(1)
0 〉

∈ U
1,〈S

(1)
0 〉

from every part.
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Let k > 1. We construct subsets U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

⊆ Uk with S
(k)
0,j ∈ imσ(µ0,j), . . . , S

(k)
k−1,j ∈

imσ(µk−1,j), for every j ≤ k, by setting U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

:=

{〈
~c1, . . . ,~ck−1,~bk

〉 ∣∣ ~bk ∈ U
|~xk|
A and there is some α

k−1,〈S
(k−1)
0 ,...,S

(k−1)
k−2 〉

=

〈
~c1, . . . ,~ck−1

〉
, ~ci ∈ U

|~xi|
A , for every i, such that

µ0,k

(
~c1, . . . ,~ck−1,~bk

)
= S0,

µ1,k

(
σ1(~c1),~c2, . . . ,~ck−1,~bk

)
= S1,

...

µk−2,k

(
σ1(~c1), . . . , σk−2(~c1, . . . ,~ck−2),~ck−1,~bk

)
= Sk−2,

µk−1,k

(
σ1(~c1), . . . , σk−1(~c1, . . . ,~ck−1),~bk

)
= Sk−1,

S
(k)

0 = S
(k−1)

0 S0,

...

S
(k)

k−2 = S
(k−1)

k−2 Sk−2, and

S
(k)

k−1 = Sk−1

}
.

We pick one representative α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

from each nonempty U
k,〈S

(k)
0 ,...,S

(k)
k−1〉

.

Having all the representatives α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

at hand, we inductively construct σ̂, starting

from σ̂1 and going to σ̂n.

Let k = 1. For every ~b1 ∈ U
|~x1|
A we set σ̂1(~b1) := σ1(α1,〈S0〉), where S0 := µ0,1

(
~b1

)
.

Let k > 1. For all tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A we set σ̂k(~b1, . . . ,~bk) := σk(~c1, . . . ,~ck), where

〈~c1, . . . ,~ck〉 := α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

with ~ci ∈ U
|~xi|
A , for every i, and we have

• S
(k)
0,j = µ0,j

(
~b1, . . . ,~bj

)
for every j, 0 < j ≤ k,

• S
(k)
1,j = µ1,j

(
σ̂1(~b1),~b2, . . . ,~bj

)
for every j, 1 < j ≤ k,

...

• S
(k)
k−2,j = µk−2,j

(
σ̂1(~b1), . . . , σ̂k−2(~b1, . . . ,~bk−2),~bk−1, . . . ,~bj

)
for every j, k−2 < j ≤ k,

• S
(k)
k−1,k = µk−1,k

(
σ̂1(~b1), . . . , σ̂k−1(~b1, . . . ,~bk−1),~bk

)
,

if such an α
k,〈S

(k)
0 ,...,S

(k)
k−1〉

exists. (We show in Claim IV that this is always the case.)

Claim III: For all ℓ, k, 0 ≤ ℓ < k ≤ n, we have imσ̂

(
µℓ,k

)
⊆ imσ

(
µℓ,k

)
.

Proof: Fix some µℓ,k and let S ∈ imσ̂(µℓ,k). Hence, there are tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A

such that σ̂1(~b1), . . . , σ̂k(~b1, . . . ,~bk) are defined and we have

S = µℓ,k
(
σ̂1(~b1), . . . , σ̂ℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bk

)
.

By definition of σ̂, there are representatives α
j,〈S

(j)
0 ,...,S

(j)
j−1〉

= 〈~c
(j)
1 , . . . ,~c

(j)
j 〉, 1 ≤ j ≤ ℓ, for

which we observe the following properties.

(a) For every i, 0 ≤ i < ℓ, all the S
(j)

i are prefixes of S
(ℓ)

i . This means, if we abbreviate

S
(ℓ)

i to Si, we have

Si,i+1 . . . Si,ℓ = S
(1)

i Si,i+2 . . . Si,ℓ = S
(2)

i Si,i+3 . . . Si,ℓ = . . . = S
(ℓ−1)

i Si,ℓ = S
(ℓ)

i .
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(b) For every j, 1 ≤ j ≤ ℓ, we have σ̂j(~b1, . . . ,~bj) = σj(~c
(j)
1 , . . . ,~c

(j)
j ).

Because of (a) and due to the construction of the α
j,〈S

(j)
0 ,...,S

(j)
j−1〉

= 〈~c
(j)
1 , . . . ,~c

(j)
j 〉, we have

~c
(j)
i = ~c

(j′)
i for every i, 1 ≤ i ≤ ℓ, and all j, j′, 1 ≤ j, j′ ≤ ℓ. Hence, we can write ~c1, . . . ,~cℓ

instead of ~c
(j)
1 , . . . ,~c

(j)
1 (for any j). Therefore, (b) entails

S = µℓ,k
(
σ̂1(~b1), . . . , σ̂ℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bk

)

= µℓ,k
(
σ1(~c1), . . . , σℓ(~c1, . . . ,~cℓ),~bℓ+1, . . . ,~bk

)
.

Consequently, S ∈ imσ(µℓ,k). ♦

Claim IV: For every k, 1 ≤ k ≤ n, and all tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A there is a representative

αk,〈S0,...,Sk−1〉
such that

• S0,j = µ0,j

(
~b1, . . . ,~bj

)
for every j, 0 < j ≤ k,

• S1,j = µ1,j

(
σ̂1(~b1),~b2, . . . ,~bj

)
for every j, 1 < j ≤ k,

...

• Sk−2,j = µk−2,j

(
σ̂1(~b1), . . . , σ̂k−2(~b1, . . . ,~bk−2),~bk−1, . . . ,~bj

)
for every j, k−2 < j ≤ k,

• Sk−1,k = µk−1,k

(
σ̂1(~b1), . . . , σ̂k−1(~b1, . . . ,~bk−1),~bk

)
.

Proof: We proceed by induction on k.

Let k = 1. Consider any tuple ~b1 ∈ U
|~x1|
A and set S0 := µ0,1

(
~b1

)
. Hence, S0 ∈ imσ(µ0,1)

and we thus have defined the partition U1,〈S0〉. Since
~b1 ∈ U1,〈S0〉, the set is nonempty

and there is a representative α1,〈S0〉 ∈ U1,〈S0〉.

Let k > 1. Consider any sequence of tuples ~b1 ∈ U
|~x1|
A , . . . ,~bk ∈ U

|~xk|
A . By Claim III, we

have

• S0,j ∈ imσ̂(µ0,j) ⊆ imσ(µ0,j) for every j, 0 < j ≤ k,

...

• Sk−1,j ∈ imσ̂(µk−1,j) ⊆ imσ(µk−1,j) for every j, k − 1 < j ≤ k,

and, therefore, we have constructed the subset Uk,〈S0,...,Sk−1〉
⊆ Uk when defining rep-

resentatives above. We next show that this set is not empty.

For every ℓ, 0 ≤ ℓ < k − 1, we set S
(k−1)

ℓ := Sℓ,ℓ+1 . . . Sℓ,k−1. By induction, there is a

representative α
k−1,〈S

(k−1)
0 ,...,S

(k−1)
k−2 〉

=: 〈~c1, . . . ,~ck−1〉 with ~ci ∈ U
|~xi|
A , for every i.

As one consequence, the definition of σ̂ entails

• σ̂1(~b1) = σ1(~c1) = σ̂1(~c1),
...

• σ̂k−1(~b1, . . . ,~bk−1) = σk−1(~c1, . . . ,~ck−1) = σ̂k−1(~c1, . . . ,~ck−1),

leading to

(∗) µk−1,k

(
σ̂1(~c1), . . . , σ̂k−1(~c1, . . . ,~ck−1),~bk

)

= µk−1,k

(
σ̂1(~b1), . . . , σ̂k−1(~b1, . . . ,~bk−1),~bk

)
= Sk−1,k.

By definition of the µℓ,k−1 and since we know S0,k ∈ S0,k−1, . . . , Sk−2,k ∈ Sk−2,k−1,
the properties of α

k−1,〈S
(k−1)
0 ,...,S

(k−1)
k−2 〉

= 〈~c1, . . . ,~ck−1〉 entail the existence of tuples

~d
(0)
k , . . . ,~d

(k−2)
k ∈ U

|~xk|
A such that

• µ0,k

(
~c1, . . . ,~ck−1,~d

(0)
k

)
= S0,k,

• µ1,k

(
σ̂1(~c1),~c2, . . . ,~ck−1,~d

(1)
k

)
= S1,k,
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...

• µk−2,k

(
σ̂1(~c1), . . . , σ̂k−2(~c1, . . . ,~ck−2),~ck−1,~d

(k−2)
k

)
= Sk−2,k,

• µk−1,k

(
σ̂1(~c1), . . . , σ̂k−2(~c1, . . . ,~ck−2), σ̂k−1(~c1, . . . ,~ck−1),~bk

)
= Sk−1,k

(the last equation follows from (∗)).

Due to S0,k ∈ Pn−k+1At0, . . . , Sk−2,k ∈ Pn−k+1Atk−2, and Sk−1,k ∈ Pn−k+1Atk−1,
Condition (ii) of Definition 4 entails pairwise disjointness of the sets vars(S0,k) ∩
~x, . . . , vars(Sk−2,k)∩ ~x, and vars(Sk−1,k) ∩ ~x. Consequently, we can define a new tuple
~d′k by setting

d′k,i :=





d
(j)
k,i if xk,i ∈ vars(Sj,k) ∩ ~x with j < k − 1,

bk,i if xk,i ∈ vars(Sk−1,k) ∩ ~x,

bk,i otherwise. (We could use any value here.)

Due to the pairwise disjointness of the sets vars(S0,k)∩~x, . . . , vars(Sk−1,k)∩~x, Claim II
implies that for every ℓ, 0 ≤ ℓ < k − 1,
µℓ,k

(
σ̂1(~c1), . . . , σ̂ℓ(~c1, . . . ,~cℓ),~cℓ+1, . . . ,~ck−1,~d

′
k

)

= µℓ,k
(
σ̂1(~c1), . . . , σ̂ℓ(~c1, . . . ,~cℓ),~cℓ+1, . . . ,~ck−1,~d

(ℓ)
k

)

= Sℓ,k
and
µk−1,k

(
σ̂1(~c1), . . . , σ̂k−1(~c1, . . . ,~ck−1),~d

′
k

)

= µk−1,k

(
σ̂1(~c1), . . . , σ̂k−1(~c1, . . . ,~ck−1),~bk

)

= Sk−1,k.

Consequently, the set Uk,〈S0,...,Sk−1〉
contains at least the tuple 〈~c1, . . . ,~ck−1,~d

′
k〉. There-

fore, there exists some representative αk,〈S0,...,Sk−1〉
∈ Uk,〈S0,...,Sk−1〉

. ♦

Claim V: σ̂ is µ-uniform.

Proof: By construction of σ̂. ♦

Now let S ∈ OutAt,σ̂, i.e. there exist tuples ~b1 ∈ U
|~x1|
A , . . . ,~bn ∈ U

|~xn|
A such that S =

outAt,σ̂(~b1, . . . ,~bn). We partition S into sets S0 := S∩At0, . . . , Sn := S ∩Atn and thus obtain the

fingerprints Sℓ = µℓ,n
(
σ̂1(~b1), . . . , σ̂ℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bn

)
⊆ Atℓ for every ℓ, 0 ≤ ℓ < n. Claim

IV guarantees the existence of some representative α
n,〈S

′
0,...,S

′
n−1〉

= 〈~c1, . . . ,~cn〉, with ~ci ∈ U
|~xi|
A ,

for every i, such that Sℓ = µℓ,n
(
σ1(~c1), . . . , σℓ(~c1, . . . ,~cℓ),~cℓ+1, . . . ,~cn

)
for every ℓ, 0 ≤ ℓ < n.

Consider any A ∈ At, and fix the ℓ for which A ∈ Atℓ. We distinguish two cases. Suppose that
ℓ < n. The definition of α

n,〈S
′
0,...,S

′
n−1〉

and the fingerprint functions µℓ,n entail that A ∈ Sℓ if and

only if
A, [~y1 7→σ̂1(~b1), . . . , ~yℓ 7→σ̂ℓ(~b1, . . . ,~bℓ), ~xℓ+1 7→~bℓ+1, . . . , ~xn 7→~bn] |= A

if and only if
A, [~y1 7→σ1(~c1), . . . , ~yℓ 7→σℓ(~c1, . . . ,~cℓ), ~xℓ+1 7→~cℓ+1, . . . , ~xn 7→~cn] |= A.

In case of ℓ = n, we have A ∈ Sn if and only if
A, [~y1 7→σ̂1(~b1), . . . , ~yn 7→σ̂n(~b1, . . . ,~bn)] |= A

if and only if
A, [~y1 7→σ1(~c1), . . . , ~yn 7→σn(~c1, . . . ,~cn)] |= A.

In both cases, we get A ∈ outAt,σ̂(~b1, . . . ,~bn) if and only if A ∈ outAt,σ(~c1, . . . ,~cn). Conse-

quently, we have S = outAt,σ̂(~b1, . . . ,~bn) = outAt,σ(~c1, . . . , ~cn) ∈ OutAt,σ.
Altogether, it follows that OutAt,σ̂ ⊆ OutAt,σ.

Proof of Lemma 22

Lemma. If there is a satisfying µ-uniform strategy σ for ψ, then there is a model B |= ϕ such

that UB contains at most n · |~y| ·
(
2↑κ+1(|At|)

)n2

domain elements where κ = ∂ϕ.
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Proof.

Claim I: Let ℓ, k be two integers such that 0 ≤ ℓ < k < n. For all tuples ~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk
with ~ai ∈ U

|~yi|
A and ~bi ∈ U

|~xi|
A , for every i, we observe that, if vars(Atℓ) ∩ ~xk+1 = ∅, then∣∣µℓ,k(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk)
∣∣ = 1 and, consequently, |imσ(µℓ,k)| ≤ |imσ(µℓ,k+1)|.

Proof: Suppose there are sets S1, S2 ∈ µℓ,k(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk) that are distinct. Hence,

there are tuples ~ck+1,~dk+1 ∈ U
|~xk+1|
A such that S1 = µℓ,k+1(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~ck+1) and

S2 = µℓ,k+1(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk,~dk+1). But since ~xk+1 ∩ vars(Atℓ) = ∅, Claim II from
the proof of Lemma 20 entails S1 = S2. This contradicts our assumption that S1 and S2 are
distinct. Consequently, µℓ,k(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk) can contain at most one set.

It is easy to show that µℓ,k(~a1, . . . ,~aℓ,~bℓ+1, . . . ,~bk) is nonempty by induction on k < n,
starting from k = n− 1. ♦

Claim II: Let ℓ, k be two integers such that 0 ≤ ℓ < k < n. We have |imσ(µℓ,k)| ≤ 2|imσ(µℓ,k+1)|.

Proof: For all tuples ~b1, . . . , . . . ,~bk with ~bi ∈ U
|~xi|
A , for every i, and for every S ∈ µℓ,k(σ1(~b1), . . . ,

σℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bk) we know that S = µℓ,k(σ1(~b1), . . . , σℓ(~b1, . . . , ~bℓ),~bℓ+1, . . . ,~bk,

~ck+1) for some tuple~ck+1. Hence, µℓ,k(σ1(~b1), . . . , σℓ(~b1, . . . ,~bℓ),~bℓ+1, . . . ,~bk) ⊆ imσ(µℓ,k+1).
♦

Due to Claim I and Claim II, our assumptions about κ entail that

(∗) for all integers ℓ, k with 0 ≤ ℓ < k ≤ n we obtain |imσ(µℓ,k)| ≤ 2↑κ+1(Atℓ).

Let Tσ be the target set of σ, defined by Tσ :=
⋃n
k=1 Tk, where

Tk :=
{
a ∈ UA

∣∣ there are tuples ~b1, . . . ,~bk with ~bi ∈ U
|~xi|
A , for every i,

such that σk(~b1, . . . ,~bk) = 〈. . . , a, . . .〉
}
.

Since σ is µ-uniform, we know that Tσ is a finite set. By definition of the fingerprint functions
µℓ,k, we derive the following upper bounds, where we write îmσ(µi,j) to abbreviate imσ(µi,i+1)×
imσ(µi,i+2)× . . .× imσ(µi,j) for all i, j, 0 ≤ i < j ≤ n.∣∣T1

∣∣ ≤ |~y1| ·
∣∣îmσ(µ0,1)

∣∣ ≤ |~y1| · 2↑n(|At0|) ≤ |~y1| · 2↑n(|At|),∣∣T2
∣∣ ≤ |~y2| ·

∣∣îmσ(µ0,2)× îmσ(µ1,2)
∣∣

≤ |~y2| · 2↑n(|At0|) · 2↑n−1(|At0|) · 2↑n−1(|At1|) ≤ |~y2| ·
(
2↑n(|At|)

)3
,

...∣∣Tn
∣∣ ≤ |~yn| ·

∣∣îmσ(µ0,n)× . . .× îmσ(µn−1,n)
∣∣

≤ |~yn| ·
∏n−1
i=0

∏n−1
j=i 2↑n−j(|Atj |)

≤ |~yn| ·
(
2↑n(|At|)

)n2

.
When we combine these bounds with the bound formulated in (∗), we may infer that Tσ contains

at most
∑n
ℓ=1 |~yℓ| ·

∏n−1
i=0

∏n−1
j=i 2↑min(κ+1,n−j)(|Atj|) ≤ n · |~y| ·

(
2↑κ+1(|At|)

)n2

domain elements.
Let ϕSk be the result of exhaustive Skolemization of ϕ, i.e. every existentially quantified variable

y ∈ ~yk in ϕ is replaced by the Skolem function fy(~x1, . . . , ~xk). Clearly, σ induces interpretations
for all the Skolem functions fy such that A can be extended to a model A′ of ϕSk using these

interpretations. More precisely, we can construct A′ from A by setting UA′ := UA and PA′

:= PA

for every predicate symbol P occurring in ϕ. Moreover, for every k, 1 ≤ k ≤ n, with ~yk =
〈y1, . . . , y|~yk|〉 the Skolem functions fy1, . . . , fy|~yk|

are defined such that for all tuples ~b1, . . . ,~bk

with ~bi ∈ U
|~xi|
A , for every i, we set〈

fy1(
~b1, . . . ,~bk), . . . , fy|~yk|

(~b1, . . . ,~bk)
〉
:= σk(~b1, . . . ,~bk).

Due to A |= ϕ, we get A′ |= ϕSk. Moreover, we observe that for every fy with y ∈ ~yk and all

tuples ~b1, . . . ,~bk it holds fA′

y (~b1, . . . ,~bk) ∈ Tk.
We now define the interpretation B as follows.
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• As B’s domain we use UB := Tσ.

• For every m-ary predicate symbol P occurring in ϕSk we set PB := PA′

∩ T m
σ .

• For everym-ary function symbol f occurring in ϕSk we set fB(~c ) := fA′

(~c ) for everym-tuple
~c ∈ T m

σ .

Clearly, B is a substructure of A′. Hence, by the Substructure Lemma, B satisfies ϕSk and thus
also the original ϕ. Moreover, we can bound the number of elements in B’s domain from above

by n · |~y| ·
(
2↑κ+1(|At|)

)n2

.

A.3 Proof details concerning Section 4

Proof of Lemma 30

Lemma. If ϕ belongs to GAF, we can construct a semantically equivalent sentence ϕ′ in standard
form, in which every subformula lies within the scope of at most one universal quantifier. Moreover,
all literals in ϕ′ already occur in ϕ (modulo variable renaming).

Proof. We proceed along similar lines as in the proof of Lemma 12, i.e. we perform syntactic
transformations based on the axioms of Boolean algebra and the equivalences stated in Lemma 3.
Once more, this will not change the set of literals occurring in the intermediate steps (modulo
variable renaming), since we start from a formula in negation normal form restricted to the con-
nectives ∧,∨,¬. Analogous to the proof of Lemma 12, we (re-)transform parts of ϕ repeatedly
into a disjunction of conjunctions (or a conjunction of disjunctions) of subformulas which we treat
as indivisible units. The literals and indivisible units in the respective conjunctions (disjunctions)
will be grouped in accordance with the sets L0,Lx and Lx,idx(x), . . . ,Lx,n, where needed. For this
purpose, it is important to note that Lemma 26(i) and the definition of L0 entail that L0 together
with the sets Lx partition the set of all literals occurring in ϕ. Moreover, every Lx is partitioned
by the sets Lx,0,Lx,idx(x), . . . ,Lx,n, by virtue of Lemma 29(i), (ii) and the definition of Lx,0.

We first give a description of the whole transformation process and afterwards present it for-
mally below.

Recall that ϕ is of the shape ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ. At the beginning, we transform ψ into a

disjunction of conjunctions of literals
∨
i ψi. Moreover, we rewrite every ψi into χ

(1)
i,0 ∧

∧n
k=1

∧
x∈~xk(

χ
(1)
i,x,0 ∧

∧n
j=idx(x) χ

(1)
i,x,j

)
, where χ

(1)
i,0 and the χ

(1)
i,x,k are conjunctions of literals. χ

(1)
i,0 comprises

all literals in ψi which belong to L0, while for every k the literals, which occur in ψi and belong

to Lx,k, are grouped as χ
(1)
i,x,k, respectively. By Lemmas 26(ii) and 29(iii), (iv), we know that

vars(χ
(1)
i,x,0) ⊆ {x} ∪

⋃
k<idx(x) ~yk and vars(χ

(1)
i,x,j) ⊆ {x} ∪

⋃
k≤idx(x) ~yk. Moreover, the definition

of L0 entails vars(χ
(1)
i,0 ) ⊆ ~y.

At this point, we move the existential quantifier block ∃~yn inwards. By Lemma 26(iii) and (iv),

the subformulas χ
(1)
i,0 and χ

(1)
i,x,0 do not share any variables from ~yn. Moreover, due to Lemma 29(iii)

and (iv), the χ
(1)
i,x,k with k < n do not contain any variables from ~yn. Consequently, one part of the

quantifier block ∃~yn, namely ∃~yn ∩ vars(χ
(1)
i,0 ), binds χ

(1)
i,0 (for convenience, we still write the full

∃~yn, which does not affect semantics), and another—disjoint—part, namely ∃~yn∩Yx,n, binds χ
(1)
i,x,n.

The thus obtained sentence ϕ′′ has the form ∀~x1∃~y1 . . .∀~xn.
∨
i

(
∃~yn.χ

(1)
i,0

)
∧
∧n
k=1

∧
x∈~xk

(
χ
(1)
i,x,0 ∧∧n−1

j=idx(x) χ
(1)
i,x,j ∧ ∃(~yn ∩ Yx,n).χ

(1)
i,x,n

)
. In further transformations we shall treat the subformulas

(
∃~yn.χ

(1)
i,0

)
and

(
∃(~yn ∩ Yx,n).χ

(1)
i,x,n

)
as indivisible units.

Next, we transform the big disjunction in ϕ′′ into a conjunction of disjunctions
∧
i ψ

′
i, rewrite

the disjunctions ψ′
i into subformulas η

(1)
i,0 ∨

∨n−1
k=1

∨
x∈~xk

η
(1)
i,x ∨

∨
x∈~xn

η
(1)
i,x (similarly to what we

have done above, but this time grouped in accordance with the more coarse-grained sets L0

and Lx). Having done the regrouping, we move the universal quantifier block ∀~xn inwards. The

resulting formula has the shape ∀~x1∃~y1 . . .∀~xn−1∃~yn−1.
∧
i η

(1)
i,0 ∨

∨n−1
k=1

∨
x∈~xk

η
(1)
i,x ∨

∨
x∈~xn

∀x. η
(1)
i,x .
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In further transformations, we shall treat the subformulas
(
∀x. η

(1)
i,x

)
as indivisible units as well.

Moreover, we shall group them under the conjunctions χ
(ℓ)
i,0 or η

(ℓ)
i,0 , ℓ ≥ 2, respectively, since they

do not contain any free occurrences of universally quantified variables x ∈ ~x anymore. This is

not only convenient but also necessary, because a subformula
(
∀x. η

(1)
i,x

)
may share free variables

y ∈
⋃
k<idx(x) ~yk with the subformula η

(1)
i,0 . Hence, when the quantifier block ∃y is moved inwards

later on, both
(
∀x. η

(1)
i,x

)
and some literals in η

(1)
i,0 might have to remain within the scope of ∃y.

We reiterate the described process until all the quantifiers have been moved inwards in the
outlined way. There is one more peculiarity to mention. At later stages of the transformation

subformulas of the form χ
(ℓ)
i,x,j ∧ . . . ∧ χ

(ℓ)
i,x,n may appear in which the constituents χ

(ℓ)
i,x,j′ may

share variables y ∈ ~yj , for instance. We shall abbreviate such subformulas by χ
(ℓ)
i,x,≥j and similar

notations, for the sake of readability. Emerging subformulas
(
∃(~yℓ ∩ Yx,ℓ).χ

(ℓ)
i,x,≥j

)
will be treated

as indivisible units.

∀~x1∃~y1 . . . ∀~xn∃~yn.ψ

|=| ∀~x1∃~y1 . . . ∃~yn.
∨

i

χ
(1)
i,0 (~y1, . . . , ~yn)

∧
n∧

k=1

∧

x∈~xk

(
χ
(1)
i,x,0(x, ~y1, . . . , ~yidx(x)−1)

∧
n∧

j=idx(x)

χ
(1)
i,x,j(x, ~y1, . . . , ~yj)

)

|=| ∀~x1∃~y1 . . . ∀~xn.
∨

i

(
∃~yn.χ

(1)
i,0 (~y1, . . . , ~yn)

)

∧
n∧

k=1

∧

x∈~xk

(
χ
(1)
i,x,0(x, ~y1, . . . , ~yidx(x)−1)

∧
n−1∧

j=idx(x)

χ
(1)
i,x,j(x, ~y1, . . . , ~yj)

∧ ∃(~yn ∩ Yx,n).χ
(1)
i,x,n(x, ~y1, . . . , ~yn)

)

|=| ∀~x1∃~y1 . . . ∀~xn.
∧

i

η
(1)
i,0 (~y1, . . . , ~yn−1)

∨
n−1∨

k=1

∨

x∈~xk

η
(1)
i,x (x, ~y1, . . . , ~yn−1)

∨
∨

x∈~xn

η
(1)
i,x (x, ~y1, . . . , ~yn−1)

|=| ∀~x1∃~y1 . . . ∀~xn−1∃~yn−1.
∧

i

η
(1)
i,0 (~y1, . . . , ~yn−1)

∨
n−1∨

k=1

∨

x∈~xk

η
(1)
i,x (x, ~y1, . . . , ~yn−1)

∨
∨

x∈~xn

(
∀x. η

(1)
i,x (x, ~y1, . . . , ~yn−1)

)
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|=| ∀~x1∃~y1 . . . ∀~xn−1∃~yn−1.∨

i

χ
(2)
i,0 (~y1, . . . , ~yn−1)

∧
n−1∧

k=1

∧

x∈~xk

(
χ
(2)
i,x,0(x, ~y1, . . . , ~yidx(x)−1)

∧
n−2∧

j=idx(x)

χ
(2)
i,x,j(x, ~y1, . . . , ~yj) ∧ χ

(2)
i,x,≥n−1(x, ~y1, . . . , ~yn−1)

)

|=| ∀~x1∃~y1 . . . ∀~xn−1.∨

i

(
∃~yn−1. χ

(2)
i,0 (~y1, . . . , ~yn−1)

)

∧
n−1∧

k=1

∧

x∈~xk

(
χ
(2)
i,x,0(x, ~y1, . . . , ~yidx(x)−1) ∧

n−2∧

j=idx(x)

χ
(2)
i,x,j(x, ~y1, . . . , ~yj)

∧
(
∃(~yn−1 ∩ Yx,n−1). χ

(2)
i,x,≥n−1(x, ~y1, . . . , ~yn−1)

))

...

|=| ∀~x1∃~y1.
∨

i

χ
(n)
i,0 (~y1) ∧

∧

x∈~x1

χ
(n)
i,x,0(x) ∧ χ

(n)
i,x,≥1(x, ~y1)

|=| ∀~x1.
∨

i

(
∃~y1.χ

(n)
i,0 (~y1)

)
∧

∧

x∈~x1

χ
(n)
i,x,0(x) ∧ ∃(~y1 ∩ Yx,1).χ

(n)
i,x,≥1(x, ~y1)

|=| ∀~x1.
∧

i

η
(n)
i,0 () ∨

∨

x∈~x1

η
(n)
i,x (x)

|=|
∧

i

η
(n)
i,0 () ∨

∨

x∈~x1

∀x. η
(n)
i,x (x)

The final result of this transformation is the sought ϕ′. Every time a universal quantifier block
∀~xj is moved inwards at the ℓ-th stage, the only subformulas, which contain universal quantifiers

already, are grouped into η
(ℓ)
i,0 . Due to the disjointness properties in Lemmas 26 and 29, it is

guaranteed that no η
(ℓ)
i,0 contains a free occurrence of some x ∈ ~x (details have been elaborated

above). Consequently, in the final result ϕ′ we do not have any nested occurrences of universal
quantifiers.

By appropriately renaming variables in ϕ′, we may restore the property that no two quantifiers
in ϕ′ bind the same variables.
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