Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Valence and Core-Level X-ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet

MPG-Autoren
/persons/resource/persons222269

Ali,  Hebatallah
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons205848

Kolbeck,  Claudia
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22066

Schewe,  Hanns Christian
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons224796

Malerz,  Sebastian
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons203286

Winter,  Bernd
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buttersack, T., Mason, P. E., McMullen, R. S., Martinek, T., Brezina, K., Hein, D., et al. (2019). Valence and Core-Level X-ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet. Journal of the American Chemical Society, 141(5), 1838-1841. doi:10.1021/jacs.8b10942.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-F613-3
Zusammenfassung
Photoelectron spectroscopy of microjets expanded into vacuum allows access to orbital energies for solute or solvent molecules in the liquid phase. Microjets of water, acetonitrile and alcohols have previously been studied; however, it has been unclear whether jets of low temperature molecular solvents could be realized. Here we demonstrate a stable 20 μm jet of liquid ammonia (−60 °C) in a vacuum, which we use to record both valence and core-level band photoelectron spectra using soft X-ray synchrotron radiation. Significant shifts from isolated ammonia in the gas-phase are observed, as is the liquid-phase photoelectron angular anisotropy. Comparisons with spectra of ammonia in clusters and the solid phase, as well as spectra for water in various phases potentially reveal how hydrogen bonding is reflected in the condensed phase electronic structure.