
On non-linear frequency chirping in connection with collisions

Christoph Slaby∗, Axel Könies, Ralf Kleiber, and Henry Leyh
Max-Planck-Institut für Plasmaphysik,

Wendelsteinstraße 1, 17491 Greifswald, Germany
(Dated: December 10, 2018)

Abstract
The non-linear behaviour of toroidicity-induced Alfvén eigenmodes, destabilized by fast ions,

is investigated in tokamak geometry and for a Wendelstein 7-X high-mirror equilibrium. Both
cases show frequency chirping in the non-linear phase. The focus of this paper is on how particle
collisions influence the non-linear dynamics and the associated frequency chirping. Pitch-angle
scattering and fast-ion drag, which together are described by the fast-ion collision operator, are
considered. We study the effect of a Krook operator, relaxing the distribution function to its
unperturbed value, on the non-linear dynamics. The Krook operator leads to a periodic re-
appearance of the chirping. This is also observed in experiments in which a fast-particle source
is usually present.

The simulations are carried out using the non-linear and fully three-dimensional CKA-
EUTERPE model. The model is perturbative in the sense that a fixed mode structure is used.
Since such an investigation is undertaken for the first time for the stellarator Wendelstein 7-X,
the tokamak case as well as analytical theory are used for comparison. The parameters of the
fast-ion distribution function in Wendelstein 7-X are inspired by the 2018 experimental campaign
which, for the first time, includes neutral beam injection to supply fast ions.

∗ E-mail address: christoph.slaby@ipp.mpg.de
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I. INTRODUCTION

In plasmas that are relevant for nuclear fusion, there typically exists a small popu-
lation of fast ions that are much hotter than the bulk of the plasma. In today’s fu-
sion experiments such particles are created by neutral beam injection (NBI) or ion cy-
clotron resonance heating (ICRH). In future fusion reactors, alpha particles created by
the deuterium-tritium fusion reaction will be present. In order to heat the plasma, the
fast ions need to remain in the plasma long enough to thermalize.
However, in the process of slowing down, the fast ions may resonantly interact with
Alfvénic perturbations [15, 34]. This can lead to enhanced fast-ion transport and also
to the ejection of fast ions from the confinement region, which implies energy losses
[11, 37]. In severe cases, damage to plasma-facing components is possible [10, 11].
It depends on the magnetic equilibrium as well as on the fast-ion distribution function
which Alfvén eigenmode (AE) in particular is most easily destabilized by the fast parti-
cles. A good overview is given in Ref. [18]. Typically, so-called gap modes that reside
in frequency gaps of the shear Alfvén spectrum are likely to be unstable, because they
experience only small continuum damping.
Especially with regard to future fusion reactors, an understanding of AE-induced fast-
ion transport and redistribution has to be developed. Since the modes responsible for
the redistribution are excited by the energetic ions themselves, the problem is non-linear.
Analytical theory is available in the form of the simplified Berk-Breizman paradigm
[1–4] which shows that a variety of non-linear behaviours – ranging from explosive,
chirping, and periodic solutions to a steady-state dynamics – are possible. The analytical
theory is able to identify some key parameters that govern the non-linear dynamics: The
relative strength of damping and drive as well as diffusion and drag (i.e. collisions) are
found to be important. Also the presence of particle sources can change the non-linear
dynamics.
Frequency chirping has also been investigated experimentally in stellarators and toka-
maks. AEs chirping in frequency are seen in the TJ-II stellarator in discharges that
combine NBI and electron cyclotron resonance heating [31, 32]. A transition from a
chirping state to a steady state is linked to variations of the magnetic configuration [31],
i.e. equilibrium changes. The fast-ion transport induced by frequency-chirping AEs
has been investigated in the ASDEX Upgrade tokamak [16]. Comprehensive non-linear
simulations of chirping AEs, including equilibrium changes and collisions, have been
carried out for JT-60U plasmas [6].
This paper reports on non-linear simulations of toroidicity-induced Alfvén eigenmodes
(TAEs) in tokamak and stellarator plasmas. We choose the TAE modes destabilized
by fast particles as an example, standing in for the class of all AEs. We focus on the
frequency chirping of TAEs excited in realistic geometry. All cases chosen for this inves-
tigation show frequency chirping in the absence of collisions. We will then investigate
the impact of various collision operators on the frequency chirping. This is the first time
that such an investigation is undertaken for Wendelstein 7-X (W7-X). This study is of
practical relevance for W7-X, since it is one step needed towards the development of a
full fast-ion transport model, which is still lacking.
We use the CKA-EUTERPE code package [14] for our numerical simulations. The re-
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duced ideal-magnetohydrodynamic (MHD) code CKA [13, 21] calculates the eigenmode
(frequency and mode structure). In a separate step, the global non-linear gyro-kinetic
electromagnetic particle-in-cell (PIC) code EUTERPE [20, 24] is used to compute the mo-
tion of marker particles in the pre-calculated field and the power transfer of the fast
particles to the mode, which determines the temporal evolution of the mode amplitude.
This approach is applied to two different magnetic configurations: We start by inves-
tigating how collisions influence the chirping in tokamaks. As an example, the ITPA
benchmark case [22, 23] is used. Secondly, chirping TAEs influenced by collisions are
simulated in a Wendelstein 7-X high-mirror equilibrium.
Various collision operators are explored in the paper. We start by using a simple pitch-
angle scattering operator. The effect of pitch-angle scattering on the saturation ampli-
tudes of TAEs in the ITPA tokamak and in W7-X was recently computed in Ref. [36].
The pitch-angle-scattering operator is, of course, just a first approximation of the full
fast-ion collision operator, which also includes slowing-down drag. The effect of drag
will be studied separately from the pitch-angle collisions. Finally, we will use a Krook
term [5], emulating a particle source, to relax the distribution function towards its initial
state. The Krook operator is linked to periodic, well separated chirping events that are
routinely observed in experiments [16, 31, 32] and numerical simulations [25–27, 29].
Note that the effects of collisions on chirping have been studied extensively [3, 4, 25–
30] in one-dimensional models that are related to the original Berk-Breizman paradigm.
Relatively little work has been invested to study non-linear frequency chirping in two-
dimensional (see e.g. Ref. [6] for simulation results on frequency chirping in JT-60U
plasmas) or even three-dimensional devices. This is the reason why we start this in-
vestigation with the (relatively simple) ITPA benchmark case: We recover many features
predicted by the Berk-Breizman theory, but now in a two-dimensional system. The mag-
netic geometry is still simple enough that this case can bridge the gap to the complex
W7-X case, where it is investigated whether the fully three-dimensional system leads to
differences compared with the analytical theory.
The paper is organized as follows: Sec. II elaborates on the existing theory and intro-
duces our numerical tools. Sec. III describes both the tokamak and the W7-X case. The
non-linear dynamics in the collisionless limit is, for comparison, given in this section.
How these results change when collisions are taken into account is shown in Secs. IV
and V. Finally, conclusions are drawn in Sec. VI.

II. THEORY AND ALGORITHMS

A. The numerical model of CKA-EUTERPE

The theory behind the model of CKA-EUTERPE has recently been described in Ref. [36].
Therefore, only the defining characteristics of the model will be repeated here.
The CKA-EUTERPE code package combines the reduced ideal MHD code CKA (Code
for Kinetic Alfvén waves) with the global non-linear δf particle-in-cell code EUTERPE.
Both are suited for fully three-dimensional geometries.
CKA is an eigenvalue code used to solve for the frequency ω of the mode as well as
the mode structure (in terms of the electrostatic potential φ). Note that for vanishing
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parallel electric field, the electrostatic potential and the parallel component of the vector
potential, A‖, are linked via

A‖ =
i
ω

b · ∇φ. (1)

(b denotes a unit vector in the direction of the magnetic field, B = Bb.) The Coulomb
gauge is used and the perpendicular component of the vector potential (related to com-
pression of the magnetic field) is neglected. No kinetic fast-ion effects are considered in
CKA.
The mode frequency, electrostatic potential, and vector potential are passed to EU-
TERPE, which solves the gyro-kinetic equation

∂ fs

∂t
+ Ṙ · ∇ fs + v̇‖

∂ fs

∂v‖
+ µ̇

∂ fs

∂µ
= Css ( fs, fs) (2)

for the distribution function of a species s including a collision operator Css( fs, fs). In
the CKA-EUTERPE model only the fast ions are treated gyro-kinetically. Therefore the
species index will be omitted hereafter. µ denotes the specific magnetic moment µ =
v2
⊥/(2B). EUTERPE as a PIC code solves the kinetic equation by following numerical

marker particles that move along the characteristics of Eq. (2). We split the distribution
function into two parts, f = f (0) + f (1), where f (0) is a time-independent background
and f (1) denotes a perturbation, respectively. CKA-EUTERPE uses the so-called v‖-
formulation of gyro-kinetics. Hence, in the collisionless limit and with the non-linear
terms retained the equations of motion for the particles (characteristics of Eq. (2)) are

Ṙ = v‖b +
m
q

[
µB + v2

‖
BB?
‖

b×∇B +
v2
‖

BB?
‖
(∇× B)⊥

]

+
v‖

BB?
‖
[b×∇B + (∇× B)⊥]

〈
A‖
〉
+

1
B?
‖

b×∇
〈

φ− v‖A‖
〉 (3)

v̇‖ = − µ∇B ·
[

b +
m
q

v‖
BB?
‖
(∇× B)⊥

]
−

v‖
BB?
‖
[b×∇B + (∇× B)⊥] · ∇ 〈φ〉

− µ

B?
‖

[
b×∇B · ∇

〈
A‖
〉
+

1
B
∇B · (∇× B)⊥

〈
A‖
〉] (4)

µ̇ = 0 (5)

with

B?
‖ = B +

[
m
q

v‖ +
〈

A‖
〉]

b · ∇ × b. (6)

Here, m and q denote the particle mass and charge, respectively. The angular brackets,
〈. . .〉, denote the gyro-average. Note that the equation for v̇‖ does not contain a time
derivative of A‖ as we have used the E‖ = 0 constraint to replace this time derivative
with the parallel gradient of φ.
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We emphasize again that the mode structure is fixed throughout the calculation. There-
fore, neither Poisson’s equation nor Ampère’s law have to be solved. We only need to
consider the temporal evolution of the amplitudes (denoted by a circumflex below) of
the electromagnetic potentials. The equations for the amplitudes are given as (We refer
to Refs. [21, 36] for details.)

∂φ̂ (t)
∂t

= iω
(

Â‖ − φ̂
)
+ 2 (γ (t)− γd) φ̂ (7)

∂Â‖ (t)
∂t

= iω
(

φ̂− Â‖
)

, (8)

where γ(t) = P/(2W) is a time-dependent growth rate that is computed from the wave-
particle power transfer

P = −
∫

dΓ B?
‖

[ m
ZeB

b×
(

v2
‖κ + µ∇B

)
·
(

Ze∇⊥φ∗ (r, t) f (1)
)]

(9)

and wave energy

W =
∫

d3r
ρ

B2 |∇⊥φ|2 . (10)

Here, ρ is the mass density of the plasma, the particle charge is denoted by Ze, κ is the
curvature of the magnetic field, and dΓ denotes an infinitesimal phase-space element.
The electrostatic potential is given by φ(r, t) = φ̂(t)φ0(r) exp(iωt), where φ0 denotes the
MHD eigenfunction of the electrostatic potential calculated by CKA (similar for A‖).
In Eqs. (3) and (4), the real parts of the potentials are taken to compute the particle
trajectories. γd is an externally specified damping rate. Note that while the mode varies
on a short time scale, the amplitudes in Eqs. (7) and (8) evolve much more slowly. This
fact has been used in the derivation of the amplitude equations. Thus the model is only
applicable for chirping which satisfies δω/ω � 1.

B. Collision operators

Throughout this paper various collision operators will be used and compared with each
other. Since the focus is on TAEs excited by fast ions, we start with the general expression
for a collision operator of test particles a colliding with a Maxwellian background [19]
of particles b

Cab
(

f (1)a , f M
b

)
= νab

D L
(

f (1)a

)
+

1
v2

∂

∂v

[
v3

(
ma

ma + mb
νab

s f (1)a +
1
2

νab
‖ v

∂ f (1)a

∂v

)]
. (11)

The first term in this general collision operator describes pitch-angle scattering of species
a with species b

νab
D L = Cab

pitch =
νab

D
2

∂

∂ξ

(
1− ξ2

) ∂

∂ξ
. (12)

ξ = v‖/v denotes the pitch-angle variable,

νab
D = νab

0
Φ (xb)− G (xb)

x3
a

(13)
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is the deflection frequency of species a colliding with species b [19], and xs = v/(
√

2vth,s)
with vth,s =

√
kBTs/ms. T denotes the temperature. Φ and G are the error function and

the Chandrasekhar function, respectively. With n being the density, Z the charge num-
ber, e the electron charge, ε0 the vacuum permittivity, and ln Λ the Coulomb logarithm,
we will use [19]

νab
0 =

nbZ2
a Z2

be4 ln Λ
4πε2

0m2
a23/2v3

th,a
, (14)

with the density and temperature evaluated at the particle position, to determine the
collision frequencies from the profiles. We will call this the self-consistent approach.
However, in some cases it is enlightening to modify νab

0 in order to enforce a different
non-linear behaviour of the system. Cases where this approach is pursued are indicated
below. Note that in a realistic setting, the fast particles do not just collide among them-
selves. For typical fusion plasmas, the collision frequency with the bulk is many orders
of magnitude larger, i.e. νff

0 � νfi
0 . This motivates our approach to treat ν0 = ∑s νfs

0 as an
‘effective’ collision frequency that contains different physics, depending on the case and
which species are considered collisional. The letters ‘i’, ‘e’, and ‘f’ are used to label ions,
electrons, and fast ions, respectively.
The implementation of the pitch-angle collision operator into EUTERPE is described in
detail in Refs. [9, 36].
Furthermore, going back to Eq. (11), νab

s is the slowing-down frequency defined as [19]

νab
s = νab

0
2Ta

Tb

(
1 +

mb
ma

)
G (xb)

xa
, (15)

and νab
‖ denotes the parallel velocity diffusion frequency [19]. To arrive at a fast-ion

collision operator, we employ the following approximations:

1. The combination a = f, b = f can be neglected due to the high temperature and
small density of the fast particles.

2. Parallel velocity diffusion can be neglected in general, since its frequency is typi-
cally very small.

3. Pitch-angle scattering of the fast ions off electrons can be neglected due to the mass
difference.

Under these circumstances the original operator can be significantly simplified to

Cfast

(
f (1)f

)
= ∑

s=i,e
C f s
(

f (1)f , f M
s

)
(16)

∼= νfi
DL
(

f (1)f

)
+

1
v2

∂

∂v

[
v3 mf

mf + mi
νfi

s f (1)f

]
+

1
v2

∂

∂v

[
v3 mf

mf + me
νfe

s f (1)f

]
. (17)

The first term describes pitch-angle collisions between fast and bulk ions. The second
and the third term describe the drag that the fast ions experience with the background
ions and electrons, respectively.
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It is tempting to further simplify the operator by using the fact that in fusion plasmas
the fast particles are faster than the bulk ions, but still slower than the electrons. There-
fore, one often uses the large-argument expansion of the Chandrasekhar function in the
second term of Eq. (17). Accordingly, the third term is treated using the small-argument
expansion, so that the operator can finally be written in the well-known form

Cfast

(
f (1)f

)
≈ νfi

DL
(

f (1)f

)
+

1
v2τs

∂

∂v

[(
v3 + v3

c

)
f (1)f

]
, (18)

where τs and vc denote the slowing-down time and the critical velocity (below which
ion drag is stronger than electron drag), respectively:

τs =
3 (2π)3/2 ε2

0mfkB
3/2T3/2

e

Z2
f e4√mene ln Λ

(19)

vc =
√

2vth,e

(
niZ2

i
ne

3
√

πme

4mi

)1/3

. (20)

However, the approximated operator given in Eq. (18) presents certain challenges in
practical applications. The approximation is only valid as long as vth,e � vth,f � vth,i
is fulfilled. In a PIC code, however, the particles are loaded with a velocity distribution
where some ‘fast’ particles will have velocities comparable to the bulk ions making the
classification as fast particles misleading. Especially for those slow particles, the effect
of drag is greatly enhanced by the approximations. In a stellarator this can lead to
a localization (trapping) of particles in regions of low magnetic field strength. This
localization of particles with respect to the toroidal angle of the device conflicts with the
parallelization scheme (domain decomposition) and can lead to a severe load imbalance.
This is the reason why we do not use the simplified fast-ion collision operator often cited
in the literature, but instead use the one given by Eq. (17).
Recall that this operator is composed of a pitch-angle part and a drag part. In the
code, an operator splitting is employed. The pitch-angle part can be treated in the way
described in Refs. [9, 36]. The drag part, which contains only a first-order derivative
with respect to velocity, can be incorporated into the regular equations of motion, i.e.
the derivative ∂/∂v is translated into ∂/∂v‖ and ∂/∂µ derivatives that are added to
Eqs. (4) and (5). One finds that the changes of v‖ and µ due to drag are

v̇‖,drag = −23/2Tfvth,f

[
νfi

0
Ti

G (xi) +
νfe

0
Te

G (xe)

]
ξ (21)

µ̇drag = −23/2Tfvth,f

[
νfi

0
Ti

G (xi) +
νfe

0
Te

G (xe)

]
v
(
1− ξ2)

B
. (22)

The last operator that will be used in this paper is a simple Krook operator [5]. The role
of this operator is to relax the distribution function to its unperturbed state by damping
the perturbation at rate νKrook.
Since we use the so-called v‖-formulation of gyro-kinetics, the Krook operator is defined
as

CKrook

(
f (1)
)
= −νKrook f (1) = −νKrook

(
f − f (0)

)
. (23)
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Figure 1: Mode structure (left) and normalized fast-ion density profile (right) for the ITPA case.

The motivation of using a Krook operator is as follows: Recall that in the one-
dimensional Berk-Breizman paradigm a gradient in velocity space is the source of the
instability. This explains the very strong influence of pitch-angle collisions (acting in
velocity space) within that model. In our case, the TAE is destabilized by a density gra-
dient in real space. Accordingly, pitch-angle collisions will have a different effect on the
non-linear dynamics in the present case. Therefore, we use a Krook operator to relax the
distribution function to its initial state and thus to rebuild the gradients in real space.
In this way the Krook operator can play a comparable role in our model as pitch-angle
collisions do in the Berk-Breizman framework.
Throughout the paper, guiding-centre diffusion due to collisions is neglected.

III. CASES AND COLLISIONLESS RESULTS

In this section, we investigate the non-linear chirping behaviour of the ITPA tokamak
case [22, 23] as well as that of a Wendelstein 7-X high-mirror case. The magnetic equi-
librium and properties of the fast-particle distribution function are described briefly in
this section. For later comparison, we will present the collisionless results here.

A. Case description

The ITPA tokamak case [22, 23] has been studied extensively in the past. The radial
mode structure and the fast-ion density profile are shown in Fig. 1. The radial coor-
dinate s denotes the normalized toroidal flux. The background-plasma density and
temperature profiles are flat with ni = ne = 2.0 · 1019 m−3 and Ti = Te = 1 keV, respec-
tively. We take the usual TAE mode, but vary the fast-ion content in the plasma in order
to change the linear growth rate γL = γ(t) + γd and thus cause different non-linear
scenarios. γ(t) is the instantaneous growth rate as measured by the code. It is constant
in the linear phase and drops when saturation is reached. Thus, γL is only meaningful
in the linear phase and corresponds to the growth rate without damping. The on-axis
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Table I: Fast-ion densities and resulting linear growth rates for the tokamak cases.

case Density nf (0) / m−3 Linear growth rate γL / s−1

tokamak case 1 7.24 · 1016 1.25 · 104

tokamak case 2 2.51 · 1017 4.05 · 104

tokamak case 3 5.03 · 1017 7.53 · 104

0 0.2 0.4 0.6 0.8 1
s

0

25
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125

150

f
/
k
H
z

Figure 2: The shear Alfvén continuum for the W7-X high-mirror configuration. While most of
the continuum branches are shown in grey, the relevant branches have been coloured. The TAE
frequency is shown as a solid black horizontal line and lies at the lower edge of the TAE gap.
The mode is radially located near the avoided crossing of the coloured branches.

values of the fast-ion density and the resulting linear growth rates γL for the different
cases (denoted as tokamak case 1, 2, and 3) are given in Tab. I. They all share a common
value for the damping rate γd = 1.05 · 104 s−1. This value for γd is chosen, because it is
the standard value for the ITPA benchmark case.
For W7-X, a high-mirror configuration is studied. The shear Alfvén wave continuum for
this equilibrium is shown in Fig. 2. The relevant continuum branches (m = 17 in blue
and m = 18 in red) are coloured and the TAE frequency is indicated as a solid horizontal
line. The toroidal mode number is n = −16. Note that, while the magnetic equilibrium
is the same as in Ref. [36], not the same mode is investigated. We follow Ref. [21] and
study a slightly more core-localized TAE with higher mode numbers (which leads to a
more narrow radial mode structure) that is more readily comparable with the tokamak
case. The radial mode structure and fast-ion density profile for W7-X are shown in
Fig. 3. For simplicity, the background-plasma density and temperature profiles are flat.
We choose ni = ne = 1020 m−3 and Ti = Te = 3 keV, respectively.
Also for W7-X, two cases are compared with each other. They are denoted as W7-X
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Figure 3: Mode structure (left) and normalized fast-ion density profile (right) for the W7-X case.

Table II: Fast-ion densities and resulting linear growth rates for the W7-X cases.

case Density nf (0) / m−3 Linear growth rate γL / s−1

W7-X case 1 1.2 · 1019 1.19 · 104

W7-X case 2 6.0 · 1018 5.90 · 103

case 1 and 2. Again, the on-axis values of the fast-ion density as well as the linear
growth rates are given in Tab. II. The damping rates are chosen as γd = 9.6 · 103 s−1

and γd = 4.8 · 103 s−1 for cases 1 and 2, respectively. Choosing these values is motivated
by trying to make the ratio γL/γd similar to the tokamak case 1. Note that the fast-ion
density is very high for the W7-X cases. This is done to make the drive comparable to
the ITPA tokamak case in which a high fast-ion temperature of 400 keV is used. Since
the fast-ion temperature in W7-X is much lower (see below), the density needs to be
increased accordingly.
Note that the velocity-dependent part of the fast-ion distribution function is different
for the ITPA case and the W7-X case: We use a Maxwellian distribution function for the
ITPA case. The fast particles, which are deuterium ions, have the standard temperature
of Tf = 400 keV. The fast-ion temperature profile is flat so that the density gradient is
the only source of free energy for the instability.
For the W7-X case, on the other hand, a more realistic slowing-down distribution func-
tion with three distinct energy levels

f (0) = C
3

∑
i=1

wi

v3 + v3
c

H (vb,i − v) (24)

is used (H denotes the Heaviside step function). As is well known, not only atomic
hydrogen, but also molecules can be accelerated in the NBI system. This leads to the
step-like shape of the distribution function, whose parameters (beam velocity levels and
corresponding weights) are listed in Tab. III. The highest beam velocity corresponds
to an energy of 55 keV of the injected protons. The critical velocity vc is computed
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Table III: Parameters of the fast-ion distribution function for the W7-X cases.

i Velocities vb,i / ms−1 Weights wi

1 3.28 · 106 0.398
2 2.34 · 106 0.347
3 1.92 · 106 0.255
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Figure 4: Time traces of the perturbed poloidal magnetic field for the tokamak cases investigated.
Calculations are carried out for a long time into the non-linear phase. The left-hand side shows
the whole simulation, while the right-hand side shows a zoomed-in view at the time when the
initial saturation occurred.

according to Eq. (20) taking into account the temperature and density dependencies.
The normalization constant C is determined numerically. Again, the fast-ion density
gradient is the source of free energy that drives the instability.
It has to be mentioned here that the collision frequencies are very different for the ITPA
case and for W7-X, respectively. To illustrate this fact, we give here the fast-ion self-
collision frequencies (see Eq. (14)) at the respective mode maxima. While for the ITPA
case the collision frequency is νff

0 = 2.8 · 10−4 s−1, the collision frequency is about four
orders of magnitude higher for W7-X, νff

0 = 7.1 s−1. This is due to the higher density
and lower temperature of the fast ions.

B. Collisionless results

All these cases have been chosen because they exhibit frequency chirping in the non-
linear phase of a collisionless simulation. Before showing how collisions can potentially
alter the behaviour of the mode in the non-linear phase and how this affects the chirping,
we will present the collisionless results for later comparison.
The temporal evolution of the perturbed magnetic field attributed to the mode (δB is
defined as global maximum of the perturbed poloidal magnetic field) is shown in Fig. 4
for the ITPA case. Fig. 5 depicts the W7-X high-mirror case. In either case, the simu-
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Figure 5: Same as Fig. 4, but for W7-X.
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Figure 6: Spectrograms of the perturbed electrostatic potential for the different tokamak cases.
The linear growth rate increases from case 1 to 3. This clearly influences the frequency chirping.
While the chirping is only slightly asymmetric for case 1, it becomes very asymmetric for case 2
and has finally completely vanished for case 3.

lations extend for a long time into the non-linear phase. This is necessary in order to
capture the frequency chirping with sufficient accuracy. Note that especially for W7-X
it is crucial to check the time step for convergence.
The time trace of the perturbed electrostatic potential (whose envelope is directly pro-
portional to δB(t) for CKA-EUTERPE) is used to generate the spectrograms shown in
Figs. 6 and 7 for the ITPA case and the W7-X case, respectively. Throughout this work
the so-called S-method [7] is used to generate the spectrograms. This methods includes a
parameter λ, which can be used to ‘interpolate’ between a short-time Fourier transform
(λ→ 0) and the Wigner distribution (λ→ ∞). For the ITPA case, we use every 5th value
in the time trace of the electrostatic potential and λ = 10 to generate the spectrograms.
For W7-X, since the time step is smaller, we use every 10th value and λ = 5 instead.
Even though the time traces of the perturbed magnetic field (see Figs. 4 and 5) do not
look very different in the non-linear phase, the frequency chirping is strikingly different
(see Figs. 6 and 7). Symmetric, asymmetric, and vanishing chirping are possible for
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Figure 7: Spectrograms of the perturbed electrostatic potential for the different W7-X cases. Case
1 has twice the linear growth rate and twice the damping rate compared to case 2. It therefore
shows a wider chirping parabola.

both the tokamak and the stellarator. Which chirping scenario is realized depends on
the linear growth rate and the damping rate. (That all the cases have a different linear
growth rate is clearly visible on the right-hand side of Figs. 4 and 5.) Ref. [21] will
discuss the influence of γL and γd on the frequency chirping in greater detail.
In the following, we pick only the cases that showed the most symmetric chirping (toka-
mak case 1 and W7-X case 1) in order to assess the influence of different collision oper-
ators on the non-linear dynamics.

IV. NON-LINEAR BEHAVIOUR INCLUDING COLLISIONS – ITPA TOKAMAK CASE

A. Changes induced by pitch-angle collisions

After having established a solid baseline of what scenarios to expect non-linearly with-
out collisions, we now include pitch-angle collisions in the simulations and investigate
how the frequency chirping changes. Different cases are considered: Firstly, we will use
the self-consistently calculated self-collision frequency of the fast ions given by Eqs. (13)
and (14). Subsequently, in order to emulate the fact that the fast ions do not only collide
with themselves, but mainly with background ions and electrons, we will multiply the
self-consistent value by 10 and by 100.
As a representative of the ITPA case, we investigate the symmetric tokamak case 1.
Fig. 8 shows how the time trace of the perturbed magnetic field changes when pitch-
angle collisions with varying collision frequency are taken into account. The right-hand
side of Fig. 8 shows a zoomed-in view on the initial saturation. Several observations
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Figure 8: Similar as Fig. 4, but only for tokamak case 1 with a varying pitch-angle collision
frequency. νD denotes the self-consistent value. Higher collision frequencies tend to lead to lower
average δB values in the long-term non-linear phase. The right-hand side shows a zoomed-in
view on the initial saturation.

can be made: Firstly, the linear phases in each simulation are very similar. Therefore,
any changes in the frequency chirping can directly be attributed to the presence of the
pitch-angle scattering operator and not to changes of γL. Furthermore, as predicted by
analytical theory [1] (and numerically confirmed for the same magnetic equilibrium in
Ref. [36]), the first maximum of δB after the linear phase increases with νD due to the
prevention of wave-particle trapping.
The non-linear phases are completely different. Even when the fast-ion self-collision
frequency is multiplied by 100, the collision frequency is still small enough to allow
for a periodic non-linear behaviour of the mode. It is striking that even though the
initial saturation level (first maximum of δB) increases with νD, this is not true for the
long-term non-linear saturation level: It clearly decreases with νD.
Fig. 9 shows the spectrograms for the self-consistent case and two cases with artificially
increased collision frequency by either a factor 10 or 100. Recall that in the standard
ITPA tokamak case the fast-ion temperature is high (Tf = 400 keV). Hence, the fast-ion
self-collision frequency is very low. This is reflected in the spectrograms, where the
self-consistent case still very closely resembles its collisionless counterpart in Fig. 6. For
increased collision frequencies, pitch-angle collisions tend to blur the ‘internal structure’
within the chirping parabola. Furthermore, they lead to a more narrow chirping in
general. Fig. 8 shows that high pitch-angle collision frequencies significantly reduce the
mode amplitude for long times, which is also visible in Fig. 9 where the chirping fades
out in the high-collisionality case.

B. Changes induced by a fast-ion collision operator

We will now discuss the influence of a fast-ion collision operator on the non-linear
dynamics. Still, a Maxwellian background is used, since the ITPA benchmark is defined
that way.
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Figure 9: Different non-linear chirping scenarios for tokamak case 1 with varying collisionality
(only pitch-angle collisions are considered). The self-consistent value for νD is rather low (fast-
ion temperature is high and density is low), so that the first plot shows no significant deviation
from its counterpart in Fig. 6. Higher collision frequencies damp the mode and lead to a more
narrow chirping.
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Figure 10: Time traces of the perturbed magnetic field for the reference case without collisions,
a case where only the drag-part of the fast-ion collision operator was included, and for the full
fast-ion collision operator. The non-linear dynamics is different in each case. The right-hand side
shows a zoomed-in view on the time of initial saturation.

Fig. 10 shows how the time trace of the perturbed magnetic field changes when the fast-
ion collision operator (either just drag or the full operator including also pitch-angle
collisions) is taken into account. One can see that the non-linear phases are different,
both with respect to the long-term averaged saturation level and the period of the non-
linear oscillations. As shown in the expanded view on the right-hand side, the linear
phases are still similar. However, the first maximum of δB after the linear phase in-
creases due to fast-ion drag. We speculate that the friction force experienced by the fast
ions pushes them in and out of the resonance. This could be a mechanism that prevents
(or at least impedes) wave-particle trapping. While the addition of pitch-angle collisions
in the case of the full fast-ion operator very slightly increases the initial saturation am-
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Figure 11: Spectrograms of the perturbed electrostatic potential for a case where just drag is
included (left-hand side) and for the full fast-ion collision operator (right-hand side). Comparing
with the collisionless result shown on the left-hand side of Fig. 6, we find that, as soon as drag
is included, only the up-chirping branches remain.

plitude (first maximum), the just-drag case (without any pitch-angle collisions) shows
the highest saturation level for long times.
The spectrograms of the perturbed electrostatic potential, including only drag on the
left-hand side and the full fast-ion collision operator on the right-hand side, are shown
in Fig. 11. In these spectrograms, the effects of the drag term are visible with their char-
acteristic signature (see, for example, Refs. [25, 29]) and only the branches that show an
up-chirping frequency remain. This is due to the fact that the fast-ion collision opera-
tor is not symmetric around the resonant velocity. The non-linear frequency evolution
changes significantly in the case with the full fast-ion collision operator. As in the drag-
only case, the frequency is just (slightly) chirping up, but pitch-angle collisions now lead
to a ‘modulated’ behaviour after some time. As discussed before, they again reduce the
width of the chirping parabola. Pitch-angle scattering leads to the de-trapping of parti-
cles from the phase-space structure, which reduces the overall chirping. Note that the
pitch-angle collision frequency used in this case is close to the νD → 100νD-case shown
in Fig. 9 on the far right. Therefore, the width of the chirping parabola is comparable.
Nevertheless, the non-linear behaviour is different in the sense that now the mode am-
plitude does not decrease for long times, which can only be attributed to the presence
of the drag term.
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C. Using a time-dependent damping rate γd(t)

It has been studied in the literature (see, for example, Refs. [3, 25, 29]) how the choice
of γd influences the non-linear dynamics and frequency chirping. However, these inves-
tigations were done with a fixed, but different, value for γd in each simulation. Here,
we investigate the influence of a time-dependent damping rate γd(t) on the non-linear
dynamics in a single simulation.
The reason for this investigation is that two effects have to be distinguished: Firstly,
the frequency of the mode may change on a short time scale, much shorter than the
evolution of the equilibrium. This is the effect that is traditionally referred to as chirp-
ing. Secondly, the equilibrium may change on a longer time scale. Such equilibrium
changes could, for instance, lead to a change in the shear Alfvén continuum gap struc-
ture, which could influence γL/γd, a critical parameter that determines the frequency
chirping. Distinguishing these effects is important, especially for future comparisons
with experimental measurements. Below, we use a time-dependent damping rate in
order to simulate possible equilibrium changes.
We perform the substitution γd → γd f (t) in the amplitude equations of CKA-EUTERPE
(see Eqs. (7) and (8)) with a time-dependent function

f (t) = −εγd sin [ωγd (t− ∆tγd)]

(
erfc [t− ∆tγd ]

2
− 1
)
+ 1. (25)

The parameters in f (t) are chosen as

εγd = 0.8 (26)

ωγd = 430.1 s−1 (27)
∆tγd = 3.14 ms. (28)

With this choice of parameters, γd will not vary in the linear phase. This ensures that
the linear growth rate will be the same as in the regular collisionless reference case.
This way, any changes in the non-linear phase cannot have their origin in a different
linear phase. The resulting time trace of the perturbed magnetic field, including the
time-dependent damping rate, is shown in Fig. 12. The figure shows that, in the non-
linear phase, the average value of δB now oscillates with γd(t). Even when γd(t) is at
its maximum (see maxima of red curve), the mode does not return to its initial value so
that a new linear phase may start.
Analytical theory [3, 25] predicts that the frequency change scales as δω(t) = ω(t) −
ω(0) = ±αγL

√
γdt with α ≈ 0.44 (for the one-dimensional Berk-Breizman paradigm).

Substituting the parameters of the collisionless reference case, γL = γ + γd = 1.25 ·
104 s−1, γd = 1.05 · 104 s−1, and α = 0.25, one arrives at the red curves in Fig. 13 (left-
hand side). One can see that the fit works rather well for the upper branch for the case
where γd is constant. The fit is worse for the lower branch, since the chirping parabola is
slightly asymmetric. When γd changes over time, the analytical theory does not apply.
This may be due to the fact that one of the assumptions of the Berk-Breizman model,
that the mode is close to marginal stability, is violated when γd(t) is at its minimal
values. Hence, the theory predicts a non-monotonic behaviour of δω, whereas we find
a slightly modulated, but always monotonic behaviour in the simulations.
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Figure 12: Temporal evolution of γd and the induced temporal behaviour of the perturbed mag-
netic field (left-hand side). The right-hand side shows the spectrogram of the perturbed electro-
static potential, which is now also modulated (parabola is either narrow or wide) with the same
period as γd.
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Figure 13: Fits of δω(t) = ω(t) − ω(0) using analytical theory [3, 25]. The standard case is
shown on the left-hand side. While the upper branch is fitted rather well, the chirping is slightly
asymmetric so that the fit works less well for the lower branch. The right-hand side shows the
case in which γd is not a constant. For a time-dependent γd(t), the analytical theory fails to
predict the numerically observed behaviour.
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Figure 14: Influence of a Krook operator on the non-linear dynamics. The left-hand side shows
the time trace of the perturbed magnetic field. The Krook operator periodically rebuilds the
distribution function such that δB becomes modulated. The effect on the chirping can be seen
on the right-hand side. The Krook operator leads to periodic chirping events.

D. The influence of a Krook operator

We now study the influence of a Krook operator on the non-linear dynamics. Since
this operator acts to rebuild the initial distribution function, it should lead to periodic
chirping events.
It was shown in Ref. [30] that such events are linked to a local flattening of phase-space
gradients, followed by the emission of holes and clumps [4], and finally a restoration of
the initial gradient so that the process can repeat again. Note that our case is different
from the simple Berk-Breizman paradigm: In the Berk-Breizman model a gradient in
velocity space is the source of the instability. After this gradient in velocity space is
flattened non-linearly, pitch-angle collisions (acting in velocity space) can rebuild it and
thus restore the initial distribution function. In the present case, instead of velocity-
space gradients, the spatial fast-particle density gradient is the source of instability. We
found previously in Sec. IV A that pitch-angle collisions cannot (sufficiently) rebuild the
gradient of the density profile and therefore we do not observe periodic chirping. What
would be needed is a source of particles in real space. Therefore, a Krook operator is
now used to emulate such a source (as would be present in a real experiment via e.g.
neutral beam injection), which acts to restore the distribution function to its initial value.
This leads to a periodic re-appearance of the mode with intermediate phases of lower
mode amplitude, which is a common feature of non-linear systems in general. For
instance, the fishbone burst cycle [8] is closely related.
Fig. 14 shows the resulting non-linear dynamics for νKrook = 114.7 s−1. This value is
chosen since it should guarantee several chirping events during a 60-ms-long simulation.
Even though the Krook operator is present from the beginning of the simulation, it does
not significantly change the first maximum of δB, frequency and growth rate of the
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Figure 15: Influence of both Krook collisions and fast-ion drag on the non-linear dynamics. As
before, the left-hand side shows the time trace of the perturbed magnetic field. When the drag
term is included, the mode amplitude rises on average and is no longer modulated (even though
the Krook term is still present). On the right-hand side, which shows the spectrogram of the
perturbed electrostatic potential, the drag term now prevents individual, periodic events. The
chirping is more narrow.

mode compared with the reference case. (For example, the linear growth rate is reduced
by less than 0.1 %.) Clearly, the presence of the Krook operator lowers the long-term
saturation level. But, as expected, it also leads to a periodic modulation of δB and
therefore to periodic chirping events as can be seen on the right-hand side of Fig. 14.
The initial chirping parabola fades away such that individual chirping events become
visible. The average period in between the major chirping events is roughly 27.5 ms.
This is about three times longer than ν−1

Krook, which indicates that in this complex system
other processes, such as the particle motion itself, influence the rate of construction
of the distribution function. In the Berk-Breizman model, the Krook operator can be
connected to the diffusive processes taking place at the phase-space resonance surface
separating the fast ions trapped by the wave from passing particles. In that case, νKrook
should reflect the characteristic de-trapping frequency of fast ions.
It may now be attempted to combine the Krook operator with a fast-ion collision op-
erator. We already showed (see also Fig. 11) that the pitch-angle-scattering part of the
full fast-ion collision operator leads to a narrowing chirping parabola. Otherwise, pitch-
angle collisions do not significantly change the non-linear behaviour. Therefore, we
restrict ourselves to the combination of the Krook operator and the drag term. The re-
sults can be seen in Fig. 15. As observed before (see Fig. 10), the inclusion of drag leads,
on average, to a rising mode amplitude in the non-linear phase. Somewhat surprisingly,
the long-term oscillations in the signal – induced by the presence of the Krook term that
acts to rebuild the distribution function – are no longer present when fast-ion drag is
included. We may again speculate that this is because particles are shifted in and out of
the resonance as the simulation progresses. The absence of these long-term non-linear
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oscillations also manifests itself in the spectrogram (see right-hand side of Fig. 15). The
chirping does no longer ‘tear off’ in such a way that individual events are visible. On
the other hand, the drag term presents itself with its usual signature (only up-chirping
remains). After chirping initially, the frequency stays roughly constant in the non-linear
phase. Ref. [33] argues that this corresponds to a state in which the effects of drag and
relaxation of the distribution function due to the Krook term, balance each other.

V. NON-LINEAR BEHAVIOUR INCLUDING COLLISIONS – WENDELSTEIN 7-X CASE

The stellarator cases have been introduced in Sec. III. We will only focus on W7-X case 1
as it nicely showed almost symmetrical frequency chirping in the absence of collisions.
Now we will investigate how the non-linear dynamics changes when particle collisions
are included.

A. Changes induced by pitch-angle collisions

We now investigate for W7-X how pitch-angle collisions between the fast particles in-
fluence the frequency chirping and the non-linear dynamics in general. The results are
compared to the collisionless reference case. The self-consistently calculated pitch-angle
collision frequency νD is given by Eqs. (13) and (14). Since for W7-X the fast-ion temper-
ature is much lower than for the ITPA tokamak case (and, simultaneously, the fast-ion
density is much higher), the collision frequency is also larger. (Recall that we use a
slowing-down distribution function. The temperature is therefore computed by calcu-
lating the pressure from the distribution function and then dividing by the density. Note
that a Maxwellian with roughly the same shape as the slowing-down distribution func-
tion would have an equivalent temperature of approximately 20 keV.) The effect of the
high collision frequency is, as can be seen in Fig. 16, that a steady-state develops after
the initial saturation. This is in line with Refs. [35, 36] were it was shown recently that
a steady-state develops in the non-linear phase for high collision frequencies. Further
simulations are performed at one tenth and one hundredth of the original value of the
collision frequency. The results are summarized in Fig. 16. The figure shows the time
traces of the perturbed magnetic field for the reference case and for the collisional cases.
The long-term saturation level is periodic only for the collisionless case. For the lowest
collision frequency investigated, the behaviour is still close to being periodic. In that
case, however, the damping of the wave in the early non-linear phase is severe. The first
maximum of δB increases with increasing collision frequency νD (see Fig. 16 right-hand
side).
Fig. 17 shows the associated spectrograms of the perturbed electrostatic potential for
the cases including collisions. (The collisionless reference case is depicted in Fig. 7
on the left-hand side.) Note that the spectrograms contain less data for the collisional
cases, since the time simulated is much shorter. Recall that the collisionless reference
case nicely shows almost symmetric chirping (although, comparing δω/ω, on a much
smaller level than the ITPA case). However, as soon as collisions are added, the fre-
quency basically becomes constant in time (see Fig. 17). Only for the lowest collision
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Figure 16: Time traces of the perturbed magnetic field of a TAE mode in Wendelstein 7-X geome-
try. The pitch-angle collision frequency is varied. νD denotes the self-consistent value. Except for
the lowest collision frequency at early times, the non-linear dynamics resembles a steady-state
when collisions are added. Contrary to the ITPA case, higher collision frequencies lead to a
higher long-term-average saturation level. The right-hand side shows a zoomed-in view on the
initial saturation.
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Figure 17: Effect of pitch-angle collisions on the non-linear chirping behaviour for the W7-X
case 1. The self-consistent value for νD is high (low fast-ion temperature), so that the mode
frequency becomes constant. Reducing the collision frequency (left-most sub-figure) leads to a
re-appearance of the initial chirping, but significantly damps the mode.

frequency in this set (the left-most sub-figure) are traces of frequency chirping still vis-
ible in the early non-linear phase. Nevertheless, because the mode amplitude strongly
decreases after the linear phase (see Fig. 16), the chirping eventually disappears.

B. The influence of fast-ion drag

It is a major goal of the W7-X physics program to assess the influence of fast particles
on plasma performance, especially since good fast-ion confinement is an optimization
criterion of W7-X [12, 17]. A realistic treatment of the fast ions requires not only realistic
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Figure 18: Time traces of the perturbed magnetic field for the W7-X case including a drag term
of various strengths. The self-consistent case shows a very high saturation level. Reducing the
strength of the drag term brings the curves closer to the collisionless reference. The right-hand
side shows a zoomed-in view on the time of initial saturation.

distribution functions, but also the inclusion of a fast-ion collision operator. This is in
particular important for non-linear simulations as they are performed here. As described
in Sec. II, the fast-ion collision operator combines pitch-angle collisions and drag. Since
the influence of pitch-angle collisions has already been addressed, we will now focus on
drag only.
The effect of fast-ion drag on the frequency chirping in tokamaks was already discussed
in Sec. IV B. This section aims at showing the differences and similarities in stellarators.
The slowing-down distribution function described by Eq. (24) is the steady-state solution
of the gyro-kinetic equation including a fast-ion collision operator and a beam-like fast-
ion source. The formation of such a distribution function happens on a time scale that
is much longer than the Alfvén wave dynamics. Therefore, we use the aforementioned
Eq. (24) as a static background and simulate only the deviations from this distribution
function caused by the presence of the mode.
The time traces of the perturbed magnetic field, while varying the strength of the drag
term, are shown in Fig. 18. If the fast-ion drag is computed self-consistently, the non-
linear saturation level is increased substantially compared with the collisionless refer-
ence case. This strong influence of the drag term is, again, due to the high collision
frequencies in W7-X compared with the tokamak case. Note that self-consistently cal-
culated drag quickly leads to a steady state with no signs of periodic behaviour. It is
therefore excluded from further analysis.
Reducing the drag term by a factor of 10 or 100 leads to results that preserve the chirping
nature of the solution in the non-linear phase. After the mode has initially saturated,
there is still a sub-exponential drift. The same behaviour was seen before in the tokamak
case.
The frequency spectrograms associated to these time traces are shown in Fig. 19. They
show the expected behaviour: The chirping becomes asymmetric with the upper branch
dominating in intensity over the lower branch. On the right-hand side of the figure,
where the strength of the drag term is higher, the lower branch vanishes completely and
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Figure 19: Spectrograms of the perturbed electrostatic potential for the W7-X cases that include
fast-ion drag. Compared with Fig. 18, only the cases with reduced strength of the drag term
are shown as they preserve the chirping behaviour. As before in the tokamak, drag leads to the
disappearance of the down-chirping branches.

the upper branch, after chirping initially, transitions to a new steady state. This is very
similar to Fig. 14 of Ref. [29], even though the dimension-less parameters that determine
the frequency chirping (normalized growth rate and collision frequencies) are different
in this publication.

C. The influence of a Krook operator

Finally, we want to demonstrate the effect of a Krook operator in stellarator geometry.
We choose νKrook = 86.7 s−1. The results are shown in Fig. 20. The linear phase re-
mains nearly unaffected (the growth rate changes by less than 0.05 %). As before in
the tokamak case (see Fig. 14 for comparison) the average saturation level in the non-
linear phase is lower when the Krook operator is included. This is most clearly visible
up until t ∼= 20 ms. Especially in the late non-linear phase (t > 30 ms) a modulation
of the δB signal due to the presence of the Krook term is visible. These modulations
translate into individual chirping events as shown in the spectrogram on the right-hand
side of Fig. 20. The average period between the major chirping events is approximately
19.7 ms, which is about twice ν−1

Krook. It has to be pointed out that the reduction of the av-
erage saturation level and the modulation of the δB signal is less pronounced compared
with the tokamak case. Note, furthermore, that this one choice of νKrook corresponds
to a proof-of-principle calculation aimed at showing that periodic chirping is possible
in W7-X. Details about this process (e.g. how the time in between chirping events in
influenced by γL and νKrook) will be investigated in a future publication.

24



0 10 20 30 40 50 60

t  / m s

38

40

42

44

46

48

f 
/ 

k
H

z

W7-X case 1 - Krook operator

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

0 10 20 30 40 50 60 70

δ
B

 /
 B

0

t / ms

W7-X case 1 - no collisions
W7-X case 1 - Krook operator

Figure 20: Influence of a Krook operator on the non-linear dynamics of a TAE in W7-X. The
left-hand side shows the time trace of the perturbed magnetic field. As for the tokamak case, the
Krook operator leads to a periodic modulation of δB via rebuilding of the distribution function.
In the spectrogram on the right-hand side the Krook operator leads to periodic (and separated)
chirping events.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the influence of various collision operators on the
non-linear frequency chirping of fast-ion-driven TAEs in two different magnetic geome-
tries. A tokamak case as well as a Wendelstein 7-X (W7-X) high-mirror equilibrium have
been considered. The effects of pitch-angle collisions and fast-ion drag on the non-linear
dynamics of the mode were discussed separately. Pitch-angle collisions together with
fast-ion drag constitute the fast-ion collision operator. A particle source was emulated
using a Krook operator.
Starting with the tokamak case, we found that pitch-angle collisions lead to a reduction
of the long-term saturation level and a more narrow frequency chirping compared with
the collisionless case. The situation is different for the W7-X case, where the fast-ion
temperature is lower while, at the same time, the fast-ion density is higher. Both ef-
fects lead to higher collision frequencies. Consequently, the non-linear dynamics of the
TAE in W7-X becomes stationary for self-consistently calculated pitch-angle scattering
frequencies. Contrary to the tokamak case, the long-term saturation level is enhanced
in W7-X, when (self-consistently calculated) pitch-angle collisions are considered. This
could be of practical relevance for the operation of the machine.
Many of the features we see in our simulations (in the tokamak as well as in the stel-
larator) are very similar to features observed in the one-dimensional Berk-Breizman
paradigm. The drag term, for example, manifests itself in the usual way that only
up-chirping frequency branches (also dubbed holes in phase space [4]) remain. The
so-called clumps disappear. For some collision operators, however, differences become
apparent. This concerns the influence of pitch-angle collisions on the non-linear devel-
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opment of the mode. It makes a difference whether a phase-space gradient or a density
gradient in real space is considered. Furthermore, the Berk-Breizman model was found
to not be applicable when a time-dependent damping rate γd(t) is used, which is likely
caused by violating the assumption of a marginal mode.
In order to simulate periodic chirping events, a particle source that restores the original
distribution function needs to be present. Since the inclusion of a ‘real’ particle source
into EUTERPE is a matter of on-going research, we use a Krook operator to emulate
a particle source in the present work. The rate of reconstruction of the distribution
function, νKrook, was chosen in a way to have periodic chirping events nicely visible
in proof-of-principle calculations. Experimental measurements are needed to constrain
this parameter. The Krook operator is found to have the same effect in the tokamak and
in the stellarator.
The issue of frequency chirping is of practical relevance for operation phases of W7-X
that include NBI heating. We hope that, when experimentally measured time traces of
δB become available, we can spectroscopically determine γL, γd, and collision frequen-
cies in W7-X by choosing critical input parameters of the simulations such that they fit
the measurements. Such an approach has, for instance, been suggested in Ref. [27].
There could, however, be a number of problems: The Berk-Breizman model predicts
[3, 25] that during a frequency chirp the frequency changes as δω = ±αγL

√
γdt. This

means that, in order for the chirping to be nicely visible, both γL and γd should be
large. However, the simulations presented in this paper indicate that the fast-ion drive
in W7-X is rather small (and smaller than for the ITPA tokamak case). This leads to a
narrow chirping parabola, which could be hard to resolve experimentally.
Furthermore, it was found that the collision frequencies in W7-X are high. For that rea-
son, the periodic non-linear behaviour of δB is suppressed. Finding parameter regimes
that allow for frequency chirping could be an experimental challenge. Nevertheless, this
paper shows that collisions, especially in dense W7-X plasmas with a low fast-ion tem-
perature, significantly influence the non-linear dynamics and the saturation level. They
have thus to be included in the non-linear modelling of any AE instability.
From a numerical and theoretical standpoint, this paper confirms that CKA-EUTERPE
can routinely be used to perform non-linear simulations for W7-X.
Finally, we want to point out that here we considered the interaction of fast ions with
a single mode. In realistic experiments, however, multiple modes – possibly close to-
gether in frequency – may be present. In that case the assumption of a fixed mode
structure would need to be revisited. Work on a multi-mode version of CKA-EUTERPE
is currently in progress. Thus, frequency chirping in more complex systems will be
investigated in the future, once this version is operational.
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