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Abstract 
Since its inception, microscopy has been primarily used as a qualitative tool to explore the 
previously imperceptible microcosmos. However, microscopy images not only provide 
qualitative features, but can also be used to extract quantitative measures. Nowadays, cell 
microscopy images in digital form can be processed to extract quantitative information on cell 
morphology, e.g. spreading area, circularity of cellular outlines, and elongation. The central 
idea behind this thesis was to analyze how the stiffness upon which macrophage cells grew 
influenced intracellular lipid accumulation. To achieve this goal, automated methods for 
image segmentation and analysis that produced accurate cellular outlines needed to be 
developed and cytosolic lipid volumes measured in 3D in confocal microscopy image stacks. 

Identifying cellular outlines in confocal microscopy images is the topic of chapter 3. The 
adherent cell lines THP-1 (phorbol 12-myristate 13-acetate/PMA-differentiated), HeLa, and 
CHO were stained with the nuclear dye DRAQ5 and confocal microscopy stacks were acquired. 
Z-projecting the nuclear signal image stack resulted in a 2D image with strong signal intensities 
in the nucleus and weak signal intensities in the cytosol regions. An automated algorithm 
implementing adaptive background subtraction, thresholding, and watershedding was 
created to accurately segment single cells (i.e. determine individual cellular outlines) within 
the images according to their weak cytosolic and strong nuclear signal. Evaluating the 
segmentation algorithm showed 86 % of the segmented cells correctly and an average 
intersection over union score of 0.83. These values were on par with comparable modern 
image segmentation algorithms. Using the algorithm to monitor THP-1 cell morphology during 
PMA-induced differentiation showed two phases of increasing cell area (24 – 48 h and after 
120 h) with the second growth phase that was correlated to cell elongation. In a second 
application, CHO cell spreading area was shown to decrease by more than 40 % during low-
temperature cell culture (31°C instead of 37°C). 

Chapter 4 addresses the question of whether lipid accumulation in macrophages is dependent 
on the mechanical microenvironment. In this sub-project, hydrogel cell culture was used to 
mimic mechanical differences in atherosclerotic plaque development in vitro, and cells were 
fed a lipoprotein-rich medium. Atherosclerosis is a lifelong disease triggered by lipid-rich diets, 
which results in plaque development (containing lipid-rich material) within the arterial wall. 
This plaque consists of a soft lipid-rich necrotic core, various cell types, with a majority being 
lipid-laden macrophages (so-called “foam cells”), and an outer shell of smooth muscle cells 
that contribute to a remodeled and stiffer tissue environment. To assess whether foam cell 
development is influenced by tissue stiffness, THP-1-derived macrophages were cultured on 
collagen-coated polyacrylamide hydrogels of varying stiffness with medium containing 
aggregated low-density lipoprotein (LDL).  3D confocal microscopy stacks of stained 
intracellular lipids and nuclei were acquired, 2D cellular outlines were detected using the 
segmentation-algorithm created in Chapter 3. The detected cell frames were applied to the 
individual frames in the lipid image stack and lipid signals within the cell frames quantified in 
each microscopic slice (i.e. volumetrically). Thus, lipid volumes for individual cells could be 
quantified and categorized, which enabled the identification of the foam cell subpopulation. 
Comparing the foam cell subpopulation on substrates ranging in stiffness from 4 kPa 
(comparable to lipid-rich regions in the necrotic core) to 50,000 kPa (glass substrate), an 
increasing foam cell subpopulation from 10 to above 30 % was observed. The enhancement 
of foam cell formation correlated with an amplified expression of the scavenger receptor A 
and CD36 (two prominent LDL receptors) as substrate stiffness increased. 
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Chapter 5 describes the creation of a machine learning assisted computer vision algorithm for 
cell and nucleus segmentation and classification (i.e. identification of the segmented object as 
either “cell” or “nucleus”) in unstained microscopy images. Like many current computer vision 
algorithms, the implementation in this final project was based on convolutional neural 
networks (CNN). CNNs extract image features based on self-trained convolution filters. 
Training of a CNN-based algorithm requires large amounts of annotated image data (i.e. 
manually segmented cells and nuclei in example images). In this final project, a large-scale 
annotated image dataset containing more than 4,600 brightfield and phase contrast images 
with ~53,000 annotated cells and nuclei was assembled. Applying the annotated training 
dataset, a computer vision algorithm was created with an average precision exceeding 58 % 
(at IoU thresholds of 0.5), reaching precision values comparable to modern every-day scene 
classification- and segmentation-algorithms. 

In summary, my work contributed methodologically to efficient image processing in 
microscopy and cell biology by delivering algorithms for cell segmentation, classification, and 
volumetric quantification. There is a clear potential for these methods in cell biology as clearly 
demonstrated and the applicability of efficient image processing going forward will only 
increase in the future. 
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Zusammenfassung 
Seit Beginn der Mikroskopie, wurde die Methode hauptsächlich für die qualitative Erforschung 
des vorher nicht wahrnehmbaren Mikrokosmos genutzt. Allerdings bietet Mikroskopie nicht 
nur qualitative Merkmale, sondern kann auch für quantitative Messungen genutzt werden. In 
der heutigen Zeit können digitale zellmikroskopische Bilder prozessiert werden um 
quantitative Informationen über die Zellmorphologie zu extrahieren, wie z.B. zelluläre 
Flächenausbreitung, Rundheit des Umrisses und Ausdehnung. Der Kerngedanke dieser 
Dissertation war es, die Abhängigkeit der zellulären Lipidakkumulation von der Steifheit des 
Kultursubstrats zu analysieren. Um dieses Ziel zu erreichen, mussten automatisierte 
Methoden zur präzisen Zellumriss-Segmentation und -Analyse in Mikroskopbildern entwickelt 
und cytosolische Lipidvolumina dreidimensional in konfokal-mikroskopischen Aufnahmen 
gemessen werden. 

Die Identifikation der Zellumrisse in konfokal-mikroskopischen Aufnahmen ist Thema in 
Kapitel 3 dieser Thesis. Die adhärent wachsenden Zelllinien THP-1 (differenziert mittels 
Phorbol-12-myristat-13-acetat/PMA), HeLa und CHO wurden mit dem Nukleus-färbenden 
Fluoreszenzfarbstoff DRAQ5 angefärbt und schichtweise volumetrische Bildaufnahmen 
mittels Konfokal-Mikroskopie angefertigt. Durch eine Z-Projektion des schichtweise 
aufgenommenen Nukleussignals, entstand ein zweidimensionales Bild mit starker 
Signalintensität im Nukleus und schwacher Signalintensität in cytosolischen Regionen. Ein 
vollautomatisierter Algorithmus auf der Basis von adaptiver Hintergrundsubtraktion, 
Schwellenwertverfahren und Watershed-Prozessierung wurde erstellt, um einzelne Zellen 
innerhalb des Bildes anhand ihres cytosolischen und Nukleus-Signals zu segmentieren (d.h. die 
individuellen Zellumrisse zu bestimmen). Die Evaluation des Segmentationsalgorithmus ergab 
86 % korrekt segmentierte Zellen und ein Schnittmengen-zu-Vereinigungsmengen-Verhältnis 
von 0.83. Diese Werte waren auf einer Stufe mit vergleichbaren modernen 
Segmentationsalgorithmen. Mittels des Algorithmus beobachtete, morphologische 
Zellveränderungen während PMA-induzierter Differenzierung von THP-1 Zellen ergaben ein 
zweiphasiges zelluläres Flächenwachstum (24 – 48 h und nach 120 h) sowie eine korrelierende 
Zellausdehnung nach 120 h. In einer zweiten Anwendung konnte eine 40 % reduzierte 
Zellfläche von CHO Zellen bei niedriger Kultivierungstemperatur nachgewiesen werden (31°C 
anstatt 37°C). 

Kapitel 4 behandelt die Frage, ob Lipidakkumulation in Makrophagen von der Steifheit des 
Kultursubstrats abhängig ist. In diesem Teilprojekt wurde Hydrogel-Zellkultur eingesetzt um 
mechanische Gewebeveränderungen während der Entstehung atherosklerotischer Plaques in 
vitro zu imitieren und die Zellen mit Lipoprotein-reichem Medium versetzt. Atherosklerose ist 
eine lebenslange Krankheit, die durch fettreiche Ernährung ausgelöst wird, wobei sich eine 
fettreiche Ablagerung innerhalb der Arterienwand entwickelt. Diese Ablagerung besteht aus 
einem weichen, fettreichen, nekrotischen Kern, diversen Zelltypen mit einer Mehrheit aus 
fettreichen Makrophagen (sogenannten „Schaumzellen“) sowie einer äußeren Hülle aus 
glatten Muskelzellen, die zur Ausbildung von neugeformtem steiferem Gewebe beitragen. Um 
zu beurteilen, ob die Schaumzellentstehung von der Gewebesteifheit beeinflusst wird, 
kultivierte ich aus THP-1 entwickelte Makrophagen auf Collagen-beschichteten Polyacrylamid-
Hydrogelen unterschiedlicher Steifheit mit aggregierten low-density Lipoproteinen (LDL). 3D 
konfokal-mikroskopische Schichtaufnahmen angefärbter intrazellulärer Lipide und Nuklei 
wurden angefertigt und zweidimensionale Zellumrisse mittels des Segmentationsalgorithmus 
aus Kapitel 3 detektiert. Die erfassten Zellumrisse wurden auf die einzelnen Lipidsignal-



IX 
 

Schichten projiziert und Lipidsignale innerhalb der Zellrahmen schichtweise quantifiziert (d.h. 
volumetrisch). Auf diese Weise konnten Lipidvolumina in den Zellen individuell quantifiziert 
und kategorisiert werden, was die Identifikation der Schaumzell-Subpopulation ermöglichte. 
Beim Vergleich der Schaumzell-Subpopulationen auf Substraten der Steifheit 4 kPa 
(vergleichbar zu fettreichen Regionen im nekrotischen Kern) bis 50000 kPa (Glassubstrat) 
beobachtete ich eine steigende Schaumzell-Subpopulation von 10 auf über 30 %. Die 
gesteigerte Schaumzellbildung korrelierte mit verstärkter Expression von scavenger receptor 
A und CD36 (zwei bedeutende LDL Rezeptoren) bei steigernder Substratsteifheit. 

Kapitel 5 beschreibt die Erzeugung eines maschinelles Lernen-gestützten Computervision-
Algorithmus für Zell- und Nukleussegmentation sowie -klassifizierung (d.h. Identifizierung des 
segmentierten Objekts als „Zelle“ oder „Nukleus“) in ungefärbten Mikroskopieaufnahmen. 
Wie viele moderne Computervision-Algorithmen, war auch die Implementierung in meinem 
letzten Projekt auf convolutional neural networks (CNN) gestützt. Anhand von selbst erlernten 
Filtern extrahieren CNNs Strukturen aus Bildern. Die Ausbildung eines CNN-basierenden 
Algorithmus erfordert große Mengen an annotierten Bilddaten (z.B. manuell segmentierte 
Zellen und Nuklei in Beispielbildern). In diesem letzten Projekt stellte ich eine 
großmaßstäbliche annotierte Bilddatenbank zusammen, die mehr als 4600 hellfeld- und 
phasenkontrastmikroskopische Aufnahmen mit ~53000 annotierten Zellen und Nuklei 
beinhaltet. Mithilfe dieses annotierten Datensets erstellte ich einen Computervision-
Algorithmus mit einer durchschnittlichen Präzision von über 58 % (bei Schnittmengen-zu-
Vereinigungsmengen-Grenzwerten von 0.5). Damit erreichte ich Präzisionswerte, die mit 
modernen Klassifizierungs- und Segmentations-Algorithmen für Alltagsszenen vergleichbar 
sind. 

Zusammenfassend hat meine Arbeit methodologisch zur effizienten Bildverarbeitung in der 
Mikroskopie und Zellbiologie beigetragen, da Algorithmen zur Segmentation und 
Klassifizierung sowie der volumetrischen Quantifizierung bereitgestellt wurden. Wie ich 
zeigen konnte, gibt es bereits ein deutliches Potential für diese Methoden in der Zellbiologie 
und gesteigerte Anwendungsmöglichkeiten von effizienter Bildverarbeitung sind auch in 
Zukunft zu erwarten.  
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1 Introduction 
1.1 Structure of this thesis 

This thesis covers three research projects that I completed during my PhD studies in 
microscopic image analysis. In the first project, I created a hard-coded image processing 
algorithm that segments cells after fluorescent nuclear staining. The established algorithm 
was subsequently used in the second project to determine intracellular lipid accumulation in 
macrophages cultured on hydrogels of varying stiffness. Lastly, a cutting-edge computer vision 
algorithm was created to segment cells in unstained brightfield and phase contrast microscopy 
images. 

Chapter 1 establishes the background knowledge for the topics covered in this thesis. First, 
characteristics of cellular morphology are introduced and an overview on influences of 
substrate properties on the shape of cultured cells is given. Subsequently, atherosclerotic 
plaque development is described on a cellular level with a focus on lipid uptake and 
mechanical remodeling of the extracellular matrix during the disease. Then, fundamentals of 
light and fluorescence microscopy, spatial resolution, and historic technical advancements in 
microscopic imaging are presented. Lastly, an introduction to the concept of machine learning 
in image processing is given with information about image dataset generation, algorithm 
training and evaluation. 

Chapter 2 reviews the applied methods within this thesis: Cell culture and manipulation (using 
hydrogel culture and cytoskeletal drugs), as well as cell staining with small molecule probes 
and immunofluorescence with antibodies.  In addition, it describes applied microscopic 
techniques and training of a machine learning based computer vision algorithm with a focus 
on dataset generation, model training and segmentation evaluation. 

Chapter 3 describes how to implement an accurate and automated hard-coded algorithm for 
quantification of cell shape changes. This algorithm was subsequently used to observe cell 
morphology and spreading area during cellular maturation using a single nuclear dye together 
with the software ImageJ. (Publication 1) 

Chapter 4 focuses on the quantitative characterization of foam cell generation by lipid loading 
and the influence of tissue substrate stiffness, in vitro, using the automated image analysis 
module from Chapter 3 for analysis. (Publication 2) 

Chapter 5 displays the segmentation and characterization capabilities of a cutting-edge 
machine learning-based cell-detection algorithm. The Chapter ends with a discussion about 
the importance of appropriate datasets and a need for accurate preparation steps to produce 
an annotated image dataset for training, validation and evaluation of computer vision 
algorithms. (Publication 3) 

Chapter 6 gives an outlook on future directions in the fields of atherosclerotic research and 
image processing. 
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1.2 Overview 

Microscopy, since its inception over 350 years ago has been a qualitative method. The 
technique was essential to enlighten the, at the time, unrecognized cosmos of 
microorganisms1 and the concept of cells as the smallest living units of a body2. Over the next 
centuries, microscope manufacturing underwent dramatic improvements: The problem of 
chromatic aberration was solved by Chester More Hall in the 1730’s3. Abbe discovered in the 
1870’s that the resolution of a microscope depends on the wavelength of light and the 
numerical aperture of the light capturing system4, which paved the way for the production of 
microscopes with mathematically defined resolution powers together with Carl Zeiss. The rise 
of phase contrast techniques5, invented by Fritz Zernike, was another milestone for light 
microscopy. After these manufacturing and technological advancements, the focus was 
directed to signal specificity and spatial resolution enhancement. Specific dyes as well as 
genetically encoded biosensors, such as the green fluorescent protein6, allowed for precise 
determination of cellular entities within a microscopic image, often even in live-cell 
experiments. Resolution enhancement was achieved by using electron microscopes with 
electrons that have much shorter wavelengths7 compared to visible light and therefore 
enabled higher resolution as determined by the physical diffraction limit. However, improved 
spatial resolution came with a major drawback: electron beams only travel in ultra-high 
vacuum, which significantly limited the biological applications to non-living (and extremely 
dry) states. Recent breakthroughs in superresolution fluorescence microscopy, most notably 
the concepts of stimulated emission depletion8 and localization microscopy9, circumvented 
the diffraction limit in fluorescence microscopy. This allowed scientists to observe cellular 
processes at the nanoscale with specific staining and fluorescent proteins even in live-cell 
microscopy10,11. 

In addition to sharp images of cellular (and subcellular) features, microscopy also offers 
remarkable opportunities for quantitative interpretation, as objects within an image can be 
directly linked to their actual length scale and fluorescence intensity can be correlated to a 
fluorophore’s abundance at the location of the signal. The concept of quantitative microscopy 
has been growing over the last two decades, with most measurements relying on 
quantification of fluorescence intensity within the sample.  If segmentation was performed, it 
was either based on previous fluorescent staining of the sample or even performed manually. 

In my doctoral thesis projects, I explored how to use microscopic imaging techniques not only 
for quantitative measurements, but also for subsequent cellular characterization. The main 
scientific objective was to elucidate how macrophage lipid uptake behavior was influenced by 
substrate stiffness with an image-based approach to identify different cell sub-populations 
based on lipid uptake and cell morphology. As arterial stiffening is a naturally occurring 
process in the onset of atherosclerotic heart disease, a possible interplay of matrix remodeling 
and amplified cellular lipid uptake is expected. Substrate stiffness is a known driving force of 
cell morphology, often guiding cell spreading area by interfering with the cytoskeleton. 
Conventional quantification methods rely on extraction of lipids from large cell populations, 
associating the per cell values to a population-based average lipid uptake. Microscopy-based 
quantification, however, allows for single cell observations and therefore monitoring of 
subpopulations such as extremely lipid-rich cells. 

For this purpose, I generated computational methods to automatically segment microscopic 
images of cultured cells stained for nuclei and lipids. Based on extracted values, I was able to 
characterize cellular morphology by means of spreading area, elongation, and circularity.  The 
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segmented cell frames, together with lipid signals in stained cell samples could in turn be used 
to quantify lipid volumes within individual cells, defining lipid volume thresholds for the 
characterization of foam cells. Comparing the macrophage populations cultured on soft 
substrates with the populations cultured on stiff substrates enabled me to identify the lipid 
laden foam cells as subpopulations within each culture condition. Although this subpopulation 
makes up a small fraction of cells cultured on soft substrates, the fraction grows substantially 
when macrophages are cultured on glass. Flow cytometry (FC) analysis identified the 
scavenger receptor A as a driving force behind this finding. 

The established hard-coded algorithm for segmentation of fluorescently stained cells in 
microscopy images enabled a downstream characterization of cell subpopulations according 
to their intracellular lipid accumulation. The next goal was to develop a combined approach, 
in which segmentation and characterization was coupled in a single image processing step (i.e. 
without a need for manual characterization after image processing). For this purpose, I 
employed a convolutional neural network-based computer vision algorithm (explained in 
detail in the next chapter) that performs image segmentation and classification according to 
convolution matrices (image filters that are set to highlight features in an image, e.g. edge-
filter). The numerical values in the convolution matrices are designed by the algorithm itself 
in a “training” phase, during which it “learns” to detect object features from a provided 
dataset of manually labeled example images. The computer vision concept was applied to 
segment cell bodies and nuclei in unstained microscopy images and characterized the 
segmented area as either “cell” or “nucleus” (= “class labels”, objects distinguishable by a 
classification algorithm). In the course of this final project, I assembled a large-scale cell 
imaging pipeline to acquire an image collection with partially segmented and labelled cells and 
nuclei in each image (= “ground truth”, manually labelled data that is regarded as the true 
state). This was necessary, as convolutional neural network-based algorithms require 
thousands of training images to adapt meaningful convolution matrices. The cell/nucleus 
image collection will be made freely available, to increase the creation of computer vision 
algorithms in the field of microscopy. 

 

1.3 Cellular shape and the role of microenvironments 

All higher organisms are composed of cells that live in association with and are dependent on 
one another. The degree of this association varies according to the hierarchical structure of 
the cellular community. In the human body, cells can be organized as forms such as organs, 
nerves, vessels and layers, and therefore exhibit different characteristics based on factors such 
as dimensionality, mechanical properties, chemical and physical conditions. Cellular shapes 
and even functions are influenced by these environmental factors. However, naturally 
occurring factors like cyclic blood pressure, substrate stiffness, or tissue tension during 
movement are difficult to reproduce under laboratory cell culture conditions and often 
complicate scientific measurements. In this thesis, the biological focus is on cell shape 
quantification and substrate stiffness-mediated effects on macrophage lipid uptake, 
mimicking the onset of atherosclerotic heart disease. This chapter will introduce the 
significance of cell shape and its influence on cellular phenotype and vice versa. Additionally, 
an overview of the pathogenesis of atherosclerosis and associated effects on the 
microenvironment is given. 
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1.3.1 The cytoskeleton 

The cytoskeleton is a network of proteins that provides shape to the cell, organizes structures 
in the cytosol via vesicle transport and organelle anchorage, and provides mechanical 
resistance to deformation. The cytoskeletal architecture in mammalian cells is formed by 
three different polymers: 

 Filamentous actin: A flexible polymer with a diameter of 8 nm12 that has a role in 
intracellular transport, cell movement12, cell shape12, and internalization of membrane 
vesicles13. Concentration is highest in the cell cortex12. 

 Microtubuli: Stiff cylindrical polymers, forming hollow fibers with a diameter of 25 
nm12. Microtubules are organized in a microtubule-organizing center and from there 
stretch throughout the cell12. The fibers have a role in intracellular transport14 and 
form the mitotic spindle12,15. 

 Intermediate filaments: Ropelike polymers with a diameter of 10 nm12. Supports the 
cell by providing mechanical strength12,16 

F-actin and microtubules are composed of the units actin and tubulin (α-tubulin-β-tubulin 
dimers), respectively12, from which the names are also derived. In contrast, intermediate 
filaments are cytoskeletal structures consisting of a large variety of proteinogenic subunits12. 
Figure 1 schematically displays F-actin, microtubules, and intermediate filaments in a cell. 

 

Figure 1 Cytoskeletal networks in a cell (image from 17) 
Microtubuli (green) are hollow tubes and form long polymers throughout the cytosol, that serve as 
intracellular “highways” for motorproteins that transport vesicles or organelles. Intermediate 
filaments (red), form a meshwork around the nucleus, providing mechanical strength. Actin filaments 
(blue) in cellular protrusions are assembled as filamentous networks that guide cellular movement and 
spreading as well as force generation. 

Assembly and disassembly of the cytoskeletal network are continuous processes within the 
cell and are controlled by several regulatory protein classes, such as nucleation-promoting 
factors (that initiate filament formation), capping proteins (terminate filaments), polymerases 
(accelerate filament growth), depolymerizing and severing factors (disassemble filaments), 
and crosslinkers as well as stabilizing proteins (organize higher network-structures)15. 
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Filamentous actin and especially microtubules serve as transport "highways" for travel by 
motor proteins such as kinesins and dyneins (microtubules) as well as myosins (filamentous 
actin)12. These motor proteins are involved in the transportation of vesicles, organelles, and 
are the driving force for movement within the cell. 

The cytoskeleton is also the component of the cell that “feels” mechanical properties of the 
extracellular matrix or other extracellular forces by translating inputs such as substrate 
stiffness or pressure into intracellular biochemical signals and ultimately downstream cell 
responses. Receiving mechanical stimuli that spark a cellular reaction is known as 
“mechanotransduction”. This is of particular interest in cells that exist in various mechanical 
locations throughout the body or in tissues that undergo a mechanical transition such as in 
development or in disease progression. The importance of mechanotransduction as a guiding 
force in the context of cellular morphology is presented in the following section. 

 

1.3.2 Cellular morphology and substrate influence 

Cells are highly heterogeneous entities that can morph into various shapes, depending on the 
substrate they are cultured on, the availability of nutrients and chemical substances (e.g. in 
cell migration studies), as well as the degree of confluency to which they are cultured. This 
makes it difficult to define effective shape descriptors for each cell line. However, trends are 
visible for cell lines, which are often associated with their original function in the body. For 
instance, in Figure 2 three adherent cell lines are displayed: NIH/3T3, MCF-7, and RAW 264.7. 
NIH/3T3 is an embryonic fibroblast cell line that does not form confluent monolayers. They 
connect to each other via their cytoplasmic extensions and are known to synthesize the 
extracellular matrix for connective tissues in the body. In contrast, epithelial cells (like MCF-7) 
that form connected layers to cover structures within the body, show extended cell spreading 
and tend to assemble in colonies or monolayers. Lastly, RAW 264.7 cells, here exhibiting an 
early macrophage phenotype, are small and spherical, which helps as they migrate through 
dense tissues towards locations of inflammation. 

 

Figure 2 Examples for different shape characteristics in three cell lines 

Qualitative shape features include: a) elongated, fibroblast-like growth (NIH/3T3 cells); b) 
regular epithelial-like growth without the formation of pseudopodia and often with a 
tendency to form small colonies, even at low confluency (MCF-7 cells); c) small, spherical 
shape (RAW 264.7 cells). All cells cultured on tissue culture polystyrene.  
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The occurance of specific cell shape changes can also reflect differentiation states18–20. Cell 
shape can be tuned via printed micropatterns20,21 that restrict the available spreading area of 
seeded cells, changes in substrate stiffness that lead to reduced adhesion of many cell 
types19,22,23, and chemical interference with the cytoskeleton (e.g. via Latrunculin A, 
Blebbistatin, or Colchicine). While chemical influences on cells have been subject to broad 
research, the influence of mechanotransduction from the microenvironment on cell shape 
have only recently begun to receive significant attention. Since the range of stiffness in the 
body spans a broad range from below 1 kPa within brain tissue to above 100 kPa in bone 
(Figure 3a), it is not surprising that cells exhibit varying morphology and phenotype 
characteristics, depending on their surrounding mechanical environment. Cell types that occur 
in numerous different microenvironments within the body are of special interest due to their 
morphology-induced differentiation. Engler et al.19 cultured human mesenchymal stem cells 
(HMSC) on hydrogels of varying stiffness to analyze their lineage fate. HMSCs cultured on 0.1 
– 1 kPa hydrogels mimicking brain tissue elasticity levels adopted a neurogenic phenotype, 
cultivation on 8 – 17 kPa hydrogels imitating muscle tissue stiffness resulted in a myogenic 
appearance, and lastly culturing cells on 25 – 40 kPa hydrogels approaching bone stiffness lead 
to an osteogenic morphology (Figure 3b). 

 

Figure 3 Cell morphology heterogeneity guided by substrate stiffness(adapted from19) 

a) Different stiffness regimes in the human body spanning several orders of magnitude from below 
1 kPa to more than 100 kPa in bone tissues. b) Mesenchymal stem cells cultured on hydrogels of 
varying stiffness adopt different morphologies matching cell types present in the body’s stiffness 
regime. 
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Stem cells are of particular interest, as they play a pivotal role in organism development and 
can adopt several different phenotypes depending on their environment. In addition to stem 
cells, immune cells, particularly macrophages that must migrate within tissues in order to fight 
foreign bodies, are subject to numerous different microenvironments. These cells are derived 
from monocytes floating throughout the blood stream and become chemo-attracted to 
diverse tissues in the body where they then differentiate to macrophages in response to 
inflammation markers. 

 

Figure 4 macrophage polarization guided by micropatterning (adapted from20) 

a) Effect of chemical polarization on macrophages: Heterogeneous morphology of unpolarized 
macrophages (left), pan-fried egg shape of proinflammatory M1 macrophages activated with 
lipopolysaccharides (middle), and elongated shape of anti-inflammatory M2 macrophages exposed to 
interleukin 4 and 13 (right). b) Verification of the activated state with expression levels of inducible 
nitric oxide synthase (iNOS) and arginase-1 (marker for M1 and M2 activation, respectively). c) Effect 
of micropatterns on macrophages: Heterogeneous morphology on unpatterned substrate (left), 
increasing degree of elongation with narrowing of patterned lines from 50 (middle) to 20 µm (right). 
d) Expression levels of iNOS and arginase-1 in cells on micropatterned substrates: Narrow lines lead to 
increasing M2 polarization phenotype. 
 

Recent studies have pointed out that macrophage morphology and behavior are susceptible 
to the substrate topography20,21,24. When macrophages are forced to elongate, using 
micropatterned lines coated with the extracellular matrix proteins they exhibited a phenotype 
corresponding to anti-inflammatory polarization (see Figure 4).20   This proved that cellular 
shape alone can also guide cell function, instead of cellular function dictating cell shape. The 
ability to influence cell function makes substrate mechanics and topography an interesting 
tool for cell behavior and morphology analysis. The following section introduces a special case 
of mechanical microenvironmental remodeling, which happens in arterial walls during disease 
state: atherosclerosis. 

 

1.3.3 Atherosclerosis and lipid uptake of macrophages 

Atherosclerotic heart disease is a lifelong process that is triggered by lipid retention in the 
arterial wall25,26. It is the underlying cause of coronary heart disease, which is still the leading 
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cause of death worldwide, despite decreased mortality rates in high-income regions since 
198027. Figure 5 outlines the onset of atherosclerosis in the arterial wall. The disease is caused 
by high-lipid diets, as excessive lipid uptake results in elevated lipoprotein levels in the blood, 
especially lipid rich low-density lipoprotein (LDL). If this excessive lipid uptake is persistent, 
endothelial cells absorb (or take up) lipoproteins from the blood stream and store them inside 
the underlying tunica intima. Biochemical transformation of the lipoproteins renders the 
particles proinflammatory, which in turn attracts leukocytes. In particular, monocytes “sniff” 
this inflammatory signal, adhere to the endothelial vascular layer, and subsequently 
transmigrate into the tunica intima, where they differentiate to macrophages and start 
ingesting the proinflammatory lipoproteins28,29. Accumulation of absorbed lipid-rich particles 
within macrophages results in considerable lipid droplet development in their cytosol, leading 
to a characteristic “foamy” appearance, hence the name foam cells30. As more lipoproteins 
are retained, the vicious cycle of monocyte attraction, macrophage differentiation, and foam 
cell formation continues. With the onset of the disease, an atherosclerotic plaque develops, 
including a pool of necrotic cells and extracellular lipids in its core and a mix of cellular entities 
in the outer regions. This plaque causes physical narrowing of the artery, restricting blood flow 
to downstream organs. In case of a plaque rupture, subsequent thrombus formation can lead 
to even more severe arterial blocking31. To counteract plaque rupture, smooth muscle cells 
migrating from the tunica media to the atherosclerotic regions synthesize collagen to build up 
a fibrotic cap around the plaque for stabilization. This leads to substantial remodeling of the 
surrounding extracellular matrix, with tissue elastic modulus ranging from 5.5 kPa in lipid rich 
regions to over 10.4 kPa in cellular fibrotic regions, to 59.4 kPa in the fibrous cap32 (see Figure 
5). Notably, the fibrous cap shows strong heterogeneity in elastic measurements locally rising 
to levels around 250 kPa32. 

 

Figure 5 Onset of Atherosclerosis 

Low density lipoprotein (LDL) from the blood stream is transported into endothelial cells and retained 
in the tunica intima. Enzymatic activity forms proinflammatory LDL particles, attracting monocytes 
from the blood stream that migrate into the arterial wall, differentiate to macrophages, and start 
clearing the LDL from the tissue. Accumulation of lipids in the macrophage cytosol transforms 
macrophages into foam cells. Persistent high lipid diets lead to atherosclerotic plaque formation along 
with a remodeling processes around the plaque resulting the stiffness regimes indicated with black 
arrows (stiffness values from32). 
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Interestingly, macrophages have several routes for lipid uptake and it is unclear about the 
uptake efficiency and overall impact on the respective receptors in atherosclerosis33. 
Receptors mostly associated with lipoprotein uptake in macrophages include the scavenger 
receptor A (SR-A) class34–36, CD3637–39, the LDL receptor (LDLR)40,41, and the LDL receptor-
related protein (LRP)42,43. This multitude of entry pathways account for the various forms of 
modified LDL uptake. The most commonly used LDLs in studies are native LDL, oxidized LDL 
(oxLDL), acetylated LDL (acLDL), and aggregated LDL (agLDL)44–46. There is, however, no 
evidence of LDL acetylation in the body44. Additionally, LDLR (the receptor for native LDL) is 
regulated via a negative feedback loop that prevents excessive lipid accumulation44. 
Therefore, foam cell formation is believed to depend on oxLDL and agLDL44. agLDL is formed 
in the subendothelial space via protease and esterase activity47. The proteolytic activity is 
believed to result in exposure of lipophilic areas on the surface of the lipoprotein and 
aggregation would therefore be energetically favorable for modified LDL in an aqueous 
environment48. oxLDL is thought to be produced by reactive oxygen species, that are more 
abundant in atherogenic conditions (e.g. hypercholesterolemia, elevated blood pressure)49. 
The influence of substrate stiffness on intracellular lipid accumulation in THP-1 derived 
macrophages is analyzed in chapter 4. 

 

1.4 Light microscopy for cell culture observations 

Most cellular examinations in this work were carried out using microscopy. Therefore, in this 
chapter, I want to review the process of image generation based on the microscopic 
techniques used in my studies. 

 

1.4.1 Physics of light microscopy 

Microscopy is traditionally performed using visible light to probe light-matter interactions 
(LMI) within an object of interest, thereby determining its structure. Light is an 
electromagnetic field that exhibits a sinusoidally oscillating electric and magnetic field, which 
are mutually perpendicular towards each other and the direction of propagation. The distance 
covered by a wave during one full field oscillation denotes the wavelength (see Figure 6). 
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Figure 6 Light as an electromagnetic wave (image from50) 
The electromagnetic wave consists of the mutually oscillating electric and magnetic fields. The distance traveled 
during one oscillation is described by the wavelength. 

 

Light exhibits features of both waves (such as diffraction and interference) and particles (e.g. 
in the photoelectric effect), the so-called wave-particle duality. This duality is of remarkable 
importance regarding energy forms. While energy of light is proportional to the amplitude of 
its oscillating fields, the photon energy (i.e. in particle mode) is proportional to the reciprocal 
of the wavelength and the speed of light. Therefore, two features of the electromagnetic wave 
are of major importance: The wavelength and the amplitude of the wave. 

First, we will focus on the wavelength as it provides information about the photon energy. The 
photon energy 𝐸 in a light field can be calculated based on the speed of light 𝑐, the Planck’s 
constant ℎ, and the wavelength 𝜆. 

𝐸 =
ℎ ∙ 𝑐

𝜆
 

1.1 

 

Frequency 𝑣, which denotes the number of oscillation cycles within an electromagnetic wave 
travelling a distance of 1 cm, is equal to the speed of light divided by the wavelength: 

𝑣 =
𝑐

𝜆
 

1.2 

 

Therefore, photon energy is directly proportional to its frequency and inversely proportional 
to its wavelength: 

𝐸 = ℎ ∙ 𝑣 =
ℎ ∙ 𝑐

𝜆
 

1.3 
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With E being the photon energy [ergs] and h being the Planck’s constant [6.62 ∙ 10−27 
erg-seconds], 𝑣 being the frequency of light [cm-1], 𝑐 being the speed of light [3 ∙ 1010cm/s], 
and 𝜆 being the wavelength [cm]50. 

Photon energy (or wavelength) is of particular interest in image generation, as all sensors, 
including the human eye have different sensitivities for various photon energies. Physically, 
blue light in the range of 400 – 460 nm is more energetic than red light in the range of 650 – 
800 nm. Beyond the detection limit, photonic energy transfer LMIs in samples can be detected 
by observing wavelengths other than those used for excitation. LMI induced shifts in 
wavelength yield qualitative information about the observed system. So-called “red shifts” (or 
Stokes shifts) result in emissions of longer wavelengths (less energy photons) than what was 
used for excitation, denoting an energy loss in the system. In contrast “blue shifts” (or anti-
Stokes shift) come from the transition from longer excitation wavelengths to shorter emission 
wavelengths, denoting energy gains. Energy gains of photons during LMI are extremely rare 
and need specialized laser setups to be exploited for scientific analyses (e.g. in nonlinear 
microscopy), while red shifts are commonly used in conventional microscopy and 
spectroscopy. 

The second outstanding feature of electromagnetic waves, is the amplitude of the field, which 
is a quantitative measure indicating the brightness of light. Nearly all photoreceptors, such as 
photoreceptive cells in the retina, react proportionally to light power instead of amplitude. 
Power is loosely defined as being proportional to the square of the amplitude (or brightness), 
and it denotes the energy – or photon – flux, the rate of flow of light energy per unit time 
across a detector surface. Light intensity is further defined as the power per unit area; 
different light intensities allow the eye to discriminate between objects by exerting contrast: 

𝐶 =  𝛥𝐼
𝐼𝐵𝐺

⁄  
1.4 

 

With ΔI being the difference in light intensity between object and background and 𝐼𝐵𝐺  being 
the intensity of the background. 

Different light intensities and wavelengths in microscopy arise from various forms of LMI: 

 Transmission 

 Reflection 

 Diffraction 

 Absorption 

While contrast generation in conventional light microscopy (such as brightfield and phase 
contrast microscopes) is mainly based on scattering and transmission, fluorescence 
microscopes are built on the principle of light conversion in the sample to separate excitation 
and emission. 

 

1.4.2 Spatial resolution 

Spatial resolution of a microscope not only depends on the wavelength used, but also on the 
objective applied. The resolution achievable with a given objective is determined by the angle 
by which it captures diffracted rays from the specimen and the refractive index of the 
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immersion medium used50. The contribution of both factors is summarized as numerical 
aperture (NA): 

𝑁𝐴 = 𝑛 ∙ sin (𝜃) 1.5 

 

Where n is the refractive index of the immersion medium and θ is the maximum half-angle of 
the cone of light accepted by the objective. Influences by immersion medium and light angle 
are shown in Figure 7. 

 

Figure 7 Numerical aperture influenced by light angle and immersion medium (from 50) 
Left: NA is limited in dry objectives, as rays exceeding the critical angle (critical angle marked as red dotted line) 
are subject to total internal reflection. The change of refractive index from glass to air extends the acceptance 
angle to 72°. Right: Using oil as immersion medium with a refractive index similar to glass prevents total internal 
reflection (no rays lost) and results in an acceptance angle of 67°. The higher NA of the oil immersion objective 
results from higher refractive index of the immersion medium (1.515 of oil versus 1 of air) that is a multiplication 
factor in NA calculation. 

 

Lastly, as spatial resolution is also dependent on the wavelength used for microscopy, the 
resolving power d of an objective is given by: 

𝑑 =  
0.61𝜆

𝑁𝐴
 

1.6 

 

Where d is the minimum resolved distance in µm, λ is the applied wavelength in µm, and NA 
is the numerical aperture as calculated above50. 
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1.4.3 Brightfield microscopy 

Brightfield microscopy is undoubtedly the least complex form of microscopy: The sample is 
homogeneously illuminated from one side and transmitted light is collected with an objective 
on the opposite side. Magnification by a lens system in the objective produces an image with 
contrast originating mostly from the scattering of light by dense regions of the sample. Since 
almost no sample preparation is required, live cell imaging is possible, even for several days, 
in combination with appropriate environmental conditioning devices (e.g. temperature and 
humidity). However, as compartments within cells show only limited scattering, contrast is 
often quite low. Staining cellular structures can enhance contrast via absorption of certain 
wavelengths, but it is often accompanied by a need to fix the cells prior to image acquisition, 
thereby destroying the possibility of live-cell imaging. 

 

1.4.4 Phase contrast microscopy 

In the early 1930’s, Dutch physicist Frits Zernike discovered a phenomenon called phase 
contrast5, in which he translated differences in phase, which are invisible to the human eye, 
into differences in amplitude. Contrast added in this way, led to a substantial advancement of 
light microscopic techniques in the 1940’s. The underlying principle is the retardation of light 
in materials with higher refractive indices than their surroundings. For instance, the lipid 
membrane of a cell will have a higher refractive index than the aqueous medium surrounding 
it, i.e. light will travel faster in the aqueous medium, than in the cell. This difference in velocity 
results in a phase shift. 

As Figure 8a shows, light passing through a phase object results in three waves: The 
surrounding wave (S-wave) that does not interact with the object, the diffracted wave (D-
wave) that shows a reduced amplitude and a phase shift depending on the refractive index 

and thickness of the objective (in cellular dimensions typically λ/4), and a particle wave 
(P-wave) that is the wave generated from interference of S- and D-wave. However, as light 
interaction with phase objects is scarce and the phase shift between S- and D-wave insufficient 
for complete destructive interference, the effect needs to be amplified. This is achieved by 
decoupling surrounding waves from diffracted waves in phase contrast microscopy (Figure 
8b). A hollow cone of illumination light is formed via an annular aperture in the condenser. 
After passing through the specimen, the S-waves are guided through an etched ring inside a 
phase plate, while D-waves are diffracted from the specimen and travel through the center of 
the phase plate. As the center of the phase plate is thicker than the etched ring surrounding 
it, D-waves are retarded relative to the S-waves, thereby extending the relative phase shift to 

λ/2. In addition, the semitransparent ring around the center reduces the amplitude of S-waves 
by 70 – 75%50. The resulting S- and D-waves now interfere at the detector (Figure 8c), and the 
effect on the generated P-wave is amplified due to comparable amplitudes of both waves. 
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Figure 8 Principle of phase contrast and design of a phase contrast microscope (adapted 

from 50) 

a) Phase relations of light transiting through phase objects: S-wave (red) does not interact and phase remains 

unchanged, D-wave (blue) generated by diffraction in phase object exhibits a ~ λ/4 phase shift and decreased 
amplitude, P-wave (green) generated from interference of S- and D-wave shows only minor differences to S-
wave. b) phase contrast microscope design: an annular aperture generates a hollow cone of light to illuminate 
the sample. While light interacting with the object is diffracted from the light path, non-interacting waves are 
guided through a semitransparent etched ring in a phase plate. The phase plate has two functions: (1) It reduces 
the path length of the S waves through high refractive index medium relative to D-waves travelling through 
thicker regions in the center of the phase plate, thereby amplifying the phase shift between S- and D-wave and 
(2) it reduces the amplitude of S-waves to approx. 25 % its original value. c) Resulting phase and amplitude 

relations after phase contrast modification: The overall phase shift of ~ λ/2 to the D-wave results in destructive 
interference, the reduced amplitude of the S-waves amplifies this effect. 

 
 

1.4.5 Fluorescence microscopy 

Fluorescence is a form of luminescence, the process of light emission from the relaxation 
process of an electronically excited molecule. Electronic excitation can be explained by 
Jablonski energy diagrams (Figure 9) in which electronic states are shown as either ground 
state (S0), or excited states (S1, S2) with corresponding vibrational states. Upon absorption of 
photons, electrons can be excited from the ground state to higher electronic states. As a 
precondition, the wavelength of exciting light needs to match the energy level needed to 
overcome the energy gap from ground to excited state. After excitation, the electron can 
either relax to the ground state immediately or lose a part of its energy via internal conversion. 
When electrons relax from an excited state back to the ground state, they emit 
electromagnetic radiation. The loss of energy in internal conversion is typically non-radiative, 
and therefore the relaxation of the electron to the electronic ground state results in an 
emission of lower energy (longer wavelength) or Stokes shifted light, compared to the 
excitation light.  
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Figure 9 Jablonski diagram for electronic excitation (adapted from51) 

Fluorescence depends on an electron excitation. Excitation photons (hvA, blue) excite electrons from ground 
state (S0) to higher energetic states (S1 and S2) depending on the energy (the wavelength) of the incoming light. 
Internal conversion leads to radiation-free energy loss, while a drop back from excited to ground state is 
connected to photon emission (hvF, green), which in red-shifted light emission. 

In fluorescence microscopy, fluorophores in the specimen are excited using a specific 
wavelength band via a lamp or laser source. As excitation and emission wavelengths are 
different from each other, filters can be used to block the excitation light prior to the detector. 
In this way, excitation and emission light is separated and only emission light is collected. The 
signal intensity arriving at the detector therefore corresponds to the fluorescent light emitted 
by the fluorophores in the specimen. 

Currently, literally thousands of fluorescent dyes for a broad range of organelles and cellular 
compartments as well as different wavelength ranges exist. Below in Table 1 are four dyes 
used in this work, just to name a few: 

Table 1 Examples of fluorescent probes used in this thesis 

Name Subcellular 
localization 

Excitation 
maximum 

Emission 
maximum 

Supplier (catalog 
number) 

DAPI Nucleus 350 nm 470 nm Thermo Fisher (D1306) 

DRAQ5 Nucleus 647 nm 681 nm Thermo Fisher (62251) 

CellMask Orange Cytoplasm 554 nm 567 nm Thermo Fisher (C10045) 

BODIPY 493/503 Lipid droplets 503 nm 512 nm Thermo Fisher (D3922) 

 

Additionally, the ability to conjugate fluorophores to highly specific antibodies has enabled 
researchers to detect virtually any protein or organelle within a biological sample. Finally, the 
advent of fluorescent proteins like GFP, that can be genetically fused to proteins of interest 
allow live-cell observations without any sample preparation. 

 

1.4.6 Confocal microscopy 

Confocal microscopy is an imaging technique intended to reduce out-of-focus blur by 
physically blocking out-of-focus light; a side benefit of this process is also three-dimensional 
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(3D) resolution enhancement. In widefield fluorescence microscopy the entire optical field-of-
view in 3D is illuminated and the emitted fluorescent light from the entire 3D excitation 
volume is collected with a detector, which includes in-focus and out-of-focus light. In confocal 
microscopy, point illumination is used and the emitted fluorescence is then spatially filtered 
by a pinhole such that only light from precise, in-focus axial locations in the specimen are 
collected (see Figure 10). Using a motorized stage or motorized mirrors, one can produce 3D 
volume representations of the imaged sample by scanning several X-Y-planes in varying z-
depths. 

 

Figure 10 Design of a confocal microscope (image from50) 

A laser beam is focused onto a focal plane inside a specimen (indicated with dotted black line) for excitation. 
Fluorescent emission of light must pass through a pinhole aperture in front of the detector in the detection path. 
Note that light emitted from the focal plane (red) passes through the pinhole completely, while out-of-focus light 
from above (blue) and below (green) the focal plane is blocked. 

Reductions in pinhole size lead to better resolutions but also decrease signal intensity as more 
light is filtered out. Z-step sizes must therefore be chosen carefully, as overlapping image 
planes can falsify volume detections in downstream image processing (e.g. double detection 
of features such as overlaying lipid droplets). 

 

1.5 Image processing 

After image acquisition, the raw data produced exhibits several obstacles in the form of 
background noise (e.g. through uneven illumination), touching objects, cellular debris, etc., 
that prevent quantitative image analysis. Image processing, in the context of this work, is 
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aimed at extracting quantitative geometric features of detected objects, and it is imperative 
that appropriate measures are taken to overcome the obstacles listed above to locate the 
objects of interest within the image with high precision. To generate meaningful quantitative 
statements from images, features of displayed objects must be converted into machine-
readable data. The creation of hard-coded software solutions for batch image processing is 
almost always the ultimate goal and can be extremely laborious, as features for every object 
of interest must be identified by the programmer and transformed into algorithms that 
recognize these object classes (e.g. here: cells) automatically. An example of such an algorithm 
for cell detection after fluorescent nucleus staining can be found in Chapter 3. Outlining the 
basic steps of this algorithm shows the processing actions that hard-coded image processing 
algorithms typically include: Background reduction is achieved by subtracting a blurred copy 
of the original image, cell outlines are detected by low-value thresholding the fluorescence 
signal and touching cells are split by watershedding. Lastly cell debris is ignored by inserting a 
size and signal intensity filter. As Chapter 3 covers conventional microscopy image processing 
in detail, I will focus on the application of computer vision in image processing in this section. 

 

1.5.1 Machine learning assisted image analysis 

Machine learning is a sub-field of artificial intelligence, that deals with the ability of computer 
algorithms to make decisions or predictions for previously unknown input data. For instance, 
such algorithms decide which emails are regarded as spam52, which items are proposed to the 
customer on shopping websites53, or which advertisement users see in online social 
networks54. The decision-making process in this software is not handcrafted by computer 
scientists, but instead “learned” automatically from data and adapted accordingly for 
individual users. The individual adaptation is the reason why e.g. online advertisements after 
recent searches for motorbikes differ from online advertisements after recent searches for 
diagnostic antibodies. The decision-making ability arises from feature-extraction performed 
by the algorithm on training datasets. The extracted features are in turn used to categorize, 
predict, or classify new input data. In practice, datasets of labeled emails can be used to train 
a classification algorithm, that extracts and learns word combinations (i.e. features in the 
message) typically used in spam emails. Consequently, the trained classifier can be used to 
characterize previously unseen emails.52 

After feature extraction from input data, machine learning algorithms need to classify the data 
accordingly. One of the most common mathematical models for classification are support 
vector machines (SVM). SVMs assume instances (i.e. objects within the data; e.g. emails to 
classify) as datapoints in n-dimensional systems, where the number of dimensions n is given 
by the number of detected features (e.g. number of words indicating spam vs. words 
indicating non-spam mails). To separate groups of datapoints in this system, an (n-1)-
dimensional plane (SVM Hyperplane) is computed with support vectors. The SVM Hyperplane 
and the respective support vectors are calculated to span the largest distance (margin width) 
between the two separated datapoint groups (see Figure 11). 
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Figure 11 Concept of support vector machines in 2D. (adapted from55) 
Two selected features span a coordinate system and data objects are inserted as datapoints according to the 
magnitude of the features adopted (red = group 1, blue = group 2). A support vector machine (SVM) hyperplane 
and two corresponding support vectors are computed to form a maximum margin width between the two 
support vectors. The required maximum margin width results in a maximum distance between the two separated 
groups. As shown in the graph, misclassifications can occur (red datapoint in blue group and blue datapoint in 
red group). Optimally, features are selected that minimize the occurrence of misclassifications. 

 

A machine learning algorithm seeks to find features that allow for highly specific identification 
of the classes it is trained on. If the classification algorithm is trained on identifying multiple 
classes, support vector machines will plot the data in multidimensional graphs. 

However, feature detection in text or in other “clean” data (such as numerical values) is far 
simpler than feature detection in images. As text and numerical values are machine-readable, 
no substantial data preparation is required. Unfortunately, images are raw data and hence, 
need to be prepared for the algorithm to recognize patterns within the data. An additional 
procedure is necessary in addition to machine learning-based classifiers, that produces 
meaningful machine-readable data from images. Convolutional neural networks (CNN, more 
information in section 1.5.3), which extract image features using filters generated from 
provided data itself, can overcome this bottleneck. This not only drastically amplifies the 
precision of image classification and segmentation algorithms, but also facilitates the 
development process, as algorithms can learn features from provided datasets, independent 
from the programmer. One main accomplishment of this thesis was the training of a machine 
learning-assisted algorithm for cellular image processing. In this work, I applied the concept 
of supervised learning, i.e. the training of an algorithm using labeled data (e.g. class labels such 
as “cats”, “dogs”, or “cars” on images) as opposed to unsupervised learning, which is 
performed with unlabeled data. To generate an appropriate dataset for supervised learning, 
two components had to be provided: Data – in this case microscopy images - and annotations 
for objects within these images. Annotations can be “global” labels (one label for each image, 
“local” labels via bounding boxes (frames around objects within the image) or segmentation 
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masks (selection of the object outlines in the image). Class labels and segmentation masks are 
also called “ground truth”, since they specify object outlines and class labels with human 
accuracy. The remainder of this chapter gives an overview of convolutional neural networks, 
algorithm training, and computer vision developments. Finally, an introduction into the 
evaluation of image segmentation algorithms is given and the role of datasets is reviewed. 

 

1.5.2 Image convolution 

Digital images are, strictly speaking, nothing more than a grid of numbers. The numerical 
values making up an image can be transformed in order to emphasize certain structures within 
the image. Highlighting numerical values according to their surrounding can be achieved by a 
process called image convolution. Edge detection is a prominent example for image 
convolution: Numerical values forming edges in the image are highlighted, while pixel values 
in areas without edges are set to zero. 

 

Figure 12 Image convolution for edge detection 
Left: Input image (Lena, ImageJ sample photo); Right: Output after convolution with an edge detection filter. 
Edge detection highlights edge lines and sets pixel values in edge-free areas to zero. 

 

Image convolution is the process of passing a convolution matrix (also called filter or kernel) 
across an image, forming a new output image. The pixel values in the new output image 
correspond to the dot product formed from overlapping values of the filter matrix and input 
image (see Figure 13). 



20 
 

 

Figure 13 Convolution of an image using a convolution matrix 
A filter matrix (red) is placed on an input image (black), forming the dot product with underlying pixels. The value 
of the dot product is assigned to a newly formed (blue) pixel (a). Passing the filter incrementally over the entire 
image, forms a new output image with pixel values generated from the image convolution with the filter (Last 
step shown in b). The output image (blue) is reduced in length and width according to the filter dimensions and 
ending conditions. Here: A 2x2 pixel convolution matrix can be shifted once in length and width on a 3x3 pixel 
input image, which results in a 2x2 pixel output image. Solutions to the size reduction include padding, which 
adds extra pixels with specific values to the input image or mirroring outer edge pixels. Padding artificially 
extends the input image and hence counteracts the loss in size during convolution. 

 

For machine learning-assisted image processing it can be beneficial to reduce the resolution 
of images. The reduction can be achieved by down-sampling (also called subsampling), a 
process that derives a single value from several pixel values. The most prominent 
representative of a down-sampling mechanism is max-pooling. A filter matrix is passed over 
an image and selects the highest value captured in the filter frame as a value for the output 
image. Choosing bigger steps (strides) that are used to shift the filter over the image further 
decreases the image size. Selecting a 2x2 pixel max-pooling filter together with a 2-pixel stride, 
results in an output image that is reduced by 50 % in each dimension (see Figure 14). 
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Figure 14 Concept of Max-Pooling 
A filter selects only maximum values in the area covered by the filter-frame. The selected value is subsequently 
assigned to a pixel in the output image. The settings pictured here (4x4 input image, 2x2 max-pooling filter, stride 
of 2) result in an output image that is reduced in pixel-size by 50 % in each dimension. 

 

As described in this section, filter matrices can be designed to highlight certain features within 
the image and down-sample image resolution. The next chapter introduces the importance of 
filter matrices in preparing images for classification and segmentation. 

 

1.5.3 Convolutional neural networks 

This section introduces the concept of convolutional neural networks for image classification 
and highlights historic achievements in improving this method. CNNs are used to process data 
in the form of multiple arrays56. One-dimensional multiple arrays can be sequences such as 
DNA or protein sequences. 2D multiple arrays would be images and lastly, 3D multiple arrays 
could be videos that add time as an additional dimension. The founding stone for CNNs was 
laid in the 1960’s by Hubel and Wiesel who discovered that cats’ visual cortexes contained at 
least two types of cells with hierarchical organization: simple cells detecting edges and 
orientations, and complex cells that respond to movement57. Although this was a biological 
finding it showed the complexity in image reception, as the output of one cell type (simple 
cells) was the input for the next cell (complex cells). 

The hierarchical structure in neural processing later inspired computer scientists to adopt a 
similar structure in algorithms, where the output of one computational step (the pendant to 
a neuron) was the input for the next. Connecting several artificial neurons creates an artificial 
neural network. Figure 15 shows the scheme of an artificial neural network with nodes 
representing individual computational processing steps that are organized in layers. Users of 
algorithms based on an artificial neural network architecture will typically come into contact 
with input and the resulting output layers. For instance, in email classification input would be 
a message, while output would be a class label like “spam” or “regular text”. 
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Figure 15 Scheme of an artificial neural network 
Artificial neural networks connect computational processing steps (nodes). Outputs of one layer serve as inputs 
for the next layer (arrow-connections). Layers in which individual nodes are connected to a portion of the nodes 
in the previous layer are called “locally connected”. Layers in which individual nodes are connected to all nodes 
of the previous layer are called “fully connected”. 

 

In between the input and output layer, hidden layers are inserted that perform various 
functions on the data that is processed by the artificial neural network58. During data transfer 
from a previous node to the next (arrows in Figure 15), parameters - so-called “weights” - 
adjust the impact of the individual input on the next node58 (e.g. total neglection of the input 
value by multiplying it with zero). Weights are essential for appropriate data transformation 
and their adjustment will be the topic of section 1.5.4. One can discriminate between fully 
connected layers, i.e. individual nodes in the layer receive inputs from all nodes of the previous 
layer, or locally connected layers, i.e. individual nodes in the layer are connected to some but 
not all nodes of the previous layer. Fully connected layers by far prevail in modern artificial 
neural networks as they allow for a simultaneous consideration of all parameters from the 
previous layer without restricting the “receptive field” (number of connections) of a node. 

As the name suggests, CNNs are artificial neural networks that perform matrix convolutions. 
The possibly most important step in CNN development was made in 1998 by Yann LeCun, who 
built a neural network, applying multiple convolutional layers with a built-in self-training 
mechanism59. 
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Figure 16 Convolutional neural network created by LeCun et al(adapted from 59) 
The convolutional neural network consists of seven layers. An image with the letter “A” serves as input. The first 
four layers alternatingly perform convolutions and subsampling creating feature maps that highlights structures 
in the image. 16 small feature maps created in the 4th layer are miniature representations of features extracted 
from the original image. Layers five to seven are fully connected layers that derive numerical values from the 
multiple feature maps and compute an output. In this case the output is a class label, predicting the object 
detected within the image (In this example handwritten digits). 

 

 In the CNN created by LeCun et al (see Figure 16), four layers performed image convolutions 
(e.g. edge detection or color sorting) and subsampling, creating a multitude of low-resolution 
feature maps. The maps were used as an input to fully connected layers. Fully connected 
layers transformed the low-resolution feature maps into numerical value representations (a 
so-called feature-vector) of the features extracted in the convolution layers. In the output 
layer, a class label is computed using the numerical feature representations for classification. 
The implementation was extremely successful in recognizing hand-written digits, eventually 
being used for zip code reading in postal services. However, the algorithm could not be applied 
to higher resolution images, as it was limited by computing capacity, restricting the algorithm 
to fairly simple tasks. 

It was not until 2012, when Alex Krizhevsky applied a CNN in a large-scale image recognition 
challenge60 and proved the applicability of the method for high resolution images and multi-
class recognition (1000 classes from every-day scenes, e.g. “person”, “car”, etc.). For training 
the classification-algorithm, Krizhevsky was building on the vast amounts of labeled image 
data, as well as the parallel computing power of graphic processing units (GPU). Since 2012 
we have seen a tremendous use of CNNs not only for image recognition, but also object 
localization61–63 and lastly segmentation64 of object outlines within the image. 

The revolutionary capability of CNNs is that the algorithm adjusts filters automatically by 
“learning” from a labeled training dataset. More information on the learning process is 
provided in Chapter 1.5.4. Although convolutional filters are learned individually based on the 
training data, the process usually leads to a hierarchical structure of convolutional layers that 
resembles the structure of simple and complex cells for visual processing in the brain. In 
essence, CNNs mostly start a feature detection process by extracting low-level features such 
as edges and then combines the detected structures to search for high-level features like 
shape motifs in later convolutional layers. 
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1.5.4 Learning process 

As mentioned above, a CNN based algorithm needs to be trained to set its own weights, which 
are essentially the adjusted filter matrices for image convolution. However, to achieve 
appropriate filter adjustments, the algorithm needs a guiding process. This is started by 
providing exemplary weights (either starting from previously trained CNNs or initiated with 
random weights) and passing data (which might be images, speech, etc.) through the CNN, 
which is called a “forward pass” (see Figure 17a for an exemplary schematic forward pass). It 
is highly improbable that the classification will result in a successful prediction at the end of 
the first forward pass.  Therefore, an objective function needs to determine correctness and, 
if incorrect, the distance of the prediction to the ground truth56. Depending on the result of 
the objective function, weights must be adjusted by tiny fractions for each image in a way that 
minimizes incorrect detections and maximizes the probability for the correct output56. To 
achieve this, gradients for each weight must be computed that decipher the contribution of 
the specific weight to the result of the objective function. Figure 17b shows the principle of 
backpropagation, which is basically applying the chain rule for derivatives. 

 

Figure 17 Principle of backpropagation 
Weights a, b, c, d, and e have an influence on the result L. Feeding exemplary values into this process tree (blue) 
shows the process of a forward pass (a). Back propagation (b) is calculated in the opposite direction to decipher 
influences of all weights according to the chain rule for derivatives. To manipulate the result L, all weights can be 
changed in very small increments. 
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Gradients of the weights “a”, “b”, “c”, “d”, and “e” are computed with respect to their 
contribution on the result “L”. Thus, if the goal is to determine the difference in “L”, triggered 
by the change of weight “a”, one needs to multiply the effect of “d” on “L” with the effect of 
“a” on “d”: 

𝜕𝐿

𝜕𝑎
=  

𝜕𝐿

𝜕𝑑
∙

𝜕𝑑

𝜕𝑎
= −3 

1.7 

 

In this way contributions of each weight in the network can be determined and values updated 
according to the results from the last forward pass. In the example depicted in Figure 17, an 
incremental change of +1 on weight “a” would decrease the value of “L” by 3. If the lowest 
possible value for “L” is to be achieved, an incremental change of +1 on weight “a” would be 
beneficial. Whether “L” should be high or low depends on the respective application. The 
incremental change of weights depends on a predefined learning rate. The learning rate is a 
numerical value that dictates the amount a weight is changed in each backpropagation. 
Although it is beneficial to start the training with high learning rates, lower learning rates are 
recommended in later fine-tuning when it is necessary to adjust for subtle changes in the data. 

In the case of image classifiers, forward passes are performed with images and the weights 
correspond to the convolutional filter matrices. The “objective function” is a loss function that 
calculates the probabilistic difference from the predicted class label to the provided ground 
truth class label. Filter matrices are adjusted using the backpropagation mechanism. To build 
robust image classifiers based on CNNs, several forward passes of images have to be carried 
out with subsequent backpropagation and weight adjustments. A large number of images are 
needed for the algorithm to generate meaningful filter sets, based on feature variations 
depicted by the objects with the images. If only a small amount of data or highly homogeneous 
data is provided, the problem of overfitting arises, in which the filters are guided towards 
image features instead of object features. In such a case, classification would then be based 
on image specific illumination and shadowing instead of object shape. In scientific imaging 
modalities, limited and especially homogeneous data (e.g. one microscope, with one 
objective, and one illumination lamp configuration that is used to produce few images of a 
single cell line for training) can produce algorithms that are in turn restricted to the particular 
configuration that captured the dataset. In case of limited data availability, image 
augmentation like flips and rotations can be employed to combat overfitting. 

 

1.5.5 Object localization 

Image classification only assigns predicted class labels to an image with scores denoting the 
probability or confidence for the output. Therefore, it is a merely qualitative method that lacks 
crucial parts for quantitative image analysis. The next step in image analysis is object 
localization, which not only predicts class labels for input images, but also draws frames, so-
called bounding boxes, around the predicted objects within the image. Good examples for 
object localization are the applications of the “regions with CNN features” (R-CNN) method61–

63. These approaches first use a region proposal system, that identifies potential object 
containing areas within an image and subsequently classifies the extracted regions via a CNN 
and SVMs. Region proposal was first performed using an algorithm called “selective search”65 
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which groups similar regions in an image, thereby forming areas that are likely to belong 
together. 

 

Figure 18 R-CNN process61 

Input images are regionally scanned for possible objects. Region proposals (yellow frames) are extracted and 
passed into a convolutional neural network for feature extraction. The object within the frame is classified 
according to the feature vector using support vector machines. 

 

However, this system is a multi-stage process that includes individual CNN training on several 
proposed regions of the image, SVM computation, and bounding-box regressor training. 
Computation is not shared during these stages, offering a potential for enhancement which is 
introduced with Fast R-CNN62. The advancement of Fast R-CNN mainly results from the 
combination of all stages from R-CNN to one single stage, in which an entire image, along with 
a set of region proposals, is used as input to a CNN. After passing convolutional and max 
pooling layers, a feature vector for each region proposal is extracted from the feature map  
produced and passed into fully connected layers that eventually produce classification 
probability and bounding box regression. The highly simultaneous architecture significantly 
speeds up the process, as entire images rather than individual image regions are convolved. 
Together with subsequent advancements in region proposal systems, using convolutional 
feature maps instead of raw image input, image detection can now be run at 5 frames per 
second, approaching real-time object detection63. 

 

1.5.6 Object segmentation 

Object classification and detection give a rough estimate of object size at best but lack the 
true quantitative nature of image analysis. To properly quantify objects within images, 
algorithms need to accurately map object outlines. The process of appropriately classifying 
each image pixel to an object class is called segmentation. Segmentation masks, the outlines 
of segmented image areas, are by far more meaningful than bounding boxes, as object 
outlines allow for pose (e.g. cheering, walking, jumping) estimation, shape characterization, 
and area quantification relative to image size. Given the pixel-to-length calibration ratio (as is 
the case in microscopy), absolute number calculations, e.g. for object area, are possible. 

In many algorithms, every-day scenery has been segmented by classifying pixels into classes 
without accounting for individual object detection (semantic segmentation). In this case, 
segmentation of groups often results in detection of a single instance (such as in the algorithm 
ENet in Figure 19). 
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Figure 19 Output of semantic segmentation algorithm ENet66 

Note detection of car class as one broad binary large object (BLOB). The concept of semantic segmentation lacks 
assignment of segmented outlines to individual objects within the image. 

 

The combined detection of multiple objects in one single segmentation mask was prevented 
by applying region proposals to subdivide the image before the segmentation process. Region 
proposals “cropped” single objects within the image into a region of interest (RoI) frame. 
Subsequent segmentation of the single object within the predefined RoI resulted in 
segmentation of individual objects in an image (instance segmentation). Again, it was an R-
CNN based system that showed impressive results. Since it added a mask branch to the R-CNN 
system it was called Mask R-CNN64. The mask branch consists of convolutional layers that 
preserved the spatial layout of the proposed region, while filtering the region of interest (ROI) 
for object masks (see Figure 20). 
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Figure 20 Mask R-CNN architecture (adapted from 64) 

In the mask R-CNN approach, object features are highlighted in a first CNN for region proposal (finding single 
objects within the image, here: persons) (a). The features detected in the first CNN stage (i.e. convolutional 
feature maps of the regions of interest) are shared with the second CNN stage for classification (b) and the third 
CNN stage for mask generation. This parallel-step structure speeds up image processing and allows for 
segmentation of individual objects within the image. 

 

While further progress is being made in this sector, classification and segmentation results are 
currently increasingly dependent on appropriate datasets. CNN-based algorithms are 
particularly dependent on large datasets, thus I will briefly describe important factors in 
dataset development. 

 

1.5.7 Datasets 

As CNN training relies on appropriate feature detection, a large collection of feature examples 
needs to be available for the training of a new algorithm. Essentially, the collection must 
account for differences that affect the feature quality in an image, e.g. in angle, shading, 
shape, pose, distance, and color of an object. Therefore, exemplary situations need to be 
present in such a highly heterogeneous dataset. The classifier will eventually learn from the 
diverse features present in the dataset but will be limited by overrepresentation of single 
features. For instance, if a dataset contains nothing but front views of a red car, the resulting 
algorithm will not work correctly on the rear view of a yellow car. Diversity is overwhelming 
in everyday images. Thus, image collections for common objects can reach enormous sizes 
(see the Imagenet database67: 1.2 million labeled images, coco dataset68: 330,000 images with 
>2.5 million labeled instances). In life science research, this diversity is often restricted to 
grayscale images (e.g. CT, MRI, or X-ray scans) or limited in the availability of angles or 
distances within a single image (e.g. microscopy). Therefore, scientific datasets are often 
restricted to relatively small-scale collections from single setups, single magnifications, and 
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often even single measurements. Although resulting algorithms, arising from such 
homogeneous datasets often show overwhelming precision when applied to data from the 
very same instrument, reproducibility when using other instruments is often weak. The lack 
in reproducibiity with diverse data sets is the reason why computer vision algorithms are 
regularly retrained on specific datasets69. Therefore, in many fields of science, heterogeneous 
image datasets should not be built upon color or angle diversity but should instead rely on 
heterogeneous imaging modalities with multiple setups or varying magnification and 
resolution. In addition, biological entities such as cells in culture or tumors on a CT scan tend 
to show remarkable variability, therefore, a special focus must be put on shape heterogeneity. 
Building appropriate datasets is crucial for future algorithm development and therefore of key 
interest for computer scientists and automation engineers. 

 

1.5.8 Evaluation 

Evaluation of segmentation algorithms is often based on precise values. In classification tasks, 
precision relates the number of correctly detected instances (true positives) to the number of 
all detections, no matter if correct or incorrect (false positives). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

1.8 

 

However, the obstacle in defining “true positive” detection clearly arises. When is a detected 
mask accurately representing the pixel area of the object within the image? To solve this issue, 
the intersection over union (IoU) score is employed which divides the overlapping area of two 
objects A and B (see Figure 21a), and divides it by the area of union of A and B (see Figure 
21b). 

𝐼𝑜𝑈 =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

1.9 

 

Figure 21c displays area overlaps corresponding to their IoU scores from 0.33 to 0.75. This 
concept is used to characterize instances detected according to the overlap shared with the 
ground truth segmentation area. True positives are regarded as such if they exceed 
predetermined IoU thresholds. For more details on the thresholds used see chapter 2.3.3. 
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Figure 21 Concept of Intersection over Union 
Two areas A and B overlapping with intersection shown in red frame (a). Union of areas A and B in gray (b). 
Overlapping areas with respective IoU scores (c). 
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2 Experimental Methods 
In this chapter I will introduce the core methods used in this thesis. As this work was driven 
by interdisciplinary approaches, combining bench work with computational methods, I 
categorized the methods in three types: wet lab, semi-dry lab and dry lab (see Figure 22). 

 

 

Figure 22 - Methods can be divided in wet lab, semi-dry lab and dry lab work 

 

First, cell cultivation, cell treatments as well as cell staining are described. Subsequently, the 
applied microscopy techniques, including confocal and automated high-content screening 
systems are introduced. Lastly, computational approaches such as image processing and data 
interpretation are explained. 

 

2.1 Cell culture 

In this work, a multitude of cell lines was cultured for different purposes. Amongst the most 
important was THP-1, a monocytic cell line derived from the blood of a one-year old monocytic 
leukemia patient in 198070. It was used as a model cell line for lipid uptake studies and its 
handling was therefore of importance for the following subchapters. Hence, the 
differentiation protocol and general cultivation procedure is introduced here. For further 
details, see Chapters 3 and 4. One hallmark of these cells is the adoption of a macrophage-like 
phenotype upon initiation of differentiation using phorbol esters. The transformation of the 
suspension cell line THP-1 to the adherent macrophage phenotype is accompanied by reduced 
proliferation, higher rates of phagocytosis and a resemblance to macrophages in the vascular 
wall71. In Chapter 4, the cell line was used as a model for lipid accumulation in macrophages 
within the arterial wall as previously described71. If not stated otherwise, differentiation was 
initiated by employing a protocol described by Chanput et al72, in which cells were treated 
with phorbol-12-myristate-13-acetate (PMA) (Sigma) for 48 hours before entering a recovery 
phase of 24 hours, during which macrophage markers increase. RPMI (Gibco) supplemented 
with 10 % fetal calf serum (FCS) (Gibco) and 10 U/mL Penicillin/Streptomycin (Gibco) was used 
for culturing and for differentiation of cells. After differentiation, FCS content was reduced to 
1 %, if not stated otherwise. 

In another study (Chapter 5), a dataset was assembled, which consists of microscopic images 
of numerous cultured mammalian cell lines. A special focus in selecting these cells was on 
their representation of a broad range of cellular shapes. 
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Cell types chosen for this purpose can be categorized in five main tissue-specific groups: 

 Colon: Colo320, SW-480, HT-29, Caco-2, DLD-1, HCT116, RKO 

 Mammary gland: T47D, SK-BR-3, MDA-MB-2311, MCF-7 

 Kidney: 786-O, 769p, ACHN, CAKI-2 

 Prostate: PC-3, LNCaP, DU-145 

 Bone: MG-63 

Additionally, we used cell lines that are commonly found in cell biological labs, but do not 
belong to the main tissue groups: HeLa (cervix), HT1080 (connective tissue), NIH/3T3(embryo), 
RAW 264.7 (Ascites macrophages), HEL 299 (lung), FaDu (pharynx), MCC26 (skin), C2C12 
(muscle), CHO-K1 (ovary), hMSC (mesenchymal stem cells), SH-SY5Y (bone marrow 
neuroblastoma). Details on culture media are given in Chapter 5. 

 

2.1.1 Microscale culture 

The parallel cultivation of 30 cell lines is labor intensive and costly in terms of supply materials. 
For this reason, a microculture was established, using 96-well plates as culture vessels (see 
Figure 23). In this approach, all wells were pre-filled with 200 µL of the cell-specific medium.  
After this, serial dilutions were carried out with the respective cell line using multichannel 
pipets, applying step-wise dilution of cell numbers by mixing 100 µL of the previous well into 
the following well. This resulted in a more than 1000-fold dilution when comparing first and 
last wells in the column. For reseeding every 3 – 4 days, subconfluent wells for each cell line 
were picked, medium aspirated, washed with PBS twice, and cells detached with 15 µL of a 
0.05 % solution trypsin/EDTA. After detachment, the trypsin containing cell suspension was 
diluted with respective cell medium to 200 µL of which 100 µL was used for replating into new 
96-well plates. To avoid elevated levels of trypsin during experiments, medium in the wells 
was exchanged after cell attachment (~2 h). 
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Figure 23 Principle of microscale cell cultivation 
Different cell numbers per well were cultured column-wise in 96-well plates. Left and right columns were filled 
with PBS to account for water evaporation. 

 

2.1.2 Hydrogel culture 

One main goal of the thesis was to analyze substrate stiffness mediated effects on cellular lipid 
uptake.  Therefore, a mechanically tunable cell culture vessel was required. For this approach, 
we cultured THP-1 cells on hydrogel coated vessels using two approaches: 

 High-throughput screening format (Matrigen Life Technologies): 96-well plates with a 
column-wise change in hydrogel stiffness ranging from 0.2 kPa to 50 kPa and glass 
(several GPa range) as control. 

 PetriSoft dishes (Matrigen Life Technologies): Petri dishes coated with hydrogels of 
defined stiffness for larger cell quantities. 

#1.5 glass bottom 96-well plates were used for microscopic intracellular lipid quantification, 
PetriSoft dishes were used for flow cytometry analyses. Hydrogels were fabricated from 
polyacrylamide, which can be prepared to exhibit a wide range of stiffness73. Stiffness 
variations in polyacrylamide gels are achieved by tunable degrees of crosslinking using varying 
concentrations of bisacrylamide as crosslinking reagent. For cell adhesion, all hydrogel and 
glass surfaces were collagen I-coated by the supplier. Since THP-1 derived macrophages 
exhibited less adhesion with lower substrate stiffness, hydrogels with Young’s moduli below 
4 kPa were not used and measurements were focused on surfaces with 4 kPa, 25 kPa, 50 kPa, 
and glass. A cell density of 3 ∙ 104 cells per cm² was seeded and differentiation initiated on the 
respective substrate, to allow cellular adaptation to the varying stiffnesses during monocyte 
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to macrophage transition. Medium was changed by carefully aspirating and refilling at the 
corners of the vessels to reduce cellular detachment, especially on soft substrates. 

2.1.3 LDL modification for cytosolic lipid droplet accumulation 

As described in the introduction section, native LDL is subject to negative feedback regulation, 
which prevents excessive lipid accumulation within the cytosol. To evaluate this in our cells, a 
modified protocol presented by Khoo et al74 was established to modify LDL by aggregation via 
vortexing. 1 mg/mL Human LDL (Lee Biosolutions) in PBS was vortexed for 30 s and 
subsequently mixed with RPMI culture medium containing 1 % FCS and 
10 U/mL Penicillin/Streptomycin. The 10% FCS in the culture medium was reduced to 
decrease bovine lipoprotein levels in the final medium present in serum that could affect the 
cytosolic lipid content unspecific to human LDL addition. THP-1 derived macrophages were 
incubated with final concentrations up to 100 µg/mL aggregated LDL (agLDL) and without 
agLDL in control experiments. Cytosolic lipid droplet (LD) formation was strongly suppressed 
under control conditions, as expected. Lipid signals moderately increased upon addition of 
50 µg/mL LDL while addition of 50 µg/mL aggregated LDL lead to excessive LD formation with 
cells exhibiting the characteristic foam cell appearance (Figure 24). 

 

Figure 24 Qualitative comparison of lipid uptake in THP-1: 

PMA-differentiated THP-1 were cultured for three days without LDL addition (a), with 50 µg/mL human LDL in 
native state (b) or after aggregation via vortexing (c). BODIPY staining indicates cytosolic lipid droplet formation 
(green) increasing from a) to c). DAPI staining indicates nuclei (blue). Scale bars = 50 µm. 

To assess the influence of incubation time and LDL concentration on cellular LD formation, 
lipid signals were quantified during a five-day incubation period with varying concentrations 
of aggregated LDL (Figure 25). Cells were stained with BODIPY for lipids and DAPI for nuclei 
after three and five days, respectively. Mean lipid fluorescence intensity in the image was 
divided by number of cells and all results were normalized to the control (LDL-free; 10 % FCS) 
value after 3 days incubation. Monitoring the lipid uptake showed time- and concentration-
dependence, with incubation time having the stronger impact. According to these findings, 
100 µg/mL was chosen for agLDL concentration with a five-day incubation time. 
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Figure 25 Lipid signal quantification per cell 

THP-1 derived macrophages were incubated for 3 days with 10 % FCS containing medium (green) or 3 days 
(white) and 5 days (gray) without LDL addition, with 50 µg/mL agLDL, and with 100 µg/mL agLDL in 1 % FCS 
containing medium. Cell samples were stained with BODIPY for lipids and corresponding mean fluorescence 
intensity for each image was divided by number of cells in the field of view (manually counted). For comparison, 
all values are normalized to the fluorescence per cell after 3 days in 10 % FCS containing medium. Error bars 
indicate standard deviation from 12 microscopic fields of view acquired in 3 independent, pooled experiments. 

 

2.1.4 Cytoskeletal drug treatment 

To assess the influence of cytoskeletal components on stiffness-mediated lipid uptake, two 
different cytoskeletal drugs were applied: 

 Latrunculin A binds monomeric actin units and thereby prevents polymerization75,76. 
Latrunculin A has been shown to inhibit actin cytoskeleton assembly in various cell 
types including human bone marrow stromal cells77, human mesenchymal stem cells78, 
and macrophages45. 

 Colchicine binds to tubulin and inhibits microtubule polymerization79, its applicability 
in cell culture experiments was demonstrated before80,81. 

Latrunculin A was administered at 1 mM and Colchicine at 10 mM. Efficacy of drug treatments 
was demonstrated by confocal fluorescent microscopic imaging (Figure 26). 
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Figure 26 Effects of the applied cytoskeletal drugs on THP-1 derived macrophages 

Actin filaments stained with 555-Phalloidin (red) show broad cell spreading in native state without drug 
application (a), Latrunculin A treatment prevents cell spreading and leads to spherical shape, with no visible 
filamentous actin (b). Microtubule staining using Tubulin Tracker shows filamentous structures in native state (c) 
and no polymerization during colchicine treatment (d). 

 

2.1.5 Cell staining 

As described in the introductory section, fluorescence microscopy is dependent on accurate 
staining of the observed specimen. We applied fluorescent dyes as well as fluorophore 
coupled antibody staining. While most fluorescent dyes stain chemical moieties upon 
integration (e.g. intercalation into the DNA or preferred solvation in lipids), antibody staining 
is highly specific to proteinogenic domains. Therefore, chemical dyes were used for nucleus, 
membrane, and lipid droplet staining prior to fluorescence microscopic imaging, while 
antibodies were applied to test for expression of proteinogenic differentiation markers in the 
cell membrane using flow cytometry (FC).  

The most important dye used in this work was the membrane permeable fluorescent dye 
DRAQ5. DRAQ5 is often used for staining the nucleus and exhibits a maximum excitation 
around 647 nm and emission between 665 nm and 780 nm82. Excitation and emission in the 
red color spectrum allows the simultaneous use of DRAQ5 with frequently applied 
fluorophores like fluorescein, CY3, or EGFP with lower emission spectra. DRAQ5 shows a 
particular imprecision, as its staining activity is not restricted to the primary target nucleus, 
but also weakly stains the cytosol (because of missing fluorescence enhancement upon DNA-
binding82). This feature makes the dye a unique candidate for the cell segmentation algorithm 
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studies, as it shows an intensifying signal gradient from the cell borders towards the nuclei 
enabling cell body detection via thresholding and the identification of individual cells by 
watershedding using nuclei as seeds. Cell samples were washed three times with PBS and 
stained for 40 minutes with 5 µM DRAQ5 in PBS (in contrast to common protocols applying 15 
mins82). After staining, cells were washed three times with PBS to reduce unwanted non-
cellular background fluorescence during imaging. 

To quantify intracellular lipid volumes in images in Chapter 4, cells were stained with BODIPY. 
This dye stains neutral lipids and is therefore highly specific for lipid droplets83. Its narrow 
excitation and emission peaks at 493 and 503, respectively, do not interfere with DRAQ5, 
which was essential when combining DRAQ5 based cell segmentation with BODIPY based lipid 
quantification stainings. Antibodies directed against human CD36 and scavenger receptor A 
(SRA) were used to determine expression of the respective protein on agLDL treated THP-1 
derived macrophages (see Table 1). These cells were subjected to FC analysis, which is 
described in Chapter 4. 

Table 2 Antibodies and Fluorophores used for labeling 

Antibody Fluorophore Host Supplier (catalog number) 

Anti-SRA Alexa Fluor 647 Mouse Santa Cruz (sc-166184) 

Anti-CD36 Phycoerythrin Mouse EXBIO (1P-451-T025) 

 

For the creation of the image dataset in Chapter 5, cell membranes and nuclei were stained 
to facilitate manual ground truth determinations of cellular and nuclear segmentation lines. 
CellMask Orange was applied to stain plasma membranes as previously described84,85 and 
DAPI for nucleus staining86,87. 

 

2.2 Microscopic analyses 
2.2.1 Confocal microscopy 

Confocal microscopy was used for optical sectioning of stained cells (see Figure 27). Shifting 
the focal plane by the step size d several times while moving through the cell results in a 
volumetric Z-stack with depth D. The step size must be chosen larger than the theoretical 
depth resolution of the objective to avoid multiple detections of the same entity by 
overlapping Z-regions from lower or higher image planes. 
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Figure 27 Optical sectioning of cells using confocal microscopic imaging 

Image planes (gray) separated by step size d were generated by scanning stepwise through the specimen, 
collecting a stack of 2D images, spanning a total depth D. Multiplication of image width x and height y with depth 
D results in 3D volume covered by the Z-stack. 

 

All measurements were performed on a TCS SP5 confocal microscope (Leica Microsystems), 
using a HeNe laser set to 632.8 nm for excitation and fluorescent emission detection set to 
680 – 730 nm. Detector gain was adjusted for minimum saturation within the nucleus to use 
nuclei as maxima for each cell during downstream image processing. As cytosolic fluorescence 
signals were vital for cell segmentation during image processing, no detector offset was 
applied which would cut off weak signals. Confocal stacks with a step size of 1.51 µm between 
each image plane were recorded. Lateral resolution was 0.6 µm per pixel with image widths 
and heights of 1024 pixels, respectively. Scanning speed was set to 400 Hz. Detailed 
information on settings for BODIPY-stained lipid signal acquisition is given in Chapter 4. 

 

2.2.2 High-throughput microscopy 

For large-scale experiments using high-throughput microscopy offers a straight-forward 
solution to produce large amounts of data. To assemble a microscopic image dataset with the 
diverse set of cell lines described in 2.1, the high-content-screening system Opera Phenix 
(PerkinElmer), as well as the screening microscope AF7000 (Leica) with a programmable 
microcontroller was employed. By scanning each well in 96-well plates in brightfield (Opera 
Phenix) or phase contrast (AF7000) modes as well as with widefield fluorescent microscopy 
(together), thousands of images were generated using objectives ranging from 10 – 40 X (see 
Table 3). To guide the autofocus algorithms in both systems, plate dimensions were defined 
and a height range based on manual focus determination at several spots were set. Image 
acquisition was fully automated and low-quality images (e.g. out of focus images) were 
discarded manually. 
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Table 3 Microscope setups, objectives, and Software used for automated image acquisition 

Setup Objectives (part number, magnification, 
numerical aperture, immersion medium) 

Software 

Opera Phenix  HH14000403 10x/0.3 Air 

 HH14000404 20x/0.4 Air 

 HH14000422 40x/1.1 Water 

Harmony 4.5 

AF7000  HC PL Fluotar 10x/0.3 Air 

 HC PL Fluotar L 20x/0.4 Air 

LASX 

 

2.3 Image processing 

All image processing steps for DRAQ5-based cell segmentation are explained in detail in 
Chapter 3. Therefore, this section will focus on introducing image processing steps utilized to 
prepare the microscopic image dataset and the training of a machine-learning algorithm. 
Finally, algorithm evaluation and data interpretation are explained. 

2.3.1 Image preparation for manual annotation and dataset creation 

Image data for the dataset was produced with automated, as well as conventional setups. The 
setups consisted of brightfield or phase contrast channels, and if needed, additional channels 
from fluorescent nucleus and membrane staining. Two versions of each image were 
generated: 

 An 8-bit grayscale image of the brightfield or phase contrast channel without any 
processing 

 A combined RGB image, overlaying all available channels (brightfield or phase contrast 
channel as grayscale image, fluorescent channels color coded) 

The combined RGB image was used for manual cell segmentation to produce training data for 
the machine-learning algorithm. To enhance contrast in this image, the built-in FIJI auto-
contrast function was utilized for each channel. This processing step sometimes resulted in an 
oversaturated appearance of the fluorescent channels, which complicated the manual 
identification of cellular or nuclear outlines during the annotation process. To counteract this 
issue, signals in fluorescent channels were attenuated by a factor of 0.6 after automated 
contrast adjustment. 

Manual ground truth segmentation masks were created by several individuals with cell culture 
experience using the selection brush tool in FIJI. Five to ten nuclei and cell instances were 
annotated per image. After manual segmentation was complete, image pixel height and 
width, as well as polygons of selections were extracted and saved in a JavaScript Object 
Notation (JSON) text file, using the coco annotation format (see Table 4). This file was a 
collective library that compiled object annotations from the selection polygons and category 
inputs and assigned these annotations to the list of images that made up the dataset. 
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Table 4: Coco-like annotation format used in dataset production 

Format Comments 

{ 
"info": info, 
"images": [image], 
"licenses": [license], 
"annotations": [annotation], 
"categories": [category] 
} 

General structure 

 Information about dataset 

 List of image dictionaries 

 List of license dictionaries 

 List of annotation dictionaries 

 List of category dictionaries 

info 
{ 
"description": "EVICAN 2018 Dataset", 
"url": "www…de", 
"version": "1.0", 
"year": 2018, 
"contributor": "Mischa Schwendy", 
"date_created": "2018/07/01" 
} 

Information about dataset 
 

 Short description [string] 

 Web access to dataset [string] 

 Version number [string] 

 Creation year [integer] 

 Contributors [string] 

 Exact date of creation [datetime] 

image 
{ 
"license": int, 
"file_name": "1_C2C12.jpg", 
"width": 1200, 
"height": 800, 
"id": int 
} 

Image dictionary (input for list in “images”) 
 

 ID of license applied [integer] 

 Image file name [string] 

 Image pixel width [integer] 

 Image pixel height [integer] 

 Serial number assigned to image [integer] 

license 
{ 
"url": "http://creativecommons.org/ 
Licenses/by-nc-sa/2.0/", 
"id": 1, 
"name": "Attribution-NonCommercial-
ShareAlike License", 
} 

License dictionary (input for list in “licenses”) 
 

 Web access to license[string] 
 

 Serial number assigned to license [integer] 

 Name of license [string] 

annotation 
{ 
"category_id": 1, 
"iscrowd": 0, 
 
"image_id": 1, 
"id": 1, 
"segmentation": [X1,Y1,…, Xn,Yn] 
} 

Image dictionary (input for list in “annotations”) 
 

 ID of object category [integer] 

 Crowd identification (0 for individual instances, 1 
for group detections) [integer] 

 ID to link respective image [integer] 

 Serial number assigned to annotation [integer] 

 Segmentation points [polygon] 

category 
{ 
"supercategory": "Cell”, 
"id": 1, 
"name": "HeLa”, 
} 

Category dictionary (input for list in “categories”) 
 

 Collective term for similar categories [string] 

 Serial number assigned to category [integer] 

 Name of category (e.g. cell lines) [string] 



41 
 

 

The dataset was split into three parts: 

 Training dataset (4.644 images, partially annotated) 

 Validation dataset (1.176 images, partially annotated) 

 Evaluation dataset (98 images, fully annotated) 

Training a convolutional neural network depends on annotated instances, as well as 
unannotated background in an image, from which the classifier learns to disregard objects not 
connected to a learned class. Theoretically, this requires full annotation (i.e. manual 
segmentation of each cell and each nucleus in all images) of all dataset parts. As the overall 
cell number in the entire dataset easily surpassed 500000 cells, a complete annotation was 
not manually feasible. Instead, a background in training and validation images was created by 
blurring the images with a Gaussian blur, saving the annotated instances plus an additional 10 
pixel “buffer zone” surrounding the segmentation outlines. This degraded unannotated cells, 
that otherwise would have been associated as the “background class” by the trained 
algorithm. In addition to these processed background images, the background class must 
include objects common in microscopy but not associated with living cells (e.g. cell debris, 
scratches on the glass surface, diffractions from bubbles in the medium). Therefore, 
unprocessed background images also including debris, scale bars, etc. were included in the 
dataset (750 in the training part, 250 in the validation part). The evaluation dataset was used 
to test the algorithm produced with real imaging modalities. Therefore, the evaluation dataset 
was fully annotated manually (i.e. all cells in all images of the evaluation dataset) without any 
image processing (i.e. raw brightfield or phase contrast images). 

 

2.3.2 Algorithm training 

During training of a CNN-based machine-learning algorithm, weights and therefore 
convolutional kernels are adjusted based on annotated instances in the training dataset. As 
training is a stepwise process, one small batch of images from the training set is picked 
randomly and passed through the CNN. Predictions of annotated instances within a training 
image are counted as correct, if class prediction (e.g. “nucleus” class) matches the provided 
class label and mask prediction (i.e. detected segmentation area) and matches the provided 
ground truth segmentation area with IoU scores above 0.5. After each step, weights in the 
CNN are incrementally updated to better fit to a detection of instances in the last batch of 
images. To create an algorithm that is independent of individual image properties (e.g. 
brightness, microscopic technique, resolution) and more specific to the object class features 
(e.g. granularity, protrusions), a large quantity of images needs to be passed through the CNN 
and correspondingly adjusted weights. Based on this, the majority of partially annotated 
images was used for training. To further increase the diversity of available data, a set of image 
augmentation techniques was applied randomly for each step: 

 horizontal and vertical mirroring 

 90°, 180°, and 270° rotations 

 Rescaling between 50 % and 150 % of the original image size 

The computer vision algorithm applied in this thesis was a mask R-CNN implementation in 
python using the machine learning library TensorFlow and the CNN library Keras. The software 
released by Matterport Inc.88 (under an MIT license) was originally designed for every-day 
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scene segmentation and classification. The underlying CNN structure was based on a 
previously published network called ResNet-10189 comprised of 101 convolutional layers 
subdivided into 5 stages and so called network “heads”. Network heads were fully 
convolutional layers for class prediction based on the features extracted by the convolution 
process. A simultaneous training of all layers without pre-adjustment resulted in poor training 
efficiency. Hence, the training process was subdivided into three parts: first the network heads 
were trained (i.e. using convolutional filters previously designed for every-day scene images 
without adaptation and limited by only adjusting the decision-making process for class 
prediction and mask generation). The next training step consisted of using the last 
convolutional stages, i.e. the 4th and 5th stages of the ResNet-101 structure adapted 
convolutional filters for motif-recognition. In the last step, the training process was finetuned 
to all layers (i.e. also containing the early convolutional stages, detecting low-level features 
such as edge-detection or color sorting). 

In practice, the CNN training schedule was performed using 2 images per training step. 
Training steps are essentially forward passes of images through the CNN with subsequent 
backpropagation to adapt image filters or the weighting process in fully connected layers. 
1000 training steps were bundled to form an “epoch”, i.e. each epoch consisted of 2000 image 
passes through the network with subsequent adjustment of the weights. After each training 
epoch, 25 validation steps with a batch size of 2 were executed, i.e. 50 images were passed 
through the network and checked for accurate segmentation and classification. Validation was 
performed on a separate dataset to prevent a mislead test process: Testing images that were 
used for training does not provide insight into the general applicability of the algorithm on 
other images. Network heads were trained for 40 epochs, 4th and 5th stages for 8 epochs, and 
finetuning on all layers was performed in 4 epochs. I.e. in total, 104,000 images were passed 
through the CNN for training. 

 

2.3.3 Algorithm evaluation 

The trained algorithm’s capability to correctly detect instances in an image was tested on 98 
fully annotated images in the evaluation dataset part. Average precision (AP), as defined in 
Chapter 1, was calculated on the basis of IoU thresholds: 

 AP0.5 denotes the average precision at IoU thresholds of 50 % 

 AP0.75 applies for precision at IoU thresholds of 75 % 

 AP corresponds to the averaged AP-values at IoU thresholds incrementally increased 
from 50 – 95 % in 5 % steps (Averaged AP0.5, AP0.55,…,AP0.90, and AP0.95) 
 

2.3.4 Data interpretation 

Results generated with this method included object area, circularity, and aspect ratio. The 
importance of these parameters in a cellular context is reviewed in brief below: 

 Projected cell area 
One of the most valuable information features of cells is their area. It provides a 
quantitative, often characteristic description of cell size that is subject to little change 
even during cell movement. It carries information about proliferation, enables 
categorization into subgroups and measures cell spreading. Cell area analysis can be 
used in several experimental contexts where cell sizes are expected to decrease, for 
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example, for the comparison of cellular growth on hydrogels of different stiffness or in 
the application of cytoskeletal drugs that restrict cell spreading. It can often be more 
accurate to normalize downstream measured intracellular entities to cell area than on 
a per cell basis to account for differently sized cells within a given population. 

 Circularity 
The circularity parameter relates the area of a detected object to its perimeter. 

𝐶𝑖𝑟𝑐 = 4 ∙  
𝐴𝑟𝑒𝑎

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
 

In the case where the object has a perfect circle shape, that is, with the highest possible 
area to perimeter ratio, then the circularity parameter equals 1. From a perfect circle 
shape the perimeter can increase with the area staying constant, but not vice versa.  
Therefore, it follows that the circularity will approach 0 with increasing perimeter in 
the denominator. 
Based on the above, a cell, will have lower circularity values the less even its silhouette 
is. As this can be exhibited by several phenotypes including one dimensional 
elongation, the formation of pseudopodia, or the apparent surface roughness formed 
by lamellipodiae, one cannot rely on circularity as a single shape descriptor. 

 Aspect ratio 
If the goal of an experiment is to probe the axial elongation of cells, the best marker 
to use is the aspect ratio.  The aspect ratio relates the length of the major axis to the 
length of the minor axis of an ellipse that is fitted to the object. In a cellular context 
this means that the longest side is divided by the shortest side of an elliptic cell. High 
values in this parameter represent a high degree of elongation. 

𝐴𝑅 =
major axis

minor axis
 

These three parameters provide robust quantitative measures for commonly observed 
qualitative cell shapes. 
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3.1 Abstract 

Background: Image segmentation and quantification are essential steps in quantitative 
cellular analysis. In this work, we present a fast, customizable, and unsupervised cell 
segmentation method that is based solely on Fiji (is just ImageJ)®, one of the most commonly 
used open-source software packages for microscopy analysis. In our method, the “leaky” 
fluorescence from the DNA stain DRAQ5 is used for automated nucleus detection and 2D cell 
segmentation. 

Results: Based on an evaluation with HeLa cells compared to human counting, our algorithm 
reached accuracy levels above 0.92 and sensitivity levels of 0.94. 86 % of the evaluated cells 
were segmented correctly, and the average intersection over union score of detected 
segmentation frames to manually segmented cells was above 0.83. Using this approach, we 
quantified changes in the projected cell area, circularity, and aspect ratio of THP-1 cells 
differentiating from monocytes to macrophages, observing significant cell growth and a 
transition from circular to elongated form. In a second application, we quantified changes in 
the projected cell area of CHO cells upon lowering the incubation temperature, a common 
stimulus to increase protein production in biotechnology applications, and found a stark 
decrease in cell area. 

Conclusions: Our method is straightforward and easily applicable using our staining protocol. 
We believe this method will help other non-image processing specialists use microscopy for 
quantitative image analysis. 

3.2 Background 

Fluorescence microscopy is the method of choice to visualize specific cellular organelles, 
proteins, or nucleic acids with high sensitivity and selectivity. Importantly, fluorescence is, in 
principle, quantitative in that intensity of fluorescence from each position in a sample is 
proportional to the abundance of the fluorescent moiety in that region of the sample. Once 
fluorescence images are properly corrected, quantitative image processing can provide 
abundant information about the imaged species – most notably its spatial distribution within 
single cells90–92. The commercialization of automated microscopes, together with thousands 
of different fluorescent proteins, cell stains, and digital microscopy, has catalyzed the 
production of a staggering amount of high-quality imaging data. Thus, it is indispensable to 
automate the process of image quantification of which one essential step is image 
segmentation, i.e., the selection and compartmentalization of regions of interest (ROI) within 
the image. In mammalian cell culture experiments, which are the focus of this work, these 
ROIs are quite often single cells. 

Proprietary image processing software from microscope manufacturers or software specialists 
such as Imaris or Metamorph offer potent and ready-to-use solutions for image segmentation 
and further processing. These programs are user-friendly and do not require deep knowledge 
of data processing nor any programming skills but require a monetary expenditure. 
CellProfiler is an open-source, alternative tool that offers a platform with a graphical user 
interface to customize a pipeline for cell detection and geometric quantification based on pre-
programmed methods91. The method presented in this work is an algorithm built within FIJI 
(is just ImageJ)® – hereafter called FIJI, a popular and effective alternative to CellProfiler, 
which is bundled with the open-source Micro-Manger microscopy control software93,94. 
Because FIJI is widely used in the microscopy community, it offers a broad toolbox with several 
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basic and (user-provided) advanced processing steps (via plugins) that can be combined to 
produce powerful image processing methods.  

Automated fluorescence microscopy based cell segmentation algorithms from cytoplasmic 
stains can exhibit correct segmentation results above 89 %95. Modern computer vision 
algorithms for cell microscopy generate highly accurate segmentation lines with intersection 
over union (IoU) scores above 0.9, even in unstained samples (U-Net)96. However, training 
computer vision algorithms requires large annotated datasets and can be challenging to adapt 
for additional imaging modalities when the training dataset does not sufficiently account for 
image diversity. In this contribution, we present a practical, automated algorithm for 
mammalian cell segmentation and geometric feature quantification in FIJI that can be 
extracted from fluorescent images using a single nuclear stain – in this case, DRAQ5, as 
opposed to more frequently used cell body stains. Because DRAQ5 does not exhibit 
fluorescence enhancement upon intercalating into DNA, as opposed to the almost 
omnipresent DAPI, it produces a moderate, “leaky”, cytosolic fluorescent DRAQ5 signal, which 
is still detectable within the dynamic range of our PMT in the confocal microscope. This “leaky” 
signal is crucial for our cell segmentation method. Our algorithm is based on appropriate 
background subtraction and the identification of the weak cytosolic DRAQ5 signals to properly 
identify cell bodies. Subsequent watershedding using the strong nuclear signal as the 
respective local maxima allows for efficient, and more importantly, accurate cell border 
detection. The modularity and delivery of our algorithm as an ImageJ macro should make it 
readily customizable to other end user's needs. Moreover, it should be no problem to use this 
algorithm with other nuclear dyes so long as the dye exhibits sufficient cytosolic fluorescence 
along with strong nuclear fluorescence. 

We start by describing the algorithm and demonstrating its quantitative accuracy by 
comparing automated analysis against human detection of HeLa cells. In two applications of 
our algorithm, we analyzed the cell growth of THP-1 cells during differentiation and the change 
in spreading area of Chinese hamster ovary (CHO) cells during low-temperature cultivation – 
a perturbation regularly used for biotechnology applications97. 
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3.3 Results 

Algorithm development 

The overall processing scheme is outlined below in Scheme 1.  

 

Scheme 1 Steps in image processing and segmentation algorithm. 
(I,II): Production of a subtraction mask for background subtraction by duplicating the raw image and constraining 
maximum to three-fold the mean gray value of the image (I). Gaussian blurring (shown here as the water droplet) 
of the constrained image (II) generates a background image for background subtraction in III. III: The background 
in the original Z-projected image is reduced via a double subtraction step. First, a rolling ball subtraction is 
performed (ball radius is set larger than cell radius, to leave the cytosolic signal unaffected) with a subsequent 
Gaussian blurring of remaining punctate background signals. Secondly, the background image (made in II)  is 
subtracted from the (already background reduced) version of the original image. This background subtraction 
procedure results in an almost flat background image containing only nuclear and cytosolic intensity 
components. IV: Thresholding the blurred, background-subtracted image results in a binary cytosol mask. V: The 
image from III was further blurred, and watershedded to produce a binary image of lines that split touching cells. 
VI: The logical (pixel-wise) AND operation combined cytosolic mask (from V) and the watershed lines (from VI) 
to a binary image of segmented cells. VII: Particle analysis with a size filter allows neglecting small particles in 
the image and selection of the segmented cells for further analysis. 

 

All image processing was performed on a Z-projected image – projected according to the 
standard deviation – of DRAQ5 fluorescence; each pixel in the projected image had an 
intensity value given by the standard deviation of the pixels in Z-direction. This highlights 
zones with a high degree of variation in the Z-direction, which enhances weak and punctate 
signals. To reduce the background signal in Z-projected images caused by uneven illumination 
or non-specifically bound fluorophores, we applied a two-step process. First, a background 
image was produced by constraining the maximum of the original image and Gaussian blurring 
the constrained image with a sigma of 100 µm (Scheme 1, I and II). This process coerced high-
intensity signals to a new maximum value of the threefold global mean gray value and blurred 
the leaky cytosolic DRAQ5 signal so that it would remain after subsequent subtraction from 
the original image. This background image was subtracted from the pre-flattened version of 
the original Z-projected image that was generated using a rolling ball subtraction with a radius 
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of 100 µm followed by smoothing with a Gaussian blur filter with a sigma of 1 µm. Subtracting 
the background image from the processed original image resulted in a near-zero background 
except for the nuclear and cytosolic DRAQ5 signals (Scheme 1, III). The resulting image (from 
step III) was duplicated and used for thresholding and watershedding (Scheme 1, IV and V). 
Specifically, to produce a binary image of the cell bodies, a threshold at a gray value of 1 was 
sufficient as all background values were strongly reduced (Scheme 1, III). This produced a 
binary image that highlights complete cell bodies and nuclei. Adjacent and overlapping cells 
were divided in the further Gaussian blurred (sigma = 2 µm) copy from step III by applying the 
“find maxima” command with “Segmented Particles” as the output and a noise value given by 
a threefold mean gray value of all non-zero gray values in the image (Scheme 1, V). 

Combining the thresholded image (Scheme 1, IV) with the watershed lines (Scheme 1, V) via 
the logical (pixel-wise) “AND” operation produced a binary mask of the cell population in the 
image with juxtaposed cell borders of individual cells separated (Scheme 1, VI). A size filter 
was applied, detecting cells with sizes bigger than 200 µm² to avoid detection of cell debris 
(Scheme 1, VII).  

To analyze cell shape, we probed three parameters: projected cell area as a measure of cell 
spreading, circularity as a measure of cellular protrusions and aspect ratio as a measure of 
elongation. These quantities are exported in an automated fashion in a table format at the 
end of the analysis. An example of the Macro is given in the Supplemental Information.  All 
images used in this work and the example Macro is additionally available in98. 

 

Evaluation of the cell detection and segmentation method 

An exemplary output of segmented cells within a processed image is shown in Figure 28a. To 
evaluate the segmentation from the leaky DRAQ5 signal, we used an established approach 
that relies on manually monitoring the automated detection results on a set of test images99; 
similar human-comparison approaches have been used elsewhere100,101. The evaluation was 
performed by applying the selected frames on the corresponding bright-field image (Figure 
28b), and three individuals, each with more than three years of experience in cell biology, 
manually counted cells and checked for appropriate segmentation produced by our 
automated algorithm. Manually checking for correctly segmented cells, true positive 
(including full cell bodies, largest fragment of over-segmented cells and one cell per under-
segmented multi-cell detection), false positive (cell debris, thresholding errors, etc.) and false 
negative (missed cells, undetected cells in under-segmented multi-cell detections) detections 
from our algorithm, we found that 86 % of cells were correctly segmented, with accuracy and 
sensitivity values better than 92 % (Figure 28c). Additionally, comparing the overlap of 
manually segmented cells (as the ground truth) with algorithm detections yielded an 
intersection over union (IoU) score (explained in the Methods) of 0.83 ± 0.05. 

 



49 
 

 

Figure 28 Exemplary output of cellular detection from leaky DRAQ5 staining and evaluation 
of the automated segmentation algorithm. 
a) Z-projected DRAQ5 signal. b) Z-projected brightfield (transmitted laser light) image. Inset shows an example 
of undersegmented cells. Red lines in a and b are segmentation lines produced by our algorithm. c) Quantitative 
evaluation of the segmentation algorithm showed mean accuracy and sensitivity values of 0.92 and 0.94 
respectively when compared to three human detections. The specific categories are defined in the Methods 
section. The evaluation was performed on 136 cells in n = 8 images from two experiments. Scale bar is 100 µm. 

 

Having established that our segmentation algorithm was accurate and specific compared to 
human evaluation and with respect to IoU scores compared to literature (see Discussion for 
details), we next focused on demonstrating the application of this method in different cell 
biology applications. We quantifed geometrical features of THP-1 cells during differentiation 
and spreading characteristics of CHO cells during low-temperature cultivation (often used to 
increase protein production yield in biotechnology applications – reviewed in97).  

 

Quantifying projected area, aspect ratio, and circularity of HeLa and THP-1 from automated 

cell segmentation 

To demonstrate the ability of our algorithm to measure cell morphology accurately, we 
compared two cell lines with different growth behavior: HeLa and THP-1 cells. We picked 
freshly differentiated THP-1 (after 48 hours differentiation and 24 hours of recovery) showing 
a predominantly round, almost protrusion-free shape and HeLa cells showing a larger, more 
elongated cell shape (Figure 29a and b). Both cell lines were cultured on collagen-coated glass-
bottom MatTek dishes (as supplied by the manufacturer). 
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Figure 29 Exemplary images and shape descriptors for HeLa and differentiated THP-1 cells. 
a) Brightfield (transmitted laser light) image of HeLa with segmentation lines (red) produced by our algorithm. b) 
Brightfield (transmitted laser light) image of differentiated THP-1 with segmentation lines (red) produced by our 
algorithm. c) Mean projected cell area of differentiated THP-1 and HeLa cells shows that THP-1 cells have a 36 % 
smaller area compared to HeLa. d) Quantification of cell circularity confirms that THP-1 cells have a 41 % higher 
(mean) circularity value compared to HeLa. e) Elongated HeLa cells show a mean aspect ratio above 2 while the 
round shape of THP-1 is reflected by an aspect ratio ~ 1. Data are shown as mean ± standard error of mean (sem). 
**** indicates p < 0.0001 (t-test). For HeLa, 129 cells in n = 8 images from two pooled experiments were analyzed; 
for THP-1, 135 cells in n = 13 images from two pooled experiments were analyzed. Scale bar is 100 µm, applicable 
to both images. 

 

To quantify the different shape characteristics, we measured the projected cell area, cell 
aspect ratio, and circularity. Briefly, the aspect ratio is defined as the ratio of the major to the 
minor axis of a fitted ellipse; circularity is defined as 4*(area/perimeter2). For example, objects 
having the shape of a perfect circle, have circularities and aspect ratios equal to 1. Higher 
aspect ratios are associated with elongation; lower circularity values are associated with 
cellular protrusions. Detailed information on these parameters is given in the Supplemental 
Information (Figure S1). 

We found that HeLa cells show a projected cell area of ~ 2600 µm², a mean circularity of 0.58 
and a mean aspect ratio of 2.2. In contrast, differentiated THP-1 showed a cell area of ~ 1650 
µm² and were almost perfectly round with a mean circularity of 0.82 and a mean aspect ratio 
of 1.27 (Figure 29c - e). These findings are consistent with the elongated form of HeLa and the 
smaller round shape of differentiated THP-1 seen in the images of Figure 29a and b, 
respectively. 
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Cell shape changes during THP-1 differentiation  

Previous work has shown that THP-1 cells change their phenotype dramatically during 
differentiation, as they undergo a transition from suspension to adherent cells during 
differentiation into macrophage-like cells102,103. Therefore, we analyzed cell morphology 
changes by monitoring cell area, circularity, and aspect ratio from dozens of confocal stacks 
that contained more than 90 (per day) THP-1 cells over a six-day differentiation and culture 
period. 

Incubating THP-1 with PMA in the culture medium for 48 hours (to initiate differentiation) and 
subsequently changing to normal medium without PMA resulted in the spreading phenotype 
shown in Figure 30a. Cell area increased sharply within the first 48 hours, subsequently 
entering a plateau phase without further growth for the next 48 hours before the cells entered 
another growth phase after day 4 (Figure 30b). Interestingly, this second growth phase 
appears to be accompanied by further shape changes, as both circularity and aspect ratio 
show statistically significant changes only after day 4. The decreased circularity along with the 
increased aspect ratio indicates cellular elongation and less smooth, round shapes (Figure 30b 
and c), consistent with the shapes seen in Figure 30a. 
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Figure 30 Change in cell area, circularity and aspect ratio during THP-1 differentiation. 
a) Exemplary brightfield (transmitted laser light) images of THP-1 cells during the 6 day monitoring phase with 
segmentation lines (red) produced by our algorithm. b) Projected cell area increases during differentiation. After 
an initial growth phase, cells enter a plateau phase and then show a second period of growth after day 4. c) 
Circularity values stay constant until day 4 before decreasing on day 5 and 6. d) Increasing aspect ratio on day 5 
and day 6 indicates cellular elongation. These data together highlight the shape change toward a more elongated 
phenotype at longer times after differentiation. Data are shown as mean ± sem. **,*** and **** indicate p < 
0.01, 0.001 and 0.0001, respectively (ANOVA with post-hoc Tukey test). At least 90 cells in n >= 10 images were 
analyzed from two pooled experiments per day, respectively. Scale bar is 100 µm. 

 

Reduced temperature culture of CHO-cells causes cell shrinkage 

As a second application of our cell segmentation algorithm, we analyzed the impact of 
temperature on projected cell area of CHO cells. Numerous studies have demonstrated how 
reduced temperature affects cellular growth (via arrest) and increases protein production in 
CHO cells104,105. Higher rates of recombinant protein expression, coupled with extended 
production phases make temperature an interesting and easily tunable parameter in industrial 
biotechnological upstream processing. 
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Figure 31 Cell area changes during low-temperature culture of CHO cells. 
a) Cell surface density and growth is reduced by 48 hours of CHO culture at 31 °C compared to 37 °C. n = 3 
experiments per temperature and day. b,c) Projected cell area of CHO cells cultured at 37 °C and 31 °C, 
respectively, shows that culture at 31°C culture results in a sharp decrease in cell area after 48 hours. For b) n = 
218 cells at 24 h and n = 494 cells at 48 h in 10 images from 2 pooled experiments, respectively. For c) n = 217 
cells at 24 h and n = 461 cells at 48 h in 10 images from 2 pooled experiments, respectively.  d – g) Exemplary 
brightfield (transmitted laser light) images of CHO cells with segmentation lines (red) produced by our algorithm 
cultured at 37 °C for 24 hours (d), 37 °C for 48 hours (e), 31 °C for 24 hours (f), 31 °C for 48 hours (g). All graphical 
data are shown as mean ± sem. * and **** indicate p < 0.05 and 0.0001, respectively (t-test). Scale bar is 100 
µm. 

 

Quantifying cell densities per cm² we found, similarly to prior studies, that CHO cells cultured 
after a temperature reduction to 31 °C show decreased cell growth106. We detected half the 
growth rate seen for culture at 31 °C compared to control conditions (37 °C) (Figure 31a). To 
evaluate whether this temperature jump had an impact on cell shape, we analyzed the 
projected cell area of adherent CHO cells cultured at either 31 °C or 37 °C temperature over 
48 hours. As shown in Figure 31b, cell spreading decreased by less than 10 % after 48 hours 
of culture at 37 °C (that is, with no temperature perturbation). On the other hand, for CHO 
cells cultured at 31 °C, we observed values comparable to control conditions after 24 hours of 
culture, but a steep drop of 40 % in projected cell area after 48 hours (Figure 31c). This area 
reduction can also be seen in the exemplary images in Figure 31d – g. 

 

3.4 Discussion 

In this study, we showed that it is possible to produce robust and accurate cell segmentation 
algorithms in FIJI with high accuracy and sensitivity using only a leaky signal from a nuclear 
stain. Because no additional cell body stain was necessary, this method frees a color for 
additional cell staining. Our algorithm produced better than 92 % accuracy, 94 % sensitivity, 
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and 86 % correctly segmented cells compared to human evaluation. This places our algorithm 
in similar segmentation performance as reported by Wählby et al. (above 89 % correct 
segmentations)95 and Buggenthin et al. (accuracies above 82 % and sensitivities above 94 %)99. 
Additionally, we achieved an average IoU score of 0.83 when comparing our segmentation 
results to manual segmentation masks. This matches IoU scores of modern computer vision 
applications reported by Ronneberger et al. (0.77 – 0.92)96. 

We suspect that characteristics leading to incorrect counting from our algorithm include 
substantial cell clumping and a significant contribution from 3D cell growth. In these cases, 
several nuclei overlay, which ultimately hinders the watershedding process. For optimal 
quantitative analysis with our method, cells should not exhibit excessive clumping and should 
be preferably maintained in 2D culture. Additionally, fully confluent cell layers can be a 
hindrance, as they amplify the values in the subtraction mask and thereby lead to a reduction 
of “leaky” cytosolic signal in step III of the algorithm. 

Compared to other algorithms that perform similar functions – automated segmentation and 
cell quantification, our algorithm offers both functions while using only a single nuclear dye 
that can also be used for binary cell counting, is conceptually straightforward, and built on an 
open-source (FIJI) platform. The comparison in terms of accuracy is on par with other 
approaches107,108 in terms of the specificity and error rate. Moreover, the general approach of 
thresholding combined with edge-detection to outline full cell bodies is in line with classical 
methods used for microscopy image segmentation90.  Similar methods have recently been 
used to evaluate bacterial segmentation109–111 in the processing suites called MicrobeTracker, 
CellShape, and SuperSegger, respectively. Of these, MicrobeTracker was recently translated 
into a FIJI plugin called MicrobeJ112.  

 

The projected area of HeLa and differentiated THP-1 cells 

Determination of cell area of HeLa cells using our algorithm resulted in larger cell areas than 
reported in literature. However, this can be traced back to different cell culture conditions: 
Puck et al. measured the cell area (1600 µm²) in 1956 using a self-made medium, and it is 
unclear if this contains similar supplements and additives as is common in today’s RPMI-based 
medium113. Missirlis reported a cell area of 1400 µm² for HeLas cultured on a “stiff” substrate, 
which was a hydrogel of ~85 kPa114. As we examined cell area on glass with a Young’s modulus 
of order of GPa and because adherent cells tend to increase area with increasing stiffness115, 
a bigger cell area in our experiments is not surprising. Lastly, Frank et al.116 reported a majority 
of HeLa cells analyzed show areas below 1100 μm2. However, these measurements were 
performed only one hour after cell plating, which may still be during the initial spreading phase 
and is not comparable to our 24 h culture period. Taken together, and considering the 
accuracy of the cell outlines shown in our segmentation method, we surmise that our 
experiments give an accurate quantification of HeLa cell area under standard laboratory 
conditions after 2 days of seeding on glass bottom dishes. 
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Cell shape changes during THP-1 differentiation 

Our results showed two growth periods of THP-1 from day 1 to 2 and from day 4 onwards, 
divided by a plateau phase with only minimal growth from day 2 to 4. Simultaneously, after 
day 4, we observed a trend to less circular, more elongated cell shape. This indicates the 
tendency to more pronounced cell spreading after a recovery phase of two days following 
PMA withdrawal. Our findings also potentially raise the question for several studies performed 
with THP-1 as to whether cell area was taken into consideration, as the increased membrane 
surface can influence cellular uptake of nutrients and the total number of membrane 
receptors. Many parameters such as cytokine expression, volume, and lysosomal numbers in 
THP-1 have been analyzed in detail103; however, to the best of our knowledge projected cell 
area during differentiation has not been correlated to these properties. It might be of further 
interest to analyze, e.g. cytokine excretion or lipid uptake – processes critical in immunology 
and pathogenesis – as a function of cell area to see how these parameters are linked to cell 
shape. 

 

Changes in projected cell area with low-temperature culture 

We found a 1.7-fold decreased projected area of CHO cells after 48 hours of culture at 31 °C. 
Interestingly, Kaufmann et al. reported a 1.7-fold increased specific protein productivity in 
CHO after lowering the culture temperature from 37 °C to 30 °C106. These higher production 
rates may be attributed to CHO cells adopting a quiescent reproduction phenotype, with 
fewer cell divisions and an accompanying smaller cell area. This could potentially free 
metabolic resources that could be directed toward protein production; however, this question 
certainly requires further exploration. 

3.5 Conclusions 

In this work, we demonstrated an automated process for mammalian cell image segmentation 
within the open-source scientific image analysis platform FIJI. Our method was developed to 
segment and identify cells from Z-projected images of the DRAQ5 nuclear dye and produced 
accuracy levels above 0.92, sensitivity levels of 0.94, and 86 % correctly segmented cells when 
compared to human evaluation. Using the precise IoU metric, our segmentation gave an IoU 
score of 0.83; all metrics which are very close to other published algorithms. Applying our 
algorithm, we measured cell spreading and elongation during THP-1 differentiation to 
macrophages and cell area reduction of CHO cells that arises in low-temperature cultures 
often used for protein production. At present, the majority of cell segmentation algorithms, 
including ours, are based on hard-coded detection of fluorescently-labeled image species. 
However, with emerging algorithms, especially in the field of computer vision and deep 
learning, future cell segmentation and analysis could transition to label-free (e.g. brightfield) 
imaging that enables unperturbed, label-free, and robust monitoring of cell shape as has 
already been demonstrated for phase contrast and differential interference contrast 
imaging96,117,118. 
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3.6 Methods 

Cell culture and staining 

Unless stated otherwise, all cell culture experiments were performed at 37 °C and 90% relative 
humidity, with 10 % fetal calf serum (Gibco) and 10 U/mL Penicillin/Streptomycin (Gibco) 
added to the respective medium, and with glass bottom culture vessels (MatTek). 

HeLa cells (DSMZ no: ACC 57) were cultured in DMEM (Gibco) and THP-1 cells (DSMZ no: ACC 
16) in RPMI 1640 medium (Sigma). To initiate differentiation, THP-1 culture medium was 
supplemented with 100 ng/mL phorbol 12-myristate-13 acetate (PMA) for 48 hours as 
previously described72. This procedure led to the adhesion of almost all cells within 24 hours, 
which signals the onset of differentiation from monocytes to macrophages [14]. For analysis 
of temporal changes in cell area during differentiation, THP-1 cells were incubated for an 
additional 96 hours in full medium without PMA.  

Chinese hamster ovary (CHO) cells (CHO-K1, DSMZ: ACC110) were cultured in Ham’s F12 
medium. For cell density determination, CHOs were cultured in 6-well-plates (Greiner Bio-
One) and counted in triplicate using a hemocytometer. For cell area determination, CHO cells 
were cultured in glass bottom µ-dishes (Ibidi). 

After the indicated incubation times, all cells were fixed with 4 % para-formaldehyde in PBS 
for 10 minutes. Cells were stained with 5 µM DRAQ5 (ThermoFisher) in phosphate-buffered 
saline (PBS) for 40 min at 37 °C and washed with PBS three times prior to microscopic analysis. 
Microscope measurements were performed within 24 hours for all experiments. 

 

Image acquisition 

Confocal microscopy (Leica TCS SP5 II, Leica) of cells was used to acquire axial cell volumes. 
More than 100 individual cells of each cell line were imaged using a 25X, 0.95 NA water 
immersion objective (Leica) with a 632.8 nm HeNe laser excitation. Emission was detected 
from 680 – 730 nm. Detector gain was set to minimize saturation within the nucleus, and the 
slice thickness within the Z-stack was set to 1.51 µm. The X-Y spacing was set to 0.6 µm per 
pixel, and the scanner speed was 400 Hz. 

 

Algorithm evaluation 

Three individuals, each having more than three years of cell culture experience, manually 
evaluated the segmentation results on a test image set. The following paragraph summarizes 
the measured observables, similarly defined by Buggenthin et al.99. 

“Manually counted cells” denotes all cells that are completely contained in the image. Cells 
found by the algorithm that have more than 90 % of their area within the detected cell frame 
were counted in the category “correctly segmented cells”. “Missed cells” are cells in the image 
that were not detected by the algorithm. To account for segmentation quality, the two 
categories “under-segmented cells” and “over-segmented cells” were included. “Under-
segmented cells” are multiple cells that are detected as a single instance such that the 
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detected frame contains more than one cell or single cells that are detected by the algorithm 
where the frame is much larger than the actual cell. “Over-segmented cells” are instances 
where only a small section of the cell is detected, or one cell is split into multiple parts. Large 
cell debris in the image that could potentially be mistaken as a cell by a segmentation 
algorithm were counted in the “debris” category. For calculation of “accuracy” and 
“sensitivity”, detected instances were categorized as “true positives” (cells correctly identified 
by the algorithm, no information about segmentation), “false positives” (cell debris or any 
other objects that were falsely detected by the algorithm), and “false negatives” (any cells 
that were not detected by the algorithm in addition to those that were not counted in under-
segmented instances). Accuracy was calculated as (true positives) / (true positives + false 
positives + false negatives) and sensitivity as (true positives) / (true positives + false negatives). 
“Percent correctly segmented” was calculated as 100*(correctly segmented cells) / (manually 
counted cells). 

Additionally, to quantify the segmentation success, binary ground truth masks of cells in all 
test images were produced manually, and the intersection over union (IoU) score was 
calculated for the algorithm segmentation results using the FIJI plugin MorphoLibJ119. 

Statistical analysis 

Statistical evaluation was performed using GraphPad Prism 7.0 (GraphPad Software). To test 
the statistical significance of differences in the cell area, circularity, and aspect ratio of THP-1 
and HeLa cells, as well as cell area differences of CHO cells cultured at different temperatures, 
a two-tailed t-test with Welch’s correction, was applied. For time-dependent changes in cell 
area, circularity, and aspect ratio during THP-1 differentiation, data were evaluated using 
analysis of variance (ANOVA) with post-hoc analysis based on the Tukey test. Statistical 
significance was expressed as *, **,*** and ****, indicating p-values < 0.05, 0.01, 0.001 and 
0.0001, respectively. 
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Geometric features 

Circularity – a measure of small cell protrusions 

The circularity parameter relates the area of a detected object to its perimeter. 

𝐶𝑖𝑟𝑐 = 4 ∙  
𝐴𝑟𝑒𝑎

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
 

If the object has a perfectly circular shape, i.e., possesses the largest possible ratio of area to 
perimeter, the circularity parameter equals 1. From that state, it is possible to create an object 
with an increased perimeter while its area stays constant, but not vice versa. Thus, it follows 
that circularity will approach 0 with increasing perimeter in the denominator. 

A cell will have lower circularity values when its silhouette is more variegated (see Figure S1). 
Lower circularity can be observed with several phenotypes including one-dimensional 
elongation, the formation of pseudopodia or with the apparent surface roughness formed by 
lamellipodiae. Therefore, one should not rely on circularity as a single descriptor. 

 

Aspect ratio – a measure for cell elongation 

If the goal in an experiment is to probe the elongation of cells, the best marker is the aspect 
ratio as it relates the length of the major axis to the length of the minor axis of an ellipse that 
is fitted to the object. High values in this parameter are directly linked to a high degree of 
elongation. 

𝐴𝑅 =
major axis

minor axis
 

Unfortunately, pitfalls arise for curved cells or cells with multiple protrusions. 

 

Figure S1. Circularity (Circ) and aspect ratio (AR) of different geometric objects. 

a) perfect circle with a circularity of 0.90 (in theory 1.00, but decreased because pixelation creates a finite amount 
of surface roughness around a curve) and aspect ratio of 1.00. b) circle with high surface roughness, and an 
extended perimeter leading to a circularity of 0.10, but leaving AR unchanged. c) Elongated ellipse, with 
circularity of 0.77 and an aspect ratio of 1.95. d) A square object with circularity of 0.79 and aspect ratio of 1, 
because the ellipse fit leads to the assumption of a circle. 
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Taken together, along with the projected cell area and perimeter, these quantities provide a 
basic toolbox for quantitative cell shape description.  

Image processing steps applied in the published algorithm 

Our cell detection algorithm makes use of several built-in FIJI processing functions that are 
briefly explained in the following list. 

Rolling ball background subtraction is a process to reduce background signals in an image. It 
assumes that a grayscale image is a 3D surface with the intensity values corresponding to the 
topography. A ball “rolls” over this landscape, averaging the values within its radius and 
subtracting the average value from the raw value of the central pixel in the ball in original 
image. 

Gaussian blurring is a method to smooth an image. A user defines the size of a zone over which 
a Gaussian function is convolved with the image intensities. From this, one obtains a spatially 
smoothed image with Gaussian weighted averaging from neighboring pixels in the original 
image over a size scale given by the standard deviation. 

Intensity coercion via a constrained maximum serves to put a ceiling on the maximum value 
for intensities in an image. 

The watershed algorithm contained in the “Find maxima…” function with output “Segmented 
Particles” is a tool to separate touching objects. It functions by considering the intensities as 
topography where valleys (or basins) are flooded with water to detect “watershed” lines 
between the hills. These lines correspond to the regions where two objects are touching, 
thereby offering the possibility to split them into individual objects. Importantly, the noise 
value must be chosen appropriately, in this case below the values for local maxima, to avoid 
over-segmentation as explained previously by Meyer and Beucher90. The watershedding used 
here is applied to grayscale images. 

 

Macro code 

//settings 

//This code works best with Leica image files (.lif); adjust code for other file formats 

f = "[Cell_summaries]"; //title of the produced  

x = 1; //nucleus channel 

y = 2; //brightfield channel 

input = "C:\\path\\to\\input\\file.lif"; //input file 

output = "C:\\path\\to\\output\\directory\\"; // output directory 

cellradius = 100; //maximum expected cell radius in µm 

seriesnum = 13; //Number of series in the leica image file 
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//Start of procedure 

for (j = 1; j <= seriesnum; j++){ 

 run("Close All"); //previously opened images are closed to avoid mislead processing of 
old images with same names 

 

 //Create table to save results 

 run("New... ", "name="+f+" type=Table"); 

 print(f,"\\Headings:Cell\tarea\tCirc\tAR\tRoundness\tMaximum"); 

  

 //Importing images using Bio-Formats Importer 

 run("Bio-Formats Importer", "open="+input+" autoscale color_mode=Default 
split_channels view=[Standard ImageJ] stack_order=Default series_"+j+""); 

 name = getTitle(); 

 prefix = substring (name, 0, lastIndexOf(name," ")); 

 run("Clear Results"); 

 

 //producing duplicates 

 selectWindow(""+prefix+" C="+x+"");//Nucleus channel 

  run("Z Project...", "projection=[Standard Deviation]");//picture for frame 
detection 

  run("8-bit"); 

  run("Duplicate...", "title=IMAGE");//frame 

  run("Duplicate...", "title=SUBTRACT");//Background subtraction mask (for 
frame and watershed) 

  getPixelSize(unit, pixelWidth, pixelHeight); 

 

 //create subtraction mask, applying constraining maximum (step I) 

 selectWindow("SUBTRACT"); 

  getVoxelSize(w, h, d, unit); 

  getStatistics(area, mean, min, max, std); 

        row = nResults; 

  setResult("Max ", row, max); 

  u=floor(mean*3); 

  run("Max...","value=u"); //constraining maximum of 3-fold mean to reduce 
effect of extreme values during subtraction 
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  //gaussian blurring (step II) 

  run("Gaussian Blur...", "sigma=100 scaled"); //blurring for subtraction mask 

 

   

 //subtract subtraction mask from image (step III) 

 selectWindow("IMAGE"); 

  pxrollrad = cellradius/pixelWidth; //rolling ball radius in pixels needed (= 
predefined cell radius[µm]/pixelsize[µm/px]) 

  run("Subtract Background...", "rolling="+pxrollrad+""); 

  run("Gaussian Blur...", "sigma=2.5 scaled");//reduces punctate character of 
grayscale image 

  imageCalculator("SUBTRACT create", "IMAGE","SUBTRACT"); 

 selectWindow("Result of IMAGE"); 

  run("Duplicate...", "title=AND");//watershed 

  run("Duplicate...", "title=CHECK");//for checking if maxima exist within 
selection later 

  

 //Apply threshold to get binary image of cell borders (step IV) 

 selectWindow("Result of IMAGE"); 

  run("Threshold..."); 

  setThreshold(1,256); 

  setOption("BlackBackground", true); 

  run("Convert to Mask", "method=Default background=Dark only black"); 

  run("Fill Holes"); 

 

 //Create watershed line image (step V) 

 selectWindow("AND"); 

  run("Gaussian Blur...", "sigma=2 scaled"); 

  getVoxelSize(w, h, d, unit); 

  getStatistics(area, mean, min, max, std); 

        row = nResults; 

  setResult("Max ", row, max); 

  nBins = 256; 

  getHistogram(values, count, nBins); 
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  //mean gray value of pixels belonging to cells needed (i.e. mean of ONLY non-
zero pixel) 

  Sum = 0;//all counts 

  CV = 0; //weighed counts (= counts * intensity) 

  for (i = 1; i<count.length; i++){ //starting with 1 instead of 0. -> 0 intensity values 
are not considered. 

    Sum += count[i]; 

    CV += count[i]*i; 

  } 

  m = (CV/Sum); 

  floor(m); 

  l = floor(2*m); //Maxima need to be at least twice the intensity of cellular mean 
intensity 

  run("Find Maxima...", "noise=l output=[Segmented Particles] 
exclude");//watershedding 

  

 //Combine watershed lines and cell frame (step VI) 

 selectWindow("Result of IMAGE"); 

  imageCalculator("AND create", "Result of IMAGE","AND Segmented"); 

 

 //select single cells with a spread area > 200 µm (step VII)  

  run("Analyze Particles...", "size=200.00-Infinity circularity=0.1-1.00 add 
exclude"); //Cell bodies detected 

   

 //Closing windows  

 selectWindow("AND"); 

  run("Close"); 

 selectWindow("IMAGE"); 

  run("Close"); 

 selectWindow("Result of IMAGE"); 

  run("Close"); 

 selectWindow("AND Segmented"); 

  run("Close"); 

 selectWindow("SUBTRACT"); 

  run("Close"); 
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 selectWindow("Result of Result of IMAGE"); 

  run("Close"); 

 

 

 //OPTIONAL: Check for nuclei within detected cell borders. 

 //1/5 of global maximum intensity (corresponding to most intensively stained nucleus) 
is taken as minimum value to be present in each detected cell frame. 

 selectWindow("CHECK"); 

  getVoxelSize(w, h, d, unit); 

  getStatistics(area, mean, min, max, std); 

        row = nResults; 

  setResult("Max ", row, max); 

  maxicheck = floor(max/5); //change for different minimum value 

  maxtrack = 0; //tracks occasions of cell frames without minimum intensity. 
Necessary to delete the right frames 

  roiManager("Multi Measure"); 

 ROInumber = roiManager("count"); 

 for(i = 1; i < ROInumber+1; i++){ 

  cellarea = 0; 

  cellIntDen = 0; 

  circularity = 0; 

  Aratio = 0; 

  Roundness = 0; 

  for (a=0; a<nResults(); a++) { 

      cellarea = getResult("Area"+i+"",a); 

      circularity = getResult("Circ."+i+"",a); 

      Aratio = getResult("AR"+i+"",a); 

      Roundness = getResult("Round"+i+"",a); 

      Maxvalue = getResult("Max"+i+"",a); 

  } 

   

  if(Maxvalue > maxicheck){ 

   selectWindow("Cell_summaries"); 

  
 print(f,i+"\t"+cellarea+"\t"+circularity+"\t"+Aratio+"\t"+Roundness+"\t"+Maxvalue); 
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  } 

  else if (Maxvalue < maxicheck){ 

   maxtrack = maxtrack+1; 

   roiManager("select", i-maxtrack); //selects the roi without maximum 

   roiManager("Delete"); //deletes the roi without maximum 

  } 

 } 

 

 

 //save results and images (raw brightfield and cellframe overlays) 

 selectWindow("Cell_summaries"); 

 saveAs("Text", ""+output+"\\"+prefix+".xls"); 

 selectWindow(""+prefix+" C="+y+""); 

 run("Z Project...", "projection=[Sum Slices]"); 

 roiManager("Show All without labels"); 

 roiManager("Set Color", "red"); 

 roiManager("Set Line Width", 4); 

 saveAs("Tiff", ""+output+"\\"+prefix+"_OV.tif"); 

 roiManager("Show None"); 

 saveAs("Tiff", ""+output+"\\"+prefix+".tif"); 

 run("Close All"); 

 selectWindow("Cell_summaries"); 

 run("Close"); 

 run("Clear Results"); 

 ROInumber = roiManager("count"); 

 if(ROInumber>0){ 

 roiManager("Delete"); 

 } 

} 
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4 Intracellular lipid accumulation in THP-1 derived 
macrophages is substrate stiffness dependent 
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4.1 Abstract 

During atherosclerotic plaque formation, the arterial wall is subject to remodeling processes 
that lead to a modification of the local microenvironment, including the extracellular matrix 
composition and mechanics. Mechanical properties such as stiffness of the surrounding 
environment can influence cellular phenotypes via mechanotransduction, leading to altered 
cell behavior depending on the cell’s physical environment. Using quantitative confocal 
microscopy, we identify substrate stiffness as a key player in regulating aggregated low-
density lipoprotein (agLDL) accumulation by macrophages. As an indication of foam cell 
formation, we quantify intracellular lipid volumes of THP-1 derived macrophages. To analyze 
effects of substrate stiffness on the foam cell subpopulation, we culture cells on 
polyacrylamide hydrogels and glass. Young’s moduli of hydrogel substrates range from 4 to 50 
kPa, and glass with a Young’s modulus in the GPa range serves as unnaturally stiff substrate. 
Cellular lipid volumes increased more than 50 % with increasing stiffness and the percentage 
of foam cells increased over 3-fold. Inhibition of actin polymerization with latrunculin A 
resulted in a disappearance of the stiffness-dependence while inhibition of microtubule 
polymerization did not affect the stiffness-mediated trend. We observe, with increasing 
stiffness, a correlation between substrate-dependent increased lipid accumulation, and the 
increased expression of two receptors for agLDL. Consistent with substrate-dependent 
increased lipid accumulation, two receptors for agLDL also showed increased expression with 
increasing stiffness. Therefore, it appears that the stiffness-dependent agLDL uptake is 
mediated by actin polymerization and agLDL receptor expression. 

 

4.2 Introduction 

Macrophages are one of the key components in atherosclerotic plaque development, the 
underlying reason for ischemic heart disease. Attracted by retained low-density lipoprotein 
(LDL) that is rendered proinflammatory in the arterial wall, monocytes in the blood stream 
adhere to the endothelium and migrate into the tunica intima where they differentiate into 
macrophages and start clearing the tissue of LDL28,34,120. The ingestion of lipid rich particles 
leads to the formation of foam cells, macrophages with lipid droplet-filled cytosols28,34,120. 
Over the course of decades an atherosclerotic plaque consisting of lipids, necrotic and living 
cells, as well as a remodeled extracellular matrix is formed32,121. Numerous studies have 
analyzed lipid uptake and efflux in macrophages122–124, as this happens during the early stage 
of atherosclerosis and understanding how to prevent lipid uptake could alleviate downstream 
pathogenic effects.  

Concurrent with the long-term development of atherosclerosis, the arterial wall, particularly 
the tunica intima, has been shown to exhibit changes in mechanical properties32,121,125,126. 
Notably, Tracqui et al.32 measured elastic moduli in various regions of atherosclerotic plaques 
via atomic force microscopy, reporting values ranging from 5.5 kPa in lipid-rich regions to 
almost 60 kPa in fibrous caps. Such strong mechanical variances can impact cellular behavior 
drastically, as substrate stiffness has been shown to guide cellular shape, migration behavior, 
as well as differentiation19,77,127–130. The sensitivity of macrophages to the extracellular matrix 
has been seen previously with reports showing preferred adhesion to stiffer substrates131 and 
polarizability using micropatterning20. However, to the best of our knowledge, the effect of 
tissue stiffness on cytosolic lipid volumes in macrophages has not been previously 
investigated, despite its relevance for atherosclerosis. 
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Here, we analyze the lipid accumulation behavior of THP-1 derived macrophages in vitro on 
hydrogel substrates simulating native stiffness regimes between 4 kPa and 50 kPa by 
incubation with aggregated LDL (agLDL). Using quantitative fluorescent microscopic imaging, 
we quantified intracellular lipid volumes on a single-cell basis and defined an intracellular lipid 
volume threshold to characterize foam cell subpopulations within our measurements. We 
found an increasing foam cell fraction with increasing substrate stiffness. Suppression of 
microtubule assembly did not affect lipid uptake in the native stiffness regime (4-50 kPa) 
though it caused a reduction in lipid uptake on glass substrates. In contrast, lipid uptake was 
drastically reduced, and no longer stiffness-dependent, upon preventing actin polymerization. 
Flow cytometry analysis of LDL receptors scavenger receptor A (SR-A) and CD36 showed up-
regulation on stiffer substrates, suggesting a possible mechanism underlying the increased 
macrophage lipid uptake on stiffer substrates.  

 

4.3 Methods 

LDL aggregation 

Human LDL (LeeBio) was aggregated (agLDL) by vortexing. In this approach, 1 mg/mL LDL in 
phosphate buffered saline (PBS) was vortexed at maximum speed for 30 seconds at room 
temperature using a vortex mixer (Bender & Hobein AG, model K-550-GE) as done 
previously74. The resulting turbid solution was diluted in medium to 100 µg/mL and used for 
experiments. The LDL stock solution was kept at -80 °C, a single batch was used throughout 
the study. 

Cell culture 

THP-1 (DSMZ no: ACC 16) cells were differentiated and cultured at a density of 3 x 104 cells/cm2 

in RPMI 1640 medium (Sigma) supplemented with 10 % fetal calf serum (FCS)(Gibco) and 10 
U/mL Penicillin/Streptomycin (Gibco) at 37 °C and 90 % relative humidity. For differentiation, 
100 ng/mL phorbol-12-myristate-13 acetate (PMA)(Sigma) was added to the culture medium 
for 48 hours, as done previously72. Cells were kept in a recovery phase in culture medium with 
1 % FCS (low-serum state) for 24 hours after initiation of differentiation. Reduced FCS in the 
recovery phase was to minimize lipid content in the culture medium prior to agLDL addition. 
To assess cellular lipid uptake, cells were cultured in a low-serum state medium supplemented 
with 100 µg/mL agLDL with the medium being refreshed every three days.  

For analysis of substrate stiffness-mediated effects on cellular lipid accumulation, THP-1 cells 
were differentiated and cultured on collagen-coated polyacrylamide hydrogels in 96 well 
plates or Petri dishes (Softwell & PetriSoft dishes, Matrigen). Hydrogels exhibited varying 
stiffness ranging from 4 to 50 kPa and a glass substrate well in the several GPa range (an 
approximated value of 50 GPa is used throughout this publication; higher values have been 
reported132). To inhibit different parts of the cytoskeleton, different small molecule inhibitors 
were added into the agLDL-supplemented medium. For microtubule polymerization, 
colchicine (Sigma) was added to the culture medium at 10 mM. Disruption of filamentous actin 
was achieved by adding 1 mM of latrunculin A (Sigma) to the culture medium. 

Cell staining 

Prior to staining, cells were fixed with 4 % para-formaldehyde in PBS for 10 min and then 
washed three times with PBS. Nuclei and lipid droplets were stained by incubation with 5 µM 
DRAQ5 (Thermo Fisher Scientific) and 1 µg/mL BODIPY 493/503 (Thermo Fisher Scientific) in 
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PBS for 40 mins, respectively. Unbound stains were washed by rinsing samples three times 
with PBS.  Samples were kept hydrated by PBS during imaging. 

Image acquisition 

Confocal imaging was performed on a laser scanning TCS SP5 II microscope (Leica 
Microsystems) equipped with HeNe and Argon lasers. The excitation wavelengths were 632.8 
nm and 488.0 nm for DRAQ5 and BODIPY, respectively. Images were collected, using a 25X, 
0.95 NA water immersion objective (Leica), with emission detection from 506 – 534 nm for 
BODIPY fluorescence and 685 – 751 nm for DRAQ5 fluorescence. Detector gains were adjusted 
to minimize signal saturation within nuclei (DRAQ5) and lipid droplets (BODIPY) for cells 
cultured on glass substrates and settings were kept constant throughout measurements of 
cells on hydrogels (acquiring images through hydrogels). Volumetric stacks were acquired with 
Z-steps of 1.51 µm and X-Y spacing of 0.6 µm per pixel. Scanner speed was set to 400 Hz. 

Image processing 

Images were processed in FIJI (is just ImageJ) using an algorithm described in Chapter 3 to 
segment and quantify cell geometry. Briefly, collected DRAQ5 image planes were projected 
into one image according to pixel wise standard deviation in Z-direction and a blurred copy 
was subtracted to reduce background signals. Cellular outlines were detected via 
thresholding, touching cells split by watershedding. Lipid signals were binarized in a two-step 
process: First, for background removal, a maximum Z-projection of the full Z-stack was blurred 
with a gaussian filter (sigma = 3 µm) and subtracted from each individual slice in the Z-stack. 
Secondly, a threshold (value = 1) was used to produce a binary mask of the residual lipid signals 
in each slice. Cell frames generated from the DRAQ5 signals were cast onto the thresholded 
version of the lipid signal Z-stack and signal area per cell detected in 3D by scanning each 
image slice in the stack. Volumetric lipid values were computed by multiplying the detected 
lipid signal areas (from each image in the stack) with the step size used during image 
acquisition (step size was selected sufficiently large to prevent signal overlap in Z-direction). 

Flow Cytometry  

For flow cytometry analyses, differentiated THP-1 cells were cultured in 35 mm glass bottom 
dishes (MatTek) and collagen-coated PetriSoft dishes (Matrigen) of varying stiffness (4, 25, 
and 50 kPa) following the same protocol outlined above. At the end of the incubation period, 

cells were harvested by adding 1 mM EDTA at 37C for 15-20 min, followed by gentle scraping 
with a cell scraper. 3 x 105 harvested cells were washed twice with PBS and incubated with 
two monoclonal antibodies (mAb) directed against class A macrophage scavenger receptor 
(SR-A) with a fused AlexaFluor-647 fluorophore (sc-166184, mouse anti-human, Santa Cruz 
Biotechnology), and against CD36 with a fused phycoerythrin fluorophore (1P-451-T025, 
Mouse anti-human, Exbio). Anti-SRA antibodies were applied at a concentration of 0.3 µg/100 
µL cell suspension, and 6 µL of anti-CD36 antibody solution was added (accounting for 3 x 105 
cells) with a subsequent incubation for 30 min at 4°C. Following incubation, cells were washed 
twice with PBS and resuspended in 500 μl ice-cold PBS. The SR-A expression was measured 
using the AttuneTM NxT acoustic focusing cytometer (Thermofisher Scientific). At least 10,000 
cells were analyzed for each sample. Unstained cells were used as negative control. Data 
analysis was performed using the FCS Express v6 software (DeNovo software, USA). During 
analysis, a gate was applied on a forward/side scatter dot plot to exclude debris and cell 
clumps.  The same gate setting was used throughout the experiment. Cells selected with this 
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gating strategy were analyzed for peak fluorescence and compiled in a histogram, which was 
used to determine median fluorescence intensity (MFI). 

Statistical Analysis 

Statistical significance of differences in cellular lipid uptake and cell spreading area of THP-1 
derived macrophages was evaluated using analysis of variance (ANOVA) with post-hoc analysis 
based on Tukey’s test using the software GraphPad Prism 8.0 (GraphPad Software). Statistical 
significance was expressed as *, **,*** and ****, indicating p-values < 0.05, 0.01, 0.001 and 
0.0001, respectively.  

 

4.4 Results 

Intracellular lipid accumulation is substrate stiffness dependent 

We analyzed cytosolic lipid volumes in THP-1 derived macrophages in vitro after incubation 
with agLDL by acquiring volumetric confocal image stacks with fluorescently stained lipids and 
nuclei. Using our algorithm for cell segmentation and lipid signal thresholding (as described in 
the Methods), we determined cytosolic lipid volumes and cell spreading area for individual 
cells cultured on substrates with increasing stiffness. While lipid accumulation after three days 
of agLDL incubation did not show a substrate stiffness-mediated effect, cellular lipid volumes 
increased with stiffness after five days. As shown in Figure 32, cellular lipid volumes after three 
days vary between 1100 and 1300 fL without exhibiting a trend over the scanned stiffness 
range (4 kPa – 50,000 kPa). However, cells incubated with agLDL for five days exhibited 
stiffness-mediated lipid accumulation with cellular lipid volumes increasing more than 50 % 
from the softest condition to the glass substrate (Figure 32a and b).  

In addition to lipid accumulation, we quantified projected cell area after both three and five 
days.  Similar to cytosolic lipid volumes, after three days of incubation with agLDL, projected 
cell area was not substrate stiffness dependent. Again, similar to lipid uptake, projected cell 
area after five days of incubation with agLDL increased with substrate stiffness although in a 
less prominent way (see Figure 32c). To estimate the effect of substrate stiffness on lipid 
accumulation in a cell area independent manner, we analyzed the lipid volume to cell area 
ratio after five days of agLDL incubation and observed a more than 22 % increase from 4 kPa 
to glass (see Figure 32d). This suggested that increased intracellular lipid volumes on stiffer 
substrates was not solely mediated by increased cell spreading. 

Defining and monitoring a foam cell phenotype during hydrogel culture 

While averaged lipid volume per cell (Figure 32a) is one quantification of how substrate 
stiffness affects cytosolic lipid volumes in macrophages, a perhaps more relevant metric is to 
analyze the distribution of lipid volume in terms of cell sub-populations (Figure 33a). To the 
best of our knowledge, no quantitative measure for a foam cell phenotype has been proposed 
based on cellular lipid volumes. To define a cellular lipid volume that is characteristic for foam 
cells, we chose the 90th percentile value of cellular lipid volumes observed in THP-1 derived 
macrophages incubated with agLDL for five days on 4 kPa hydrogels. This stiffness value was 
regarded as closely resembling native mechanical regimes, since it was the closest to 5.5 kPa 
reported for lipid-rich regions in atherosclerotic plaques32. With these criteria, a value of 2463 
fL was chosen as the threshold to characterize lipid-laden cells as “foam cells”. The scatter plot 
shown in Figure 33a shows cells containing lipid volumes below the threshold as black points 
and above the threshold (i.e. foam cells) as red points. Our results showed that the foam cell 
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subpopulation steadily grew in proportion to the total cell population with increasing 
substrate stiffness after five days of agLDL incubation while it stayed almost constant after 
three days of agLDL incubation (data not shown). As shown in Figure 33a, the fraction of foam 
cells increases more than three-fold, comparing cells cultured on glass to cells cultured on 
4 kPa after five days of agLDL incubation. 

 

Figure 32 Intracellular lipid accumulation by THP-1 derived macrophages incubated with 100 
µg/mL aggregated LDL is substrate stiffness dependent. 

(a) Cellular lipid volumes remain independent of substrate stiffness after three days of incubation with 
aggregated LDL (white bars), but show increased lipid accumulation with increasing substrate elastic modulus 
after five days of agLDL incubation (gray bars). At least 240 cells per culture condition were analyzed in n > 3 
experiments. (b) Exemplary images of cytosolic lipid droplet formation in cells cultured on substrates of varying 
stiffness (elastic modulus indicated) after five days of agLDL incubation (Z-projected confocal images: green = 
BODIPY stained lipids; blue = DRAQ5 stained nuclei; gray = transmitted laser light). (c) Cell spreading area 
decreases with increasing substrate stiffness after three days of agLDL incubation, but increases with increasing 
substrate stiffness after 5 days. (d)  Lipid volume to cell area ratio after five days of agLDL incubation. The ratio 
increases by 22.8 % from the softest culture substrate to glass. Data compiled from at least 240 cells per culture 
condition in n ≥ 3 independent experiments. Where applied, error bars indicate standard error of mean. Analysis 
of variance with post-hoc Tukey’s test was applied to determine significance. **, ***, and **** indicating P-
values ≤ 0.01, 0.001, and 0.0001, respectively. 
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Lipid uptake depends on actin- and microtubule-polymerization 

The intracellular lipid volume increases more rapidly with the substrate stiffness than does 
the cell spreading area. This raises the question regarding the pathway underlying the 
stiffness-dependent lipid uptake process, since cell area seems to play a minor role. As 
mechanical stimuli are mainly transduced by the cytoskeleton130, we tested the roles of 
different cytoskeletal components in substrate stiffness dependent lipid uptake. 

Polymerization of actin and microtubules was inhibited using latrunculin A and colchicine, 
respectively. According to our previous analysis of lipid accumulation, where a stiffness-
dependent trend was seen only after five days (without cytoskeletal inhibition), we quantified 
cellular lipid volumes after five days of agLDL incubation with inhibitors in the medium and 
monitored the fraction of foam cells. Inhibiting actin polymerization resulted in a stark 
decrease of the foam cell subpopulation and an abrogated stiffness-mediated lipid uptake (see 
Figure 33b). Interestingly, inhibiting microtubule polymerization still resulted in increasing 
foam cell subpopulations with increasing substrate stiffness, but the fraction of foam cells 
appeared to plateau at 50 kPa as the foam cell population only marginally increased when 
cells were cultured on collagen-coated glass substrates. 

 

Figure 33 Foam cell subpopulations 
a) Scatter plot of cellular lipid volumes with black datapoints corresponding to cells with lipid volumes below the 
defined foam cell threshold and red datapoints corresponding to cells with lipid volumes exceeding the 
threshold. The foam cell subpopulation increases more than threefold from 4 kPa to 50 GPa.  b) Effect of 
cytoskeletal inhibition on foam cell formation. Inhibition of microtubule (MT) assembly (blue) does not change 
the substrate stiffness dependent trend of foam cell formation from 4 to 50 kPa, but rather reduces the foam 
cell subpopulation of macrophages cultured on glass by more than 35 %. Inhibition of actin polymerization (red) 
decreases the foam cell subpopulation below 7 %, independent of substrate stiffness. No error bar calculation 
possible, as all experiments per culture condition were pooled and the foam cell subpopulation calculated within 
all measured cells. 

  

The decreased tendency to form foam cells during cytoskeletal inhibition indicates a role of 
mechanotransduction in cellular lipid uptake. To further assess entry mechanisms affected by 
the hydrogel culture, we analyzed changes in the expression of two common LDL-receptors. 

 

Flow cytometry reveals SR-A as driving receptor of stiffness mediated lipid uptake 

As agLDL is endocytosed mainly via CD36 and SR-A33,44, we used flow cytometry to assess if 
the expression level of either receptor exhibited a stiffness dependent regulation. For these 
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experiments, THP-1 derived macrophages were cultured on variable-stiffness hydrogel-coated 
Petri dishes with 100 µg/mL agLDL for three days. We chose to use three days of culture for 
this experiment to maximize the number of cells for flow cytometry analysis. 

To quantify CD36 and SR-A expression, antibody staining and flow cytometry was performed 
as outlined in the Methods section. For internal standardization, the median fluorescence 
intensity (MFI) values of the stained samples obtained were divided by the MFI value obtained 
from an unstained sample. As shown in Figure 34, we observed steadily increasing SR-A MFI 
with increasing substrate stiffness, which demonstrates that SR-A expression increased per 
cell with increasing stiffness. On the other hand, CD36 expression levels exhibited low MFI 
values at 4 kPa and increased immediately by 3 – 4-fold for substrate stiffness above 25 kPa. 
No clear trend was observed for CD36 expression with stiffness above 25kPa, unlike for SR-A. 

 

Figure 34 Expression of SR-A and CD36 on THP-1 derived macrophages cultured on 
substrates of varying elastic modulus and incubated with 100 µg/mL agLDL. 
Median fluorescence intensity (MFI) of SR-A (a) increases steadily from 4 kPa to 50,000 kPa indicating a stiffness-
dependent upregulation of the receptor. MFI of CD36 (b) shows low values during cultivation of cells on hydrogels 
of 4 kPa, and 3-4 fold higher values at 25 kPa and above, indicating lower expression only on very soft substrates 
and constant expression on stiffer substrates. Data retrieved from 3 independent experiments, with error bars 
indicating standard deviation. Analysis of variance with post-hoc Tukey’s test was applied to determine 
significance. *,** indicating P-values ≤ 0.05 and 0.01, respectively. 

 

4.5 Discussion 

In this work, we provided evidence for a substrate stiffness-mediated influence on lipid 
accumulation in THP-1 derived macrophages. In our experiments, we incubated cells cultured 
on hydrogels of varying elastic modulus with 100 µg/mL aggregated LDL for three and five 
days. While we found constant cellular lipid volumes after three days, lipid uptake was 
augmented on stiffer substrates compared to softer substrates after five days. 

The stiffness-dependent lipid accumulation was not solely due to extended membrane 
surfaces caused by increased cell spreading on stiffer substrates. Using the entire population 
of lipid-laden cells, we determined a criterion for foam cells based on the lipid volume and cell 
area, which could be applied to evaluate the effect of cytoskeletal inhibition on lipid 
accumulation. Foam cell formation on hydrogels during cytoskeleton inhibition (by latrunculin 
A) revealed a dependency of the stiffness-mediated lipid uptake on intact actin filaments. This 
result is in good accordance with the prominent role of actin in agLDL uptake reported 
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previously 42,44,133. Active actin polymerization seems to be of foremost importance in lipid 
uptake mechanisms44, thereby its inhibition generally blocks entry routes for cholesterol and 
prevents macrophages from becoming foam cells. Additionally, we observed a stark decrease 
in foam cell formation of THP-1 derived macrophages cultured on glass substrates under 
microtubule inhibiting conditions. A decreased intracellular cholesterol accumulation due to 
inhibition of microtubule-dependent macropinocytosis has been previously observed134. 
Importantly, inhibiting microtubule polymerization did not change the stiffness-mediated lipid 
accumulation, but rather only reduced foam cell formation on glass, an unnaturally stiff 
substrate. Thus, foam cell formation is partially dependent on microtubule assembly when the 
cells are cultured on excessively stiff substrates (which might be relevant in the calcification 
processes happening during atherosclerosis135), but not on substrates that mimic the native 
tissue mechanics. This finding suggests that microtubules do not play an active role in 
regulating lipid accumulation in macrophages under native conditions. To investigate a 
possible mechanism for increased foam cell formation, we quantified the two prominent LDL 
uptake receptors, scavenger receptor A (SR-A) and CD36, after three days of agLDL incubation. 
Receptor expression and lipid accumulation is schematically summarized in Figure 35: While 
we found a steadily increasing expression of SR-A with increasing substrate stiffness, we 
observed low expression of CD36 in cells cultured on 4 kPa substrates that jumped to a higher 
expression level with almost constant values on substrates stiffer than 25 kPa. The tendency 
of macrophages to produce additional lipid uptake receptors on stiffer substrates is consistent 
with increased foam cell formation on substrates with increasing elastic modulus. A more 
comprehensive analysis of all LDL receptor expression would help disentangle different lipid 
uptake mechanisms affected by substrate stiffness versus those that are not. 

 

Figure 35 Effects of substrate stiffness on foam cell formation after five days of agLDL 
incubation. 
Intracellularly stored lipids lead to excessive lipid droplet (green vesicles) formation with increasing substrate 
stiffness. Increased cell spreading was observed on stiffer substrates. Protein expression levels indicated for SR-
A and CD36 show a stiffness dependent expression rate of the two LDL receptors. 

 

4.6 Conclusion 
In this work, we showed that macrophages are sensitive to their mechanical environment in 

that they show a substrate stiffness-sensitive lipid accumulation. This trend could have a 

strong influence on atherosclerotic plaque progression, as matrix remodeling to prevent 

plaque rupture could, in turn, lead to amplified cellular lipid uptake. We showed that the 
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cytoskeletal filamentous actin and microtubules both affect cellular lipid volumes with 

filamentous actin being critical for stiffness-dependent foam cell formation. Additionally, we 

report a substrate stiffness-mediated increase in expression of the two LDL receptors SR-A 

and CD36. Overall, we suggest that the stiffness dependence results from the roles of actin-

dependent, receptor-mediated lipid uptake and microtubule-dependent macropinocytosis. 

Further studies with other relevant forms of LDL (e.g. native and oxidized LDL) will be very 

useful to investigate if all relevant LDL species show similar stiffness-dependent increased 

uptake.   
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5.1 Abstract 

In this contribution we present a new dataset, comprising partially annotated images from 
more than 30 cell lines, multiple microscopes, various contrast mechanisms, and 
magnifications that is readily usable as training data in computer vision algorithms for 
potential applications in cell biology. Image heterogeneity was achieved by acquiring images 
on four separate microscopes and 9 different objectives. Image annotations, segmenting 30 
different cell lines and their nuclei, were performed by cell culture experts using counter-
stained fluorescent images. Our annotation format matches the popular COCO-format, 
making the dataset easily applicable to machine learning algorithms currently under 
development. With 4600 images and ~53,000 segmented instances, the breadth of this 
dataset is more than 6-fold larger than any publicly available comparable dataset. We provide 
two editions of the dataset: Expert visual cell annotation (EVICAN) 2 with a “nucleus” and 
“cell” class pooled across all cell lines and EVICAN 60 with nuclei and cells categorized for 
respective cell lines individually. Using a Mask-RCNN implementation to train a machine-
learning assisted classification and segmentation algorithm with our EVICAN2 dataset, we 
showed a mean average precision of 58.3 % at intersection over union scores above 0.5. This 
precision value is comparable to current state-of-the-art every-day scene classification and 
segmentation algorithms. The dataset that we describe (and freely provide) is a great starting 
point to train future machine learning algorithms for cell biology applications. 

 

5.2 Introduction 

In recent years, microscopy has seen major advancements from the perspective of both 
automated acquisition and boosting optical performance in terms of spatial and temporal 
resolution. With the rise of automation in the industry: both in acquisition and analysis, 
turning microscopes into powerful high-content screening systems, researchers are now in 
need of rapid, accurate analysis algorithms to infer quantitative measures from the ever-
increasing amount of imaging data.  In the specific case of cell biology, image segmentation 
and classification is essential as it is the first step in any analysis for relating measured 
quantities such as cell shape or intensity of a fluorescent molecule within cells to specific 
treatments, thereby enabling single cell analysis. 

Traditionally, these algorithms have been based on fluorescent staining of cells, where image 
contrast highlights specific compartments or molecules that can be visualized and processed 
in a straight-forward manner compared to the highly irregular appearance and non-specific 
contrast from cells in a brightfield (or phase contrast) image. While fluorescence staining is 
immensely powerful and convenient for cellular analysis and identification, it is nevertheless 
often associated with serious requirements such as the need for cell fixation and 
permeabilization, rendering it impossible to observe processes in live-cell experiments. Even 
if a dye does not require a sample preparation that comes along with cell death, it can 
introduce perturbations into the system that alter the experimental outcome.136,137 
Approaches to alleviate the need for cell staining utilized the bright halo forming around cells 
in defocused brightfield microscopy 99. While at the time beneficial, the extra time needed for 
focusing (and defocusing), combined with the larger data space needed for saving additional 
images, makes the technique impractical for large-scale experiments. Additionally, the 
procedure requires technical adjustments during image acquisition (precise 
focusing/defocusing). While these technical adjustments can be programmed in high-
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throughput experiments, it is an added challenge in manual image acquisition. The question 
of how to analyze: identify and segment unstained, in-focus, brightfield images of cells still 
remains unsolved. 

A promising potential solution lies in using “big data” in conjunction with deep learning 
analyses. After breakthrough work by Krizhevsky et al. 60, who trained a deep convolutional 
neural network (CNN) to classify image content into 1000 different classes (e.g. “person”, 
“car”, or “dog”), CNNs have gained considerable attention for image analysis. Moreover, in 
recent years, CNNs have advanced beyond classifying image content to also localizing61–63, and 
finally segmenting, objects within an image64. The new possibilities provided by CNNs have 
influenced a broad range of engineering and scientific fields, such as autonomous driving138, 
face recognition139, and cancer detection140. 

A major drawback of CNNs, however, is their need for massive amounts of annotated data. 
Krizhevsky trained his network on ~1.2 million class-labeled images from the ImageNet 
database67. The Common objects in context (COCO) dataset68, a popular collection of images 
for training of segmentation algorithms, contains more than 330,000 images with more than 
2.5 million labeled instances of 91 different classes. As extensive annotation is needed, these 
large datasets consisting of hundreds of thousands of images with even more instance 
segmentations are often a result of crowd-sourced work. While unproblematic for image 
annotations for objects known from everyday life, crowd sourcing is much less feasible for 
annotating datasets that require expert knowledge, as is the case in cell biology and medicine. 
To overcome this bottleneck in brightfield and phase contrast imaging, we assembled a 
collection of more than 4600 images of 30 cell lines, acquired on four separate microscopy 
setups in three different laboratories with nine different objectives having magnifications 
ranging from 10X – 40X. Cellular outlines and nuclei in our dataset were segmented manually 
by cell culture experts against fluorescently stained images. To our knowledge, we are the first 
group to offer a freely available, large-scale segmented dataset with several classes in the cell 
culture sector. With this new dataset, we hope to close a gap between cell biologists and 
computer scientists, as it provides access to biological data specifically prepared for training 
of computer vision algorithms. As a proof of principle, we also trained a segmentation and 
classification algorithm on our dataset and achieved an average precision of 58.3 % for 
intersection over union scores above 0.5. 

 

5.3 Online methods 

Cell culture 

All cells were maintained at 37 °C, 95% relative humidity, and 10 U/mL Penicillin/Streptomycin 
(Gibco) added to the respective medium. A complete list of used cell lines together with media 
and indicated culture supplements fetal calf serum (FCS) and non-essential amino acids 
(NEAA) is given in Table 7. 24 hours before imaging, cells were seeded into 96 well plates 
(Cellstar, Gibco) at 30 %, 50 %, and 100 % confluency. After incubation, cells were fixed with 
4 % para-formaldehyde in PBS for 10 minutes. Prior to imaging, cell membranes were stained 
with 0.01 % CellMask orange (Thermo Fisher Scientific) in PBS, nuclei were stained with 1 
µg/mL DAPI (Thermo Fisher Scientific) in PBS for 20 min at 37 °C. Cells were subsequently 
washed with PBS three times. 

Image acquisition 
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Image acquisition was performed on 4 different setups: Opera Phenix (Perkin Elmer), AF7000 
(Leica), IX81 (Olympus) and Biorevo BZ-9000 (Keyence). 

Table 5 summarizes the microscopy platforms as well as objectives used in this work. 

Table 5 Microscopes and Objectives used for image acquisition 

Microscope Objective Contrast mode 

Opera Phenix (Perkin Elmer) 10X/0.3 (Air) Brightfield 

 20X/0.4 (Air)  

 40X/1.1 (Water)  

IX81 (Olympus) 10X/0.3 (Air) Phase contrast 

 20X/0.4 (Air)  

AF 7000 (Leica) 10X/0.3 (Air) Phase contrast 

 20X/0.4 (Air)  

Biorevo BZ-9000 (Keyence) 10X/0.3 (Air) Phase contrast 

 20X/0.45 (Air)  

 

Image annotation & dataset assembly 

Brightfield or phase contrast microscopy images were merged with color-coded fluorescence 
images of the nucleus and membrane to facilitate recognition of nuclei and cell borders using 

FIJI®93. Cell culture experts and supervised personnel annotated 3 – 10 cells and nuclei within 

each image, and in total 52959 instances were segmented in the 4640 images. All annotations 
were exported as JavaScript Object Notation (JSON) document with IDs referring to the 
brightfield or phase contrast version of the original image, segmentations as x,y-polygons, and 
category-IDs indicating cellular entity or nucleus. Export format was chosen to fit COCO 
annotation style to ensure maximal applicability for modern machine learning training. 

 

Computer Vision classifier training 

Training our detection and segmentation algorithm was performed on a Mask-RCNN 
implementation, previously released under an MIT license by Matterport Inc.88 In this 
implementation, the Mask-RCNN approach is executed using the open-source Tensorflow and 
Keras libraries. We used a modification of the training scheme published before by Johnson141. 
Briefly, a Resnet-101 feature pyramid network model with 101 layers organized in 5 stages 
was employed as the backbone; weights were initialized with pretrained weights on the COCO 
dataset; training was performed for 52 epochs (40x heads, 8x 4+ layers, 4x all layers). The 
learning rate for weight adjustment during training was set to an initial value of 0.001 at the 
start of heads, as well as 4+ layer training; This value was decreased by 50 % after 20 epochs 
for heads training and after 4 epochs for 4+ layer training, respectively. For end-to-end training 
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after epoch 48, we decreased the learning rate to 10 % the original value and after additional 
2 epochs, decreased it to 5 % the original value. 

All training steps were carried out on a desktop PC with an Intel Core i7-6700 CPU with four 
3.4 GHz processors and 50 GB RAM for a full process duration of 31 days. 

 

 

Classifier evaluation 

Evaluation was performed on 100 fully annotated brightfield and phase contrast images that 
were kept separate from the training data. According to the image quality characteristics 
summarized in Table 6, we categorized each evaluation image into one of three difficulty 
classes. 

Table 6 Quality characteristics of evaluation datasets 

Evaluation dataset Cellular appearance (in phase 
contrast or brightfield) 

Image quality, contrast 
mechanism 

Difficulty 1 2D cell growth, few cell-cell 
contacts, clear cell outlines, most 
nuclei visible 

All cells in focus, most often phase 
contrast 

Difficulty 2 2D cell growth, several cell-cell 
contacts, most cell outlines 
visible, few nuclei visible 

Cells minimally defocused, mixed 
brightfield and phase contrast 

Difficulty 3 Occasional 3D growth, many cell-
cell contacts/colony formations, 
nuclei often invisible without 
staining 

Frequently defocused, mainly 
brightfield images 

 

The three resulting evaluation datasets are intended to assess the capabilities of trained 
classification-segmentation algorithms under varying imaging conditions. To guarantee 
accuracy of the ground truth masks, all annotations for quantitative comparison were 
generated on stained image versions. 

Classification performance was evaluated according to precision: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 

Predicted instances colocalized with corresponding ground truth instances were counted as 
true positives when exhibiting intersection over union (IoU) scores above a certain threshold. 
We monitored average precision at IoU thresholds above 0.5 (AP0.5) and 0.75 (AP0.75). 
Additionally, a cumulated average precision (AP) was computed, where the IoU threshold was 
incrementally increased from 50 – 95% in 5% steps and the precision per image averaged over 
each step.  
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Table 7 Cell lines represented in EVICAN dataset 
No Cell line Species Tissue Type Medium FCS [% in medium] NEAA added Code 

1 Colo 320 Human Colon Colon adenocarcinoma RPMI 10 x ACC 144 (DSMZ) 

2 SW-480 Human Colon Colorectal adenocarcinoma RPMI 10 x CCL-228 (ATCC) 

3 HT-29 Human Colon Colorectal adenocarcinoma RPMI 10 x HTB-38 (ATCC) 

4 Caco-2 Human Colon Colorectal adenocarcinoma EMEM 20  HTB-37 (ATCC) 

5 DLD-1 Human Colon Colorectal adenocarcinoma RPMI 10 x CCL-21 (ATCC) 

6 HCT116 Human Colon Colorectal carcinoma RPMI 10 x CRL-247 (ATCC) 

7 RKO Human Colon Colon carcinoma EMEM 20  CRL-2577 (ATCC) 

8 T47D Human Mammary gland Ductal carcinoma RPMI 10 x HTB-133 (ATCC) 

9 SK-BR-3 Human Mammary gland (derived from pleural effusion) Adenocarcinoma RPMI 10 x HTB-30 (ATCC) 

10 MDA-MB-231 Human Mammary gland (derived from pleural effusion) Adenocarcinoma RPMI 10 x HTB-26 (ATCC) 

11 MCF-7 Human Mammary gland Adenosarcoma RPMI 10 x HTB-22 (ATCC) 

12 786-O Human Kidney Renal cell adenocarcinoma RPMI 10 x CRL-1932 (ATCC) 

13 769p Human Kidney Renal cell adenocarcinoma RPMI 10 x CRL-1933 (ATCC) 

14 ACHN Human Kidney Renal cell adenocarcinoma EMEM 20  CRL-1611 (ATCC) 

15 CAKI-2 Human Kidney Clear cell carcinoma RPMI 10 x HTB-47 (ATCC) 

16 PC-3 Human Prostate Adenocarcinoma 50/50 RPMI/F12 10 x CRL-1435(ATCC) 

17 LNCaP Human Prostate Carcinoma RPMI 10 x ACC 256 (DSMZ) 

18 DU-145 Human Prostate (derived from metastatic site in brain) Carcinoma RPMI 10 x HTB-81 (ATCC) 

19 SH-SY5Y Human Bone marrow neuroblastoma Neuroblastoma DMEM 20 x CRL-2266 (ATCC) 

20 MG-63 Human Bone Osteosarcoma EMEM 20  CRL-1427 (ATCC) 

21 HeLa Human Cervix Adenocarcinoma DMEM 10 x CCL-2 (ATCC) 

22 HT-1080 Human Connective tissue fibrosarcoma DMEM 10 x CCL-121 (ATCC) 

23 NIH/3T3 Mouse Embryo Fibroblast DMEM 10 x CRL-1658(ATCC) 

24 RAW 264.7 Mouse Ascites (Abelson murine leukemia virus-induced 
tumor) 

Macrophage DMEM 10 x TIB-71 (ATCC) 

25 HEL 299 Human Lung Fibroblast DMEM 10 x CCL-137 (ATCC) 

26 FaDu Human Pharynx Squamous cell carcinoma DMEM 10 x HTB-43 (ATCC) 

27 MCC26 Human Skin Merkel carcinoma from skin DMEM 10 x 10092304 (Sigma Aldrich) 

28 C2C12 Mouse Muscle Myoblast RPMI 10 x CRL-1772 (ATCC) 

29 CHO-K1 Hamster Ovary Epithelium F12 10 x CCL-61 (ATCC) 

30 hMSC Human Bone marrow Mesenchymal stem cells DMEM 10 x PT-2501 (Lonza) 
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5.4 Results 

Dataset 

We assembled a dataset consisting of more than 4600 partially segmented brightfield and 
phase contrast microscopy images from several microscopy setups. Up to ten cellular and 
nuclear outlines were segmented per image, respectively, with a per image average of 11.4 
total instances. As depicted in Figure 36, phase contrast and brightfield microscopy images 
(Figure 36a) were overlaid with fluorescent channels from membrane and/or nucleus staining 
(Figure 36b), to facilitate manual segmentation by human annotators (Figure 36c). Regarding 
the images in Figure 36c, the ratio of annotated instances to real instances within the image 
declined with lower magnification since more cells were included in the lower magnification 
images. Manual annotation was validated by experienced cell biologists, which – while being 
quite laborious - is the only way to guarantee human level accuracy even for low contrast cell 
lines such as hMSC (Figure 36a, second row image). 

 

Figure 36 Dataset preparation pipeline 
a) Acquisition of brightfield and phase contrast microscopy images from various microscopes at different 
magnifications. b) Overlay images of fluorescent nuclei and membrane, where available. c) Manual segmentation 
of cell bodies (red) and nuclei (blue) were saved as binary masks and transformed into COCO segmentation 
format. 
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Figure 37 Dataset compilation 
a) Grayscale (phase contrast and brightfield) image versions are collected in a large-scale image collection. 
b) Manual annotations (cell and nucleus segmentations) are transformed into polygons and saved in a JavaScript 
Object Notation file. The compiled text file includes information about images (ID, size, name) and objects (ID, 
class, polygon). All text information is referred to the grayscale image versions produced in (a). 

Annotated images and corresponding grayscale versions (i.e. brightfield and phase contrast 
images) were compiled to a dataset consisting of a text file and an image collection in Joint 
Photographic Experts Group (JPEG)-format (see Figure 37). Manual annotations (i.e. 
segmentations) performed on stained image versions were transformed into polygons (i.e. 
“X1, Y1; X2, Y2;…; Xn, Yn”) and saved, together with image and object information, in a JSON 
text file. While annotations were performed on stained images the information saved in the 
text file referred to the assembled grayscale image collection. Referring to grayscale images 
was necessary to ensure the usability of computer vision algorithms for phase contrast and 
brightfield images after training on this dataset. 

 

Figure 38a shows the number of images for each cell line, with the majority containing >100 
images. We provide two datasets in the COCO annotation format: the EVICAN2-version with 
two classes: “cell” and “nucleus”, and the EVICAN60-version with nuclei and cells classified for 
each cell line, respectively, resulting in 60 class labels. As Figure 38b shows, we achieved a 
highly homogeneous distribution of nucleus and cell instances across all cell lines. For most 
classes in the EVICAN60-version we provide ~1000 instances, for the cell and nucleus class in 
EVICAN2 we exceeded 26,000 instances per class. Figure 38c shows the moderate 
underrepresentation of phase contrast images in our dataset, which as described later, 
contributes to less prominent feature observability due to reduced contrast in brightfield 
compared to phase contrast images. Additional to the COCO-format annotations, we provide 
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all masks as binary images with format “imageID_cellline.jpg” to offer freedom for developers 
and researcher not using COCO-like datasets. 

 

 

Figure 38. Overview of the EVICAN dataset 
Number of images (a), numbers of instances (b) per category in the dataset, and c) Relative number of images 
for brightfield (BF) and phase contrast (PC) imaging in the dataset. 
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Comparison to other segmented datasets 

We compared our dataset to four other commonly used datasets in cell biological 
segmentation: 

 The 2018 Kaggle data science bowl dataset, containing 670 fully annotated (mostly 

stained) nuclei images from various sources with ~25,000 instances142. While 

providing a multitude of annotated instances, the dataset is limited  

 The total number of phase contrast and DIC microscopy images of cell lines from the 

International Symposium on Biomedical Imaging (ISBI) cell tracking challenges from 

2014 and 2015. This contained 4 videos of 115 frames each, with 52 annotated 

frames of 2 cell lines (i.e. 2 classes: HeLa and U373 cells) in total96,143. 

 Three combined datasets of phase contrast images by Gurari et al.144 containing 151 

partially segmented images of 3 cell lines. 

 All DIC microscopy images of cell lines from the BBBC database145, consisting of 65 

fully segmented images for 2 classes: CHO and red blood cells. 

Figure 39 shows the size of the EVICAN dataset - both editions - in comparison to the four 
datasets listed above. In both cases, the EVICAN datasets are larger by means of image number 
(number of images in the dataset correlates with point area) than any of the previously 
mentioned collections. With ~26,500 segmentation masks per category, EVICAN2 
outperforms even the Kaggle nucleus dataset (25,000 segmentation masks for nuclei only), 
while providing double the number of classes with “cell” and “nucleus”. EVICAN60, in which 
all instances, cell and nucleus outlines are categorized by cell line, substantially outperforms 
all other datasets by means of category number (as well as image and instance number). Most 
datasets provide only a limited number of images and are often from one single experiment 
(e.g. the ISBI datasets are time-lapse image series monitoring the same microscopic field of 
view with the same microscope configuration over a longer period of time), reducing the 
heterogeneity within the dataset. The limited data and variation within the dataset will 
ultimately reduce the robustness of trained algorithms for general use outside of, e.g. the 
specific imaging system or specific cell lines used in training. 
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Figure 39 Comparison of the breadth and depth between EVCAN2 datasets and other large, 
annotated cell biology datasets 
The EVICAN2, EVICAN 60, 2018 Kaggle Data Science Bowl DS, ISBI CT challenge DS, Gurari DS, and the BBBC light 
microscopy datasets are shown in the color indicated on the graph; each dataset is located by its number of 
categories and instances segmented. The size (area) of each symbol corresponds to the image number. Note the 
log scaling of the y-axis. 

 

Classifier training 

As a proof-of-principle demonstration of the usability of the EVICAN data for deep learning 
application computer vision applications, we used our EVICAN2 dataset to train a deep 
learning classifier using a modified version of Matterport inc’s implementation of Mask R-CNN 
for image segmentation and object classification. To reduce the influence of unannotated cells 
on the background class, we prepared our dataset by Gaussian blurring (sigma = 30 pixel) 
everything except for the annotated instances plus an extra 10 pixel radius around their 
outlines. The Mask R-CNN algorithm was then trained on the background-reduced EVICAN2 
dataset as described in the Methods section. The trained produced an algorithm for cellular 
and nuclear detection for both brightfield and phase contrast images.  

We tested our trained algorithm on microscopy image evaluation datasets categorized in 
three classes of rising difficulty level. Average precision was computed at IoU thresholds above 
0.5 (AP0.5), above 0.75 (AP0.75), and averaged over thresholds rising from 0.5 to 0.95 in 0.05 
steps (AP). Table 8 shows that with rising difficulty level of the evaluation data, average 
precision values indeed decreased, as expected. 
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Table 8 Comparison of Mask RCNN segmentation precision after training on EVICAN2 to 
segmentation precision after training on the COCO and Kaggle 2018 datasets. 

 

 AP0.5 AP0.75 AP 

EVICAN2    
Difficulty 1 58.3 9.6 21.3 
Difficulty 2 27.2 3.6 9.3 
Difficulty 3 12.2 0.06 3.8 

COCO64 58.0 37.8 35.7 
Kaggle 2018141 NA NA 59.4 

 

Assessing the lowest difficulty evaluation dataset, we achieved a slightly higher AP0.5 score 
than reported for Mask R-CNN training on the everyday scene image dataset COCO64. The 
decreasing average precision with increasing IoU thresholds (i.e. scores of AP0.75 and AP) 
indicates that a majority of positive detections in AP0.5 is based on IoU values below 0.75. 
Algorithms trained on the COCO dataset (color images, 91 classes) and in the Kaggle data 
science bowl (mostly color images, one class) achieve higher AP scores, indicating better 
overlap of ground truth and detected instances. 

With the combined annotation of cell bodies and nuclei in one dataset, we could also show 
the possibility to detect cells and subcellular features mutually in one step. For qualitative 
assessment, Figure 40 shows exemplary input and output images for our algorithm.  

It is apparent, that the algorithm produces better results on images with higher contrast (i.e. 
in phase contrast images, see Figure 40 left and right column). Brightfield images, even with 
high magnification, often result in incorrect detections or missed cells/nuclei (see Figure 40 
middle column). Comparing the performance of our algorithm to other applications of the 
Mask RCNN approach, it is evident that algorithms trained on the COCO and Kaggle 2018 
dataset reach higher average precision scores than training on EVICAN2. While COCO and the 
Kaggle 2018 dataset include colored or stained images, EVICAN relies solely on grayscale 
images, thereby limiting feature dimensionality. 
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Figure 40 Exemplary input (a) and output (b) images for our algorithm 
Varying colors indicate individual cell or nucleus segmentations, values (white) denote confidence of each 
detection (maximum = 1.0; all values above 0.7). Left: SW480 cells, imaged in phase contrast mode (20X 
objective), 100 % correctly detected cells; Middle: PC3 cells, imaged in brightfield mode (40X objective), Nuclei 
not or incorrectly detected; Right: CHO cells, imaged in phase contrast mode (20X objective), several false 
positive detections. 

 

5.5 Discussion 

The EVICAN dataset provides the first large-scale, multi-class annotated and segmented, 
mixed brightfield and phase contrast microscopy image collection covering a broad range of 
cell lines (30 adherent cell lines). Training computer vision algorithms on our dataset should 
enable computer scientists to produce faster and more accurate cell image segmentation and 
characterization tools using unstained images. This capability has the potential to strongly 
increase the ability of simple light microscopes to serve as quantitative instruments in cell 
biology labs. Although machine learning algorithms have been applied before to microscopy 
images, in part with remarkable success, image processing is still far behind the technology 
for image acquisition. Despite massive application of computer vision in other data intensive 
sectors like face recognition139, progress in applying computer vision in cell microscopy is 
comparatively slow. We believe that this slow progress is due to two decoupled sectors: 
Computer scientists usually have no access to a biolab with adequate image acquisition 
machinery and most biologists lack the knowledge and skills to create or retrain computer 
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vision algorithms. We hope to overcome this gap between the sectors by providing computer 
scientists (and other algorithm developers) with our image collection. We provide two editions 
of our dataset: EVICAN2 with the classes “nucleus” and “cell” as well as EVICAN60 with 60 
classes for 30 cell lines and their respective nuclei. Additionally, we provide three evaluation 
datasets accounting for varying image quality. 

Using the EVICAN2 dataset version in a pilot machine learning application for cell and nucleus 
identification, we generated a classification and segmentation algorithm with an average 
precision up to 58.3 % at IoU scores above 0.5. Other groups have reported more robust 
results64,141. However, these algorithms rely on colored or stained images while EVICAN2 
training yielded a detection algorithm for grayscale images. Feature availability is reduced in 
grayscale images, as one channel is used instead of three, which explains lower performance 
of resulting detection algorithms. 

Performance of our algorithm was best for the lowest difficulty images in our evaluation 
dataset. This can be explained with a higher degree of feature presentation in images with 
few cell-cell contacts, strong contrast (e.g. from phase contrast), high resolution, and better 
focused image conditions. The COCO dataset was designed with object types recognizable by 
a 4-year old68, while the EVICAN dataset includes cellular outlines and incorporated nuclei, 
that overlap, share a strong resemblance, and are often challenging to see without staining, 
even by a trained individual. 

Better performance on high resolution and magnification images could arise from higher 
feature visibility that is lost in lower resolution. Phase contrast images provide a higher 
contrast; features appear more prominently, which facilitates feature detection in the 
convolutional process. Nevertheless, the limited dimensionality (as a consequence of the 
grayscale nature of the images) prevents the algorithm from searching for color-encoded 
features. 

We believe with the right tools (e.g. multi-GPU support) and advanced image augmentation, 
the EVICAN60 version can lead to an even more revolutionary algorithm development. Such 
an algorithm would be capable of not only segmenting cells and nuclei within an image, but 
also discriminate between cell types in co-cultures. Such an algorithm would open the door to 
a whole new era of cell microscopy: All cells in a microscopic field could be adequately 
measured label-free (i.e. determination of cell spreading, elongation, circularity, etc.), cell 
migration in assays or under culture conditions could be monitored, and individual cellular 
contacts (especially in co-cultures) could be mapped and connected to morphology changes. 
We hope computer scientists and computational biologists use our dataset in efforts to 
achieve this goal. 
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6 Outlook 
 

6.1 Future directions 

In this thesis, I covered two broad topics: Cellular behavior in an atherosclerosis model and 
image processing technology and how these two topics were used together. Research in both 
areas is currently highly topical, with atherosclerosis still being the disease with the highest 
mortality rates and image processing undergoing exceptional transformations through 
machine-learning assisted computer vision. After studying both fields in great detail during my 
PhD project, I now want to give an outlook how my projects could be advanced and what can 
be expected within the next years. 

 

6.2 Atherosclerotic research 

We could show that the microenvironmental stiffness matters during lipid uptake of 
macrophages. While neglected to a large degree over the last decades, mechanical factors in 
atherosclerotic plaque development should now be considered in more detail. As a first study, 
the repetition of our approach using THP-1 with continuously expressed scavenger receptor A 
and CD36 would help to clarify its prominent role in stiffness mediated lipid uptake. 
Additionally, it might be advantageous to probe cellular lipid uptake in a 3D hydrogel model. 
This adds several obstacles such as quantification of LDL particle diffusion into the scaffold 
and limited light penetration through the gel (hindering microscopy). Preparing gel slices using 
a cryotome could solve the latter problem. A nonpoisonous hydrogel with tunable stiffness 
would be needed as substrate. Possible candidates could be agarose, (poly ethylene) glycol, 
or alginate-based hydrogels. As the 2D approach of seeding macrophages on hydrogels in this 
thesis neglected the third dimension, results in this model could differ from our observations 
and more appropriately mimic the natural conditions of the intimal space during 
atherosclerosis. 

Another interesting study could be an implantation of two artery prostheses (i.e. an artificial 
piece of artery) into a mouse model prone to atherosclerosis development. Equipping the 
prostheses with hydrogels of 4 kPa and 50 kPa (Young’s modulus) would mimic early and late-
stage mechanical properties in plaque development. Explanting the two models after 
extended incubation, would allow studying lipid uptake in extravasated macrophages from 
both mechanical conditions from the same living sample. However, to achieve this, a cell 
penetrable, mechanically tunable hydrogel would be necessary. 

Finally, I believe that genetic engineering might have an outstanding impact on atherosclerosis 
research. First results showed lowered cholesterol levels in mice after in vivo alteration of a 
single control gene146. Although debated ethically, this shows the power of gene-editing 
approaches. However, target proteins need to be identified before gene-editing is feasible, 
therefore more studies should be applied to reveal all roles of potential candidate proteins 
like scavenger receptor A or CD36. 
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6.3 Image processing for microscopy 

While the DRAQ5-dependent cell segmentation algorithm presented in Chapter 3 is a ready-
to-use solution for the popular scientific image processing suite FIJI/ImageJ, the computer 
vision algorithm presented in Chapter 5 is not embedded in any image processing software 
with graphical user interface. Application of the computer vision cell segmentation algorithm 
requires programming skills, which limits the applicability amongst potential users. I highly 
recommend the advancement of the algorithm to be included in a popular software for image 
processing (e.g. FIJI/ImageJ or CellProfiler). Until higher precision values are achieved by the 
algorithm, I would also suggest to implement a semi-automated version of the software, in 
which incorrect cell detection can be corrected manually (e.g. with a selection brush tool). 
While making the application more laborious, this would guarantee human level precision in 
cell image experiments. 

Image processing is a fast-evolving field and the algorithms presented in this thesis might in 
fact even be outdated within a few years. I believe that machine-learning assisted algorithms 
will dominate the development in this field over the next decade. Starting with “simple” 
solutions such as enhanced autofocus in automated microscopes or unstained cell detections 
in real time during image acquisition. This would add unforeseen quantitative features to 
conventional microscopes present in almost every cell culture lab. In a next step “scene 
understanding” might play a prominent role (i.e. keyword or even linguistic representations 
of the image scene). While used to derive data in real life images147, this approach could be 
highly efficient in cell microscopy. Individual cells could not only be tracked but also 
interactions (e.g. cell division or colony formation) mapped. Data could therefore be 
generated in another dimension by recording time-lapse videos and monitoring cellular 
interactions relative to cell fate (e.g. number of cell divisions before cell death of one 
individual cell). 

Using cell image datasets such as the EVICAN 60 format from Chapter 5 could additionally 
enable classification of multiple various cell types (e.g. “HeLa”, “CHO”, “C2C12”). The ability 
to classify different cell types would not only allow scientists to follow potentially changed 
behavior of cells in a co-culture, but also monitor differentiation in real-time in a quantitative 
(e.g. spreading area, protrusion formation) and qualitative fashion (e.g. the transition from 
class “mesenchymal stem cell” to class “osteoblast” or class “adipocyte”). Assuming a 
sufficient precision of a classification/segmentation-algorithm, high-level and currently cost-
intensive experiments could be performed without staining and using conventional laboratory 
equipment. 

 

6.4 Unsupervised learning 

In addition to the supervised learning approach of computer vision, which is covered in this 
thesis, another system may take a more prominent role in the next generation of image 
processing software: Unsupervised learning. In unsupervised learning, computer vision 
algorithms learn features from unlabeled images according to a predetermined number of 
classes. E.g. an unsupervised algorithm would learn to segment the object classes “person” 
and “background” from images of persons in front of a white background and the information 
that it should find two classes. Unsupervised algorithms have already shown powerful 
potential in everyday scene segmentation148 and even in microscopy image segmentation of 
pathologic tissues149. As image generation in microscopy is no bottleneck (due to automated 
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setups) and unsupervised learning eliminates the burden of image annotation, the method 
would be perfectly suited for the field of cell microscopy. While supervised software adopts 
human biases like individual differences in segmentation accuracy or annotation mistakes (e.g. 
labeling a nucleus as “cell”), unsupervised software shows no, or limited biases (e.g. 
depending on provided class number). 

Eventually, unsupervised algorithms detect subtle changes, which could be missed by human 
annotators. Especially in cell biology, subtle changes can have strong impacts. For example, 
cellular subpopulations in a tumor that escape cell-cycle arrest after chemotherapy150. The 
enhanced detection of subtle object-variations within images, using unsupervised learning, 
might allow the identification of new cell phenotypes or subpopulations that differ from the 
remaining cell population. 
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